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Three key metrics for readout systems in quantum processors are measurement speed, fidelity,
and footprint. Fast high-fidelity readout enables midcircuit measurements, a necessary feature for many
dynamic algorithms and quantum error correction, while a small footprint facilitates the design of scalable,
highly connected architectures with the associated increase in computing performance. Here, we present
two complementary demonstrations of fast high-fidelity single-shot readout of spins in silicon quantum
dots using a compact, dispersive charge sensor: a radio-frequency single-electron box. The sensor, despite
requiring fewer electrodes than conventional detectors, performs at the state of the art achieving spin
readout fidelity of 99.2% in less than 6 μs fitted from a physical model. We demonstrate that low-loss
high-impedance resonators, highly coupled to the sensing dot, in conjunction with Josephson parametric
amplification are instrumental in achieving optimal performance. We quantify the benefit of Pauli spin
blockade over spin-dependent tunneling to a reservoir, as the spin-to-charge conversion mechanism in these
readout schemes. Our results place dispersive charge sensing at the forefront of readout methodologies for
scalable semiconductor spin-based quantum processors.

DOI: 10.1103/PhysRevX.13.011023 Subject Areas: Condensed Matter Physics, Electronics,
Semiconductor Physics

I. INTRODUCTION

Electron spin qubits in silicon are consolidating their
position as a leading candidate to build scalable high-
fidelity quantum processors. Several recent demonstra-
tions have shown single- and two-qubit gate fidelities
exceeding the requirements for fault-tolerant thresholds
in the same device [1–3]. Combined with the dense

scaling potential [4,5], advanced manufacturing [6,7],
and prospects for integration with cryogenic classical
electronics [8], these results present a promising future
for spin-based qubits in silicon.
For universal quantum computing, the technology will

require fast high-fidelity readout on a timescale which is
short compared to the qubit coherence time to allow
for error correction codes to be implemented. Even for
noisy intermediate-scale quantum processors, fast meas-
urement remains advantageous to avoid readout becom-
ing the bottleneck in circuit run-time and to enable
midcircuit measurements for error mitigation [9,10]
and gate teleportation [11].
Fast spin readout has been shown using single-electron

transistors (SETs) with spin-readout fidelities as high as
99.9% in 6 μs [12] and 99% in 1.6 μs in radio-frequency
(rf) mode [13]. However, a SET requires at least three
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electrodes and two charge reservoirs significantly limiting
their placement within dense qubit arrays.
Dispersive readout methods, based on detecting alter-

nating single-electron currents, offer the benefit that only
two electrodes are needed to either sense the system
in situ using Pauli spin blockade (PSB) [14–16] or to
create a dispersive charge sensor, i.e., a single-electron
box (SEB), to read the target qubit [17–21]. These
methods require zero or one charge reservoirs, respec-
tively, strongly enhancing their capacity to be introduced
within qubit arrays. The SEB, however, offers the key
technological advantage it can detect electronic transitions
occurring at rates much lower than the probing rf
frequency, which could be the case in the few-electron
regime where qubits are operated. However, the perfor-
mance of SEBs in silicon (99.2% in 100 μs [22]) has
remained noncompetitive with respect to SETs, raising the
question of whether fast and compact high-fidelity read-
out could be possible.
Here, we present two independent demonstrations show-

ing that the compact SEB electrometer can achieve fast and
accurate spin readout in silicon, reaching 99.2% fidelity in
just 5.6 μs, obtained from a fit to standard physical models.
This result compares favorably to the state-of-the-art
dispersive readout of 97% in 6 μs [23]. Our work spans
four key aspects in designing optimal dispersive charge
sensors: (i) the SEB design, (ii) the readout resonator
design, (iii) the physical mechanism for spin-to-charge
conversion, and (iv) the amplification chain. We present
SEBs with large gate couplings (i) coupled to low-loss
high-impedance rf resonators (ii). We show the benefits of
Pauli spin blockade readout over spin-dependent tunneling
to a reservoir (iii) and demonstrate the role of parametric
amplification in improving dispersive readout fidelity (iv).
These results demonstrate a route to combining high-
fidelity readout of semiconductor-based qubits with the
demands of a compact and scalable architecture.

II. OPTIMIZING READOUT SENSITIVITY

Dispersive charge sensing using a SEB works on the
principle of some change ΔCD in the quantum capacitance
of the SEB arising from a change in its local electrostatic
environment. This capacitance shift is detected via a change
in the reflected power ΔPrf of a rf signal from a resonator
whose frequency depends on CD. The sensitivity of the
SEB can be characterized by the ratio of the signal and
noise powers, SNR ¼ ΔPrf=Pn, where Pn is the noise
power. In order to maximize the SNR, the available
strategies are to minimize the noise power or to maximize
the signal power. As we shall see later, the signal power is
enhanced by (i) increasing the gate lever arm of the SEB α
(defined as the ratio of the gate capacitance of the SEB and
its total capacitance) and its capacitive coupling to the spin
system to be sensed, and by (ii) optimizing the resonator
design which involves a well-matched, low-loss, high-

impedance resonator, operating at high frequency but kept
below the tunneling rate of the SEB. More details on the
dependence of the SNR on each of these parameters
are given below [see Eq. (3) and Appendix A]. Further,
for a theoretical SNR comparison between the SEB and
dispersive readout, and the SEB and the SET, see
Appendixes A and B, respectively.
Here, we present different approaches to increasing the

SNR by optimization of these parameters and compare two
strategies for converting the spin degree of freedom of the
qubit into a charge event which can be detected by the SEB.
We begin by using spin-dependent tunneling while min-
imizing the noise power Pn through the use of a Josephson
parametric amplifier (JPA) [24].

III. SPIN-DEPENDENT TUNNELING

The device in this section is an etched silicon nanowire
double split-gate transistor that, at low temperatures, can
be used to form quantum dots (QDs) at the upper edges of
the nanowire, one under each of the four gates [see
Fig. 1(a) and Appendix C for device dimensions]. One of
the gates is connected to a lumped-element resonator to
form a SEB that is used as a charge sensor to measure the
qubit—here, the spin of an electron confined under the
gate opposite to the SEB—using spin-dependent tunnel-
ing. The other two gates are not used. Changes in the SEB
quantum capacitance CD are detected via rf reflectometry
[25], where a tone of frequency frf is delivered through an
attenuated line to the lumped resonator [see Fig. 1(a)]
capacitively coupled to the transmission line (Cc¼50 fF).
The resonator, of natural frequency fres ¼ 665.5 MHz at
2 T, consists of a spiral NbN inductor (L ¼ 124� 4 nH)
and the parasitic capacitance (Cp ¼ 410 fF) in parallel
with the SEB and presents an internal Q factor, Q0 ¼ 270,
a high-impedance Zr ¼ 520 Ω, and a coupling coefficient
β ¼ 2.5 (see Appendix D for the setup and Appendix E
for more information about the resonator).
The SEB, with an α ¼ 0.35, is strongly sensitive to the

“qubit dot” [as shown in Fig. 1(b)], meaning that the
addition of one electron to the QD causes a change in
the quantum capacitance of the SEB which shifts its rf
response by more than one linewidth. This shift is used to
perform spin readout using the three-level pulse sequence
illustrated in Figs. 1(b) and 1(c).
The noise of the system (conveniently characterized by

the equivalent noise temperature Tn) contains contributions
from the system itself Tsyst (SEB and resonator) as well as
the amplification chain [see Fig. 1(a)]. In rf measurements
of semiconductor QDs, a high-mobility electron transistor
(HEMT) is typically used as the first amplifier, limiting the
noise temperature to a few kelvin. Here we add an amplifier
with lower noise temperature, a JPA, with gain GJPA,
reducing Tn accordingly:
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Tn ¼ Tsyst þ TJPA þ THEMT

GJPA
; ð1Þ

where THEMTðJPAÞ is the noise temperature of the HEMT
(JPA). We note the use of a JPA is only advantageous if the
noise is dominated by the HEMT instead of the system.
This is not the case for rf SETs where shot noise may be
comparable or in excess of that of the HEMT [26]. For
SEBs, if the tunneling rate γ between SEB and reservoir is
greater than frf , electrons tunnel adiabatically, and the
Sisyphus noise is substantially reduced [16] leaving

predominantly the noise contribution of the HEMT (see
Appendix F for a description of the JPA).
In this device, the tunneling rate γ between SEB and

reservoir is 74� 12 GHz (see Appendix G), well in excess
of frf ∼ 0.7 GHz, such that we are in the regime of
negligible Sisyphus dissipation in the SEB. This is
confirmed by noise temperature measurements yielding
Tn ¼ 2.5þ1.4

−0.9 K [27] with the JPA off, reducing to Tn ¼
0.25þ0.14

−0.09 K with the JPA. The fact that the latter falls below
typical shot noise levels [26] demonstrates one of the major
advantages of SEBs over SETs. This tenfold reduction of
noise temperature with the JPA leads to a corresponding
reduction in τm, the minimum integration time to resolve a
charge event with a SNR ¼ 1 [28]. When measuring at
frf ¼ 668 MHz, where the reflection coefficient of the
resonant circuit is at a minimum, we find τm ¼ 1 μs and
τm ¼ 100 ns, for JPA off and on, respectively. Operating
at this point of minimum reflected power is necessary to
avoid driving the JPA beyond its 1 dB compression point,
P1 dB ¼ −116 dBm. However, as can be seen in Fig. 1(d),
τm with the JPA off can be decreased by approximately a
factor of 2 by adjusting the drive frequency frf to match
fres, which differs from the point of minimum reflected
power in the total circuit. The overall achievable reduction
in τm achieved using the JPA is therefore a factor of 4.5 (see
Appendix H for more details). These results emphasize the
importance of a well-matched and high-Q resonator
to minimize the reflected power to avoid saturating the
JPA [27]. The limit in measurement bandwidth is set by
the difference Δf between the JPA pump frequency
(fJPA ¼ 665.2 MHz) and frf , while the JPA gain falls
as this difference increases [see Fig. 1(f)]. We select
Δf ¼ 2.9 MHz for which GJPA ¼ 17 dB.

A. Spin readout and fidelity

To measure the spin of the electron in the QD, we apply a
magnetic field of B ¼ 2 T to produce a Zeeman splitting
EZ ¼ gμBB larger than the thermal broadening of the
reservoir into which the electrons tunnel. Here, Te ¼ 137�
18 mK is the electron temperature (see Appendix I), μB is
the Bohr magneton, and g ≈ 2 is the electron g factor. To
measure the spin orientation, we apply a three-level voltage
pulse to the QD gate [see inset of Fig. 1(b) and 1(c)]. First,
the QD is emptied so an electron with a random spin
polarization can be loaded from the reservoir. Then, at the
readout stage, the reservoir Fermi energy EF lies in
between the spin j↑i and j↓i states, so a spin j↑i electron
can tunnel out from the dot to the reservoir and be
subsequently replaced by a spin j↓i electron, whereas a
spin j↓i electron remains in the QD [29]. During the
readout stage, the system is tuned at the position marked R
in Fig. 1(b), where the SEB rf response is strongly
dependent on the QD electronic occupation. This way, a
readout trace from a spin j↓i state is a constant noisy
background [the gray and black traces in Fig. 2(a)]. On the

(a) (b)

(d)

(e)

(f)

(c)

FIG. 1. Device and measurement setup. (a) False-color scan-
ning electron micrograph of a silicon nanowire transistor with
two pairs of split gates (red). The green dots indicate the location
of the QDs under each gate. The blue regions are electron
reservoirs. The SEB is connected to a lumped-element resonator
and the fast pulses for spin-dependent readout are applied to the
dot facing it through a bias tee. See Appendix D for more
information about the measurement setup. (b) Normalized rf
response of the stability diagram of the SEB and the dot. The
SEB potential shifts when the first electron is added to the dot,
changing the rf response from a maximum to some minimum,
background level. (c) The dot is first emptied (E) so an electron
with a random spin polarization enters the dot at the load stage
(L). Finally, the spin polarization is measured (R) by placing the
reservoir in between the j↑i and j↓i states. (d) The inverse of the
minimum integration time 1=τm for a SNR ¼ 1 is shown as a
function of frf without and with the JPA (red and blue,
respectively). The black dashed line indicates the natural
frequency of the resonator fres, which optimizes sensitivity
without the JPA. (e) The reflection coefficient [magnitude jΓj
(red) and phase Φ (gray)] at B ¼ 2 T shows a minimum at the
frequency which optimizes sensitivity with the JPA. (f) The JPA
gain decreases as frf moves away from the JPA pumping
frequency fJPA, solid gray line, as determined by the JPA
bandwidth of 19.2 MHz.
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other hand, a spin j↑i readout trace is characterized by a top
hat shape that starts when the spin j↑i electron leaves the
dot (t↑out), and lasts until a spin j↓i electron tunnels back
into the dot (t↓in). Spin j↑i single-shot traces taken without
the JPA are displayed in red in Fig. 2(a), whereas the ones
using a JPA in blue show a noticeable ×4.5 SNR improve-
ment. In both cases, the traces are taken with a sample rate
of Γs ¼ 1 MHz and a measurement bandwidth of feff;BW ¼
25 kHz (see Appendix J for more information about the
experiment bandwidth).
We identify the spin polarization of a given trace by

setting a threshold in the rf response that is compared
against the trace’s maximum. If the threshold is exceeded,
the trace is labeled as a spin j↑i, and if not, as j↓i. The
trace’s maxima follow a bimodal probability distribution,
as in Figs. 2(b) and 2(c), with one peak corresponding
to spin j↑i traces and the other to j↓i traces. To determine
the readout fidelity, we model the histograms as
NtotðVrfÞ ¼ Ntot½n↑ðVrfÞ þ n↓ðVrfÞ�Vbin, where n↑ð↓Þ is
the probability density of the maxima of spin j↑i (j↓i)
traces, Vrf is the normalized rf response, Ntot is the total
number of traces, and Vbin is the width of the rf response
bins [30]. The fidelity of correctly labeling an individual

readout trace F↑ð↓Þ
E can be calculated as

F↓
E ¼ 1 −

Z
∞

VT

n↓ðVrfÞdVrf ;

F↑
E ¼ 1 −

Z
VT

−∞
n↑ðVrfÞdVrf ; ð2Þ

where the integral of n↓ð↑Þ from VTð−∞Þ to ∞ðVTÞ is the
cumulative probability of having labeled spin j↓iðj↑iÞ trace
wrongly [30].
The experimental data result in the bimodal distribution

as a whole. However, to obtain n↑ and n↓ separately, we
numerically generate 100 000 readout traces, where each
trace is assigned a spin polarization with probability A of
being spin j↓i and 1 − A of being spin j↑i. Readout traces
are completely determined by a few experimental para-
meters that can be extracted from the data traces: the
sample rate Γs, the measurement bandwidth feff;BW,

the sensor SNR, the tunneling times t↑out and t↓in, and
the readout time Δt (see Appendix K for a description of
the parameter extraction). We fit the simulated histogram
to 10 000 experimental shots using least squares regres-
sion; see Figs. 2(b) and 2(c). In Fig. 2(c), n↑ (solid black
curve) and n↓ (solid blue curve) are comparatively
narrower due to the reduced noise enabled by the JPA. As
shown in Figs. 2(d) and 2(e), the electrical visibility,

(a) (b)

(d) (e)

(c)
(f)

(g)

(g)

(i)

(j)

FIG. 2. Spin readout fidelity. (a) Top: spin j↑i (red) and j↓i (gray) traces taken without the JPA. The rf response is normalized so it is 0
when the dot is occupied and 1 when it is empty. The bottom panel shows spin j↑i (blue) and spin j↓i (black) traces taken with a JPA.
(b) Histogram of the maximum values of the normalized rf response from 10 000 single-shot measured data traces taken without a JPA.
The red line is the simulated histogram created using the parameters A ¼ 0.50, Γs ¼ 1 MHz, t↑out ¼ 53 μs, t↓in ¼ 440 μs, and Gaussian
noise with standard deviation σhigh ¼ 1.09 for the top of the blip and σlow ¼ 1.03 for the background. Both the measurement bandwidth
and readout time used to create this histogram correspond with the optimalΔt ¼ 434 μs and measurement bandwidth feff;BW ¼ 25 kHz.
(c) Same as (b) for measurement taken with a JPA. In this case, the parameters used for the simulation are AJPA ¼ 0.46, Γs;JPA ¼ 1 MHz,

t↑out;JPA ¼ 31 μs, t↓in;JPA ¼ 186 μs, and Gaussian noise with standard deviation σhigh;JPA ¼ 0.38 for the top of the blip and σlow;JPA ¼ 0.36
for the background. The postprocessing parameters are chosen to be the ones that maximize the visibility (Δt ¼ 268 μs and
fJPAeff;BW ¼ 122 kHz). (d) Electrical visibility VE as a function of the threshold voltage used to discriminate between spin down and up.

(e) Same for traces obtained using a JPA. (f)–(h) Spin mapping errors due to long readout time with respect to t↓out (f), relaxation
processes (g), or thermal excitations (f). (i) Measurement infidelity (1 − FM) taken with (blue) and without (red) a JPA as a function of
the integration time, which is equal to 1=2feff;BW. (j) Measurement infidelity versus measurement time Δt. The stars mark the optimal
integration times and measurement times.
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VE ¼ 1 − F↑
E − F↓

E, depends on the selected threshold
voltage VT . We obtain VE ¼ 97.7% without a JPA and
VJPA
E ¼ 98.9% using a JPA.
Depending on the readout time Δt, spin mapping errors

can diminish the readout fidelity. If Δt is of the order or
smaller than t↑out, spin j↑i electrons will not leave the QD
during the readout time, leading to a false spin j↓i
measurement [see Fig. 2(f)]. On the other hand, if Δt is
increased, a spin j↑i may relax to the ground state before
leaving the QD, resulting in a false spin j↓i [see Fig. 2(g)],
or a spin j↓i could be thermally excited out of the QD,
leading to a false spin j↑i [see Fig. 2(h)]. The spin readout
fidelity FM is the product of the electrical fidelity FE, which
determines the probability to label correctly a given readout
trace (as discussed earlier), and the spin-to-charge fidelity
FSTC, setting the probability that a spin state generates the
trace that it is expected to. In our case, FE also includes the
false negatives derived from a slow t↑out, since the simulated
traces have a finite length Δt (see Appendix L for a full
description).
Having taken spin mapping errors into consideration, we

investigate the dependence of FM on Δt, and feff;BW (see
Appendix M for a full discussion). Figure 2(i) shows how
decreasing feff;BW leads to an improved fidelity as the noise
is reduced, up to a point in which the additional filtering
deforms the spin j↑i top hat, smoothing the edges and
reducing its maximum value. The optimal measurement
bandwidth is different for measurements taken with and
without the JPA not only because of the SNR improvement
but also because of the different tunneling rates in each
dataset, caused by a shift of the readout point and the 1D
nature of the reservoir (see Appendix I).
Further, the fidelity improves as Δt is increases since

more j↑i are captured, see Fig. 2(j). However, beyond an
optimal value, the fidelity worsens because of the addi-
tional opportunities for the background noise to surpass the
threshold. Spin mapping errors due to thermal excitation
and relaxation are negligible due to their large time
constant, being the relaxation time T1 ¼ 5.2 ms and the
time constant for a thermal excitation t↓out ¼ 309 and 70 s
without and with the JPA, respectively.
We obtain a maximum spin readout fidelity FM ¼

98.85% without the JPA at Δt ¼ 434 μs and feff;BW ¼
25 kHz and FM;JPA ¼ 99.45% for measurements obtained
with a JPA using ΔtJPA ¼ 268 μs and fJPAeff;BW ¼ 122 kHz
(see Appendix N for a comparison of fidelities calculated
with the same dot-to-reservoir tunneling rates). We note
FM;JPA ¼ 99% is already achieved at ΔtJPA ¼ 131 μs. We
further explore machine-learning-based approaches to
improve readout fidelity [31,32]. Here, by using neural
networks, we report an increased fidelity of FM ¼ 99.1%
in Δt ¼ 500 μs, and FM;JPA ¼ 99.54% in Δt ¼ 250 μs
without and with a JPA, respectively (see Appendix O
for more information).

Finally, we analyze the impact of t↑out on the readout
fidelity. During this period, spin j↑i and j↓i cannot be
differentiated adding idle time to Δt. We simulate readout
traces with asymmetric tunnel rates t↑out ≪ 1 μs and t↓in ¼
228 μs and obtain FM ¼ 99.3% in just 4 μs (see
Appendix P for a full discussion). The result shows that
the SEB could assign a spin label in much shorter time-
scales with equivalent fidelity if a spin-to-charge conver-
sion mechanism with these tunneling characteristics could
be used.

IV. PAULI SPIN BLOCKADE

A favorable physical mechanism for single-shot readout
is that of Pauli spin blockade based on the large asymmetry
in tunnel rates between two spin configurations. In this
second demonstration, the device consists of a silicon
nanowire transistor with four wraparound gates in series
as shown in Fig. 3(a). The QD under gate 1 acts as a SEB
with a larger α ¼ 0.40 due to the wraparound nature of the
gates (see Appendix Q for calculating α, Te, and γ). It is
dispersively measured using an LC lump-element resona-
tor consisting of a 160� 5 nH NbN superconducting

(a) (b)

(c) (d)

FIG. 3. Experimental setup. (a) False-colored scanning electron
micrograph of a silicon nanowire transistor with wraparound
gates, under which QDs form. The QD under gate 1 is operated in
the many electron regime (yellow ellipse) and acts as a SEB. Gate
1 is connected to a lumped-element resonator probed at a
frequency fr for dispersive readout. The QDs under gates 2
and 3 are charge sensed in the few-electron regime (red circles)
and the gates are connected to fast pulse lines for spin manipu-
lation. (b) Resonator response at base temperature. (c) Interdot
charge transition (ICT) from (3,1) to (4,0) along which PSB is
observed. The points P and M are used, respectively, to prepare
and measure or initialize the spin state. (d) Singlet (blue) and
triplet (red) exemplary single-shot traces with an energy diagram
as an inset showing the energy states close to the (3,1)–(4,0)
anticrossing.

FAST HIGH-FIDELITY SINGLE-SHOT READOUT OF SPINS … PHYS. REV. X 13, 011023 (2023)

011023-5



spiral inductor and a capacitance Cc þ Cp of 250 fF
[extracted from the natural frequency of the resonator,
frf ¼ 797 MHz, in Fig. 3(b)]. Given the improved match-
ing (β ¼ 1.05), internal quality factor (Q0 ¼ 298), reso-
nator impedance (Zr ¼ 800 Ω), and higher frequency, this
second implementation of the SEB reaches a τm ¼ 170 ns
(see Table I and Appendix R for the resonator analysis). We
use the SEB to sense the charge state of a few-electron
double quantum dot under gates 2 and 3 using a propor-
tional integral derivative (PID) feedback loop [33] (see
Appendix S for its implementation). We observe a trap-
ezoidal region in which PSB occurs both in the (1,1)–(2,0)
and the (3,1)–(4,0) charge transitions from which we
extract a 16 μeV and 195 μeV valley and orbital splittings,
respectively (see Appendix T for valley-orbit splitting
extraction). The larger (3,1)–(4,0) splitting aligns with
previous observations in planar devices of an excited state
with predominate orbital character [34]. Because of the
larger measurement window, we operate in the (3,1)–(4,0)
charge transition region, as shown in Fig. 3(c), acquired
without feedback. The sensor operates in the strongly
sensitive regime (see Appendix U). To determine the
readout fidelity, we initialize by waiting at point M for
5.1 ms, such that the system relaxes to the ground state, a
singlet (4,0). To prepare a mixed singlet-triplet population,
we pulse with a 100 ns ramp to point P and wait for 533 μs,
with a 30 mT magnetic field applied. By pulsing back to

point M, also with a 100 ns ramp, only the singlet is
allowed to tunnel, which does so faster than the measure-
ment bandwidth of 1.22 MHz, resulting in a sudden change
in charge state. The triplet, being the excited state at point
M, needs to relax to the singlet before it can tunnel,
resulting in a delayed response of characteristic timescale
T1. We record the first 400 μs after the pulse to point M for
10 000 shots, for which we show exemplary traces for both
singlet (blue) and triplets (red) in Fig. 3(d).
By plotting the occurrence of average values of each

trace for a given measurement time Δt, a bimodal
probability distribution associated with the singlet and
triplet outcomes appears; see Fig. 4(a) and Appendix V. In
this case, the data can be fit to a well-established model for
PSB readout that includes Gaussian probabilities for the
singlet and triplet outcomes as well as the contribution
from triplet decays [35]. From the fitted parameters, we
determine the optimum threshold voltage for a maximum
visibility of 98.5%, as shown in Fig. 4(b). This data
analysis can be carried out as a function of measurement
time Δt. In Fig. 4(c), the spin readout infidelity 1 − FM
decreases as Δt increases due to a reduction of the
measurement noise. However, at longer timescales, trip-
lets start decaying into the (4,0) charge configuration,
which decreases the readout fidelity. We find T1 ¼
228.6� 0.5 μs. Single-shot datasets were taken for
varying rf powers, resulting in a maximum fidelity FM ¼
99.21� 0.03% in 5.6 μs, as shown in Fig. 4(d). From the
difference between the sensor-limited readout fidelity
[considering T1 → ∞ (red crosses)] and FM (stars), we
determine the sources of error for our optimum readout as
being 0.63% due to T1 induced errors and 0.16% due to
the sensor.
Finally, we explore the role of temperature. There has

been recent interest in operating QDs at elevated temper-
atures [36,37] due to the additional cooling power that
would facilitate the cointegration with classical electronic
circuits and the development of an all-silicon quantum
computing system [38,39]. We see in Figs. 4(e) and 4(f)
that FM decreases with increasing temperature to 97.39�
0.18% in 23.6 μs at 530 mK and to 93.90� 0.28% in
27.1 μs at 1 K. The prevailing factor in the decrease in
fidelity is a reduction in the SNR of the SEB charge
transition [red dots in Fig. 4(f)] impacting the electrical
infidelities [dashed lines in Fig. 4(e)]. This result also
explains why the minimum infidelity occurs at higher Δt
with respect to base temperature. For Tfridge ≥ 500 mK, the
SNR decreases more rapidly than the expected 1=Tfridge

dependence [red fit in Fig. 4(f) and see Appendix W]
because the charge sensing shift of the SEB becomes
smaller than its FWHM, leading to a fractional signal
change, η < 1. Summarizing, sensor-induced errors are
responsible for 12.2% of the error at 1 K while T1-induced
errors are responsible for less than 0.8%; see overhead inset
in Fig. 4(f).

TABLE I. Summary of parameters relevant for SEB charge
sensing.

Elzerman

Type Parameter JPA off JPA on PSB

Resonator β 2.5 2.5 1.05
Ctot (fF) 460 460 250

Q0 270 270 298
Zr (Ω) 520 520 800

fr (MHz) 665.5 668 797

SEB α 0.35 0.35 0.40
η 1 1 1

γ (GHz) 70 74 < 4.25
Te (mK) 137 137 115

Noise Tn (K) 2.5 0.25 (0.56a) 2.5

Sensor τm (μs) 0.45 0.1 0.17

Spin mapping T1 (ms) 5 5 0.23
tout (μs) 53 31 < 1

b

Benchmark FM (%) 99.1c 99.54d 99.21
Δt (μs) 500c 250d 5.6

aNoise temperature measured at 665.5 MHz.
bSinglet tunneling time in PSB.
cNo neural networks applied 98.85% in 434 μs.
dNo neural networks applied 99.45% in 268 μs.
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V. DISCUSSION

We have determined that under asymmetric spin tunnel-
ing conditions, the two demonstrations would reach fault-
tolerant readout fidelity in a few microseconds. These
results highlight the benefits of PSB over tunneling to a
reservoir but also open the question of how best to design a
SEB to achieve faster readout, to go from readout times
comparable to the magnetically driven one- and two-qubit
gates [40] to the now more common electrically driven
∼100 ns gate operation times [1–3,41]. To answer this
question, we calculate the technological parameters that
determine τm. In the small signal regime (see Appendix I),
the measurement rate can be expressed as

τ−1m ∝ η2
β

ð1þ βÞ2
ðαeÞ2
kBTn

Q0Zr
f2rf

ð1þ f2rf=γ
2Þ2 : ð3Þ

We find that the charge sensing regime (quantified by η,
the fractional change in ΔC due to a charge sensing event),
the lever arm, and the operation frequency have the highest
impact with a quadratic dependence. However, frf cannot
be increased indefinitely, otherwise electron tunneling to
and from the SEB may not occur. Then low-loss, high-
impedance resonators close to critical coupling are desired

although τm is first-order insensitive to the coupling coef-
ficient near β ¼ 1. Lastly, quantum-limited amplifiers are
advantageous. We note that in the large signal regime, an
overcoupled resonator may be favorable [25] as long as the
reflected power is within the dynamic range of the JPA. In
the context of our two demonstrations, see Table I, the lower
noise temperature in the spin-dependent tunneling experi-
ment is compensated by the improved resonator specifica-
tions in conjunction with the higher α in the PSB-based
demonstration. The wraparound gate design is favorable
since it provides a larger gate lever arm. If a JPAwere to be
used in this instance, τm could be further reduced to ≈17 ns.
Considering this scenario, combined with a longer T1 (1 ms)
to reduce the impact of relaxation, a fidelity of 99.97% in
1.2 μs could be achieved, based on the analysis in Ref. [35].
Further improvements can be achieved by using devices with
smaller equivalent oxide thickness, and hence larger α [42],
and microwave resonators [23,43]. Such modifications could
bring the readout time down to a few 100 ns making it
comparable with the common gate operation times [3,41].

VI. CONCLUSIONS AND OUTLOOK

We have presented results at the state of the art for spin
readout using dispersive charge sensors and demonstrated

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. Spin readout fidelity. Data were acquired with a sampling rate of 20 MHz and a measurement bandwidth of 1.22 MHz.
(a) Histogram of 10 000 single-shot measurements averaged over 5.6 μs with the fitted distribution of singlets (blue) and triplets (red),
according to Ref. [35]. Inset shows the singlet-triplet distribution in the IQ plane, from which the binomial distribution is obtained.
(b) Readout visibility VE as a function of threshold voltage used to discern singlets from triplets. (c) Measurement infidelity (1 − FM)
with respect to measurement time Δt for varying rf powers applied to the resonator. (d) Readout fidelity as a function of rf power,
reaching an optimum between −112.5 and −110 dBm. The red crosses correspond to the electrical fidelity. (e) Measurement infidelity
(solid lines) and electrical infidelity (dashed lines) with respect to measurement timeΔt at varying temperatures measured at −110 dBm.
The vertical dashed line is at Δt ¼ 5.6 μs. (f) Measured readout fidelity (blue dots), electrical fidelity (black dots), and SEB signal-to-
noise ratio (red dots) as a function of temperature for Δt ¼ 5.6 μs. The red line is a ðT2

e þ T2
fridgeÞ−1=2 fit to the SNR. The gray dashed

line is the associated electrical fidelity, FE ¼ f1þ erf½SNR=ð2 ffiffiffi
2

p Þ�g=2. Overhead inset highlighting T1-induced errors.
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high-fidelity readout in timescales much shorter than the
coherence time of electron spins in silicon. The reduced
footprint of the SEB compared to standard dissipative
charge sensors, like the SET, will facilitate the development
of highly connected QD-based quantum processors, plac-
ing dispersive charge sensing at the forefront of readout
methodologies for scalable spin-based quantum processors
(see Appendix X for possible architectures).
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APPENDIX A: SINGLE-ELECTRON BOX
OPTIMIZATION

In this appendix, we derive Eq. (3) in the main text. The
SNR of the method is defined as

SNR ¼ ΔPrf

Pn
¼ jΔΓj2 Pin

Pn
; ðA1Þ

where ΔΓ is the change in reflection coefficient between
the two spin states and PinðnÞ is the input (noise) power. In
the small signal regime, where the product of the loaded
quality factor and fractional change in capacitance is
QLΔCD=ð2CtotÞ ≪ 1, ΔΓ can be calculated as

ΔΓ ¼ ΔCD
∂Γ
∂CD

����
frf¼fres

¼ i
2β

ð1þ βÞ2Q0

ΔCD

Ctot
; ðA2Þ

where fres is the natural frequency of oscillation, β is the
coupling coefficient, and Q0 is the internal Q factor [44].
The change in capacitance due to a charge sensing event in
the low-power and thermally broadened regime is [16]

ΔCD ¼ η
ðαeÞ2
2kBTe

1

1þ ðfrf=γÞ2
; ðA3Þ

where η is the fractional change in capacitance due to a
charge sensing event (bounded between 0 and 1), α is the
gate lever arm, e the charge quantum, kB the Boltzmann
constant, Te is the electron temperature, and γ is the SEB-
reservoir tunnel rate. However, when driven at higher

powers, the maximum value of Eq. (A3) can be reduced
due to power broadening effects. In this limit, the capaci-
tance can be calculated following the approach in Ref. [45]
that considers the adiabatic limit (where rf-induced exci-
tation and inelastic relaxation processes can be neglected).
We find the change in capacitance,

ΔCD ¼ η
2αe
πVdev

1

1þ ðfrf=γÞ2
fcðxÞ; ðA4Þ

where Vdev is the voltage amplitude of the oscillatory
voltage arriving at the gate of the SEB, x ¼ ðαeVdev=kBTÞ,
and fc is a dimensionless function of the form

fcðxÞ ¼ πfrf

Z
1=frf

0

sinð2πfrftÞdt
1þ exp ½−x sinð2πfrftÞ�

: ðA5Þ

which increases monotonically as a function of Vdev until it
saturates to the value of 1. Next, we calculate the relation-
ship between Pin and Vdev. For the capacitively coupled
parallel LCR resonator used in the main text, we find that

Pin ¼
V2
dev

R
ð1þ βÞ2

4β
: ðA6Þ

Here R corresponds to the resonator losses, a resistor in
parallel with the inductor, parasitic capacitance, and SEB.
We then substitute Eqs. (A2), (A4), and (A6) in Eq. (A1)
and find Eq. (3) in the main text:

τ−1m ¼ 32η2
β

ð1þ βÞ2
ðαeÞ2
kBTn

Q0Zr
f2rf

½1þ f2rf=γ
2�2 f

2
cðxÞ: ðA7Þ

Here we have used Q0 ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ctot=L

p
and defined the

loaded resonator impedance Zr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L=Ctot

p
. Further, we

have used Pn ¼ kBTn=ð2τÞ, with τ being the integration
time and τm the integration time for SNR ¼ 1. We note the
noise temperature on the JPA is gain dependent. If the
reflected power from the resonator is larger than the 1 dB
compression point, the gain drops with a consequent
increase in noise temperature.
In the large signal regime, where QLΔCD=ð2CtotÞ⪆1,

Eq. (3) is modified as [25]

τ−1m ¼
32η2 β

ð1þβÞ2
ðαeÞ2
kBTn

Q0Zr
f2rf

½1þf2rf=γ
2�2 f

2
cðxÞ

½1þ ðQL
ΔCD
Ctot

Þ2�2 : ðA8Þ

This new regime sets an optimal value for the quality
factor of the resonator QL ¼ 2Ctot=ΔCD; i.e., the band-
width of the resonator should be equal to the induced
frequency shift by the change in quantum capacitance.
Including this consideration in Eq. (A8) and, after some
algebra, we arrive to

τ−1m ¼ 2η
β

ð1þ βÞ
frf

ð1þ f2rf=γ
2Þ

αeVdev

kBTnfcðxÞ
: ðA9Þ
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We can estimate the measurement rate using some
simple assumptions, η¼1, β≫1, frf ≪ γ, eαVdev≫kBT,
to find

τ−1m ¼ 2IgVdev

kBTn
; ðA10Þ

where Ig ¼ eαfrf is the gate current. Considering some
typical values, α ¼ 0.4, frf ¼ 1 GHz, Tn ¼ 2.5 K, and
Vdev ¼ 100 μV ≪ Ec=e, where Ec is the charging energy,
we find τ−1m ¼ 186 MHz.
We note that the theory used to obtain the measurement

rate of the SEB can be easily adapted to dispersive gate
readout [23]. For singlet-triplet spin qubits, a singlet
outcome has finite quantum capacitance whereas a triplet
outcome has zero [14]. Hence the expression for the small
signal regime [Eq. (A7)] and large signal regime [Eqs. (A8)
and (A9)] can be used for dispersive readout by setting
η ¼ 1. However, there will be an impact of increasing the
excitation frequency while providing the optimal driving rf
excitation, eαVdev ≫ 2tc, as discussed above. Here tc is the
tunnel coupling energy of the double quantum dot used to
implement the singlet-triplet qubit and α is the interdot
lever arm. Such a situation may lead to Landau-Zener
transitions and Landau-Zener-Stückelberg interference [46]
impacting the result of the measurement. As such, we
predict the frequency for dispersive gate readout should
be kept well below the coupling energy hfrf ≪ 2tc.
Alternatively, the coupling energy should be increased to
allow a higher probing frequency and hence a larger
measurement rate.

APPENDIX B: RADIO-FREQUENCY
SINGLE-ELECTRON TRANSISTOR

OPTIMIZATION

The single-electron transistor is a resistive charge sensor
with single-electron sensitivity and works under the prin-
ciple that a charge change in its environment is sufficient to
produce a sizable change in its bias potential that results in
a measurable change in device resistance. Such resistance
values can be determined using radio-frequency methods.
We model the SET as a variable two-port resistance
between the source and drain RSET. We consider the
SET to be embedded in the same matching network as
the SEB and is placed in parallel with the inductor L and
the parasitic capacitance Cp. In this case, at the resonance
frequency, the impedance of the resonator and SET is
transformed to

Zeq ¼
LðCc þ CpÞ
C2
cRSET

; ðB1Þ

where Cc is the coupling capacitor [42]. As in the case of
the SEB, we focus on maximizing the SNR as defined in

Eq. (A1). First, we discuss the conditions under which jΔΓj
is maximum. We consider that a charge sensing event is
capable of shifting the resistance of the SET from its
maximum value in the off state to its minimum value in the
on state (large signal regime). In the off state, considering
Roff
SET ≫ LðCc þ CpÞ=ðC2

cZ0Þ, the reflection coefficient is

Γoff ¼ −1: ðB2Þ

In the on state, the reflection coefficient is

Γon ¼
1 − βon
1þ βon

; ðB3Þ

where β ¼ Z0=Zeq is the coupling coefficient. Overall, the
result can be summarized as

jΔΓj ¼ Γon − Γoff ¼
2

1þ βon
: ðB4Þ

Secondly, we consider the limits on Pin, the power
applied to the resonant circuit. For this calculation, we take
into account that the voltage drop at the input of the
SET, VSET, has an upper bound limited by the characteristic
energy voltage scales of the SET Coulomb oscillations.
Using Eq. (A6), we find that

Pin ¼
V2
SET

Ron
SET

ð1þ βonÞ2
4βon

: ðB5Þ

We can now calculate the signal S ¼ jΔΓj2Pin using
Eqs. (B4) and (B5) and considering a constant power
applied (which will be the power in the on state since this
will produce the maximum voltage drop at the device):

S ¼ V2
SET

βonRon
SET

: ðB6Þ

In the case of critical coupling as commonly considered
the most sensitive point of the SET [26], Eq. (B6) can be
expanded into a more convenient form,

S ¼ V2
SET

Ron2
SET

Z2
r

Z0

¼ I2on

�
Z2
r

Z0

�
; ðB7Þ

where Ion is the amplitude of the ac current through the SET

in the on state and Zr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðCc þ CpÞ=C2

c

q
. Finally, we

calculate the SNR considering two possible scenarios:
(i) noise dominated by the HEMT amplifier and
(ii) shot-noise limited. In case (i), Pn ¼ kBTn=ð2τÞ, the
measurement rate for a SNR ¼ 1 reads

τ−1m ¼ 2I2on
kBTn

�
Z2
r

Z0

�
¼ 2I2onRon

set

kBTn
; ðB8Þ
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whereas in case (ii), the shot noise power for the SET is

Pn ¼
ffiffiffi
2

p
eFIonRon

SET

τ
; ðB9Þ

where F is the Fano factor which accounts for the
correlations between charge tunneling events in the SET.
Note that Ion is the amplitude not the rms current. For a
symmetric SET (same value of tunnel resistances),
F ¼ 0.5. In this case, the measurement rate reads

τ−1m ¼ Ionffiffiffi
2

p
eF

�
Z2
r

Z0Ron
SET

�
¼ Ionffiffiffi

2
p

eF
: ðB10Þ

For a comparison with the SEB, it is useful to express
Eq. (B8) as

τ−1m ¼ 2IonVSET

kBTn
; ðB11Þ

and consider similar typical values Ion ¼ 1 nA, Vdev ¼
100 μV ≪ Ec=e, and Tn¼2.5K, we find τ−1m ¼ 5.80 GHz.
In other words, the ratio between the SET and the SEB
measurement rates can be expressed as

Λ ¼ τ−1m ðSETÞ
τ−1m ðSEBÞ ¼

IonTSEB
n

IgTSET
n

; ðB12Þ

where TSEBðSETÞ
n is the noise temperature of the SEB (SET)

system, dominated by either the cryogenic amplifier or
the intrinsic noise source of the sensor. We observe the
measurement rates in both devices are governed by the
current that can flow through the system in the sensing
configuration and the noise equivalent temperature of the
system. Our analysis seems to imply that both the SET and
the SEB are embodiments of the same physical process for
sensing (electron tunneling).

APPENDIX C: FABRICATION DETAILS

Both devices are MOS transistors fabricated in an
industrial cleanroom using 300 mm wafers of 7 nm silicon
on insulator with a 145-nm-thick buried oxide. The gate
oxide is 6 nm of thermal SiO2 and the gate metal is 5 nm
TiN and 50 nm polycrystalline silicon. Device 1 shown in
Fig. 1(a) has four gates on top of the nanowire, two on each
side facing each other [see Fig. 1(a)]. The nanowire has a
width of W ¼ 80 nm and a gate length of LG ¼ 50 nm.
The separation between parallel gates is SH ¼ 50 nm,
whereas between the gates facing each other is
SV ¼ 40 nm. Device 2 shown in Fig. 3(a) has four wrap-
around gates in series. The nanowire width is W ¼ 80 nm,
the gate length LG ¼ 50 nm, and the gate separation is
SH ¼ 50 nm. To form the gates, a hybrid deep ultraviolet,
electron beam lithography and etching of the gate hard

mask was performed before transferring the dense pattern
into the rest of the stack. After gate etching, the nanowire is
covered by 34-nm-wide Si3N4 spacers. On one hand, the
spacer separates the reservoirs from the central part of the
intrinsic nanowire, protecting the intrinsic silicon from
the posterior ion implantation which defines the reservoirs.
And, on the other hand, it also covers the split between the
independent gates since the spacer length is larger than half
of the intergate gap. The reservoirs are then n doped by
arsenic and phosphorus implantation. The process is
completed after an activation spike anneal, salicidation
(NiPtSi), contacts, and metallization.
In device 1, up to four QDs can be formed on the upper

corners of the nanowire, two at each side of the nanowire
forming a 2 × 2 configuration. In device 2, three QDs can
be formed in a 1 × 3 configuration. Gate 4 was not working
in this particular demonstration. The dots’ electrochemical
potential can be controlled by the voltage applied to the
gates above them. For further control, the silicon substrate
can be used as a backgate and an overarching metal line as a
top gate (only in device 1).

APPENDIX D: MEASUREMENT SETUP

Measurements were performed at base temperature of a
dilution refrigerator [setup 1 (2) at 15 (11) mK]. dc voltages
to the gates and electron reservoirs were delivered through
filtered cryogenic loom. In setup 1, the interdot and dot-to-
reservoir tunneling rates can be modified by the dc voltage
applied to a top metallic gate [20]. The experiments were
performed at a constant voltage of V top ¼ 7.5 V applied to
the metal line.
The devices’ electrodes are connected to the PCB

contacts via on-chip aluminium bond wires. On-PCB bias
tees are used to combine the dc signals with the radio-
frequency signal for gate-based readout and the fast pulses,
which are delivered through attenuated and filtered coaxial
lines. The bias tee acts on the pulses sent as a high-pass
filter. This effect was compensated by pulse engineering
using the inverse of the filter transfer function, such that
after passing through the bias tee, the pulses had the desired
line shape.
The resonator for reflectometry is formed in setup 1 (2)

by an 124� 4 ð160� 5Þ nH NbN planar spiral inductor
[42] placed in parallel to the parasitic capacitance to ground
of the PCB and the device. It is capacitvely coupled to a
50 Ω transmission line via a coupling capacitor 50 (57) fF.
The gate connected to the resonator is biased through a
low-pass filter on the PCB formed by a 100 kΩ resistor in
series with the inductor and a 100 pF capacitor to ground.
The PCB is made from 0.8-mm-thick RO4003C with
immersion silver finish. On its way out of the fridge, the
reflected rf signal is first amplified by 26 dB at 4 K (LNF-
LNC0.6_2A) and further amplified at room temperature.
Then, the reflected signal magnitude and phase are
obtained using quadrature demodulation (Polyphase
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AD0540b) and measured using a digitizer in setup 1
(Spectrum M4i.4451-x4) and an oscilloscope in setup 2
(HDO4054A Lecroy). The measurements taken using a
JPA have an additional amplification of 16.7 dB at
105 mK [47].

APPENDIX E: RESONATOR PARAMETER
EXTRACTION

Here, we show data of our resonator at B ¼ 0 T in
Fig. 5(a), whose equivalent model is presented in Fig. 5(b).
A coupling capacitance Cc connects the transmission line
to a parallel configuration of an inductor L, a resistor RD,
representing resonator losses, and a variable capacitance
C0 ¼ Cp þ CD, where CD is the SEB capacitance from its
gate and Cp is the parasitic capacitance of the circuit. The
equivalent impedance of such resonator is given by [42]

ZL ¼ RD
jωΔω0

ω2
0 − ω2 þ jωΔω0

þ 1

jωCc
; ðE1Þ

where Δω0 ¼ ð1=RDC0Þ and ω0 ¼ 2πf0 ¼ ð1= ffiffiffiffiffiffiffiffiffi
LC0

p Þ are
the width and resonant frequency of the unloaded parallel
LRDC0 circuit.
Assuming that RD does not vary over the range of

frequency near the resonance, the real part of the reso-
nator’s impedance stays constant, whereas the imaginary
part (admittance) passes along different values. Such a
behavior corresponds to part of a circle in the complex
plane when plotting the reflection coefficient Γ ¼ ðZL −
Z0=ZL þ Z0Þ at frequencies close to the resonance. The
whole circle, so-called resistance circle, has its center on
the real axis ImfΓg ¼ 0 and crosses it twice: first at the
resonant frequency fr, corresponding to the circle’s closest
point to the origin, and a second time when the frequency
tends to infinity and zero: f → ∞ and f → 0, at which
Γ ¼ 1. For an example, see purple scatter circle in Fig. 5(c).
In the case of perfect matching, RefZLg ¼ Z0, the circle

is centered at the position Γ ¼ 0.5 and crosses the origin,
leading to Γ ¼ 0 at fr. If the resonator is overcoupled
(RefZLg < Z0 ¼ 50), the center of the circle is nearer the
origin, making its radius larger than 1. In this case, the
magnitude of the reflection coefficient jΓj does not tend to
zero at the resonant frequency, but its phase∠Γ completes a
whole 2π rotation as the frequency is varied across fr. [See
purple scatter in Figs. 5(c)–5(e) for an example of an
overcoupled resonator.]
A resistance circle in the complex plane follows

a complex Lorentzian scaled and transported from its
origin [48,49]:

Γ ¼ oc þ
�
1 −

2

1þ j2QLð ffr − 1Þ

�
rc: ðE2Þ

Here oc ¼ ðrL=1þ rLÞ is the center of the circle, rc ¼
ð1=1þ rLÞ is the radius, rL ¼ ð1=βÞ is the real part of the
normalized resonator impedance ½ðZL=Z0Þ ¼ rL þ jyL�, fr
is the resonant frequency, and QL is the loaded quality
factor defined as the ratio of the total energy stored in the
resonator to the average energy dissipated per cycle
multiplied by 2π. If we transport the circle center to the
origin, the change in phase is related to the frequency as

ϕðωÞ ¼ θ0 þ 2 arctan

�
2QL

�
1 −

f
fr

��
; ðE3Þ

where θ0 is an offset angle. This is considered one of the
most accurate ways to obtain the Q factor and resonant
frequency of a resonator [49].
Experimentally, the reflection coefficient is extracted by

measuring the S parameter S21 between the lines drivingPin
rf

(a)

(c) (d) (g)

(h)

(e)

(f)

(b)

FIG. 5. (a) Γ raw data acquired from a
ffiffiffiffiffiffiffi
S21

p
measurement

between the ports Pin
rf and Pout

rf shown in (b) for B ¼ 0 T.
(b) Resonator model including a coupling capacitor (Cc),
followed by a resistance (RD), inductor (L), and a capacitance
(C0 ¼ Cp þ CD) in parallel. (c) Measured reflection coefficient
and fit before (gray) and after (purple and black) removing the
offset angle ϕ. The point of resonant frequency is marked as fr,
whereas the off-resonant point corresponding to f → ∞ is
marked as P0. (d) Absolute value of the reflection coefficient
against the frequency, showing that the minimum of the raw data
does not correspond to the resonant frequency. (e) Absolute value
of the reflection coefficient variation when the SEB is at a charge
instability at different frequencies. The maximum variation and,
therefore SNR, occurs at fr. (f) Phase of the reflection coefficient
with respect to the frequency. (g),(h) Absolute value and phase of
the reflection coefficient on top of a SEB charge transition (top)
and out of it (bg) and its respective resonant frequencies shown as
vertical lines in their corresponding color. jΓj remains mostly the
same, whereas the resonant frequency changes by 70 kHz,
revealing that the SEB impedance shift at a charge instability
is mostly capacitive.
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and Pout
rf with a network analyzer as Γ ¼ ffiffiffiffiffiffiffi

S21
p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPout
rf =P

in
rf Þ

q
[see Fig. 5(a)]. This measurement differs

from the expected constant resistance circle due to the
effect of the environment leading to [50]

S21 ¼ aejαe−2πjfτ
�
1 −

QL=jQejejϕ
1þ 2iQLðf=fr − 1Þ

�
: ðE4Þ

Here, the constant a takes into account that the amplitude
of the outcoming wave has been modified by the attenu-
ators and amplifiers present in the system. Moreover, due to
the cable length, the wave has an electrical length charac-
terized by ejα and it acquires a delay τ that makes the phase
proportionally dependent on the frequency as e−j2πfτ [50].
Figure 5(c) shows in gray the resonator measured at

B ¼ 0 T once the effect of the environment has been
removed. The additional phase offset ϕ is what produces
an asymmetry in the absolute value of the reflection
coefficient [see Fig. 5(d)]. Only when the resistance circle
is rotated to its right position, the resonant frequency
coincides with the minimum in the absolute value of the
reflection coefficient [see purple circle in Fig. 5(d)]. The
term ejϕ comes from asymmetries of the resonator’s
transmission signal due to different input and output
impedances at the two ports of the resonator [51] or from
standing waves in the transmission line connected to the
resonator [52]. In order to fit the data to a circle and extract
its center and radius, fr andQL, we use a code based on the
resonator tools PYTHON library found in Ref. [53].
Figures 5(g) and 5(h) show the magnitude and phase

of the reflection coefficient with respect to the frequency
at the top of a SEB charge instability (black) and out
of it (purple). We found that the resonant frequency is
ftopr ¼ 686.099� 0.017 MHz at the charge transition
degeneracy point and fbgr ¼ 686.168� 0.016 MHz away
from it. The change in resonant frequency is linked
to an increment in the SEB capacitance to ground as
fr ¼ ð1=2π ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LðCc þ Cp þ CDÞ
p Þ, being the change in

capacitance ΔCD ¼ 0.09� 0.03 fF.
We observed that the system is overcoupled as the phase

completes a 2π rotation, but the circle does not cross the
origin. The matching, calculated as β ¼ ðR=Z0Þ > 1, is
barely changed by the SEB, being βtop ¼ 2.064, βbg ¼
2.061 at and away from the charge degeneracy point,
respectively, and neither is the loaded Q factor: Qtop

L ¼
125.3� 0.5 and Qbg

L ¼ 125.7� 0.5. This means that the
charge instability in the SEB produces a capacitive change,
which we confirm later. Because we are measuring a small
change in the device capacitance, the maximum change in
jΔΓj and, therefore SNR, occurs at the resonant frequency
[42], where the slope in phase is maximum [see Fig. 5(e)].
As magnetic field is applied, the kinetic inductance

varies, modifying the resonant frequency, Q factor, and

matching. This way, the resonant frequency at B ¼ 2 T,
at which spin-readout measurements were taken, is fr ¼
665.5 MHz, the internal Q factor is reduced to Q0 ¼ 267,
and the matching is equal to β ¼ 2.5, as depicted in
Fig. 1(a) and summarized in Table I in the main text.

APPENDIX F: JPA CALIBRATION

The JPA used in this experiment consists of a SQUID
loop array shunted by a fixed capacitance CJPA [24]. This
configuration creates a low quality factor (QJPA < 100)
superconducting resonator, whose resonant frequency fJPAr
can be tuned from 550–750 MHz [see Fig. 6(b)] by passing
a current Ibias through a nearby coil that modifies the flux
through the SQUIDs.
In parametric amplification, one parameter is varied

harmonically in a nonlinear medium to create gain. The
energy used to modulate the parameter is called the pump.
In the case of the JPA, the nonlinearity comes from the

(a) (c)

(b) (d)

(e)

FIG. 6. (a) Sketch of the JPA as a SQUID loop array in parallel
with a shunted capacitance connected in reflection to the setup
by a coupling capacitance. The magnetic flux generated in a
nearby coil by the current Ibias is used to tune the JPA’s resonant
frequency. (b) Reflected phase as a function of the pump
frequency and Ibias. The resonant frequency is fitted to a function
proportional to cosh2ðIbiasÞ. (c) Reflected phase with respect to
the pump frequency and the power applied to the JPA. In the
region suitable for parametric amplification, the JPA’s resonant
frequency decreases as PJPA is increased. (d) Amplification
transfer function at 3 different frequencies (663 MHz in blue,
668 MHz in orange, and 673 MHz in green). A small variation in
the power arriving to the JPA leads to a large variation of the
reflected phase, producing a gain. (e) Gain as a function of the rf-
probe power arriving to the JPA, for a pump tone of frequency
fJPA ¼ 665.2 MHz and power −88 dB. The black vertical line at
−116 dBm denotes the rf power for a 1 dB compression in gain.
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Josephson junction inductances LJ that are varied har-
monically when applying some power PJPA at frequency
fJPA (see Fig. 1 of main text). Modifying LJ leads to
changes in the JPA’s resonant frequency, since fJPAr ¼
ð2π= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CJPALJ
p Þ. Figure 6(c) shows the variation of fJPAr as a

function of PJPA. As PJPA increases, fJPAr is firstly constant,
but then it shifts to lower frequencies. Parametric ampli-
fication can be achieved in the power range in which fJPAr
varies with respect to PJPA. The JPA amplification transfer
function is exemplified in Fig. 6(d), where small variations
of the power arriving to the JPA due to the signal tone frf
are translated into large changes in the reflected phase.
When the JPA is tuned at even higher pump powers, it
becomes bistable [24].
Figure 6(e) shows how increasing the power of the signal

tone arriving to the JPA, Prf
JPA ¼ Prf jΓj2, leads to a gain

reduction, since there is not enough pump energy to be
transferred from the pump to the signal and idler. The
power at which the gain is compressed by 1 dBm is the
JPA’s dynamic range (−116 dBm).

APPENDIX G: LEVER ARM AND
SEB-TO-RESERVOIR TUNNELING RATES

The lever arm of αS ¼ 0.35� 0.06 is obtained using the
slopes of the Coulomb diamonds measured in current [54].
On the other hand, γ can be extracted using the rf response
of a SEB electronic transition, which is related to the SEB
capacitance ΔCD (see Fig. 7). In the case that kBT < hγ,
ΔCD depends on the electrochemical potential ϵ as
ΔCD ∝ ½hγ=ϵ2 þ ðhγÞ2� [42]. Knowing that ϵ ¼ αSVS,
we obtain γ ¼ 74� 12 GHz.

APPENDIX H: SNR CALCULATIONS

To evaluate the readout performance, we send a two-
level pulse that varies the IQ (in-phase and quadrature)
response between the top of the dot-to-reservoir transition
(DRT) and the background [marked with red dots in
Fig. 8(a)]. A histogram of the pulse rf response in the
quadrature plane shows two separated circular distributions,

each one corresponding to the top and background of the
DRT [see Fig. 8(b)].
Since the noise is Gaussian and equal in every direction,

most of the information is in the axis that joins the centers
of the so-called Fresnel lollipops, whereas its perpendicular
axis carries just noise. Therefore, we project our data on
the optimal axis and use the SNR definition SNR ¼
½Δrf2=ðσ20 þ σ21Þ=2�, where Δrf is the distance between
the lollipop centers and σ0ð1Þ is the one-dimensional
standard deviation of the background (peak).
Figure 8(d) shows SNR as a function of integration time

with the JPA off tuned at its optimal point (red), JPA on
(blue) and JPA off with the same settings used for the JPA
on (gray). Using an extrapolation (black straight lines) we
infer the integration time to have a SNR ¼ 1. These times
are τoff tunedm ¼ 451.1� 0.1 ns, τoffm ¼ 1.015� 0.001 μs,
τonm ¼ 100.2� 0.8 ns. This way, the noise temperature is
reduced by a factor of ×10 when switching the JPA on.
However, the frequency at which this is achieved is not
the optimal frequency, i.e., the natural frequency of the

FIG. 7. Normalized rf response from a SEB as a function of the
voltage applied to its gate obtained using a low rf-tone power,
Prf ¼ −91 dBm. The width of the transition is related to the
SEB-to-reservoir tunneling rate, leading to an upper limit of
γ ≤ 74� 12 GHz. The same result is obtained with and without
a JPA.

(a) (b)

(c) (d)

FIG. 8. SNR. (a) Normalized rf response showing the stability
diagram of the SEB versus dot where the occupation of the SEB
and dot is displayed as (dot, SEB). Because of their cross
capacitance, the rf response has a shift in voltage when an
electron is added to dot. The inset shows the pulses sent to dot to
jump on and off the dot-to-reservoir transition, which corre-
sponds with the red points. (b) IQ histogram from 1000 data
traces collected by pulsing between the red points marked in (a).
The histogram shows two distinct distributions corresponding to
the background and the top of the SEB charge instability for data
taken without a JPA. The signal is collapsed into 1D using the
axis between the center of the so-called Fresnel lollipops.
(c) Normalized rf response in the 1D projection for JPA on,
off, and optimized JPA off for a measurement bandwidth
feff;BW ¼ 12 kHz. (d) SNR as a function of the integration time.
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oscillator. The SNRwhen the JPA is off can be improved by
a factor of ×4.5 by choosing the optimal frf as it is shown
in Fig. 1 in the main text. This is a consequence of the
higher reflected power at fr that partially saturates the JPA
reducing its gain.

APPENDIX I: ELECTRON TEMPERATURE AND
THERMAL EXCITATIONS

Figures 9(a)–9(c) show different situations depending on
the voltage applied to the dot at the readout stage V1. At
high voltages, the electron stays in dot [Fig. 9(a)], corre-
sponding to a constant rf response equal to zero, as shown
in Fig. 9(d). As the voltage is decreased, the j↑i and j↓i
states straddle the reservoir Fermi energy, leading to the
transitory behavior in the rf response that allows us to
determine whether the electron had a spin up or spin down
[see Fig. 9(e)].
At even lower voltages, the electron leaves the dot

during the readout stage independently of its spin polari-
zation [Fig. 9(e)]. At this voltage range, we observe the

characteristic features of tunneling between a zero-dimen-
sional and a one-dimensional system, where the tunneling
rate depends on the energy as Γ ∝ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E − En
p Þ, with En

the position in energy of the reservoir 1D subbands. The
simulated tunneling time as a function of V1 is superposed
over the 2D map in Fig. 9(d) with a green line. Around the
Fermi level, the reservoir density of states follows a Fermi-
Dirac distribution, so that the tunneling rate is a combina-
tion of the 1D subbands and the Fermi-Dirac distribution:

ΓðEÞ ¼ 2π

ℏ
jΓ0j

�X
n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − En

p
�
½1 − fðE − E↓Þ�: ðI1Þ

Here E ¼ −jejα1V1, where α1 is the lever arm of the gate
over dot and e is the electronic charge. 1 − fðE − E↓Þ is the
distribution of empty states in dot, which is tracked by the
rf response after the transient tunneling. The electronic
temperature, Te ¼ 137� 18 mK, is extracted by fitting the
rf response as a function of V1 to the Fermi-Dirac
distribution [see Fig. 9(f)].
We use the calculated Fermi distribution to obtain the

thermal excitation time constant t↓out at the readout posi-
tion as t↓out ¼ t↓inf½1 − fðEreadout − E↓�=fðEreadout − E↓Þg
(see Appendix K for more information about t↓in). We

obtain a t↓out ¼ 309 s and t↓out;JPA ¼ 70 s for measurements
taken without and with a JPA, respectively.

APPENDIX J: EXPERIMENTAL BANDWIDTH

The bandwidth of our experiment is limited by the
resonator bandwidth: ðfr=QLÞ ¼ 6.18� 0.04 MHz. How-
ever, if the signal’s frequency components are lower than the
resonator bandwidth, a low-pass filter can be introduced to
reduce high frequency noise, improving the SNR.
To characterize the measurement bandwidth, we can

obtain the effective noise bandwidth as

ωeff;BW ¼
Z

∞

0

����HðjωÞ
Hmax

����
2

dω; ðJ1Þ

which corresponds to the bandwidth of a brickwall filter
that produces the same integrated noise power. Here,HðjωÞ
is the filter transfer function and Hmax is its maximum.
In this experiment, we used a (minicircuits BLP-1.9+)

low-pass filter, whose transfer function was obtained from
its insertion loss provided by the manufacturer as

insertion loss ðdBÞ¼10log10

����Vi

Vf

����
2

¼−20log10jHMCðjωÞj;

ðJ2Þ

where Vi and Vf are the filter’s input and output voltage,
respectively.

(a) (d)

(f)

(e)

(b)

(c)

FIG. 9. (a)–(c) Diagrams of dot electrochemical potential with
respect to the lead Fermi energy at different voltages applied to
the dot gate V1. (d) Time-averaged and normalized rf response
over time at different V1. At the voltages described by the
situation in (c), any loaded electron tunnels out during the readout
stage. This situation results first in a low value of the rf signal that
then increases over time as the electron leaves the dot. The
superposed green line is the calculated tunneling times from a
quasi-1D reservoir to a 0D dot. At higher V1, we encounter the
situation pictured in (b), where the reservoir Fermi energy is in
between the dot spin j↑i and j↓i. This regime is shown with more
detail in (e), where we can observe how the quasi-1D density of
states from the lead shape the dependency of t↑out and t↓in with
respect to V1. (f) rf response after the transient with respect to V1,
following a Fermi-Dirac distribution.
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After that filter, a digital boxcar filter that averages every
ten points (N ¼ 10) is applied, followed by a decimation
process, to reduce the sample rate from 10 to 1 MHz. This
way, the total transfer function is equal to jHtotalðjωÞj ¼
jHMCðjωÞHBCðjωÞj, leading to the filter depicted in
Fig. 10, with an effective noise bandwidth of feff;BW ¼
ðωeff;BW=2πÞ ¼ 0.49 MHz.
On top of that, some of our measurements include

a rolling average filter that takes the average of
every N points recursively. This additional filter
modifies the total transfer function as jHtotalðjωÞj ¼
jHMCðjωÞHBCðjωÞHRFðjωÞj, whereHRFðjωÞ is the rolling
average transfer function (see Appendix 1 for more
information).

APPENDIX K: PARAMETER EXTRACTION

The electrical fidelity for spin-dependent measurements
is calculated by simulating single-shot histograms as the
ones shown in Figs. 2(b) and 2(c). In order to create them,
we need to reproduce single-shot traces equivalent to the
ones measured. An example of a spin j↑i trace is depicted
in Fig. 13(a) with a blip starting at t↑out, lasting for t↓in. The
background and blip have values EðlowÞ and EðhighÞ, with
its respective noise, σlow and σhigh. This example can be
labeled as a spin j↑i trace since it surpasses the threshold
voltage VT .
The experimental parameters that ultimately determine

those traces can be separated into the ones that depend on
the sensor and the ones that depend on the measured dot.
The sensor parameters are independent of the readout
method and are the rf response at the background,
EðlowÞ, and at the blip, EðhighÞ, and their respective
noise level.

In order to extract these parameters, 10 000 single-shot
spin readout traces like the one displayed in Fig. 13(a) were
registered. The average of the rf response at the blip and at
the background are equal to the expectation values EðhighÞ
and EðlowÞ, respectively. To characterize the noise level of
the background, we obtain the noise spectral density SVðfÞ
of the rf response [see Figs. 11(a) and 11(b)]. For lower
frequencies, the background noise spectral density is
obtained using the last data point of all the consecutive
readout traces [see Fig. 11(a)], whereas for higher frequen-
cies we calculate SV of a single spin j↓i trace [see
Fig. 11(b)]. Comparing the noise spectrum with the one
generated by a Gaussian random number generator,
we concluded that the noise of the background has a
Gaussian profile with variance σ2low for the whole set of
measurements.
The noise at EðhighÞ can include additional sources of

noise such as charge noise, where the noise spectral density
typically depends on the frequency as 1=f. This noise
originated from the collective behavior of defects or charge
traps that act as charge fluctuators as they trap and release
electrons [55]. The charge fluctuations slightly modify
the potential around the sensor modifying its bias point, so
that their effect is more noticeable at the slope of a SEB
electronic transition than at the top. Figure 12(a) shows the
SEB dot-to-reservoir transition as a function of the voltage
applied to dot, where the signal at each point has been

(a) (b)

FIG. 11. Noise spectral density of the rf response at EðlowÞ at
low frequencies (a) and high frequencies (b) for the acquired data
(pink) and the simulations created with Gaussian noise (black).

(a) (b)

(c)

FIG. 10. (a) Bode diagram of the magnitude of the eighth-
order minicircuits BLP-1.9+ filter utilized in our measure-
ments. (b) Same for the boxcar filter used to downsample the
sample rate from 10 to 1 MHz. (c) Combination of the effects
from both filters and equivalent brickwall filter with the same
integrated noise power, showing an effective noise bandwidth
of feff;BW ¼ 0.49 MHz.

(a)

(b) (c)

FIG. 12. (a) Average of the normalized rf response for a SEB
electronic transition with respect to the voltage applied to the dot
gate V1. The vertical line indicates the voltage for spin readout.
(b) Standard deviation over 2 ms of rf response at EðhighÞ at
different voltages. (c) SV at the blip.
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averaged over 2 ms. Figure 12(b) displays their corre-
sponding standard deviations. It is very clear how the
standard deviation is higher on the slope than on the offset
and top of the peak.
We observe that the readout position—marked as a black

vertical line—is at the maximum of the rf response. This
has two benefits: on one hand, the contrast between dot
empty and occupied is maximum [EðlowÞ and EðhighÞ],
and, on the other hand, the charge noise is minimized.
Figure 12(c) shows that the noise spectral density at the top
of the rf response is also constant over the range of
frequencies with a variance σ2high very similar to σ2low.

The rest of the parameters (t↑out, t
↓
in, and A) are set by

dot. t↑out is the time constant for a spin j↑i electron to leave
the dot. Such time corresponds with the start time of
the blip and can be determined as the time at which the
rf response reaches a certain threshold voltage VT .
Registering the number of times that the rf response
exceeds such threshold voltage at a given readout time
follows an exponential trend whose time constant is t↑out.
t↓in is obtained following a similar analysis, where the blip
duration probability is fitted to an exponential function
[see Figs. 13(b) and 13(c)].
The simulated traces for a spin j↓i were created as a set

of points with a sample rate of Γs ¼ 1 MHz (as the one of
the experiment) and constant value EðlowÞ to which it is
added a Gaussian noise characterized by σlow. Spin j↑i
traces are generated as a constant value EðlowÞ with
Gaussian noise σlow and a blip with a constant value of
EðhighÞ and a standard deviation of σhigh. The blip starting
time and duration follow exponential distributions with
time constant t↑out and t↓in, respectively.

1. Moving average filter

The SNR can be increased in postprocessing by adding
an additional low-pass filter, which removes high frequency
noise at the price of affecting the blip shape when the
cutoff frequency is too low. From the many digital filters
available, we used the rolling average filter which takes the
average over N points recursively. The first point of the
filtered signal corresponds to the mean of the first N points
from the original signal and the subsequent points are
obtained by shifting forward by one time step the subset of
N points that are averaged. Although the rolling average
has a complicated frequency dependence [see Fig. 10(b)], it
is ideal for this application since it has one of the lowest
computation times and is optimal for reducing random
noise while retaining a sharp step response [56]. This way,
we can test which measurement bandwidth maximizes the
readout fidelity with a low computation overhead.

APPENDIX L: MEASUREMENT FIDELITY

The probability of correctly recognizing a spin j↑i
electron F↑

M is given by the sum of the probability that
such electron truthfully generates a spin j↑i, F↑

STC, and the

sensor detects the corresponding blip, F↑
E, plus the prob-

ability of generating a false spin j↓i trace, 1 − F↑
STC, that is

misidentified as a spin j↑i electron, 1 − F↓
E. This way,

F↑
M ¼ F↑

STCF
↑
E þ ð1 − F↑

STCÞð1 − F↓
EÞ: ðL1Þ

Equivalently, the probability of correctly recognizing a
spin j↓i electron is

F↓
M ¼ F↓

STCF
↓
E þ ð1 − F↓

STCÞð1 − F↑
EÞ: ðL2Þ

Both independent fidelities can be combined as

FM ¼ F↓
M þ F↑

M

2
ðL3Þ

to calculate the overall measurement fidelity. The electrical
fidelity is calculated via Monte Carlo simulations as
described in Appendix K, whereas FSTC fidelity uses an
analytic expression to take into account the errors coming
from relaxation and thermal processes. The probability of
not having a thermal excitation, so a spin j↓i does not
produce a false spin j↑i trace, is given by

F↓
STC ¼ e−t=t

↓
out : ðL4Þ

The other infidelity source is the relaxation process of a
spin j↑i electron that has not tunneled out of the dot. That
can be calculated as the conditional probability PðAjBÞ,
being PðAÞ ¼ 1 − e−t=T1 the probability that a spin j↑i has
decayed at time t, and PðBÞ ¼ e−t=t

↑
out , the probability that

(a) (b)

(c)

FIG. 13. (a) Normalized rf response of a spin j↑i data trace
taken with a JPA using a sample rate of fs ¼ 1 MHz and a
measurement bandwidth of feff;BW ¼ 0.49 MHz. The blip starts

when the spin j↑i electron leaves the dot at t↑out and lasts until a
spin j↓i electron replaces it (t↓in). When dot is occupied the rf
response has an estimated value EðlowÞwith a standard deviation
σlow, whereas when it is empty the estimated value and standard
deviation are EðhighÞ and σhigh, respectively. We have also
indicated the V threshold above which the trace is labeled as a spin
j↑i. (b) Histogram of the starting point of the pulse and
exponential fit. (c) Histogram of the pulse duration and fit.
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an electron with spin j↑i has not left the dot at time t. Since
both events are independent, the probability of having a
false spin j↓i trace due to a relaxation process is

PðAjBÞ ¼ PðA ∩ BÞ
PðBÞ ¼ PðAÞPðBÞ

PðBÞ ¼ PðAÞ ¼ 1 − e−t=T1 ;

ðL5Þ

Therefore, the probability of not having a relaxation
process is e−t=T1 . To calculate the fidelity, we have to add
the probability that a spin j↑i relaxes and, subsequently, the
spin j↓i electron tunnels down the dot:

F↑
STC ¼ e−t=T1 þ ð1 − e−t=T1Þð1 − e−t=t

↓
outÞ: ðL6Þ

Here, the relaxation time T1 depends on the mag-
netic field applied [57], which in this experiment was
5.1� 0.4 s, at B ¼ 2 T. On the other hand, t↓out depends on
the temperature and the difference in energy between the
spin j↓i and the reservoir Fermi energy at the readout stage.

APPENDIX M: FM DEPENDENCE ON Δt AND
MEASUREMENT BANDWIDTH

Here, we investigate the dependence of the measurement
fidelity FM with respect to the measurement bandwidth
and the readout time with and without a JPA. On one hand,
decreasing the measurement bandwidth improves the SNR,
but, on the other hand, it deforms the blip shape, rounding
its edges and decreasing its maximum. Figures 14(a)
and 14(b) show how decreasing the measurement band-
width increases the fidelity up to an optimal point. The
difference in the optimal measurement bandwidth is due to
two different reasons. First, the measurements taken with-
out a JPA have a lower SNR. So, the limiting factor to
increase the fidelity is the noisy spin j↓i traces reaching
above the threshold. The second reason is that the tunneling
rates measured for each setup were slightly different: the
blips have a standard duration of t↓in ¼ 440 μs without a

JPA and t↓in;JPA ¼ 186 μs. So, the optimal measurement

bandwidth is higher for the set of measurements without
a JPA.
FM also increases with Δt, since more blips can be

captured as the readout time duration is longer. However,
once the readout time is longer that the standard duration of
the spin-dependent tunneling process, the rest of the trace
can only lead to errors. For this reason, the optimal readout
time with a JPA is shorter, having faster tunneling times
t↑out;JPA and t↓in;JPA. The white dashed lines in Fig. 14 pass
through the maximum in FM and correspond with the 1D
plots presented in Figs. 2(c) and 2(d) in the main text.

APPENDIX N: FM DEPENDENCE ON THE
DOT-RESERVOIR TUNNELING RATES

For a direct comparison of fidelities, we calculate the
readout fidelity with and without the JPA, using simula-
ted readout traces created with the same tunneling rates
(t↑out ¼ 53 μs and t↓in ¼ 440 μs), obtaining FM ¼ 98.85%
and FM;JPA ¼ 99.75%, with the JPA off and on, respec-
tively. The readout time is Δt ¼ 434 μs in both cases, as it
maximizes the fidelity for measurements taken without
a JPA.

APPENDIX O: MACHINE LEARNING SPIN
LABELING APPROACH

The main text describes how to obtain the electrical
fidelity using the probability density function of the rf
response peak values [Eq. (3)]. However, when applying
other spin identification methods, the fidelity can be
calculated with an equivalent method that relies on the
number of simulated traces wrongly identified:

F↑
E ¼ 1 − n0↑=Ntot; F↓

E ¼ 1 − n1↓=Ntot: ðO1Þ

Here, n0↑ is the number of spin j↑i traces misidentified

as j↓i traces, and the opposite holds for n1↓. We use this
method to calculate the measurement fidelity when using a
neural network method to label the readout traces.
The neural network method is summarized in Fig. 15(a).

It uses the deep learning architecture known as
InceptionTime, a state-of-the-art approach to time series
classification. The InceptionTime network involves a series
of convolutional layers which apply learned filters to the
time series to extract its features [58]. The features
extracted from Fig. 15(b) spin traces are shown in
Fig. 15(c). These features are fed into a fully connected
or dense layer which assigns one of two classes to the input
time series (spin up or down). The network was trained
using the same body of data that the thresholding method
described in the main text, with it divided into training,
validation, and test sets. The training set is used to train
the model via gradient descent and the validation set is
monitored during training to avoid overfitting. If the

(a) (b)

FIG. 14. (a) Dependence of the measurement infidelity 1 − FM,
with respect to the measurement bandwidth and the readout time.
The dashed white lines pass through the maximum fidelity point.
(b) Same for measurements taken using JPA.
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network learns to recognize the training set too well,
then that can compromise its performance on unseen
data. The network that produces the best validation
accuracy is selected and applied to the test set, which
gives the final accuracy data reported here. The approach
used here uses the TSAI package for instantiating the
networks and records training metrics using the Weights
and Biases library, which is also used for hyperpara-
meter optimization [59,60].
Figures 15(d) and 15(e) show an improvement of the

fidelity for measurements taken with and without a JPA.
Here, the spin to charge errors are also included as
described in Appendix L. We find a maximum fidelity
FM ¼ 99.1% for Δt ¼ 500 μs without using a JPA and
FJPA
M ¼ 99.54% with a JPA for ΔtJPA ¼ 250 μs. We

observed that, when using the machine learning classifi-
cation method, the measurement fidelity stays almost
constant as the readout time Δt increases. This is because
the optimized filters enhance the blip’s edges features,
mitigating the errors that appeared in the threshold method
when the background noise surpasses the threshold.
For a fair comparison between the classification

methods, we have calculated the accuracy in the fidelity
for each method [see error bars in Figs. 15(d) and 15(e)].
To do so, we have assumed that the experimental
parameters have no error and used the same simulated
set of readout traces.
The fidelity error is calculated based on k-fold

validation—we train the neural network on different
sections of the dataset and predict the fidelity on the

remaining sections. In the case of the threshold method
approach, a set of 1 × 106 simulated traces is divided into
100 subsets of data, each one of equal size. Then, we
obtain the optimal threshold for all the subsets except one
and obtain the fidelity on the remaining subset. This way,
we obtain a different fidelity for each subset. The final
fidelity is calculated as the average of the different results
and its error as their standard deviation.
For the JPA on, we obtain a fidelity of 99.45� 0.05%

with the threshold method and 99.54� 0.002% using
machine learning. We then compare these two different
fidelity distributions with the Welch’s t-test. The t-test
result was p ≪ 0.05. So, we can affirm that both
populations can be well distinguished and the change
in the fidelity using different classification methods is
significant.

APPENDIX P: MEASUREMENT FIDELITY FOR
ASYMMETRIC TUNNELING RATES

The readout time for spin-dependent tunneling is limited
by the time that a spin j↑i electron takes to leave the dot,
t↑out, since until the start of the blip there is no difference
between a spin j↑i and j↓i trace. Here, we investigate the
measurement fidelity for asymmetric tunneling rates—a
fast t↑out, while t

↓
in remains long—to reduce the readout time

necessary to achieve a fidelity above 99%. These kinds of
traces are shown in Fig. 16(a) and are very similar to the
ones described in Fig. 3(d) in the main text, showing singlet
and triplet traces.
We can make a parallelism between the traces generated

using spin-dependent tunneling and Pauli spin blockade.
In both cases, the value of the rf response depends on the
dot occupation. In the case of PSB, the rf response is
maximum for (4,0) and minimum for (3,1), whereas for
spin-dependent tunneling it is maximum when the dot is
empty and minimum when it has an electron. This way,
both singlet and spin j↓i traces are characterized by a
constant rf response. On the other hand, a j↑i trace has a
blip that starts when the electron leaves the dot, t↑out, and

(a)

(d) (e)

(b)

(c)

FIG. 15. (a) Working protocol of the machine learning spin-
classification approach. (b) Simulated spin j↑i and j↓i trace using
the parameters for JPA on. (c) Output of the InceptionTime
convolution layers with the blip edges enhanced to facilitate trace
classification. (d) Measurement fidelity without a JPA using the
threshold method approach (light red) and the machine learning
approach (dark red). (e) Same for measurements using a JPA,
with the threshold (light blue) and machine learning (dark blue)
labeling methods. The error bars for the machine learning method
are too small to be visible.

(a) (b)

FIG. 16. (a) Spin j↑i and j↓i traces simulated using the
experimental parameters of measurements taken with a JPA,
with the exception of t↑out and t↓in that are modified to emulate
triplets and singlets. The spin j↑i is equivalent to a triple trace
and, in the same way, the spin j↑i is equivalent to a singlet trace.
The traces shown have a measurement bandwidth of feff;BW ¼
122 kHz. (b) 1 − FE as a function of the readout time.
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lasts until a new electron tunnels back from the reservoir to
the spin j↓i state, t↓in. In the case of a triplet trace, the blip
starts when the system tunnels from the preparation stage,
with an occupation of (4,0), to the readout stage, with
occupation (3,1). Therefore, a triple trace starts at a high
value that continues until the triplet relaxes to the singlet,
characterized by the relaxation time T1. To obtain the
fidelity, we create traces in the same way described in
Appendix K and using the same experimental values
extracted for measurements taken with a JPA [EðhighÞ,
EðlowÞ, σhigh, σlow, Γs, and proportion of spin j↓i, A].
However, the tunneling rates are modified in order to
emulate triplet or singlet traces. We chose t↑out ¼ 0.01 μs
and t↓in ¼ 228 μs, so that t↓in is equal to the triplet relaxation
time T1 from the Pauli spin blockade experiment described
in the main text.
The average of the trace during Δt is compared against a

threshold, which is varied to obtain the maximum fidelity.
Figure 16(b) has the fidelity at different readout times Δt.
We obtain a maximum FE ¼ 99.3% for a readout time
Δt ¼ 4 μs.

APPENDIX Q: LEAVER ARM, ELECTRON
TEMPERATURE, AND TUNNEL

RATE OF THE SEB

To determine the lever arm α of the SEB, we carried out a
magnetospectroscopy measurement of the SEB dot-to-
reservoir line close to the interdot charge transition (ICT)
of interest, as shown in Fig. 17(a). From the analysis carried
out in Appendix U, and due to the linear dependence of the
magnetospectroscopy, the transition is temperature broad-
ened and thus the phase response ΔΦ takes the form

ΔΦ ∝
1

cosh2
�
αðVg1−V0

g1Þ
2kBT

	 ; ðQ1Þ

where V0
g1 is the gate voltage at the center of the peak. The

change in V0
g1 due to the applied magnetic field B is directly

related to the SEB’s leaver arm, as

gμBΔB ¼ eαΔV0
g1; ðQ2Þ

where we take the electron g factor as 2, μB is the Bohr
magneton, and e is the charge of an electron. From the fit, we
extract an α of 0.40. To characterize the electron temperature
Te of the SEB, we measure the FWHM of the SEB as a
function of mixing chamber fridge temperature Tfridge. To
ensure the transition is not power broadened, we first
measure the transition at varying rf powers at base temper-
ature, as shown in Fig. 17(b). We determine that above
−125 dBm the signal becomes power broadened, and thus
we take temperature dependence measurements at
−130 dBm. To extract the electron temperature Te of the
SEB, we fit the expression

FWHM ¼ 3.53kB
eα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
fridge þ T2

e

q
; ðQ3Þ

where kB is the Boltzmann constant and e is the charge of an
electron. From the fit in Fig. 17(c), we estimate an electron
temperature of 115� 6 mK. Since we are thermally broad-
ened, we estimate an upper bound for the tunneling rate
γ ≤ 4.25 GHz as

3.53kBTe ≥ 2hγ: ðQ4Þ

APPENDIX R: RESONATOR PARAMETER
EXTRACTION USING KINETIC

INDUCTANCE CHANGES

Because of the presence of uncalibrated standing
waves in the reflected rf signal arising from impedance
mismatch in the reflectometry setup, magnetospectroscopy
of the reflected signal was taken up to 0.9 T, as shown in

(a) (b) (c)

FIG. 17. SEB lever arm and electron temperature. (a) Magnetospectroscopy of dot-to-reservoir transition used to extract the SEB lever
arm. (b) FWHM of the SEB transition as a function of rf power (raw data in inset). Above-120 dBm the deviation of the data (black dots)
from the linear fit (red line) indicates the peak is power broadened; thus the temperature dependence of the FWHM in (c) was taken at
−130 dBm. From the fit shown in red, we estimate a Te of 115� 6 mK.
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Fig. 18(a). We assume that the background remains
constant while the resonance frequency shifts as a function
of B field, allowing us to infer the background amplitude
transfer function, as shown in Fig. 18(b). To account for
any asymmetry in the line, we fit a complex external quality
factor Q̃e resulting in the fits shown in Fig. 18(c):

S21 ¼ A

�
1 −

2QLeiϕ

jQ̃ejð1þ 2iQL
f−fr
fr

Þ

�
: ðR1Þ

The extracted parameters at zero field are a resonance
frequency fr ¼ 797 MHz, a loaded quality factor QL of
145, and an external quality factor Qe of 282, resulting in
an intrinsic quality factorQ0 of 298. We get a phase delay ϕ
of 0.98 and an amplitude A of 17.2 dB, resulting in a
matching β of 1.05. From the extracted values, we
observe that there is no change in QL and Q0 up to
0.4 T [Figs. 18(d) and 18(e)], above which the resonance
appears to deteriorate, potentially due to vortex formation
in the superconducting NbN inductor.

APPENDIX S: PID CONTROLLER

A proportional integral derivative controller is a closed-
loop control system employing feedback to maintain a
certain setpoint. In this particular implementation, we
bias the SEB at the point of its maximum derivative of
the magnitude of the reflective signal ΔA [red dot in
Fig. 19(a)], as this is the most sensitive point. To increase
the dynamic range of the PID controller, a large rf power
of −100 dBm is applied to broaden the peak, resulting
in a FWHM of 2 mV. Varying Vg2 (and to a lesser extent
Vg3) results in a large change in signal ΔA, as shown in
Fig. 19(b), as it shifts the SEB bias point due to the QDs’
cross capacitances. Based on the change in signal, the
feedback loop compensates Vg1, as shown in Fig. 19(c),
according to

Vg1ðnþ 1Þ ¼ Vg1ðnÞ þmiΔVgi þ PðnÞ þ IðnÞ þDðnÞ:
ðS1Þ

To ensure that the PID feedback loop does not go out of
range, the controller output is bounded between minimum
Vmin
g1 and maximum Vmax

g1 safety voltages, which are user
defined. In Eq. (S1), Vg1ðnÞ is the voltage on the SEB at
step n, mi is the gradient due to the gate capacitance ratio
between the SEB and QDi, as estimated in Appendix U,
and ΔVgi is the gate voltage step taken on gate i, in this
implementation i ¼ 2 or 3. Then, PðnÞ, IðnÞ, and DðnÞ are
the proportional, integral, and differential compensations at
step n, which are defined as

(a) (b) (d)

(c) (e)

FIG. 18. Resonator parameter extraction. (a) Magnetospectroscopy of jS21j as a function of magnetic field B, resulting in a change in
resonance frequency, as highlighted by the red dashed line. (b) jS21j at B fields of 0 T (black) and 0.9 T (blue) with the estimated
background signal in red. (c) Background subtracted response with corresponding fits, from which the loaded QL (d) and internal Q0

(e) quality factors are then extracted as a function of applied field B.

(a) (d)

(b)

(c)

FIG. 19. PID charge sensing in the few-electron regime.
(a) Normalized magnitude of the reflected signal of dot-to-
reservoir transition line of the SEB used for charge sensing.
The red dot shows the setpoint used for PID control, with arrows
indicating how the signal varies as the peak shifts. (b) Change in
magnitude response due to a change in Vg2 with the electron
occupancy in QD2 in brackets. (c) PID response on Vg1 due to the
change in signal in (b), highlighted by the red arrows. (d) Differ-
ential of Vg1 PID response due to a change in Vg2 and Vg3,
resulting in the stability diagram in the few-electron regime. We
indicate the electron occupancy as well as a red rectangle
highlighting the interdot charge transition used for single-shot
readout.
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PðnÞ ¼ KPΔA;

IðnÞ ¼ KI
ΔVgi

2
½ΔAðnÞ þ ΔAðn − 1Þ� þ Iðn − 1Þ;

DðnÞ ¼ 2KD

2τ þ ΔVgi
½ΔAðnÞ − ΔAðn − 1Þ�

þ 2τ − ΔVgi

2τ þ ΔVgi
Dðn − 1Þ; ðS2Þ

where KP, KI , and KD are the proportional, integral, and
differential coefficients, which have to be tuned by the user.
Here, τ is the cutoff frequency of a low-pass filter used to
reduce high frequency noise on the differential term. We
use τ ¼ 1. The integrator part is limited via a dynamic
integrator clamping scheme to ensure that no integration
occurs if the signal is already saturated by PðnÞ,

Imax ¼ max½Vmax
g1 − Vg1ðnþ 1Þ þ IðnÞ; 0�; ðS3Þ

Imin ¼ min½Vmin
g1 − Vg1ðnþ 1Þ þ IðnÞ; 0�: ðS4Þ

Once the PID is tuned, we acquire the charge stability
diagram shown in Fig. 19(d). The PID performs well apart
from the region corresponding to 1 ↔ 2 charge transition
of QD2. Nevertheless, we accurately determine the location
in gate voltage space of the (3,1)–(4,0) charge transition,
as highlighted by the red box, as well as an estimate of
the (1,1)–(2,0) transition.

APPENDIX T: VALLEY-ORBIT SPLITTING

From the estimated voltage space regions from the
stability diagram using the PID controller in Fig. 19(d),
we were able to locate the (1,1)–(2,0) and the (3,1)–(4,0)
charge transitions, which exhibit PSB as shown in
Figs. 20(a) and 20(b). By taking a vertical trace in the
region of PSB, two Fermi-distribution-like functions are
observed, as shown in Figs. 20(c) and 20(d). To extract
the measurement window ΔV and the lever arm α of QD3,
the following function was fitted to the data:

ΔΦ=Φmax ¼ m1F1ðVg3Þ þ c1 þ ðm2Vg3 þ c2ÞF2ðVg3Þ;
ðT1Þ

where m1, m2, c1, and c2 are fitting parameters for the
linear gradients due to shifts in the charge sensor as a result
of ramping Vg3. FiðVg3Þ is a Fermi distribution function
centered at V0

i :

FiðVg3Þ ¼
1

exp
�
eαðVg3−V0

i Þ
kBTe

	
þ 1

; ðT2Þ

where e is the charge of an electron, kB is the Boltzmann
constant, and Te is the electron temperature, as determined
in Appendix Q. From the fits in Figs. 20(c) and 20(d), we
estimate a ΔV ¼ ðV0

2 − V0
1Þ of 113 and 374 μV and an α of

0.139 and 0.525, respectively. The valley-orbit splitting can
then be evaluated as eαΔV, giving an estimate of 15.6 and
195.5 μeV, respectively.

APPENDIX U: STRONG CHARGE
SENSOR RESPONSE

By operating the QD1 as a SEB, multiple dot-to-reservoir
transitions can be used for charge sensing, as shown in
Fig. 21(a). Typically, sensing is done with the most intense
transition due to the higher signal-to-noise ratio. However,
in our particular system, there is a positively sloped
transition line that couples to the SEB, probably due to
a defect in the silicon oxide. This line interacts with the
SEB close to the 3 ↔ 4 charge transition of QD2 for the
two most intense SEB lines in Fig. 21(a). As a result, we
operate the SEB at the third most intense line, as high-
lighted by the red box. From this dataset, and a similar
one of Vg1 versus Vg3 (not shown here), the gradients
ΔVg1=ΔVg2 andΔVg1=ΔVg3 were estimated as −0.237 and
−0.034, respectively. This was carried out by taking the
Hough transform of the threshold dataset, as described
in Ref. [61]. These slopes indicate QD2 is 7 times more
coupled to the SEB than QD3. These slopes were later
built in the charge sensing controller of Appendix S.

(a) (b) (c)

(d)

FIG. 20. Valley-orbit splitting of the (1,1)–(2,0) and (3,1)–(4,0)
charge transitions. ICTs of (1,1)–(2,0) (a) and (3,1)–(4,0) (b) in
which PSB is observed. Single traces taken while ramping Vg3
along SPB for the (1,1)–(2,0) (c) and (3,1)–(4,0) (d). The double
Fermi distribution function is then fitted to estimate the valley-
orbit splittings as 15.6 and 195.5 μeV, respectively.

(a) (b)

FIG. 21. Charge stability diagram QD1 versus QD2. (a) High-
lighted charge sensing region of interest (red square) in the Vg1

versus Vg2 gate space. The numbers indicate the electron
occupation in QD2. (b) Enlarged measurement, highlighting
the large charge response of the SEB when an electron is loaded
onto QD2. The numbers in parentheses indicate the electron
occupation of QD2 and QD1, respectively.
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From Fig. 21(b), we estimate the voltage shift in QD1 when
an electron is loaded into QD2. This was done by fitting a
cosh−2 distribution to the SEB transition for varying Vg2

voltages [Eq. (Q1)]. From the fits, we extract the center and
FWHM of the transition line, resulting in a voltage shift
ΔVg1 of 1.70 mV, which is almost 3 times the average
FWHM of 0.64 mV. We also note that the FWHM is
constant as a function of Vg2, indicating that the peak is
thermally rather than lifetime broadened [44].

APPENDIX V: SINGLET-TRIPLET MODEL FOR
PAULI SPIN BLOCKADE

For Pauli spin blockade, an analytical model to describe
the probability density functions (PDFs) for both a singlet
nS and a triple nT exists [35]. In the case of Gaussian noise

of equal strength in both quadratures (e.g., cryogenic
amplifier noise limited), the singlet probability in the IQ
plane reads

nSðI; QÞ ¼ ð1 − PTÞ
2πσ2

exp

�
−
ðI − ISÞ2

2σ2
−
ðQ −QSÞ2

2σ2

�
;

ðV1Þ

where PT is the probability of a triplet outcome, (IS, QS) is
the center of the singlet Gaussian in the IQ plane, and σ is
the standard deviation of the distribution. For the triplet
PDF, there is the added possibility of relaxation to a singlet
during the measurement time Δt, resulting in two extra
integral terms:

nTðI;QÞ ¼ PT

2πσ2
exp

�
−
Δt
T1

�
exp

�
−
ðI − ITÞ2

2σ2
−
ðQ−QTÞ2

2σ2

�
þ
Z

IT

IS

ΔtPT

T1ðIT − ISÞexp
�
−
Ix − IS

IT − IS
Δt
T1

�
exp

�
−
ðI − IxÞ2
2σ2

�
dIx
2πσ

þ
Z

QT

QS

ΔtPT

T1ðQT −QSÞexp
�
−
Qy −QS

QT −QS

Δt
T1

�
exp

�
−
ðQ−QyÞ2

2σ2

�
dQy

2πσ
; ðV2Þ

where the integral terms due to the triplet decaying into a singlet ID (second and third addends) have an analytical solution:

IDðVÞ ¼
ΔtPTffiffiffiffiffiffi

2π
p

T1ðVT − VSÞ exp
�

Δt
ðVT − VSÞT1

�
VS − V þ Δtσ2

2ðVT − VSÞT1

��

×



erf

�
σΔt

ðVT − VSÞT1

ffiffiffi
2

p þ VT − V

σ
ffiffiffi
2

p
�
− erf

�
σΔt

ðVT − VSÞT1

ffiffiffi
2

p þ VS − V

σ
ffiffiffi
2

p
��

: ðV3Þ

We use these equations to fit the outcome of the single
shots in the IQ plane (the average signal over Δt). We
extract the centers of the two distributions. We then project
the data along the axis that connects both centers, to thus
reduce the problem to one dimension, as in Barthel et al.
[35] and, hence, reduce the number of fitting parameters
to PT , VS, VT , and σ. From the fitted parameters, we
determine the singlet FS and triplet FT fidelities as a
function of threshold voltage VT above which we call the
shot a triplet,

FS ¼ 1 −
Z

∞

VT

nSðVÞ
1 − PT

dV ¼ 1 −
1

2

�
1þ erf

�
VS − VTffiffiffi

2
p

σ

��
;

FT ¼ 1 −
Z

VT

−∞

nTðVÞ
PT

dV

¼ 1 −
1

2
exp

�
−
Δt
T1

��
1 − erf

�
VT − VTffiffiffi

2
p

σ

��

−
Z

VT

−∞
IDðVÞdV: ðV4Þ

Here the integral for FT has no analytical solution and
thus needs to be computed numerically. The visibility VE
and the average spin measurement fidelity FM are then
determined as

VE ¼ max½FSðVTÞ þ FTðVTÞ − 1�;
FM ¼ max½ð1 − PTÞFSðVTÞ þ PTFTðVTÞ�: ðV5Þ

APPENDIX W: SIGNAL-TO-NOISE
RATIO AND IDEAL FIDELITY

To extract the SNR for the SEB at various temperatures,
each trace from the inset in Fig. 17(c) was plotted in the IQ
plane, as shown in Fig. 22(a). Since we subtract the average
background for the IQ data, the background noise forms a
2D Gaussian distribution centered at the origin. The
circular shape shows the system is cryogenic amplifier
noise limited. The standard deviation of the Gaussian
distribution [dashed circle in Fig. 22(a)] represents the
noise of the system, while the signal is measured as the
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distance between the maximum value, obtained by fitting
Eq. (Q1) to the I and Q data and the center of the noise,
depicted by the black dashed line. A similar procedure
is carried out for the single-shot data, after averaging
the signal over the measurement time Δt, as shown in
Fig. 22(b). The main difference is that two peaks appear,
one due to the singlets and the other due to the triplets
outcomes, which we fit according to Eqs. (V1) and (V2),
respectively. The noise is still calculated as the fitted
average standard deviation, while the signal is the distance
between the two peaks. Since the two methods adopted to
measure the SNR were carried out at two different rf
powers and on different days, the SNR values extracted at
base temperature were used to calibrate the two datasets,
resulting in the red data points on Fig. 22(c). While the SEB
peak shift remains greater than its FWHM, the SNR has the
following temperature dependence:

SNR ∝
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2
fridge þ T2

e

q ; ðW1Þ

where the value extracted in Appendix Q was used for Te,
resulting in the fitted red curve. At 1 K the fitted SNR is
larger than the measured one, suggesting that other factors
may be deteriorating the overall SNR. From the SNR, one
can then calculate the electrical fidelity FE (assuming an
infinite T1), resulting in the blue dotted line:

FE ¼ 1

2

�
1þ erf

�
SNR

2
ffiffiffi
2

p
��

: ðW2Þ

APPENDIX X: POSSIBLE ARCHITECTURES
USING SEBs AS READOUT SENSORS

In this appendix, we analyze the benefits in scalability of
using SEBs as readout sensors. We first focus on silicon
nanowire devices (or nanowire devices in general) like the
ones presented here. In these nanowires with a serial gate
arrangement, like the one in Fig. 3(a), two SEBs can be
implemented at the ends of the nanowire. On the contrary,
SETs cannot be implemented.

On the other hand, the devices with split-gate geometry,
like the one in Fig. 23, enable forming one SETon one side
of the 2 × N array [see Fig. 23(a)]. However, that neu-
tralizes the use of one side of the array as quantum dots. By
comparison, two (or four) SEBs can be formed at the edges
of the nanowire enabling the use of the central quantum
dots for computation [see Fig. 23(b)].
For more generic linear geometries, we compare the role

of different sensors considering planar silicon. Figure 24
focuses on a linear array of QDs similar to the approach
presented in Refs. [62,63]. The upper part of the structure
has plunger gates alternated with barrier gates to define
few-electron QDs (blue circles) and its lower part includes
the charge sensors (red squares). Figure 24(a) shows an
example of this implementation with SETs, leading to one
sensor for every three qubits. On the other hand, Fig. 24(b)
shows how the structure would look when using SEBs. The
sensor-to-qubit ratio increases when using SEBs, having
one sensor every two qubits.
We now explore new architectures that can be produced

in planar geometries with plug-on gates (available in the
10 nm node and below). SEBs only need one reservoir for
readout, which can unlock structures like the one shown in
Fig. 25(a), where a single reservoir is shared between four
SEBs. This structure is the center part of the design, where
a reservoir, sketched as a light red rectangle, is surrounded
by four SEBs (red squares). We consider each SEB can act
primarily as a charge sensor for its three nearest neighbor
qubits, represented as dark blue circles in Fig. 25(b). Qubit

(a) (b)

FIG. 23. Quantum-dot-based architectures in a nanowire.
(a) The reservoirs are extended to form a SET on one side of
the nanowire. The light red ovals show the extension of the
reservoirs. (b) SEBs are formed at the edges of the nanowire to
readout. The blue circles represent the dots that will be used as
qubits, whereas the red squares correspond to the SEBs.

(a) (b)

FIG. 24. Readout architectures in a linear array of QDs.
(a) Qubits, pictured as blue circles, sensed by SETs (red squares).
The SETs are placed between accumulated reservoirs (T-shaped
gates) and have barrier gates to control the tunnel rate. (b) A
similar structure with SEBs. The structure presents a gate in
between every pair of SEBs for isolation.

(a) (b) (c)

FIG. 22. SNR extraction for (a) dot-to-reservoir (DTR) tran-
sition on sensing QD and (b) single-shot data. (c) SNR data points
as a function of temperature, with best fit (red line). From the
fitted SNR data, the electrical fidelity was estimated for a
measurement time Δt of 5.6 μs (black line). Black crosses are
the measured electrical fidelity.
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readout could be based on Pauli spin blockade between
couples of nearest neighbor qubits, where the light blue
circles represent data qubits and the dark blue circles the
ancilla qubits for PSB projection. Figure 25(c) shows the
sensing structure with all the qubits that can be read via
PSB. Although the 4 SEBs plus reservoir occupy a small
area (7 grid squares), they still can charge sense 12 qubits
(dark blue circles) that can be used to project a total of 16
data qubits. Building on a grid formed by these structures,
we envision an architecture with high qubit connectivity in
which most qubits are part of a PSB couple apart from a
small subset (1 per unit cell) indicated in yellow.
Figure 26 introduces a similar architecture using SETs as

charge sensors. Figure 26(b) shows that the additional
reservoirs that SETs require deteriorate the ratio between
the sensing structure area (8 grid squares [64]), the number
of charge-detectable qubits (4 qubits), and the number
of qubit dots that can be read via PSB (12 qubits). This
compromises the ability to have simultaneously high qubit
connectivity and readability. Figure 26(c) shows that to
achieve similar connectivity, not all the qubits can be
directly read out via PSB (yellow circles), in this case, 6 per
unit cell.
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