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The Ce3þ pseudospin-1=2 degrees of freedom in the pyrochlore magnet Ce2Zr2O7 are known to possess
dipole-octupole character, making it a candidate for novel quantum spin liquid ground states at low
temperatures. We report new polarized neutron diffraction at low temperatures, as well as heat capacity
(Cp) measurements on single crystal Ce2Zr2O7. The former bears both similarities and differences with that
measured from the canonical dipolar spin ice compound Ho2Ti2O7, while the latter rises sharply at low
temperatures, initially plateauing near 0.08 K, before falling off toward a high temperature zero beyond
3 K. Above ∼ 0.5 K, the Cp dataset can be fit to the results of a quantum numerical linked cluster
calculation, carried out to fourth order, that allows estimates for the terms in the near-neighbor XYZ
Hamiltonian expected for such dipole-octupole pyrochlore systems. Fits of the same theory to the
temperature dependence of the magnetic susceptibility and unpolarized neutron scattering complement this
analysis. A comparison between the resulting best-fit numerical linked cluster calculation and the polarized
neutron diffraction shows both agreement and discrepancies, mostly in the form of zone-boundary diffuse
scattering in the non-spin-flip channel, which are attributed to interactions beyond near neighbors. The lack
of an observed thermodynamic anomaly and the constraints on the near-neighbor XYZ Hamiltonian
suggest that Ce2Zr2O7 realizes a Uð1Þπ quantum spin liquid state at low temperatures, and one that likely
resides near the boundary between dipolar and octupolar character.

DOI: 10.1103/PhysRevX.12.021015 Subject Areas: Condensed Matter Physics, Magnetism,
Strongly Correlated Materials

I. INTRODUCTION

The rare-earth pyrochlore oxides, R2B2O7, where R3þ is
a trivalent rare-earth ion and B4þ is a nonmagnetic
tetravalent transition-metal ion, display a wealth of both
exotic and conventional magnetic ground states. Their R3þ

ions decorate a network of corner-sharing tetrahedra, one of
the archetypes for geometrical frustration in three dimen-
sions, and this crystalline architecture underlies many of
their exotic properties [1]. A separation of energy scales,
with crystal electric field (CEF) effects dominating over
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exchange interactions, often results in a well-separated
CEF ground-state doublet for the R3þ ion and interacting
pseudospin-1=2 degrees of freedom at low temperatures
[2–4].
It is well appreciated that the CEF Hamiltonian deter-

mines both the size of the magnetic moment at the R3þ site
and its anisotropy, but less well appreciated that the
symmetry of the CEF ground state can imprint itself on
the exchange Hamiltonian [4–6]. The possible symmetries
of the ground-state doublets then lead to an important
classification of the rare-earth pyrochlores, which depends
on how their CEF doublet transforms under time-reversal
symmetry and the point group symmetry of the R3þ site.
Three classes of doublets arise, one for non-Kramers ions
with an even number of electrons and two for Kramers ions
with an odd number of electrons. The non-Kramers case
gives rise to a pseudospin wherein one component of the
pseudospin transforms as a magnetic dipole and two
transform as quadrupoles. For Kramers ions, we have
the familiar case where all three components of the
pseudospin in the ground-state doublet transform as mag-
netic dipoles, as well as the more exotic one where two
components transform as magnetic dipoles and one trans-
forms as an octupole. This latter case is known to describe
the CEF Kramers ground state of 4f1 Ce3þ in Ce2Zr2O7

[7,8], a dipole-octupole (DO) ground-state doublet, and
also that of its sister pyrochlore, Ce2Sn2O7 [9]. Figure 1(a)
pictorially displays the magnetic charge distributions asso-
ciated with both magnetic dipoles and octupoles decorating
the tetrahedra on part of a cubic pyrochlore lattice. As
discussed above, for the dipole-octupole doublets relevant
to Ce2Zr2O7, a single component of the pseudospin-1=2
degree of freedom (the y component) behaves as an
octupole, while the x and z components behave as dipoles

under the symmetry of the lattice and time-reversal sym-
metry, as schematically illustrated in Fig. 1(b).
Such DO doublets decorating pyrochlore lattices are

theoretically known to allow for at least six distinct
quantum disordered and ordered ground states, with three
in each of the dipole and octupole sectors [10–12]. Recent
neutron scattering measurements on single crystal
Ce2Zr2O7 have uncovered a signal that strongly resembles
predictions for the energy integration of emergent photon
excitations in a U(1) quantum spin ice [7], while recent
experiments on powder samples of Ce2Sn2O7 have been
interpreted in terms of a U(1) quantum spin ice ground state
in the octupole sector [9].

II. OUTLINE OF THE PAPER

In this paper, we present new polarized neutron diffrac-
tion and heat capacity measurements on single crystal
Ce2Zr2O7. The former bears both similarities and
differences with that measured from the canonical dipolar
spin ice compound, Ho2Ti2O7, while the latter shows no
sign of a thermodynamic phase transition above
T ¼ 0.06 K. Cp rises sharply at low temperatures, initially
plateauing near 0.08 K, before falling off toward a high
temperature zero beyond 3 K, consistent with previous
measurements [8]. We have modeled the high temperature
Cp and the powder-averaged magnetic susceptibility using
quantum numerical linked cluster (NLC) expansions. This
allows us to estimate and constrain the parameters of the
anticipated near-neighbor XYZ Hamiltonian. To the extent
that interactions beyond near neighbor do not alter ground
state selection, we constrain the nature of the ground state
itself, with the results indicating a Uð1Þπ quantum spin
liquid (QSL) ground state is selected at low temperature.
We use the resulting near-neighbor exchange parameters

to calculate the equal-time spin-flip (SF) and non-spin-flip
(NSF) structure factors in the ½HHL� scattering plane. This
calculation resembles the new polarized neutron diffraction
measurements in the SF channel from single crystal
Ce2Zr2O7, but cannot account for the observed zone-
boundary diffuse scattering in the NSF channel. We
attribute this discrepancy to interactions beyond near
neighbor in the Hamiltonian, which are expected to be
small, and a full study of which is beyond the scope of our
present work. The same discrepancy exists for spin-polar-
ized neutron diffraction from Ho2Ti2O7, where it was
ascribed to expected long-range dipolar interactions [13].
NLC calculations using the same near-neighbor exchange
Hamiltonian were also carried out to seventh order. While
these agree with the fourth-order calculations above
∼0.5 K, they depart from the measured Cp at lower
temperatures. We interpret this as arising from the same
interactions beyond near neighbor in Ce2Zr2O7 that were
revealed by the NSF zone-boundary scattering. As these are
relatively weak, they only manifest themselves at low
temperatures.

FIG. 1. (a) The magnetic charge distributions associated with
octupoles (left) and dipoles (right) are depicted at the vertices of
five corner-sharing tetrahedra, making up part of the pyrochlore
lattice. (b) Octupolar and dipolar components inhabit the same
Ce3þ pseudospin-1=2 degrees of freedom in Ce2Zr2O7, such that
y components behave as octupoles, while the x and z components
of each pseudospin-1=2 behave as dipoles, as schematically
illustrated here using the magnetic charge distributions associated
with different directions of pseudospin in the yz plane.
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A further consistency check is carried out via semi-
classical Monte Carlo and molecular spin dynamics using
the best-fit near-neighbor Hamiltonian. This calculation
accounts for the energy dependence of the inelastic spectral
weight making up the diffuse scattering at low temperatures
without further adjustment of the NLC-determined near-
neighbor Hamiltonian. We further show that the full R lnð2Þ
entropy of the DO ground-state doublet can be accounted
for to 10 K with a smooth extrapolation of Cp from the
lowest temperature data point at T ¼ 0.06 K, to zero at
T ¼ 0 K, using a theoretical form which is simultaneously
consistent with both the expected behavior of a U(1) QSL at
low temperature and the high temperature limit of the NLC
calculations. Interestingly, the Pauling, classical spin ice
entropy R lnð2Þ less ðR=2Þ lnð3

2
Þ is recovered from the peak

in the Cp data at ∼0.08 K, to 10 K.

III. POLARIZED NEUTRON DIFFRACTION

We have carried out new polarized diffraction measure-
ments on single crystal Ce2Zr2O7 using the D7 diffrac-
tometer at the Institute Laue Langevin [14]. This
diffractometer employs a spin-polarized monochromatic
incident beam, which was Ei ¼ 3.47 meV for this experi-
ment. This configuration effectively integrates over
−15 meV ≲ E< 3.47 meV during the course of a diffrac-
tion measurement, giving a signal that is directly propor-
tional to the equal-time structure factor. A single
polarization direction, perpendicular to the ½HHL� scatter-
ing plane, was employed, and as such the spin-flip and non-
spin-flip diffuse scattering profiles can be independently
measured. The diffuse scattering associated with these two
cross sections, SF and NSF, are shown in the ½HHL�
scattering plane for Ce2Zr2O7 in Figs. 2(a) and 2(b), res-
pectively for the temperature-difference dataset T ¼
0.045 K − T ¼ 10 K. For comparison, the corresponding
SF and NSF diffuse scattering patterns as measured on
single crystal Ho2Ti2O7 at T ¼ 1.7 K are shown in
Figs. 2(c) and 2(d), respectively [13]. These earlier spin-
polarized diffuse scattering measurements on Ho2Ti2O7

(Ref. [13]) played a formative role in the development of
classical spin ice physics, as they drew clear attention to
“pinch point” scattering within the SF cross section at
(0,0,2) and (1,1,1) and equivalent wave vectors, due to the
presence of a classical Coulomb phase at low temperature.
These measurements on Ho2Ti2O7 also observed zone-
boundary diffuse scattering in the NSF channel, which was
later attributed to the long-range dipolar interactions
relevant to the large Ho3þ dipole moments.
The comparison between the spin-polarized diffuse

scattering from Ce2Zr2O7 and Ho2Ti2O7 in Fig. 2 is
interesting both in what is similar and where the discrep-
ancies between the two materials lie. One may note,
however, that the comparison is made at quite different
temperatures, 0.045 K for Ce2Zr2O7 but only 1.7 K for

Ho2Ti2O7. In fact, the large Ho3þ moments and effective
ferromagnetic coupling cause Ho2Ti2O7 to depolarize the
beam at lower temperatures, whereas no such issue is
present for Ce2Zr2O7 due to its much smaller Ce3þ
moments. Quasi-pinch-point SF scattering is observed near
(0,0,2) Bragg positions for Ce2Zr2O7, but it is not as
constricted as that observed at (0,0,2) for Ho2Ti2O7, even
though the earlier measurements on Ho2Ti2O7 were taken
at much higher temperature. Furthermore, while diffuse SF
scattering extends out in (1,1,1) and equivalent directions in
a snowflakelike pattern for Ce2Zr2O7, pinch points appear
to be absent in these directions.
In contrast, and somewhat surprisingly, the observed

NSF diffuse scattering from Ce2Zr2O7 is quite similar to
that measured from Ho2Ti2O7. In both cases the diffuse
scattering tends to follow the face-centered cubic Brillouin
zone boundaries, outlined in gray in Fig. 2(b). For
Ho2Ti2O7, this was ascribed to interactions beyond near
neighbor [13], which was not surprising, given that dipolar
interactions are expected to dominate over exchange
interactions even for near neighbors in Ho2Ti2O7.
However, the Ce3þ moments are ∼8 times smaller than
those of Ho3þ and hence dipolar interactions are expected
to be ∼64 times smaller in Ce2Zr2O7. We revisit our new
polarized neutron diffraction data in Sec. V, where we

FIG. 2. The symmetrized T ¼ 45 mK − T ¼ 10 K tempera-
ture-difference neutron signal measured in the (a) SF and (b) NSF
channels of our polarized neutron diffraction experiment on
Ce2Zr2O7 . The (c) SF and (d) NSF scattering signals in the
½HHL� plane measured in a polarized neutron scattering experi-
ment on Ho2Ti2O7 at T ¼ 1.7 K [13]. The data in this figure are
shown in arbitrary units.
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compare the measured SF and NSF signals to NLC
calculations using the near-neighbor exchange parameters
yielded in this work.

IV. ESTIMATING THE NEAR-NEIGHBOR
EXCHANGE PARAMETERS IN THE SPIN

HAMILTONIAN

The gold standard for determining the microscopic spin
Hamiltonian of magnetic materials is inelastic neutron
scattering studies of spin wave spectra. This technique
can and has been successfully applied to pyrochlore
magnets with pseudospin-1=2 degrees of freedom arising
from well-separated ground-state CEF doublets, including
Yb2Ti2O7 and Er2Ti2O7 [15–20]. For disordered ground
states, it is necessary to perform measurements in a
sufficiently strong magnetic field, so as to polarize the
ground state, thus giving rise to well-defined spin wave
spectra. However, this is not always possible. For example,
the classical spin ice ground state as appears in Ho2Ti2O7

does not allow transverse spin fluctuations; hence, no well-
defined spin wave excitations are observed due to Ho3þ’s
non-Kramers CEF doublet eigenvectors [21]. No evidence
for well-defined spin waves has been observed to date in
either zero or nonzero magnetic field in Ce2Zr2O7, a likely
consequence of the form of Ce3þ ’s DO CEF ground-state
doublet and spin Hamiltonian. Hence estimates for the
microscopic spin Hamiltonian parameters for such materi-
als can only come from sophisticated modeling of other
data, such as the high temperature thermodynamic data
presented here. We note that a related work has appeared
coincident with this paper which performs independent
modeling of heat capacity, magnetization, and neutron
scattering measurements on Ce2Zr2O7, and reaches similar
conclusions [22].

A. Introduction to the exchange parameters
in the XYZ Hamiltonian

The near-neighbor XYZ Hamiltonian appropriate
to DO pyrochlores in a magnetic field may be written
as [5,6]

HXYZ ¼
X
hiji

½Jx̃Six̃Sjx̃ þ JỹSiỹSjỹ þ Jz̃Siz̃Sjz̃�

− gzμB
X
i

h · ẑiðSiz̃ cos θ þ Six̃ sin θÞ: ð1Þ

In this equation, Siα̃ (α ¼ x̃, ỹ, z̃) are the pseudospin
components of atom i in the local x̃, ỹ, z̃ coordinate frame.
This coordinate frame arises from rotation of the local x, y,
z coordinate frame, with the z anisotropy axis connecting
near-neighbor tetrahedra in the pyrochlore structure, by θ
about the y axis [5,6]. The magnetic field is denoted as h,
and ẑi is the local anisotropy axis for the site i. The g factor
gz is fixed by the wave functions of the lowest CEF doublet,

giving gz ¼ 2.57 for Ce3þ [7–9]. Sx̃i and Sz̃i are distin-
guished from Sỹi by how they transform under the point
group of the lattice and time-reversal symmetry. Sx̃i and Sz̃i
transform like a magnetic dipole while Sỹi transforms like a
component of the magnetic octupole tensor, as schemati-
cally illustrated in Fig. 1.
The nearest-neighbor exchange Hamiltonian in Eq. (1)

has only three independent exchange parameters
ðJx̃; Jỹ; Jz̃Þ in zero magnetic field. Theory has predicted
the ground-state phase diagram for such a zero-field XYZ
Hamiltonian, uncovering both quantum spin liquid as well
as ordered ground states [10,11]. Each of these can have
either dipolar or octupolar nature. A QSL phase has
octupolar nature if jJỹj > jJx̃j; jJz̃j and dipolar nature if
jJz̃j > jJỹj or jJx̃j > jJỹj. An ordered phase has octupolar
nature if Jỹ < Jx̃; Jz̃ and dipolar nature if Jz̃ < Jỹ or
Jx̃ < Jỹ. One final classification comes about for U(1)
QSL ground states, based on whether the U(1) flux that
penetrates the hexagonal plaquettes embedded in the
pyrochlore structure is equal to 0 or π. This leads to a
distinction between Uð1Þ0 and Uð1Þπ QSLs. The afore-
mentioned theoretical studies then uncover six phases
within the ground-state phase diagram: all-in, all-out
(AIAO) order, Uð1Þ0 QSL, and Uð1Þπ QSL, each of which
can have dipolar or octupolar nature. A separate theory
study has provided evidence for a small portion of the
ground-state phase diagram corresponding to a Z2 QSL
phase [12]. It is worth noting that inter-Ce3þ interactions
beyond near neighbor are allowed, but are expected to be
weak. Long-range, three-dimensional dipolar interactions
must be present in Ce2Zr2O7; however, they are expected to
be weak due to the small dipole moment associated with
the Ce3þ CEF ground-state doublet in Ce2Zr2O7 [7,8].
Exchange interactions beyond near neighbor are also
expected to be weak due to the localized nature of 4f
electron wave functions in rare-earth insulators.

B. Heat capacity and numerical linked
cluster calculations

The single crystal and powder samples of Ce2Zr2O7 used
in this study are from the same growth and synthesis
employed in Ref. [7]. As reported there, stabilizing the
Ce3þ oxidation state in Ce2Zr2O7 requires growth and
annealing in strong reducing conditions to minimize the
Ce4þ content. The amount of sample oxidation (the value of
δ in Ce3þ2−2δCe

4þ
2δ Zr2O7þδ) can be tracked through x-ray

diffraction measurements of the lattice parameter [23], and
we estimate an oxidation level of δ ∼ 0.05 for the single
crystal samples in the present work. Heat capacity mea-
surements on a polished single crystal were carried out on a
Quantum Design PPMS with dilution insert using the
conventional quasiadiabatic thermal relaxation technique.
Heat capacity measurements were performed on our

single crystal Ce2Zr2O7 sample, along with a polycrystalline
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sample of La2Zr2O7 (see the Appendix A), which is used as
a 4f0 analog of Ce2Zr2O7. The results are shown in Fig. 3,
where the temperature axis is logarithmic. Cp results on
another Ce2Zr2O7 single crystal from Ref. [8] are also
overlaid for ease of comparison. One can see that the phonon
contribution to Cp, as measured from the La2Zr2O7 sample,
is negligible below ∼10 K, and thus Cmag is easily isolated.
These results show thatCmag rises on decreasing temperature
below ∼3 K, and then drops off sharply below ∼0.08 K,
consistent with the earlier measurements (Ref. [8]) and a
disordered ground state, as no sharp features associated with
a phase transition can be identified.
The order of the quantum NLC calculations, which were

used to model the experimental results, refers to the
maximum number of tetrahedra considered in a cluster.
We have carried out NLC calculations for orders of 7 and
less to model the magnetic heat capacity at temperatures
above an order-dependent threshold. This threshold is set
by the temperature above which the nth-order calculation
for a particular set of near-neighbor exchange parameters is
consistent with the corresponding (n − 1)th-order calcula-
tion. NLC calculations become progressively more time-
consuming to carry out at higher order. For this reason,
calculations of the high temperature Cmag with varying
exchange parameters were carried out only to order 4, while
calculations of other observables [integrated SðQ; TÞ and
susceptibility] were calculated at lower order. NLC calcu-
lations at order 7, the highest order reported here, were
carried out for Cmag with a single set of exchange couplings

only. Going beyond sixth order is significant, because this
is the first order at which the expansion contains non-
trivial loops.
At temperatures of T ∼ 0.5 K and above, the measured

Cmag data can be compared with fourth-order NLC (NLC-
4) calculations for Cmag in order to model and constrain
Ce2Zr2O7’s microscopic near-neighbor Hamiltonian. As
the zero-field heat capacity contains no directional infor-
mation, we define a new set of axes, fa; b; cg, to be the
permutation of fx̃, ỹ, z̃g such that jJaj ≥ jJbj; jJcj and
Jb ≥ Jc. This allows for a unique fit to Cmag but does not
specify which values correspond to which exchange con-
stants. Accordingly, the fit does not distinguish between
the octupolar or dipolar nature of the ground state.
Nonetheless, knowledge of Ja, Jb, and Jc suffices to
determine whether the ground state is an ordered phase
or a QSL phase [10].
This Ja, Jb, Jc Hamiltonian can also be written in terms

of raising and lowering operators with respect to Sia, giving

HABC ¼
X
hiji

½JaSiaSja þ JbSibSjb þ JcSicSjc�

¼
X
hiji

½JaSiaSja − J�ðSiþSj− þ Si−SjþÞ

þ J��ðSiþSjþ þ Si−Sj−Þ� ð2Þ
in zero field, where J� ¼ − 1

4
ðJb þ JcÞ, J�� ¼ 1

4
ðJb − JcÞ.

The set of exchange parameters ðJa; Jb; JcÞ best repro-
ducing Cmag was obtained from a fourth-order NLC
calculation with an Euler transformation to improve con-
vergence. Heat capacity curves were calculated for values
of −1 ≤ Jb ≤ 1 and −1 ≤ Jc ≤ Jb in increments of 0.01,
with Ja ¼ 1. Each curve was then rescaled for best
agreement with experiment to determine the value of Ja,
according to the goodness-of-fit measure hδ2=ϵ2iCmag ∝Pf½CNLC

mag ðTexptÞ − Cexpt
magðTexptÞ�2=ϵðTexptÞ2g, where the

sum is over measured temperatures Texpt above the low
temperature threshold ð0.7JaÞ=kB, restricting the fit to the
regimewhere the NLC calculations converge, and ϵðTexptÞ is
the experimental uncertainty on the heat capacity at temper-
ature Texpt. The values of hδ2=ϵ2iCmag over the entire phase
space, after optimization of the scale Ja for each parameter
set, are shown in Fig. 4(a). This displays two extended
regions in which there is good agreement with the exper-
imental Cmag. Both regions are entirely within one single
phase in the predicted ground-state phase diagram for the
near-neighbor XYZ model Hamiltonian [Fig. 4(b)] [10].
Some parameter sets within these regions can however

be excluded due to their inability to describe the exper-
imental magnetic susceptibility data. This is shown in
Fig. 5 and explained in further detail in Sec. IV C. The
best fits within each region which are also consistent with
the susceptibility data are found at the points ðJa; Jb; JcÞ ¼
ð0.064; 0.063; 0.011Þ and ð0.089;−0.007;−0.027Þ meV,

FIG. 3. The magnetic contribution to the heat capacity (Cmag)
for the Ce2Zr2O7 single crystal measured in the present work
(blue) and in previous work by Gao et al. (red) [8]. The phonon
contribution to the heat capacity, estimated from measurements
on a La2Zr2O7 sample (green), was removed from Cp to obtain
Cmag. The inset shows the best-fit simple exponential and cubic
extrapolations to T ¼ 0 K for the present Ce2Zr2O7 Cmag. An
exponential extrapolation, with an energy gap of ∼0.035 K, can
smoothly connect to the finite temperature data, while a cubic
extrapolation cannot.
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which we label as A and B, respectively. In Fig. 4(b) we
overplot the optimal exchange parameters on top of the
predicted ground-state phase diagram for the near-neighbor
XYZ model Hamiltonian [10]. The set A (B) exchange
parameters reside within the region corresponding to the
π-flux U(1) QSL (ordered phase). Of these two parameter
sets, parameter set A gives a better fit to the heat capacity.
The calculated Cmag’s using the fourth-order NLC with sets
A and B are shown in Fig. 6.
The fourth-order NLC Cmag calculation and fit was

redone assuming 5% vacancies, and hδ2=ϵ2iCmag again
shows two locally optimal regions of parameter space. The
best-fitting parameter sets that are also able to describe the
measured susceptibility, A0 and B0, are very near to A and B
in parameter space, respectively (see Appendix B). The
global (local) minima at A0 (B0) lies within the region
corresponding to the π-flux U(1) QSL (ordered phase). We
therefore conclude that these results are robust to the
presence of at least 5% Ce4þ in Ce2Zr2O7.
Seventh-order NLC (NLC-7) calculations for Cmag con-

verge above∼0.2 K, and these have been carried out for the

FIG. 4. (a) The goodness-of-fit parameter (hδ2=ϵ2iCmag) for the
fourth-order NLC calculation compared to the measured Cmag, as
a function of the exchange parameters, Ja, J� ¼ − 1

4
ðJb þ JcÞ,

and J�� ¼ 1
4
ðJb − JcÞ. This displays two local minima of

hδ2=ϵ2iCmag. The best-fit parameters are labeled as parameter
set A and parameter set B. The global minimum corresponds to
set A while set B is only locally optimal. (b) The best-fit
parameters from the NLC calculations (A and B) overlaid on
the zero-field ground-state phase diagram predicted for the XYZ
model Hamiltonian and DO pyrochlores [10]. The set A
exchange parameters are well within the region of the phase
diagram that is attributed to the Uð1Þπ QSL, while the set B
parameters are well within the region attributed to an ordered
ground state.

FIG. 5. The regions of the XYZ phase diagram for which it is
possible to obtain simultaneous reasonable NLC descriptions of χ
and Cmag are indicated in green and yellow for ðJx̃; Jỹ; Jz̃Þ equal
to the different permutations of ðJa; Jb; JcÞ. We define the
thresholds for reasonable χ and Cmag descriptions in Appendix C.
Specifically, we show the regions of simultaneous χ and Cmag

descriptions for the permutation in which ðJx̃; Jỹ; Jz̃Þ is equal to
(a) ðJa; Jb; JcÞ, (b) ðJc; Ja; JbÞ, (c) ðJb; Ja; JcÞ, and
(d) ðJa; Jc; JbÞ. The overall best-fit A parameters require that
ðJx̃; Jỹ; Jz̃Þ is equal to ðJa; Jb; JcÞ or ðJb; Ja; JcÞ; that is, Jz̃ ¼ Jc.

FIG. 6. The results of the fourth-order NLC Cmag calculation
for zero sample oxidation, using the near-neighbor exchange
parameters Ja ¼ 0.064 meV, Jb ¼ 0.063 meV, Jc ¼ 0.011 meV
(set A) and Ja ¼ 0.089 meV, Jb ¼ −0.007 meV, Jc ¼
−0.027 meV (set B), overlaid on top of the measured Cmag for
our Ce2Zr2O7 sample. The inset shows the results of the seventh-
order NLC Cmag calculation for zero sample oxidation, using the
set A near-neighbor exchange parameters.
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optimal, set A, near-neighbor exchange parameters, as
shown in the inset of Fig. 6. These higher-order calcu-
lations are consistent with the NLC-4 calculations above
∼0.5 K. However, at temperatures between ∼0.2 and
∼0.5 K, the NLC-7 calculations do not quantitatively
describe the measured Cmag. We attribute this to inter-
actions not included in the XYZ Hamiltonian [Eqs. (1) and
(2)], those beyond near neighbor, which are relatively weak
and therefore only manifest themselves at the lowest tem-
peratures. This is also consistent with the zone-boundary
diffuse scattering observed in the NSF structure factor
discussed above and shown in Fig. 2. Including the next-
nearest-neighbor part of the dipole-dipole interaction in the
NLC-7 calculation did not significantly improve the agree-
ment between theory and experiment, suggesting that either
dipole-dipole interactions beyond next-nearest-neighbor or
additional exchange interactions are important.

C. DC magnetic susceptibility

While the zero-field Cmag contains no directional
information, the temperature-dependent dc magnetic sus-
ceptibility (χ) does because it is sensitive to the magnetic
moment, which distinguishes between pseudospin compo-
nents. Specifically, χ is dependent on the values of Jx̃, Jỹ,
Jz̃, and θ. A second-order NLC expansion (NLC-2) is
used to calculate χ (see Appendix C). Specifically, we use

NLC-2 to fit measurements of χ from a powder sample of
Ce2Zr2O7 in order to narrow down the possible parameter
sets and to distinguish between possible permutations of
the exchange parameters.
As mentioned above, some parameter sets within the

region of good agreement for Cmag cannot be made to agree
with χ, for any choice of θ or permutation of parameters,
and are therefore excluded. Figure 5 shows the regions of
the phase diagram for which it is possible to obtain
simultaneous agreement with Cmag and χ, for ðJx̃; Jỹ; Jz̃Þ
equal to the different permutations of ðJa; Jb; JcÞ.
For the B parameters, we can rule out the possibility of Jz̃

being the largest exchange parameter, and we find different
optimal values of θ for the remaining permutations. For the
A parameter set, and all nearby parameter sets for which a
good fit can be found, the results of the NLC-2 fitting to χ
suggest that θ ∼ 0 and that Jz̃ is the weakest exchange
parameter, as Figs. 5 and 7 demonstrate. Accordingly, the
only allowed permutations of exchange parameters from
the A set satisfy Jx̃ ∼ Jỹ, implying that Ce2Zr2O7 resides
near the boundary between dipolar and octupolar nature.

V. CONSISTENCY OF ESTIMATED EXCHANGE
PARAMETERS WITH NEUTRON

SCATTERING RESULTS

The combined analyses of the measured Cmag and χ give
experimental estimates for the near-neighbor exchange
constants for Ce2Zr2O7, yielding θ ∼ 0 and ðJx̃; Jỹ; Jz̃Þ ¼
ð0.064; 0.063; 0.011Þ meV or ðJx̃; Jỹ; Jz̃Þ ¼ ð0.063; 0.064;
0.011Þ meV. While neutron scattering measurements were
not modeled in order to constrain the microscopic spin
Hamiltonian for Ce2Zr2O7, it is interesting and important to
see to what extent the measured neutron scattering from
Ce2Zr2O7 is consistent with calculations using the near-
neighbor spin Hamiltonian so derived.

A. Elastic neutron scattering

The Uð1Þπ ground state, determined by these best-fitting
near-neighbor exchange parameters, is consistent with the
nature of the previously reported diffuse inelastic neutron
scattering from single crystals of Ce2Zr2O7 [7,8].
Additionally, the earlier neutron scattering work is incon-
sistent with an ordered state, at least in the dipolar sector, as
magnetic Bragg peaks would be expected. We have
revisited our earlier elastic neutron scattering data to place
an upper limit on possible AIAO dipole order in the ground
state of Ce2Zr2O7, the form expected to reside within the
XYZ DO pyrochlore phase diagram. We conclude that no
such AIAO dipole order occurs in Ce2Zr2O7, with an upper
limit on the Ce3þ ordered moment of μordered ≤ 0.04μB (see
Appendix D).

B. Polarized neutron diffraction

We can also compute the spin-flip and non-spin-flip
structure factors using this best-fitting A parameter set and

FIG. 7. The measured powder magnetic susceptibility data
plotted alongside the second-order NLC-calculated susceptibility
for values of θ between 0 and π=4, and for ðJx̃; Jỹ; Jz̃Þ equal
to the two permutations of the A parameters that are
able to provide a reasonable fit to the data. Specifically, we
show calculations for values of θ given by θ ¼ 0 (red), θ ¼ π=8
(yellow), and θ ¼ π=4 (green). This shows that the NLC calcu-
lations for the magnetic susceptibility agree well with the data
when ðJx̃; Jỹ; Jz̃Þ ¼ ð0.064; 0.063; 0.011Þ meV, or ðJx̃; Jỹ; Jz̃Þ ¼
ð0.063; 0.064; 0.011Þ meV, so long as the value of θ is near
θ ¼ 0. The ðJx̃;Jỹ; Jz̃Þ ¼ ð0.063;0.064;0.011ÞmeV calculations
are shifted upward by 0.1 emu Oe−1 ðmolCeÞ−1 for visibility.
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compare with the polarized neutron diffraction measure-
ments on an annealed single crystal sample of Ce2Zr2O7

shown in Sec. III. The calculations are carried out at
T ¼ 0.5 K (see Appendix E), as that is the lowest tem-
perature for which the NLC-3 calculation converges,
while the new polarized neutron diffraction measurements
were performed at lower temperatures, T ¼ 0.045 K.
Nonetheless, we assume that this calculation will capture
most of the features at lower temperatures, as the ground
state is disordered.
The measured (NLC-calculated) SF scattering in the

½HHL� scattering plane is shown in Fig. 8(a) [Fig. 8(b)] and
the measured (NLC-calculated) NSF scattering in the
½HHL� scattering plane is shown in Fig. 8(c) [Fig. 8(d)].
The comparison between measurement and theory for the
SF channel in Figs. 8(a) and 8(b) is good, although sharper
features are present in the lower temperature, SF polarized
diffraction, such as the broad pinch point scattering near
(0,0,2). The measured NSF structure factor in the ½HHL�
scattering plane [Fig. 8(c)] shows intensity that is maximal

along Brillouin zone boundaries [shown as gray lines in
Fig. 8(c)] and minimal at zone centers. As discussed in
Sec. III, this zone-boundary scattering is similar to that
measured in the NSF channel of polarized neutron dif-
fraction measurements on Ho2Ti2O7, shown in Fig. 2(d)
[13], and associated with interactions beyond the nearest
neighbor. The calculated NSF structure factor is feature-
less for the near-neighbor-only XYZ spin Hamiltonian
employed here, with a Q dependence originating from the
Ce3þ magnetic form factor only, as Fig. 8(d) illustrates.

C. Inelastic neutron scattering from
powder samples

Low energy, unpolarized inelastic neutron scattering
measurements were performed on powder samples of
Ce2Zr2O7 as shown in Figs. 9(a)–9(c); this shows the
temperature-difference neutron scattering spectra measured
for a T ¼ 0.06, 0.5, and 3 K dataset with a T ¼ 9.6 K
dataset used as background. These measurements were
taken on the low energy disk chopper spectrometer neutron
instrument at NIST Center for Neutron Research with Ei ¼
3.27 meV incident neutrons giving an energy resolution of
∼0.09 meV at the elastic line. This larger dataset was

FIG. 8. (a) The symmetrized T ¼ 45 mK − T ¼ 10 K temper-
ature-difference neutron signal measured in the SF channel of our
polarized neutron diffraction experiment. (b) The NLC-calculated
equal-time structure factor for SF scattering in the ½HHL� plane at
T ¼ 0.5 K with a T ¼ 10 K temperature subtraction. (c) The
symmetrized T ¼ 45 mK − T ¼ 10 K temperature-difference
neutron signal measured in the NSF channel of our polarized
neutron diffraction experiment. The gray lines show the Brillouin
zone boundaries. (d) The NLC-calculated equal-time structure
factor for NSF scattering in the ½HHL� plane at T ¼ 0.5 K with a
T ¼ 10 K temperature subtraction. Both (b) and (d) are calcu-
lated using the experimental estimates for the A near-neighbor
exchange parameters yielded in this work (see main text).

FIG. 9. The measured inelastic neutron scattering from an
annealed powder sample of Ce2Zr2O7 is shown in panels (a)–(c)
for temperature-subtracted data relative to T ¼ 9.6 K. The
corresponding powder-averaged neutron scattering structure
factors [SðjQj; E; TÞ] calculated from semiclassical molecular
dynamics calculations based on Monte Carlo simulations
using near-neighbor exchange parameters from the A regime,
ðJx̃; Jỹ; Jz̃Þ ¼ ð0.064; 0.063; 0.011Þ meV, are shown in panels
(d)–(i). The temperatures of the measured and calculated datasets
(T ¼ 0.06, 0.5, and 3 K) and the θ values used in the calculations
(θ ¼ 0 and π=2) are as indicated in the individual panels.
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previously discussed in Ref. [7] and we perform two sets of
analyses with this dataset. First, in Fig. 10, we examine the
temperature dependence of the measured and calculated
integrated intensities for the T ¼ 9.6 K temperature sub-
traction, with integration in energy transfer over the range
E ¼ ½−0.2; 0.4� meV and integration in scattering vector
over the range jQj ¼ ½0.46; 0.93� Å−1. This integration
range was chosen to enclose the dominant portion of the
measured magnetic intensity, while avoiding nuclear Bragg
peaks. The NLC calculations are carried out to third order
(see Appendix F). For the A (B) exchange parameters, we
use θ ¼ 0 (0.561 rad), but it is important to note that there is
no choice of θ for which the calculations using the B
parameters agree with the temperature dependence of the
experimental data over the range jQj ¼ ½0.46; 0.93� Å−1.
We also compare these measurements with the corre-

sponding spectra obtained via semiclassical molecular
dynamics (MD) calculations based on Monte Carlo
simulations (see Appendix H) using the near-neighbor
exchange parameters from the A regime, ðJx̃; Jỹ; Jz̃Þ ¼
ð0.064; 0.063; 0.011Þ meV, for θ ¼ 0 [Figs. 9(d)–9(f)] and
θ ¼ π=2 [Figs. 9(g)–9(i)].
The temperature dependence of the measured signal is

most consistent with that obtained from the semiclassical
MD and Monte Carlo simulations using ðJx̃; Jỹ; Jz̃Þ ¼
ð0.064; 0.063; 0.011Þ meV when θ ¼ 0. Furthermore, the
energy dependence of the predicted signal is only

consistent with the measured data for values of θ near
θ ¼ 0; as θ increases from θ ¼ 0 to θ ¼ π=2, the spectral
weight in the simulated signal shifts from E ∼ 0.1 meV to
E ∼ 0 meV, as illustrated in Figs. 9(d) and 9(g).

VI. DISCUSSION

A. Low temperature heat capacity and entropy

The new Cp measurements also provide better definition
of the low temperature Cmag, below ∼0.1 K, where Cmag

falls off sharply toward zero. The lowest-temperature data
points can be used to model how Cmag approaches zero at
T ¼ 0 K. This is interesting to do because an extrapolation
of Cmag below experimentally accessible temperatures to
T ¼ 0 K allows us to evaluate the entropy SmagðTÞ ¼R
T
0 ðCmag=TÞdT.
The two simple forms for the low temperature Cmag, an

exponential form and a cubic form, are shown in the inset of
Fig. 3. Both forms are too simple to be related to the spin
Hamiltonian or Uð1Þπ ground state in any sophisticated
manner; however, one can smoothly extrapolate the low
temperature Cmag data to zero using an exponentially
activated form. A simple power law, such as the cubic
form in the inset of Fig. 3, does not smoothly meet up with
the low temperature data at the lowest measured temper-
ature, T ¼ 0.058 K; doing so would require a nonphysical
sublinear Cmag at the lowest temperatures. A cubic extrapo-
lation was used in the previous work on the Cmag of
Ce2Zr2O7 (Ref. [8]); however, our new results, consistent
with the previous measurements, show that such a low
temperature extrapolation is inappropriate.
The cubic form would be appropriate for emergent

gapless photon excitations associated with U(1) QSLs
[5,12,24]. However, depending on the speed of light for
these emergent photons, their T3 contribution may only
enter at very low temperatures [25]. Furthermore, the
bending of the photon dispersion toward the zone boun-
dary, combined with contributions from gapped spinons
and visons, can easily mimic the exponentially activated
form at intermediate temperatures. Interactions between
visons and photons can also cause the photons to develop
an effective temperature-dependent gap [26]. To address
these subtleties, we use a low T form for Cmag which is
based on an interpolation scheme connecting the T >
∼0.5 K Cmag regime described by the NLC calculations,
and hence consistent with the proposed spin Hamiltonian,
to a low temperature form consistent with a T3 Cmag from
U(1) emergent photons at sufficiently low temperatures.
This involves an interpolation scheme for Cmag and Smag

following the method of Padé approximants in Ref. [27]
(see Appendix I). The resulting theoretical curve, now
covering all temperatures, is shown as the solid line in
Figs. 11(a) and 11(b). Clearly the low temperature portion
of this curve smoothly connects to the low temperature

FIG. 10. The results of the NLC SðQ; TÞ calculation to third
order using the A and B exchange parameters, overlaid on top of
the measured neutron scattering intensity from our Ce2Zr2O7

sample. Here we compare the temperature dependence of the
measured and calculated integrated intensities for the T ¼ 9.6 K
temperature subtraction, with integration over the energy-transfer
range E ¼ ½−0.2; 0.4� meV and integration in wave vector over
the range jQj ¼ ½0.46; 0.93� Å−1. The temperature dependence of
the NLC-calculated integrated SðQ; TÞ agrees well with that of
the measured data when using parameter set A, but clearly does
not for set B.
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Cmag data. The point of this exercise is to provide a
physically motivated form of Cmag which extrapolates
smoothly between the lowest-temperature Cmag data point
and zero at T ¼ 0 K.
With a good minimal description of Cmag for Ce2Zr2O7

at the lowest temperatures in place, we can look to
account for the entropy associated with the DO doublet,
which must be R lnð2Þ, as this ground-state doublet is
well separated, by ∼55 meV, from the first excited CEF
state [7,8]. Figure 11(b) shows the integration of theCmag=T
data to give the entropy Smag to ∼10 K. The experimental
entropy of R lnð2Þ is recovered, to within 5%, which may be
associatedwith 4f0 Ce4þ impurities. Interestingly, Fig. 11(b)
also shows that accounting for the entropy from the
only feature in the temperature dependence of Cmag, the
beginning of the Cmag plateau at T ¼ 0.08 K, to 10 K gives
∼R½lnð2Þ − 1

2
lnð3

2
Þ�, the Pauling entropy associatedwith both

spin ice and proton disorder in solid ice. Note that this latter
argument is independent of the low temperature extrapola-
tion of Cmag.

B. Implications of small θ

In the case where Jx̃ is the largest exchange parameter in
the XYZ Hamiltonian, the resulting Uð1Þπ QSL is dipolar
from a symmetry perspective. Its emergent electric field
transforms like a magnetic dipole. However, the small value
of θ suppresses coupling between the emergent field and
external magnetic fields. Therefore, for this case, we expect
weak coupling between neutrons and emergent photons at
low jQj. In the case of Jỹ > Jx̃, there would be no low-jQj
coupling between photons and neutrons regardless of the
value of θ. It is therefore unlikely that the inelastic neutron
scattering signal observed at low energy in Refs. [7,8] (and
in this work) originates from an integration over emergent
photons, despite the similarity to predictions in Ref. [25].
The dominant neutron scattering signal should then come
from gapped spinons.
A further implication of the small value for θ is that

spin waves in finite magnetic field will be difficult to
observe. This may be important to note as modeling spin
wave dispersion and intensity in a field-polarized state
has been effectively applied to understanding the micro-
scopic ground state in several pyrochlore magnets based
on Kramers doublet CEF ground states [15–20]. It may
also underlie the lack of observation of well-defined spin
waves in studies of Ce2Zr2O7 published to date. A finite
value of θ implies that the local magnetic moment
operator possesses components transverse to the expect-
ation value of the pseudospins in the high field state. It is
the finite transverse matrix elements which allow the
observation of single spin waves by inelastic neutron
scattering. In contrast, when θ ¼ 0, the magnetic moment
operator is parallel to the pseudospin directions in the
high field state, and the matrix element connecting the
ground state to single spin wave excitations is zero.

VII. SUMMARY AND CONCLUSIONS

To conclude, we report new spin-polarized neutron
diffraction and Cmag measurements on single crystal
Ce2Zr2O7 in zero magnetic field. Our modeling of Cmag,
χ, and SðQ; TÞ with NLC calculations provides strong
constraints on the exchange terms in the microscopic
near-neighbor XYZ Hamiltonian. We arrive at best-
fit Hamiltonian parameters θ ∼ 0 and ðJx̃; Jỹ; Jz̃Þ ¼
ð0.064; 0.063; 0.011Þ meV or ðJx̃; Jỹ; Jz̃Þ ¼ ð0.063; 0.064;
0.011Þ meV, which indicates that a Uð1Þπ QSL ground
state is selected near the boundary between dipolar and
octupolar character.

FIG. 11. (a) The measured Cmag and best-fit Cmag interpolation
for the Ce2Zr2O7 sample of the present work. The data are
divided into high and low T regimes around T ¼ 0.08 K, which
separates the plateau regime from the rapidly decreasing Cmag

regime. (b) The magnetic entropy recovered from Smag ¼R
T
T0
ðCmag=TÞdT over the full temperature range (T0 ¼ 0 K)

and above the onset of the plateau (T0 ¼ 0.08 K) are shown.
This is derived from the integration of Cmag shown in (a), and
employs the Cmag interpolation below the lowest measured
temperature, accounting for gapless photons as well as gapped
spinons and visons. R lnð2Þ in entropy is recovered over the full
temperature range, to within 5%, which is the approximate
deficiency expected for Ce4þ in this sample. The Pauling spin
ice entropy R½lnð2Þ − 1

2
lnð3

2
Þ� is recovered from the onset of the

plateau, T ¼ 0.08 K, to T ¼ 10 K to within approximately the
same tolerance.
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The best-fitting exchange parameters from this work
largely describe the SF neutron diffraction signal measured
from single crystal Ce2Zr2O7, while zone-boundary scat-
tering in the NSF channel indicates the significance of
interactions beyond near neighbor, including long-ranged
dipolar interactions. The seventh-order NLC calculations
for Cmag evaluated at the best-fit Hamiltonian parameters
do not describe the measured Cmag at the lowest temper-
atures, again consistent with weak interactions in
Ce2Zr2O7’s Hamiltonian beyond near neighbor and beyond
the scope of the present calculations.
The new Cmag data extend to temperatures as low as

T ¼ 0.058 K and can be smoothly extrapolated to zero
temperature using a form consistent both with the XYZ
spin Hamiltonian estimated from fitting the NLC calcu-
lations to the data and with a T3 form for Cmag at suf-
ficiently low temperatures, appropriate to emergent gapless
photons. With such a low T form for Cmag in place we show
the R lnð2Þ entropy associated with Ce3þ’s DO doublet
ground state is recovered to 10 K. Phenomenologically, we
observe that the Pauling entropy for spin ice is recovered
above the onset of the T ∼ 0.08 K plateau in Cmag.
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APPENDIX A: SYNTHESIS AND
CHARACTERIZATION

The powder and single crystal samples of Ce2Zr2O7 used
in this work were prepared and characterized as described
in Ref. [7]. La2Zr2O7 was synthesized in order to estimate

the phonon contribution to the Cp of Ce2Zr2O7. The
powder samples of La2Zr2O7 measured in this work were
first prepared by mixing stoichiometric amounts of La2O3

(Alfa Aesar 99.99%) and ZrO2 (Alfa Aesar 99.7%). The
La2O3 (ZrO2) powder was precalcined (dried) at 800 °C
(200 °C) prior to mixing. The stoichiometric mixture was
pelletized and sintered in air at 1350 °C for 36 h, 3 times,
with regrinding and repelletization between sinterings.
Figure 12 shows an x-ray Rietveld refinement against
the Fd3̄m space group for a typical powder sample of
La2Zr2O7 synthesized for this work.

APPENDIX B: HEAT CAPACITY AND
NUMERICAL LINKED CLUSTER

CALCULATIONS WITH 5% OXIDATION

We provide further details on the results of our fourth-
order NLC calculations for Cmag with a 5% oxidation level
included in the calculations. The calculated Cmag with 5%
oxidation using the globally (locally) best-fitting exchange
parameters that are also able to describe the measured
susceptibility, A0 (B0), is shown in Fig. 13(a) [Fig. 13(b)].
To improve convergence of the NLC calculations, we used
the Euler transformation to the third (Euler 3) and fourth
(Euler 4) orders (see Appendix J). While the parameter sets
A0 and B0 are both locally optimal, the A0 description of the
Cmag data is clearly superior.

FIG. 12. Powder x-ray refinement of the La2Zr2O7 sample
synthesized for this work. The difference between the measured
and calculated diffraction patterns is shown in green and indicates
phase purity; this line has been shifted downward by 0.25 units
for visibility.
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The inset of Fig. 13(b) shows the two locally optimal
regions of parameter space for the fourth-order NLC
calculations of Cmag, for both a 0% oxidation level and
a 5% oxidation level, defined by loghδ2=ϵ2iCmag < 2.7 for
the purposes of the visualization. From the similarity of
these regions and their local minima (A and A0, B and B0),
we conclude that the results of the NLC calculations for
Cmag are robust to the sample oxidation up to oxidation
levels of at least 5%. In Table 1 we summarize the results of
our NLC fittings to Cmag and list the best-fitting exchange
parameters corresponding to each fitting.

APPENDIX C: NLC FITTING TO χ

In this Appendix, we discuss the results of the NLC
fitting to the magnetic susceptibility measured from a
powder sample of Ce2Zr2O7. The magnetic susceptibility
is dependent on the values of Jx̃, Jỹ, Jz̃, and θ. The
exchange parameters ðJx̃; Jỹ; Jz̃Þ are given by some per-
mutation of ðJa; Jb; JcÞ. We allow θ to vary in the range
from 0 to π=4. This is enough to cover all distinguishable
scenarios, since changing the sign of θ does not affect any
quantity considered here, and shifting θ to θ þ π=2 is the
same as reversing the sign of θ and swapping the values of
Jx̃ and Jz̃, which is already covered by considering all six
permutations of exchange parameters.
NLC calculations up to second order were performed to

compute the powder-averaged magnetic susceptibility and
to compare the calculations to the corresponding measure-
ment on Ce2Zr2O7. A constant term was added to the NLC
calculations to account for the effect of mixing in higher
crystal-field levels due to an applied magnetic field. This
term is calculated from the low temperature limit of single
ion susceptibility using the crystal-field scheme of Ce3þ
in Ce2Zr2O7 reported in Ref. [7]. The level of sample
oxidation for the measured powder sample had an upper
limit of ∼14%. This upper limit was estimated from fits to
the single ion susceptibility at high temperature using the

TABLE I. A summary of the different sets of near-neighbor
exchange constants discussed throughout this work. Each set of
exchange constants was determined according to the minimiza-
tion of the goodness-of-fit parameter hδ2=ϵ2iCmag corresponding
to fourth-order NLC calculations for Cmag with a low temperature
threshold of 0.7Ja=kB in the evaluation of hδ2=ϵ2iCmag. We also
list the level of sample oxidation considered in each calculation.

Set Oxidation Ja (meV) Jb (meV) Jc (meV)

A 0% 0.064 0.063 0.011
A0 5% 0.067 0.067 0.012
B 0% 0.089 −0.007 −0.027
B0 5% 0.089 0.006 −0.037

FIG. 13. (a) The results of the fourth-order NLC Cmag calculation for 5% sample oxidation, using the near-neighbor exchange
parameters Ja ¼ 0.067 meV, Jb ¼ 0.067 meV, and Jc ¼ 0.012 meV (set A0), overlaid on top of the measured Cmag for our Ce2Zr2O7

sample. (b) The results of the fourth-order NLC Cmag calculation for 5% sample oxidation, using the near-neighbor exchange parameters
Ja ¼ 0.089 meV, Jb ¼ 0.006 meV, and Jc ¼ −0.037 meV (set B0), overlaid on top of the measured Cmag for our Ce2Zr2O7 sample. We
have used Euler transformations to the third (Euler 3) and fourth (Euler 4) orders to improve convergence of the NLC Cmag calculations
(see Appendix J). The inset of (b) shows a comparison of the locally optimal fitting regions obtained from NLC calculations with an
oxidation level of 0% (blue) and 5% (red). For visualization purposes, the optimal fitting regions in this plot are defined by
loghδ2=ϵ2iCmag < 2.7, where hδ2=ϵ2iCmag is the goodness-of-fit parameter for the NLC calculations as described in the main text. We
overplot this on the predicted ground-state phase diagram for the XYZ model Hamiltonian [10], but omit the labels for aesthetic
purposes [see Fig. 4(b) for labels]. Conclusions from fitting the NLC calculations to the data are robust to at least a 5% oxidation level.
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crystal-field scheme of Ce3þ in Ce2Zr2O7 reported in
Ref. [7]. Accordingly, a 14% oxidation level is included
in our NLC calculations of the magnetic susceptibility.
NLC calculations of the magnetic susceptibility were

performed for parameter sets throughout the A and B
regions identified by the Cmag fittings. The calculations
were compared with experimental data between 1 and
10 K. Figure 5 shows the regions of the phase diagram
for which it is possible to obtain simultaneous agree-
ment with Cmag and χ, for ðJx̃; Jỹ; Jz̃Þ equal to the dif-
ferent permutations of ðJa; Jb; JcÞ. We define these regions
by the simultaneous satisfaction of loghδ2=ϵ2iCmag < 2.7
and loghδ2=ϵ2iχ <12.1. The goodness-of-fit measure
hδ2=ϵ2iCmag is defined in the main text, and hδ2=ϵ2iχ ∝Pf½χNLCðTexptÞ − χexptðTexptÞ�2=ϵðTexptÞ2g, where the sum
is over measured temperatures Texpt between 1 and 10 K
and ϵðTexptÞ is the experimental uncertainty on the mag-
netic susceptibility at temperature Texpt. We allow θ to vary
in the range from 0 to π=4 in finding the best agreement
with the susceptibility data for each permutation. The
relatively small experimental uncertainties on the mag-
netic susceptibility contribute to the larger upper limit
for hδ2=ϵ2iχ in comparison to the upper limit used
for hδ2=ϵ2iCmag.

APPENDIX D: ELASTIC NEUTRON
SCATTERING

In this Appendix, we discuss the analysis of our elastic
neutron scattering data, measured on an annealed powder
sample of Ce2Zr2O7 and used to place an upper limit of
μordered ≤ 0.04μB on the ordered moment corresponding to
any all-in, all-out dipole order in Ce2Zr2O7’s magnetic
ground state. The strongest magnetic Bragg peaks asso-
ciated with AIAO order are expected to reside at the Q ¼
ð2; 2; 0Þ and Q ¼ ð1; 1; 3Þ positions of reciprocal space.
Accordingly, we can examine the temperature dependence

of the scattered intensity at these locations in order to look
for increases of intensity with decreasing temperature,
which would signal the onset of a magnetic Bragg peak
and associated magnetic order. As shown in Fig. 14(a), no
such increase in intensity is detected upon lowering
temperature.
In Fig. 14(b), we show the measured intensity around the

Q ¼ ð2; 2; 0Þ (left) and Q ¼ ð1; 1; 3Þ (right) positions at
T ¼ 0.06 K (blue) and as averaged over the temperatures
T ¼ 0.25 K, T ¼ 0.5 K, T ¼ 0.75 K, T ¼ 1 K, and T ¼
1.5 K (red). Gaussian fits to the peak at each of the
locations are also shown for each temperature (or temper-
ature average) and the area underneath of these Gaussian
peaks was used in order to determine the corresponding
integrated intensity for each peak. From these values for the
integrated intensity, we place an upper limit of μordered ≤
0.04μB for the Ce3þ ordered moment corresponding to any
AIAO magnetic dipole ordering in Ce2Zr2O7.
For each selected Bragg peak position Q, an upper limit

is calculated in accordance with the equation

μordered ¼
�
Iexptmag

Iexptnuc

�
1=2 jFðQÞj

jFmag
⊥ ðQÞ=μj ; ðD1Þ

where Iexptmag and I
expt
nuc are the measured magnetic and nuclear

contributions to the integrated Bragg intensity, respectively.
FðQÞ is the nuclear structure factor and Fmag

⊥ ðQÞ=μ is the
component of the magnetic structure factor that is
perpendicular to Q, after dividing out the magnitude of
the ordered moment (μ) from the calculation [28].

APPENDIX E: POLARIZED NEUTRON
SCATTERING MEASUREMENTS AND

CALCULATIONS

We have used third-order NLC calculations to compute
the energy-integrated scattering signals corresponding to
a polarized neutron scattering experiment with sample

FIG. 14. (a) The temperature dependence of the integrated intensity for the Bragg peaks at the Q ¼ ð2; 2; 0Þ (red) and Q ¼ ð1; 1; 3Þ
(blue) positions. No significant temperature dependence is discernible. (b) Elastic Q cuts through the Q ¼ ð2; 2; 0Þ (left) and Q ¼
ð1; 1; 3Þ (right) positions at T ¼ 0.06 K (blue) and averaged over the higher temperature data points T ¼ 0.25, 0.5, 0.75, 1, 1.5 K (red).
The Gaussian fitting to each of these datasets, used to determine a corresponding integrated intensity, is also shown for each Bragg peak
in (b). From these integrated intensities, we conclude that no AIAO dipole order occurs in Ce2Zr2O7, with an upper limit on the Ce3þ
ordered moment of μordered ≤ 0.04μB.
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alignment in the ½HHL� scattering plane. The ex-
change parameters are set to θ ¼ 0 and ðJx̃; Jỹ; Jz̃Þ ¼
ð0.064; 0.063; 0.011Þ meV for the calculation and we
perform the NLC-3 calculation with T ¼ 0.5 K, as that
is the lowest temperature for which the NLC expansion
converges. Specifically, we compute

SSFðQÞ ¼ 1

N
jfðjQjÞj2

X
ij

feiQ·ðri−rjÞ½ûðQÞ · ẑi�½ûðQÞ · ẑj�

× ½sin2ðθÞhSx̃i Sx̃ji þ cos2ðθÞhSz̃i Sz̃ji�g ðE1Þ

and

SNSFðQÞ ¼ 1

N
jfðjQjÞj2

X
ij

feiQ·ðri−rjÞðn̂ · ẑiÞðn̂ · ẑjÞ

× ½sin2ðθÞhSx̃i Sx̃ji þ cos2ðθÞhSz̃i Sz̃ji�g; ðE2Þ

where SSFðQÞ [SNSFðQÞ] denotes the energy-integrated
structure factor for SF (NSF) scattering. N is the number
of spins in the lattice, fðjQjÞ is the magnetic form factor for
Ce3þ (calculated using the analytical approximation in
Ref. [29]), n̂ is the neutron polarization direction, ẑi is the
local anisotropy axis for the site i, and

ûðQÞ ¼ n̂ ×Q
jn̂ ×Qj : ðE3Þ

We compute SSFðQÞ and SNSFðQÞ at T ¼ 0.5 K, and
in each case we subtract the corresponding calculation at
T ¼ 10 K for better comparison with the temperature-
subtracted experimental data. In Figs. 8(a) and 8(b)
[Figs. 8(c) and 8(d)] of the main text, we compare the
NLC-calculated SSFðQÞ [SNSFðQÞ] to polarized neutron
scattering measurements performed on an annealed ∼1.5 g
single crystal sample of Ce2Zr2O7 using the D7 diffrac-
tometer at the Institut Laue-Langevin with an incident
energy of Ei ¼ 3.47 meV and a dilution refrigerator
sample environment. The sample was aligned in a copper
sample holder in the ½HHL� scattering plane with the
uniaxial polarization direction perpendicular to the ½HHL�
plane, and the sample was rotated in 0.5° steps over a total
of 250°. The data are subsequently folded into a single
quadrant of the ½HHL� plane and further symmetrized. We
have further discussed this symmetrization process in the
Supplemental Material of Ref. [7]. For each dataset, we
reduce the data in a manner that avoids adding artifacts
arising from the subtraction of strong nuclear Bragg
peaks. Allowed nuclear Bragg peaks are located at
Q¼ ð1;1;1Þ; ð2;2;2Þ; ð1;1;3Þ;ð2;2;0Þ; ð0;0;4Þ, and sym-
metrically equivalent locations. The intensity at each Bragg
peak location is masked in performing the temperature
subtraction, and we then show the intensity at these masked
Bragg peak locations as the average intensity of the
surrounding points in reciprocal space.

APPENDIX F: NLC FITTING TO
INTEGRATED SðQ;TÞ

The microscopic spin Hamiltonian parameters A and B
can be employed in third-order NLC calculations to
calculate equal-time (energy-integrated) structure factors,
and these can be compared to inelastic neutron scattering
measurements on Ce2Zr2O7. The energy-integrated struc-
ture factor is

SðQÞ ¼ jfðjQjÞj2
X
ij

�
ẑi · ẑj −

ðẑi ·QÞðẑj ·QÞ
jQj2

�

½cos2ðθÞhSx̃i ð−QÞSx̃jðQÞi þ sin2ðθÞhSz̃i ð−QÞSz̃jðQÞi�; ðF1Þ

where i, j, are sublattice indices and fðjQjÞ is the magnetic
form factor for Ce3þ. Averaging over directions at fixed
magnitude jQj ¼ Q gives the powder structure factor
SðQÞ. We integrate over Q ¼ ½0.46; 0.93� Å−1 and the
result represents the energy-integrated neutron scattering
response of a powder sample integrated over that momen-
tum range, as a function of T. The structure factor at T ¼
9.6 K is subtracted to replicate the background subtraction
used in the experiment. Lines in Fig. 10 of the main text
represent the powder integrated equal-time structure factor
calculated in third-order NLC using parameter sets A with
θ ¼ 0 and B with θ ¼ 0.561 rad.
We compare the NLC calculations to the experimentally

measured neutron scattering response of a powder sample,
integrated over the energy range ½−0.2; 0.4� meV. This
integration range is chosen to enclose the low-lying
excitations of the system while avoiding unnecessary
contamination to the temperature-subtracted signal, which
often becomes more prevalent at higher energies. To further
reduce the effect of noise on the experimental data, we
integrate in momentum transfer over the range jQj ¼ ½0.46;
0.93� Å−1. This integration range is chosen to avoid nuclear
Bragg peaks while still enclosing the dominant portion of the
measured magnetic signal. We find that parameter sets from
region A correctly predict the observed increase in scattering
over the range jQj ¼ ½0.46; 0.93� Å−1 with decreasing tem-
perature, while parameter sets from regionB do not, as shown
in Fig. 10 of the main text.
Figure 15(a) [Figs. 15(b)–15(g)] shows the temperature-

difference neutron scattering spectra measured from an
annealed powder sample of Ce2Zr2O7 for a T ¼ 0.06 K
[0.25, 0.5, 0.75, 1, 1.5, 3 K] dataset with a T ¼ 9.6 K dataset
used as background. The data in Fig. 15(a) [Figs. 15(c) and
15(g)] are also shown in Figs. 9(a) [Figs. 9(b) and 9(c)] with
different jQj range and jQj,E pixel size. These datasets were
used to compute the measured integrated intensity over the
energy range ½−0.2; 0.4� meV and the momentum range
½0.46; 0.93� Å−1, forming the data points shown in Fig. 10 of
the main text.
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APPENDIX G: COMPARISON OF
TEMPERATURE DEPENDENCE OF Cmag
WITH POWDER-AVERAGED INELASTIC

NEUTRON SCATTERING

The new measuredCmag data also allow for a comparison
with the temperature-dependent inelastic neutron scattering
signal measured on an annealed powder sample of
Ce2Zr2O7 [7]. Specifically, we compare the Cmag data with
the imaginary part of the dynamic spin susceptibility
χ00ðQ; EÞ calculated from our previously reported neutron
data. As shown in Figs. 15(a)–15(g), a signal with the
approximate energy range E ¼ ½0; 0.15� meV is seen to
onset in the inelastic neutron scattering spectra with
decreasing temperature. The dominant intensity within this
signal was used to calculate hχ00ðQ; EÞi for each temper-
ature, giving rise to the data points shown in Fig. 16 and

allowing us to further examine the temperature dependence
of the measured neutron scattering signal. χ00ðQ; EÞ
was calculated via χ00ðQ; EÞ ¼ S0ðQ; E; TÞð1 − e−E=kBTÞ,
where S0ðQ; E; TÞ ¼ SðQ; E; TÞ − SðQ; E, T ¼ 9.6 K).
This subtraction is used to isolate the magnetic contribution
to the measured neutron scattering spectra, and assumes
that χ00ðQ; EÞ ¼ 0 at T ¼ 9.6 K. This was used to calculate
the average of χ00ðQ; EÞ over jQj ¼ ½0.46; 0.93� Å−1,
E ¼ ½0; 0.15� meV, denoted as hχ00ðQ; EÞi. As shown in
Fig. 16, the temperature onset of hχ00ðQ; EÞi coincides well
with that of the broad hump in Cmag, and hχ00ðQ; EÞi
continues to grow, separating from Cmag, below T ∼ 0.3 K.
Recent theory work on the XYZmodel Hamiltonian with

Jx̃ ¼ Jỹ (which is a relevant approximation for the best-
fitting exchange parameters found in this work) has
predicted that a U(1) quantum spin ice ground state can
be realized upon decreasing temperature through a classical
spin ice regime [12,24,30]. Furthermore, these works
predict that a broad hump inCmag onsets slowly on entrance
into the classical spin ice regime upon decreasing temper-
ature. This prediction is consistent with the coincidence of
the temperature onsets of hχ00ðQ; EÞi and Cmag shown
in Fig. 16.

APPENDIX H: SEMICLASSICAL MOLECULAR
DYNAMICS CALCULATION OF SðjQj;E;TÞ

Here we discuss the semiclassical molecular dynamics
calculations of SðjQj; E; TÞ that lead to the calculated
spectra shown in Figs. 9(d)–9(i) of the main text. First,
classical Monte Carlo simulations were performed using
the best-fit A exchange parameters, to obtain an ensemble
of spin configurations sampled at temperature T. We then
use these configurations as initial configurations and solve
the semiclassical Landau-Lifshitz equation ½d=ðdtÞ�Si ¼
−Si × hi, where hi is the effective magnetic field on the

FIG. 15. The temperature evolution of the low energy inelastic neutron scattering from a powder sample of Ce2Zr2O7. A dataset
measured at 9.6 K has been subtracted from a dataset measured at T ¼ 0.06 K (a), 0.25 K (b), 0.5 K (c), 0.75 K (d), 1 K (e), 1.5 K (f),
and 3 K (g). (h) The powder-averaged neutron scattering signal measured at T ¼ 0.06 K from a single-crystal sample of Ce2Zr2O7, with
a T ¼ 2 K dataset subtracted, is shown for comparison.

FIG. 16. The low energy dynamic susceptibility χ00ðQ; EÞ,
averaged over jQj ¼ ½0.46; 0.93� Å−1 and E ¼ ½0; 0.15� meV,
is plotted alongside the measured Cmag for the Ce2Zr2O7 sample
of the present work.
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spin Si. The dynamical structure factor is obtained as the
time-space Fourier transform of the time-evolved magnetic
moments, averaged over the ensemble of initial states.
The molecular dynamics solution computes the classical

dynamics. That is, it treats the spins as classical magnetic
moments precessing in their local field. To compare this
to the (quantum) experiment or a theoretical method such
as linear spin wave theory, one has to rescale the classical
calculation. This is because the classical dynamical struc-
ture factor is symmetric with respect to neutron energy
transfer E, and it vanishes as T approaches zero for all
E > 0. Neither of these is the case for the dynamical
structure factor of the quantum system. Another, more
quantitative, way to think about this is via the fluctuation-
dissipation theorem by comparing the version for classical
and quantum systems [31]. In particular, for a classical
system we get ðβEÞSclassicalðQ; E; TÞ ¼ χ00ðQ; E; TÞ, while
for the quantum system it reads ð1−e−βEÞSquantumðQ;E;TÞ¼
χ00ðQ;E;TÞ, where β ¼ 1=ðkBTÞ. It is then reasonable to
equate the imaginary part of the susceptibility, χ00ðQ; E; TÞ,
as this quantity is real and symmetric for both the classical
and the quantum system. Furthermore, as shown inRef. [32],
χ00quantum ¼ χ00classical within linear spin wave theory. Using the
quantum and classical fluctuation dissipation theorem for the
respective sides then yields

SquantumðQ; E; TÞ ¼ βE
1 − e−βE

SclassicalðQ; E; TÞ; ðH1Þ

which is what we use to estimate the dynamical structure
factor of the (quantum) experiment using our classical
simulation. The dynamical structure factor is then powder
averaged to obtain SquantumðjQj; E; TÞ, and convolved with
the experimental resolution. In Figs. 9(d)–9(i) of the main
text, we show the calculated powder-averaged dynamical
structure factor at 0.06, 0.5, and 3 K, with the powder-
averaged dynamical structure factor at T ¼ 9.6 K subtracted
from the result.
Note that Eq. (H1) accounts for detailed bala-

nce, SquantumðQ;−E; TÞ ¼ e−βESquantumðQ; E; TÞ, since
SclassicalðQ; E; TÞ ¼ SclassicalðQ;−E; TÞ. Zhang et al. [32]
derive the conversion factor βE by comparing the classical
spin wave theory at finite temperature with the quantum
spin wave theory at zero temperature. It is thus valid in the
case βE ≫ 1, which is well fulfilled in their case, but not
applicable to a large part of our energy and temperature
range. However, note that our factor ½βE=ð1 − e−βEÞ�
reduces to βE for βE ≫ 1, so our calculation is entirely
consistent with this argument.

APPENDIX I: HEAT CAPACITY
MEASUREMENTS AND LOW TEMPERATURE

Cmag EXTRAPOLATIONS

Heat capacity measurements were performed on
our single crystal Ce2Zr2O7 sample, along with a

polycrystalline sample of La2Zr2O7, which is used as a
4f0 analog of Ce2Zr2O7. Heat capacity measurements on a
polished single crystal of Ce2Zr2O7 (smooth-surfaced
pressed powder pellet of La2Zr2O7) were carried out on
a Quantum Design PPMS down to T ¼ 0.058 K
(T ¼ 2.5 K) using the conventional quasiadiabatic thermal
relaxation technique. The heat capacity of La2Zr2O7 is very
small at ∼2.5 K, and there was no need to pursue
measurements at lower temperatures.
We provide further details on the analysis of Cmag’s

approach to zero at T ¼ 0 K. Figure 17(a) shows the results
of fitting simple cubic and exponential extrapolations to
the measured Cmag data, as well as the low temperature
extrapolation to Cmag which is based upon an interpolation
between the results of NLC calculations at T > ∼0.5 K and
a T3 low temperature form appropriate to emergent photons
in a U(1) QSL. These extrapolations are also shown in
Figs. 3 and 11(a) of the main text, respectively. We label
the latter extrapolation as “interpolation” in Fig. 17 and
the following discussion. This interpolation method is
introduced in Ref. [27] and discussed for the current
context below.
The interpolation method first involves performing a

high temperature expansion of the magnetic heat capacity
CmagðTÞ corresponding to the XYZ Hamiltonian and the A
set exchange parameters, and then turning this into an
expansion for the entropy density as a function of energy
density sðeÞ around e ¼ 0. If CmagðTÞ ∝ T3 at low tem-
perature, then for e close to the ground-state energy density
e0, sðeÞ ∝ ðe − e0Þ3=4. A Padé approximant is used to
interpolate between those two limits, to obtain sðeÞ over
the region e ¼ ½e0; 0�, which can then be converted to
CmagðTÞ over the range T ¼ ½0;∞�. This approach requires
an estimate of the ground-state energy per site, e0. We
treat this estimate as an adjustable parameter and set
e0 ¼ −0.385Ja for best agreement with experiment, which
is in a physically plausible range.
The approach based on sðeÞ is generally better behaved

than performing the interpolation on CmagðTÞ directly, and
it obeys the physical constraints on the total energy and
entropy

R
∞
0 CmagðTÞdT ¼ −e0,

R
∞
0 f½CmagðTÞ�=TgdT ¼

R lnð2Þ, respectively, by construction. The choice of
Padé approximant Pðm; nÞ is constrained to mþ n ≤ k,
where k is the maximum order obtained for the high
temperature expansion of CmagðTÞ. In our case k ¼ 13,
and we take the approximant Pð7; 6Þ, again guided by
best agreement with experiment. The estimate of e0 and
the choice of m, n are the only adjustable parameters
in the comparison, with the exchange parameters equal to
the set A parameters (see main text or Table 1). The
comparison between theory and experiment is good,
particularly for the entropy curve SmagðTÞ, when one
considers that the experimental entropy is missing ∼5%
of the expected R lnð2Þ, due to Ce4þ substitution which is
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not incorporated in the interpolation calculation. This demo-
nstrates that the observed CmagðTÞ can be consistent with a
smooth crossover to a T3 form, even though we do not reach
the T3 regime with the present experimental data.
As shown in Fig. 17(a), the cubic extrapolation cannot

be made to connect smoothly to the data at the lowest-
temperature data points, while the best-fitting exponential
extrapolation and the interpolation both meet the data in a
smooth manner. The inset of Fig. 17(a) shows the best-
fitting simple exponential extrapolation when locking the
gap energy to the values Δ ¼ 20, 30, 40, and 50 mK,
and a gap of Δ ¼ 35ð5Þ mK results from such a naive
analysis.
Using each of these extrapolations for Cmag in order

to describe the data below the lowest-temperature data
point, we calculate the entropy recovered via Smag ¼R
T
0 ðCmag=TÞdT and show the results in Fig. 17(b). As shown
in Fig. 17(b), the best-fitting cubic extrapolation grossly
underestimates the R lnð2Þ entropy associated with the CEF
ground-state doublet, while the exponential extrapolation
and the interpolation both saturate toR lnð2Þwithin the∼5%
tolerance associated with the sample oxidation.

APPENDIX J: NLC CALCULATIONS AND
DISORDER AVERAGING

We use the NLC method to calculate thermodynamic
quantities throughout this work. The method is described in
Refs. [33–35] (for example). Extensive quantities per site
hOi=N are represented as sums over contributions from
clusters c:

1

N
hOi ¼

X
c

McWc; ðJ1Þ

where Mc is the cluster multiplicity, defined as the number
of times c can be embedded in the lattice, per site N. Wc is
the cluster weight:

Wc ¼ hOic −
X
s⊂c

Ws; ðJ2Þ

where hOic is the expectation value of the quantityO taken
from exact diagonalization on cluster c with open boundary
conditions. The second term in Eq. (J2) is a sum over the
weights of all subclusters of c. The sum in Eq. (J1) is
arranged in order of increasing cluster size. At high
temperatures, terms from larger clusters vanish faster with
increasing temperature and the series converges in the same
manner as high temperature expansion. At sufficiently high
temperature, one can then justify truncating the sum at
finite cluster size.
We employ a series of clusters starting with a single site

and then all further clusters are constructed from full
tetrahedra. The nth order of the expansion incorporates
clusters of size up to n tetrahedra. We denote the nth-order
calculation as “NLC-n.” For the heat capacity we have
performed calculations up to fourth order (NLC-4). For
the A parameter set we additionally performed NLC
calculations of Cmag up to seventh order (see inset of
Fig. 6). The methodology for these seventh-order calcu-
lations is described in Ref. [36]. For SðQÞ and SðQÞ we
have performed calculations up to third order (NLC-3).

FIG. 17. (a) The best-fitting naive cubic and exponential extrapolations to the measured Cmag data, as well as the low temperature
extrapolation which is consistent with the NLC fit for T > ∼0.5 K and a T3 Cmag at sufficiently low temperature, as described in the text.
A simple best-fitting cubic extrapolation forms a sharp cusplike connection with the data while the simple best-fitting exponential
extrapolation and the interpolation (as discussed in the text) both run smoothly through the lowest-temperature data points. The inset of
(a) shows the simple exponential extrapolations for different values of the gap energy. Such an analysis yields an estimate of Δ ¼
35ð5Þ mK for the gap energy. (b) A comparison of the entropy recovered via Smag ¼

R
T
0 ðCmag=TÞdT using the different low temperature

extrapolation schemes of Cmag that are shown in (a).

CASE FOR A Uð1Þπ QUANTUM SPIN LIQUID … PHYS. REV. X 12, 021015 (2022)

021015-17



For the susceptibility we have performed calculations up to
second order (NLC-2).
For example, to estimate SðQÞ using Eq. (F1) and the

NLC method, we define for each cluster c entering the
expansion, the extensive quantities:

CcðQÞ ¼ jfðjQjÞj2
X
i;j∈c

�
ẑi · ẑj −

ðẑi ·QÞðẑj ·QÞ
jQj2

�

½cos2ðθÞhSx̃i ð−QÞSx̃jðQÞi þ sin2ðθÞhSz̃i ð−QÞSz̃jðQÞi�; ðJ3Þ

The NLC estimate of SðQÞ is then
SNLCðQÞ ¼

X
c

McWcðQÞ; ðJ4Þ

where in this case (third-order NLC) we truncate the sum at
a maximum cluster size of three tetrahedra. Mc are the
cluster multiplicities and WcðQÞ are the cluster weights,

WcðQÞ ¼ CcðQÞ −
X
s⊂c

WsðQÞ; ðJ5Þ

where the sum on the right-hand side is over sub-
clusters of c.
To improve convergence of the Cmag calculations, we

have used Euler transformation to the third and fourth
orders [35]. The Euler transformed results at third and
fourth order are

hOiEuler 3 ¼
1

2
hOiNLC-2 þ

1

2
hOiNLC-3 ðJ6Þ

and

hOiEuler 4 ¼
1

4
hOiNLC-2 þ

1

2
hOiNLC-3 þ

1

4
hOiNLC-4; ðJ7Þ

where hOiNLC-n is the estimate of hOi up to nth order
in NLC.
For the susceptibility calculations we included a popu-

lation of 14% vacancies in the calculation, with disorder
averaging. The disorder average can be taken as order by
order in NLC. Since vacancy disorder is binary, the disorder
average can be done exactly [34]. We have also performed
heat capacity calculations with 5% vacancy disorder, as a
point of comparison to the calculations with the clean
model. The fits of these calculations to the experimental
data produce very similar results to those found for the
clean model, as shown in Fig. 13.
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