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Active fluids exhibit complex turbulentlike flows at low Reynolds number. Recent work predicted that
2D active nematic turbulence follows scaling laws with universal exponents. However, experimentally
testing these predictions is conditioned by the coupling to the 3D environment. Here, we measure the
spectrum of the kinetic energy EðqÞ in an active nematic film in contact with a passive oil layer. At small
and intermediate scales, we find the scaling regimes EðqÞ ∼ q−4 and EðqÞ ∼ q−1, respectively, in agreement
with the theoretical prediction for 2D active nematics. At large scales, however, we find a new scaling
EðqÞ ∼ q, which emerges when the dissipation is dominated by the 3D oil layer. In addition, we derive an
explicit expression for the spectrum that spans all length scales, thus explaining and connecting the
different scaling regimes. This allows us to fit the data and extract the length scale that controls the
crossover to the new large-scale regime, which we tune by varying the oil viscosity. Overall, our work
experimentally demonstrates the emergence of scaling laws with universal exponents in active turbulence,
and it establishes how the spectrum is affected by external dissipation.

DOI: 10.1103/PhysRevX.11.031065 Subject Areas: Nonlinear Dynamics, Soft Matter,
Statistical Physics

I. INTRODUCTION

Active fluids are able to flow spontaneously due to the
internal stresses that are generated by their microscopic

components [1–4]. Despite being driven at the microscale,
active fluids exhibit large-scale flows that often become
chaotic [5–8]. Such flows have been observed in a wide
variety of systems including bacterial suspensions [9–17],
sperm [18], mixtures of cytoskeletal components [19–26],
cell monolayers [27–29], and artificial self-propelled par-
ticles [30–33]. All these systems operate at low Reynolds
numbers, where inertia is negligible. Yet, by analogy to
inertial turbulent flows in ordinary fluids, this regime with
active chaotic flows has been termed active turbulence [8].
The comparison with the long-standing paradigm of inertial
turbulence is compelling, and it motivated the search of
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emergent universal behavior and scaling laws [34,35] in
active turbulence.
These issues have been the subject of intense research and

debate [5,8,12,13,33,36–45]. Inspired by bacterial turbu-
lence, initial work on extended Toner-Tu equations for polar
flocks showed that these fluids exhibit flow spectra with
scaling regimes. However, the corresponding scaling laws
have nonuniversal exponents, whose values depend on
model parameters [12,38,39,46–49]. In contrast, recent
theoretical work on active nematics predicted scaling laws
with universal exponents, which are independent of the
active fluid properties (e.g., viscosity or activity) [36,37].
Experimental evidence for such universal scaling, however,
remained elusive, in part due to the challenge of accurately
measuring flows for sufficiently broad ranges of scales.
In addition, most of the theoretical predictions and

numerical studies have addressed the case of two-dimen-
sional flows. As in classical turbulence, 2D systems are
often embedded in a 3D setup. It is, therefore, necessary to
separate the genuinely 2D features from the effects due to
the coupling to the environment. In classical 2D turbulence,
for instance, frictional dissipation with the environment not
only cuts off the energy cascade toward large scales, but it
also modifies the scaling exponent of the enstrophy cascade
toward small scales [50,51].
Here, we address the influence of external dissipation on

the scaling regimes in microtubule-based active nematics
powered by motor proteins [19,24]. In this setup, the 2D
active nematic is surrounded by layers of oil and water, two
passive fluids. Our comprehensive experimental study
spans a broad range of spatial scales and includes system-
atic variation of the oil viscosity. We also present a
theoretical framework that incorporates the hydrodynamic
coupling with the environment and provides an explicit
expression for the full spectrum of the turbulent active
flows. Combining theory and experiments, our results
provide evidence of scaling laws with universal exponents
in 2D active turbulence and determine the ranges where
these scaling laws are observable in terms of the physical
parameters.
Our predictions include six different scaling regimes,

which we classify in terms of three length scales: the
average vortex size, the height of an external fluid layer,
and a viscous length that controls whether dissipation is
dominated by either the active or the external fluid. This
analysis reveals that, in contrast to classic turbulence,
external dissipation does not just introduce a small-q cutoff
to the scaling behavior, but it also yields a new scaling
regime. In our experiments, we vary the oil viscosity over
more than 4 orders of magnitude and observe three of the
predicted scaling regimes. The remaining regimes might be
observed either in alternative experimental setups or in
other systems such as cell monolayers.
Beyond the scaling laws, the detailed comparison

between theory and experimental data allows us to probe
other open questions in active turbulence. Specifically, we

seek to explain the emergence of a characteristic vortex
size. The coupling to external fluids selects a characteristic
wavelength at the onset of spontaneous flows [24,53–55].
However, we show that this selection mechanism cannot
fully account for the average vortex size observed in the
turbulent regime. Thus, our analysis suggests that nonlinear
effects in the active fluid, possibly involving energy
transfer across scales, also contribute to vortex size selec-
tion. Moreover, we establish the range of validity of our
theory, as we observe that it correctly fits the data for an
intermediate range of oil viscosities but fails for extremely
low and high viscosities. Our measurements suggest
directions for future improvements to the theory, such as
including vortex-vortex correlations.

II. EXPERIMENTAL SETUP AND ENERGY
SPECTRA

In our experiments, we prepare an active nematic film by
self-assembly of micrometer-long stabilized microtubules
at the interface between a Hwater ≈ 40-μm-thick water layer
on a glass slide and a Hoil ≈ 3-mm-thick oil layer open to
the air [56] [bottom inset in Fig. 1(a) and Appendix A]. The
microtubules are bundled under the depleting action of
polyethylene-glycol (PEG), which facilitates cross-linking
by kinesin molecular motors clustered with streptavidin
(Appendix A). Fueled by adenosine triphosphate (ATP), the
motors generate active shear stresses leading to extension
and buckling of the microtubule bundles. The bundles then
acquire local nematic order interrupted by half-integer
topological defects, and the film exhibits disordered
large-scale flows, which is the state of active nematic
turbulence (see Movie 1 in Supplemental Material [52]).
To study the statistical properties of active turbulent

flows, we measure their so-called kinetic energy spectrum
EðqÞ ∝ qhjṽðqÞj2i, where ṽðqÞ are the Fourier components
of the flow field vðrÞ, with wave vector q (Appendix A). To
explore the different flow regimes, we vary an external
parameter, namely, the oil viscosity, while keeping the
intrinsic active fluid parameters—including motor, micro-
tubule, and ATP concentrations—fixed. Therefore, the so-
called active length, which compares the active and elastic
stresses, is kept constant in all of our experiments. Upon
increase of the oil viscosity, the entire kinetic energy
spectrum decreases (Fig. 1), which is consistent with the
previously observed decrease of flow speed [56]. At low oil
viscosities, the spectrum features at least three regimes: a
large-scale (small-q) regime that is followed by a peak, an
intermediate regime, and a crossover to a small-scale
(large-q) regime [Fig. 1(a)]. As oil viscosity increases,
the peak shifts to smaller scales, expanding the range of the
large-scale regime and shrinking the intermediate regime
until it can no longer be observed for high oil viscosities
[Figs. 1(b) and 1(c)]. In parallel to these changes in the flow
properties, we also observe a higher density of defects for
higher oil viscosities (top insets in Fig. 1).
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III. THEORETICAL MODEL AND PREDICTED
SCALING REGIMES

To understand our measured spectra, we develop a
theoretical framework that accounts for the hydrodynamic
coupling between the active film and the external water and
oil layers, with their corresponding boundary conditions.
Active flows in the nematic film induce flows in the passive
layers which, in turn, influence the active-film flows (Fig. 5
in Appendix B). Generalizing previous works [56–60], we
first obtain the Green function of the active flows subject to
this feedback [Appendix B 1; see Eq. (B11)]. We then
establish a relationship between the velocity power spec-
trum in our coupled three-fluid system and the vorticity
power spectrum of an isolated active nematic film
[Appendix B 2; see Eq. (B22)]. The latter was previously
predicted by Giomi using a mean-field theory approach
based on decomposing the vorticity field into a super-
position of N uncorrelated vortices [36]. Based on simu-
lation results, Giomi’s theory assumes that each vortex has
a uniform and size-independent vorticity ωv, and that
vortex areas follow an exponential distribution with mean
a� ¼ πR2�, where R� is the mean vortex radius. For a
configuration that has on average N vortices over a total
system area A, we predict a kinetic energy spectrum
(Appendix B 2)

EðqÞ ¼ BqR4�e−q
2R2�=2½I0ðq2R2�=2Þ− I1ðq2R2�=2Þ�

½qþ ηoil=ηn tanhðqHoilÞþ ηwater=ηn cothðqHwaterÞ�2
:

ð1Þ

Here, I0 and I1 are modified Bessel functions, and B ¼
Nω2

v=ð32π3AÞ is a prefactor related to the total enstrophy.
To discuss the scaling regimes predicted from Eq. (1), we

consider a simplified situation with just one external fluid
layer, either above or below the active film. This simpler
setup is enough to capture the effects of external fluid layers
on the active film. The energy spectrum then depends on
three length scales: the mean vortex radius R�, the layer

(a) (b) (c)

FIG. 1. Oil viscosity modifies the kinetic energy spectrum of active nematic turbulence. (a)–(c) Kinetic energy spectra of turbulent flows
in an active nematic film in contact with an oil layer of low (a), intermediate (b), and high (c) viscosity. Averages are over 500 frames. Error
bars are standard deviations. In each panel, the top inset shows a representative microtubule fluorescence micrograph. Scale bar is 100 μm.
The bottom inset in (a) shows a schematic of the experimental system. See also Movie 2 in Supplemental Material [52].

FIG. 2. Scaling regimes of turbulent flows in an active nematic
film in contact with an external fluid. The different regimes are
predicted at length scales (∼1=q) either larger or smaller than the
mean vortex radius R�, the viscous length lv ¼ ηn=ηext, and the
thickness H of the external fluid layer. This figure summarizes
the scalings in the thick-layer limit qH ≫ 1; see Fig. 6 for the
predictions in the thin-layer limit qH ≪ 1.
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thickness H, and the viscous length lv ¼ ηn=ηext defined
by the ratio of the two-dimensional viscosity of the nematic
film ηn and the three-dimensional viscosity of the external
fluid ηext. In the thick-layer limit, qH ≫ 1, we summarize
the predicted scaling regimes in Fig. 2, which we discuss
below. The thin-layer limit, qH ≪ 1, is discussed in Fig. 6
in Appendix B 3.
Active flows are characterized by different scaling laws

at scales smaller and larger than the mean vortex size R�
(horizontal axis in Fig. 2). Furthermore, at length scales
smaller than the viscous length, lv ¼ ηn=ηext, dissipation is
dominated by the viscosity of the active film. As a result, in
this regime, the scaling laws are those recently predicted
and numerically demonstrated for isolated active nematic
films [36,37], with no effect of the external fluid (top half in
Fig. 2). At length scales larger than lv, however, dissipation

in the external fluid dominates, yielding new scaling laws
(bottom half in Fig. 2).

IV. COMPARISON TO EXPERIMENTS

Asdescribed later, by fitting the theory to the experimental
measurements, we infer the active film viscosity ηn≈
4 Pa s μm. Therefore, using ηwater ¼ 1 mPa s we obtain
the water viscous length lwater ¼ ηn=ηwater ≈ 4 mm, which
is larger than the largest length scale of our measurements,
q−1min ∼ 0.3 mm.Hence, we have qlwater ≫ 1 for all q values.
Therefore, the flows in the water layer do not produce any
new scaling regimes in our experiments. In contrast, varying
oil viscosity over orders of magnitude, we reach oil viscous
lengths loil ¼ ηn=ηoil that fall within our measurement
window. Consequently, the flows in the oil layer are

×

(a) (b)

(c) (d)

(e)

FIG. 3. Oil viscosity tunes the scaling regimes of active nematic turbulence. (a) Kinetic energy spectra of turbulent flows in an active
nematic film in contact with a layer of oil, for 20 different oil viscosities. The data are averaged over 500 frames. (b) Rescaling each
spectrum by its maximum and its corresponding wave number clearly showcases the large-scale scaling regime. (c) Fit of Eq. (1) to a
representative spectrum at intermediate oil viscosity (see fits for all oil viscosities in Fig. S1 in Supplemental Material [52]). As predicted
by our theory (see Fig. 2), the spectrum features signatures of three scaling regimes, separated by two crossover lengths: the mean vortex
size Rs� and the viscous length loil ¼ ηn=ηoil (vertical dashed lines). Averages are over 500 frames. Error bars are standard deviations.
(d),(e) Mean vortex radius (d) and oil viscous length (e) obtained from the spectral fits in the range of intermediate oil viscosities in
which the theory fits the data well. Error bars are standard errors of the mean. The mean nematic viscosity obtained from these fits is
indicated in (e) as an inset (see also Fig. S2 [52]).
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responsible for some of the scaling regimes that we observe.
Our measurements probe length scales that are smaller than
the oil layer thickness Hoil ≈ 3 mm. Thus, our experiments
operate in the thick-layer limit, with scaling properties as
predicted in Fig. 2.
Consistent with these predictions, we experimentally

observe EðqÞ ∼ q−4 at small scales, and EðqÞ ∼ q1 at large
scales, for all oil viscosities [Figs. 3(a) and 3(b)]. For low
and intermediate oil viscosities, we also observe signatures
of the EðqÞ ∼ q−1 regime at intermediate length scales,
larger than the vortex size R� but smaller than the viscous
length loil [Fig. 3(c)]. In our measurements, the scaling
regimes are limited in extension, and the data alone do not
provide conclusive evidence for the scaling laws. However,
the agreement with the theoretical predictions confirms that
the active turbulent flows in our system indeed follow
underlying scaling laws.
The q−4 and q−1 scaling behaviors are intrinsic proper-

ties of an active nematic film, respectively characterizing
the small-scale flows inside vortices and the large-scale
flows due to hydrodynamic interactions in the film [37]. In
contrast, the q1 scaling stems from the hydrodynamic
coupling to an external fluid. All these scaling relations
involve universal exponents, which are independent of the
properties of the fluids. Consistently, by varying the oil
viscosity, we tune the range of the different regimes without
changing their scaling exponents. In other words, the values
of the exponents are properties of the equations of active
nematics and not of their parameters. The range of each
scaling regime, however, depends on parameters.
Having demonstrated the scaling regimes, we quantita-

tively compare our prediction for the full energy spectrum
[Eq. (1)] to the experimental data. Knowing the values of
ηwater, ηoil, Hwater, and Hoil, we use B, ηn, and R� in Eq. (1)
as fitting parameters. Despite its assumptions, our theory
fits the data remarkably well for a wide range of inter-
mediate oil viscosities (9.7 × 10−3 < ηoil < 0.39 Pa s; see
Fig. S1 in Supplemental Material [52]), as exemplified in
Fig. 3(c). Visual inspection of the experiments suggests
smaller vortices as ηoil increases (see insets in Fig. 1 and
Movie 2 [52]). Yet, the mean vortex radius obtained from
these fits, Rs�, is independent of oil viscosity [Fig. 3(d)].
Finally, the oil viscous length loil ¼ ηn=ηoil decreases as
∼1=ηoil [Fig. 3(e)], indicating that ηn does not vary with oil
viscosity in the range of validity of the model (Fig. S2
[52]). Hence, the fits allow us to estimate the viscosity of
the active nematic: hηni ¼ 4� 2 Pa s μm. This value is 2
orders of magnitude smaller than that obtained by
Guillamat et al. from the speed of topological defects
[56], possibly due to the overestimation of the flow
screening length in their model. Our estimate, however,
is of the same order as the value obtained by Rivas et al.
from the flow profile around vortices [61].

V. VORTEX SIZE SELECTION AND
CORRELATIONS

To try to rationalize the fact that Rs� is independent of oil
viscosity, we perform a linear stability analysis. Because of
the coupling to the external fluid, the linear growth rate of
the spontaneous-flow instability that powers active nematic
turbulence acquires a maximum at finite wavelengths
[53–55] [Appendix C and Fig. 7(a)]. This maximum selects
a characteristic scale λm of flow patterns at the onset of
turbulence [24]. Does λm also determine vortex size in fully
developed turbulence? The linear analysis predicts that λm
changes with oil viscosity [Fig. 7(b)], in contrast with
experimental observations for R�. Therefore, λm does not
seem to directly determine vortex size in the turbulent state,
as λm and Rs� have different dependencies on oil viscosity.

Nonlinear effects may modify the scale λm selected by
the linear dynamics upon the instability. In fact, in sta-
tionary fully developed turbulence, earlier work has shown
that vortex size is determined by the nonlinear dynamics of
the active nematic and given by the critical wavelength of
the instability λc [37]. Here, we show theoretically that this
length scale λc is largely independent of oil viscosity
[Appendix C and Fig. 7(c)], consistent with the behavior
Rs� with oil viscosity [Fig. 3(d)]. Therefore, λc could
determine vortex size in the turbulent state.
To further investigate this issue experimentally, we

directly measure the distributions of vortex areas nðaÞ
[21,23,29] [Fig. 4(a), Appendix A]. Fitting their exponen-
tial tails as nðaÞ ∝ expð−a=a�Þ [36], we obtain a mean
vortex radius Rv� ¼

ffiffiffiffiffiffiffiffiffiffi
a�=π

p
as a function of oil viscosity

[Fig. 4(b)]. In Fig. S3 in Supplemental Material [52] we
compare Rv� and Rs� in the range of validity of our spectral
fits. We find that both methods yield very similar values of
vortex radius, which is roughly independent of oil viscos-
ity, again suggesting that nonlinear effects contribute to
vortex size selection in our system. Yet, for high oil
viscosities, outside the range of validity of our spectral
fits, we find that Rv� decreases with oil viscosity [Fig. 4(b)].
Explaining these results will require further research on
vortex size selection in active turbulence.
Finally, we use our measurements to examine some of

the assumptions of the theoretical framework. We observe
that vortex area distributions have exponential tails [Fig. 4
(a)], in agreement with both the theoretical assumption and
previous experiments [21,23,29]. Here, we find that this
feature does not change with the oil viscosity. We also
measure the correlation functions for velocity and vorticity
[41,62,63] [Figs. 4(c) and 4(d)] and obtain the correspond-
ing correlation lengths [insets in Figs. 4(c) and 4(d)], which
exhibit dependencies on the oil viscosity that are very
similar to that of the vortex size Rv� [Fig. 4(b)]. This
observation suggests that these lengths are all proportional
to one another (Fig. S4 [52]), validating our theoretical
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assumption that there is a unique scale related to activity
(R�). However, at intermediate and high oil viscosities, we
measure negative correlations of the vorticity field at
distances comparable to, and even larger than, the vortex
size [Fig. 4(d)]. Thus, our data call for future work on the
theory of active turbulence, going beyond mean-field
approximations and accounting for vortex-vortex correla-
tions. Other improvements to the theory could take into
account the structure of defect cores, and include a more
accurate treatment of flow-alignment effects.

VI. CONCLUSION

In summary, we have experimentally measured and
theoretically explained universal scaling laws in active
turbulence, thus drawing parallels to classical turbulence.
Specifically, we have found scaling regimes that are
intrinsic to an active nematic film as well as other regimes
that result from the coupling to an external fluid. In
addition, we have developed a theoretical framework that
provides the rationale for the different regimes and yields
an explicit form for the turbulent spectra as a function of
parameters. By fitting the predictions to the data, we have

extracted the crossover length scales and shown how they
depend on the viscosity of the external fluid. Our analysis
of these results paves the way toward addressing open
questions in active turbulence, from vortex size selection to
the role of vortex-vortex correlations, and to pursue a
deeper understanding of the fundamental similarities and
differences between inertial and active turbulence.
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APPENDIX A: METHODS

1. Preparation of the active nematic

Clusters of biotinylated kinesin-1 (K401-BCCP-6His)
are assembled with tetrametric streptavidin at a ∼2∶1 ratio.
Afterward, these molecular motors are mixed with adeno-
sine triphosphate (ATP) and an ATP-regenerating system
[pyruvate kinase/lactic dehydrogenase enzymes (PK/LDH)
and phosphoenol pyruvate (PEP)]. The nonadsorbing
polymer polyethylene glycol (PEG) (20 kDa) is used as
depleting agent. To avoid photobleaching and protein
oxidation, a mixture of antioxidants [glucose, catalase,
1,4-dithiothreitol (DTT), trolox, and glucose oxidase] is
also included. Biocompatibility of the active nematic layer
with the oil interface is assured with the surfactant pluronic
F-127. This final suspension is mixed with ∼1.5 μm
microtubules stabilized with guanosine-5’-[(α,β)-methyl-
eno]triphosphate (GMPCPP) (Jena Bioscience, NU-405S),
of which the 0.8% is labeled with the Alexa-647 fluoro-
phore. The scattered fluorescent microtubules form a
speckle pattern (see Movie 1 in Supplemental Material
[52]), from which we measure the velocity field through
particle image velocimetry (PIV). Final compound con-
centrations are listed in Table I.

The active nematic (AN) is finally assembled by depos-
iting a 1.5 μL droplet onto a polyacrylamide-functionalized
glass slide within a 10 mm wide and 10 mm high
polypropylene cylinder, and covered with 300 μL of
polydimethylsiloxane oil (PDMS) with a viscosity in the
range of 6.3 × 10−4 to 12 Pa s. Micotubules spontaneously
adsorb onto the oil-water interface leading to the formation
of the AN. The mean height of the water layer is obtained
considering a cylinder and measuring the cross-section area
of the drop through fluorescence microscopy images. In the
case of the oil layer, its height is directly measured with a
millimetric ruler. We take the height at the center, where the
AN drop is placed, neglecting the meniscus.
To have intermediate oil viscosities, we prepare oil mix-

tures. The final viscosity is estimated using the Arrhenius
mixing rule logðη12Þ¼ x1 logðη1Þþð1−x1Þ logðη2Þ, where
η12, η1, and η2 are the oil viscosities of the oil mixture and of
the mixed compounds 1 and 2, respectively, and x1 is the
molar fraction of oil 1 [64,65].

2. Observation of the active nematic

The active nematic layer is imaged by means of
fluorescence microscopy (Nikon Eclipse Ti2-U) with an
Andor Zyla 4.2 Plus camera controlled with the open-
source software ImageJ Micro-Manager [66]. As light source,
we use a red LED coupled to a Cy5 cube filter. Images are
acquired typically at a frame rate of 2 Hz and with a spatial
resolution of 2.14 μm=pixel. In the case of experiments
with high oil viscosities (>1 Pa s) the frame rate is
decreased to 1 Hz and the spatial resolution is increased
to 1.28 μm=pixel.

3. Flow field measurements

Raw images are treated with the open source software
ImageJ [67]. In general, light intensity is equalized by
dividing the intensity of each frame by the time average
of the sequence. Further noise removal is achieved with a
mean filter with a width of 2–4 pixels. Afterward, the
velocity field is computed with PIVlab for MATLAB [68]. PIV
window size is set as 1=64 of the lateral system size. To
reduce noise, we use the option 5 x repeated correlation.
The velocity field is finally smoothed using the smoothn
function developed by Garcia [69].

4. Kinetic energy spectrum

The kinetic energy per unit mass is defined as

E ¼ 1

2

�Z
L2

v2d2r

�
; ðA1Þ

where h·i indicates a time average and L2 is the system size.
Introducing the Fourier decomposition of the velocity field
vðr⃗; tÞ ¼ P

q
˜̃vðqÞeiq·r, we obtain

TABLE I. Composition of the active nematic. (Definitions of
acronyms found in text.).

Active nematic composition

Compound Concentration

Streptavidin 0.16 μM
Kinesin 0.32 μM
DTT 5.8 mM
PEG (20 kDa) 1.6% w/w
PEP 27 mM
Trolox 2.1 mM
MgCl2 3.3 mM
ATP 1.5 mM
PK/LDH 27 IU/mL
Pluronic 0.44% (w/w)
Glucose 3.4 mg=mL
Catalase 0.040 mg=mL
Glucose oxidase 0.23 mg=mL
Microtubules 1.3 mg=mL
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E ¼ 1

2
L2ð2πÞ2

X
q

hj ˜̃vðqÞj2i; ðA2Þ

where q ¼ 2π=Lðnx; nyÞ, with nx; ny ∈ N. Now, we define
the spectral density of the kinetic energy EðqÞ as

E
L2

¼
X
qx

X
qy

EðqÞΔqxΔqy ¼
ð2πÞ2
L2

X
qx

X
qy

EðqÞ: ðA3Þ

Combining Eq. (A2) with Eq. (A3), we obtain

EðqÞ ¼ L2

2
hj ˜̃vðqÞj2i: ðA4Þ

We consider the overall system to be isotropic and, hence,
we can angle average EðqÞ to get EðqÞ in terms of the
module of the wave number q ¼ jqj, and we get

EðqÞ ¼ L2

2
q
X
φ

hj ˜̃vðq;φÞj2iΔφ; ðA5Þ

where φ is the azimuth of the wave vector q. Note that in
experiments we use the discrete Fourier transform while in
the theory we use the continuous Fourier transform. This
explains the difference in the prefactors between Eq. (A5)
and Eq. (B15). For each experiment, we average a total of
500 frames.
Afterward, we fit Eq. (1) to the experimental EðqÞ with

Mathematica v10.

5. Velocity and vorticity correlations

We compute the velocity and vorticity correlation
functions (Cvv and Cωω, respectively) using the Wiener-
Khinchin theorem: CxxðrÞ ¼ F−1½jx̃ðqÞj2�, where F−1½·�
denotes the inverse Fourier transform operator and x̃
denotes either v or ω.

6. Exponential distribution of the vortex areas and
mean vortex radius

The flows created by our active system clearly feature
eddies (see Movies 1 and 2 in Supplemental Material [52])
that we identify and characterize using the Okubo-Weiss
(OW) parameter, as described previously [21,23,36].
Briefly, OW is calculated as OW ¼ ð∂xvx þ ∂yvyÞ2−
4ð∂xvxÞð∂yvyÞ þ 4ð∂xvyÞð∂yvxÞ. Regions with OW < 0

are good vortex candidates. To determine whether
such regions are vortices, we check if they feature a
singularity by computing the winding number WðrÞ ¼
1=2π

H
2π
0 atan½vyðr;φÞ=vxðr;φÞ�dφ of the velocity field at a

distance r ¼ 24 pixels from their center. If a region with
OW < 0 has a winding number W ∈ ½0.95; 1.05�, it is
accepted as a vortex. The total area of each swirl is
determined by the connected area with OW < 0. This

vortex locator algorithm allows us to extract a distribution
of vortex areas nðaÞ ¼ NðaÞ=Pa NðaÞ, where NðaÞ is the
number of vortices with area a. Since nðaÞ follows an
exponential distribution, we extract a characteristic vortex
area a� and radius Rv� ¼

ffiffiffiffiffiffiffiffiffiffi
a�=π

p
.

APPENDIX B: HYDRODYNAMIC THEORY OF
ACTIVE TURBULENCE WITH EXTERNAL

DISSIPATION

1. Hydrodynamic Green’s function

In our experimental setup, a thin film of the active
nematic fluid is in contact with a thicker layer of water
underneath, and a much thicker layer of oil above. The
water layer is supported by a solid substrate, and the oil
layer is in contact with air (Fig. 5). Active flows in the
nematic film induce flows in both passive fluid layers,
which in turn influence the flows in the active film. To
account for this hydrodynamic coupling, here we obtain the
Green function for the flow field in a two-dimensional
viscous fluid film in contact with three-dimensional layers
of other viscous fluids. This calculation generalizes pre-
vious work [60] by considering the simultaneous hydro-
dynamic coupling to two fluid layers with different
boundary conditions, as in our experimental setup (Fig. 5).

Oil

Active nematic

Water

Substrate

Air

FIG. 5. Schematic of the experimental setup and flow fields
(side view). The thicknesses of the fluid layers are not to scale.
The actual thickness of the active nematic film is h ≈ 2 μm,
whereas the thicknesses of the passive fluid layers are Hwater ≈
40 μm and Hoil ≈ 3 mm. We treat the active nematic as a two-
dimensional film. White and black arrows represent the flow
fields in the active nematic film and in the passive fluid layers,
respectively. The flow is planar and it penetrates into the oil and
water layers. Here, we represent flow penetration according to
Eq. (B9) for a planar wave number q=ð2πÞ ¼ 5 × 10−3 μm−1,
which lies in the range of our experimental measurements.
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All flows in our system take place at very low Reynolds
numbers. Therefore, inertial forces are negligible (Stokes
limit), and momentum conservation reduces to force
balance. For the active nematic film, with two-dimensional
shear viscosity ηn and incompressible flow field vðrÞ, force
balance can be written as

ηn∇2v − ∇Pþ fwater þ f oil þ f ¼ 0: ðB1Þ

Here, the first term accounts for the viscous stress within
the nematic film, P is the film’s two-dimensional pressure,
and fwater and f oil are the viscous force densities exerted by
the water and oil layers, respectively, on the active fluid
film. Finally, f is the remaining force surface density acting
on the film. In our system, this force density results from
stresses associated with the orientational order of the
nematic film, including elastic, flow-alignment, and active
stresses. Here, we derive the Green function treating f as a
source, without specifying its expression. Rather, we
express the flow field of the nematic film in terms of the
source force f as

vαðrÞ ¼
Z

Gαβðr − r0Þfβðr0Þdr0; ðB2Þ

where Gαβðr − r0Þ is a hydrodynamic Green function,
namely, a generalization of Oseen’s tensor. Greek indices
indicate spatial components, and summation over repeated
indices is implicit. In Fourier space, we have

ṽαðqÞ ¼ G̃αβðqÞf̃βðqÞ; ðB3Þ

where we have introduced the Fourier decomposition as

vðrÞ ¼
Z

d2q
ð2πÞ2 ṽðqÞe

iq·r: ðB4Þ

To obtain the Green function, we must obtain the viscous
stress exerted by the water and oil layers on the active fluid
film,

fwaterðrÞ ¼ −ηwater
∂ukðr; zÞ

∂z
����
z¼0−

; ðB5aÞ

f oilðrÞ ¼ ηoil
∂ukðr; zÞ

∂z
����
z¼0þ

; ðB5bÞ

respectively. Here, uðr; zÞ is the three-dimensional flow
field of the passive fluids, and the subscript k indicates the
components along the active film’s plane (z ¼ 0; see
Fig. 5). The viscous flows in the passive layers obey the
Stokes equation,

ηwater∇2u − ∇p ¼ 0; −Hwater < z < 0; ðB6aÞ

ηoil∇2u − ∇p ¼ 0; 0 < z < Hoil; ðB6bÞ

with p the three-dimensional pressure. These flows are
driven by the hydrodynamic coupling with the active film:
ukðr; 0þÞ ¼ ukðr; 0−Þ ¼ vðrÞ. As shown in Refs. [58,59], if
the film’s flow is incompressible, ∇ · v ¼ 0, then the
pressure in the fluid layers is uniform, ∇p ¼ 0, and the
out-of-plane component of the velocity vanishes every-
where, uz ¼ 0. Therefore, the layers’ flow field is planar
and harmonic; it obeys Laplace’s equation:

ηwater∇2uk ¼ 0; −Hwater < z < 0; ðB7aÞ

ηoil∇2uk ¼ 0; 0 < z < Hoil. ðB7bÞ

To obtain the Green function in Fourier space, as in
Eq. (B3), we solve Eq. (B7) in terms of the planar Fourier
modes of the flow field, ũðq; zÞ, which obey

ηwaterð∂2
z − q2Þũ ¼ 0; −Hwater < z < 0; ðB8aÞ

ηoilð∂2
z − q2Þũ ¼ 0; 0 < z < Hoil: ðB8bÞ

The water layer is in contact with a solid substrate at
z ¼ −Hwater, where we assume a no-slip boundary con-
dition: ukðr;−HwaterÞ ¼ 0. Respectively, the oil layer is in
contact with air at z ¼ Hoil, where we assume a no-shear-
stress boundary condition: ∂zukðr; zÞjz¼Hoil

¼ 0. With these
boundary conditions and ukðr; 0þÞ ¼ ukðr; 0−Þ ¼ vðrÞ, the
solutions to Eq. (B8) are

ũkðq; zÞ ¼ ½coshðqzÞ þ cothðqHwaterÞ sinhðqzÞ�ṽðqÞ;
−Hwater < z < 0; ðB9aÞ

ũkðq; zÞ ¼ ½coshðqzÞ − tanhðqHoilÞ sinhðqzÞ�ṽðqÞ;
0 < z < Hoil: ðB9bÞ

These solutions show that the flow penetrates into the oil
and water layers to depths given by the inverse of the in-
plane wave number, 1=q, unless limited by the layers’
thicknesses, Hwater and Hoil, as illustrated in Fig. 5.
Introducing Eq. (B9) into Eq. (B5), we obtain

f̃waterðqÞ ¼ −ηwaterq cothðqHwaterÞṽðqÞ; ðB10aÞ

f̃ oilðqÞ ¼ −ηoilq tanhðqHoilÞṽðqÞ: ðB10bÞ

Finally, introducing these results into the Fourier trans-
form of Eq. (B1), and using the incompressibility condition
q · ṽ ¼ 0, we obtain the Green function:

SCALING REGIMES OF ACTIVE TURBULENCE WITH … PHYS. REV. X 11, 031065 (2021)

031065-9



G̃αβðqÞ ¼
δαβ − qαqβ=q2

ηnq2 þ ηoilq tanhðqHoilÞ þ ηwaterq cothðqHwaterÞ
:

ðB11Þ

This function describes the hydrodynamic interactions in
the active nematic film, accounting both for the direct
interactions due to its incompressibility and viscosity, and
also for the indirect interactions mediated by the oil and
water layers. The ratios between the viscosity of these
external fluids and the two-dimensional viscosity of the
nematic film define two viscous length scales:

loil ¼ ηn=ηoil; lwater ¼ ηn=ηwater: ðB12Þ

At scales larger than this viscous length, dissipation in the
external fluid layer (either oil or water) dominates over
dissipation within the nematic film.

2. Kinetic energy spectrum

Here, we derive an analytical expression for the kinetic
energy spectrum of the turbulent flows in our system. To
this end, we establish a relationship between the flow field
of our coupled three-fluid system (Fig. 5) and the vorticity
field of an isolated active nematic film. By means of this
relationship, we combine the hydrodynamic Green function
obtained in Appendix B 1 with Giomi’s mean-field theory
of active nematic turbulence [36] to predict the flow power
spectrum in our experimental system.
The kinetic energy per unit mass density E of the active

nematic flows is given by

E ¼ 1

2

Z
v2d2r: ðB13Þ

Using the Fourier modes ṽðqÞ of the flow field, as
introduced in Eq. (B4), the angle-averaged spectrum
EðqÞ, with q ¼ jqj the wave number, is defined by

hEi ¼ 1

2

Z
d2q
ð2πÞ2 hjṽðqÞj

2i ¼ A
Z

∞

0

EðqÞdq; ðB14Þ

where A is the area of the system and h·i averages over
realizations. In states where correlations of the flow field
are isotropic, EðqÞ is given by

EðqÞ ¼ 1

4πA
qhjṽðqÞj2i: ðB15Þ

To obtain the velocity power spectrum, we use Eqs. (B3)
and (B11), which give

hjṽðqÞj2i¼
�
δαβ−

qαqβ
q2

��
δαγ−

qαqγ
q2

�hf̃βðqÞf̃�γðqÞi
Λ2ðqÞ

¼ 1

Λ2ðqÞ
�
jf̃ ðqÞj2−qαqβ

q2
f̃αðqÞf̃�βðqÞ

�

¼ 1

q2Λ2ðqÞhq
2
yjf̃xj2þq2xjf̃yj2−qxqyðf̃xf̃�yþf̃yf̃

�
xÞi:

ðB16Þ

Here, we have introduced the notation

ΛðqÞ≡ ηnq2 þ ηoilq tanhðqHoilÞ þ ηwaterq cothðqHwaterÞ:
ðB17Þ

To eliminate the source force density f, and thereby
obtain a closed-form expression for the velocity power
spectrum, we leverage the force-balance condition for the
active nematic film alone, without external fluids:

ηn∇2vi − ∇Pi þ f ¼ 0: ðB18Þ

Here, the subscript i indicates that the active nematic film is
isolated. As in Eq. (B1), f accounts for source force density
due to elastic, flow-alignment, and active stresses, albeit
now in the isolated film. The source force of the isolated
film [in Eq. (B18)] coincides with that of the full problem
with external fluid layers [in Eq. (B1)] only if we ignore
flow-alignment effects. In this limit, f does not depend
explicitly on the flow field, and hence it is insensitive to the
presence of external fluid layers. To exploit this fact and
therefore be able to derive a closed form for the velocity
power spectrum, we first ignore the flow-alignment
coupling.
Following Ref. [37], we take the curl of Eq. (B18) to

obtain a Poisson equation for the vorticity field
ω ¼ ẑ · ð∇ × vÞ:

∇2ωi ¼ sðr; tÞ; sðr; tÞ ¼ −
1

ηn
ẑ · ð∇ × f Þ; ðB19Þ

where s is the vorticity source due to nematic forces. In
Fourier space, this equation is written as

−q2ω̃iðqÞ ¼ s̃ðqÞ ¼ i
ηn

ðqyf̃x − qxf̃yÞ: ðB20Þ

Hence, the vorticity spectrum of the isolated active film is
given by

hjω̃iðqÞj2i¼
1

η2nq4
hq2yjf̃xj2þq2xjf̃yj2−qxqyðf̃xf̃�yþ f̃yf̃

�
xÞi:

ðB21Þ

Comparing to Eq. (B16), we obtain
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hjṽðqÞj2i ¼ η2nq2

Λ2ðqÞ hjω̃iðqÞj2i; ðB22Þ

with ΛðqÞ given by Eq. (B17). As explained above, this
result is exact in the limit of vanishing flow-alignment
coupling. In the presence of flow alignment, Eq. (B22)
defines a closed approximation whereby the nematic
forces, both passive and active, are included exactly, while
the flow-alignment forces are approximated by the hydro-
dynamics of the isolated problem.
Equation (B22) relates the velocity spectrum of the

active nematic film coupled to the external fluid layers
with the vorticity spectrum of an isolated active nematic
film. For the latter, we can now make use of the mean-field
theory introduced by Giomi [36], which is based on
decomposing the vorticity field into a superposition of N
uncorrelated vortices. Based on simulation results, the
theory assumes that each vortex has a vorticity ωv inde-
pendent of its size, and that vortex areas follow an
exponential distribution with mean a� ¼ πR2�, where R�
is the mean vortex radius. With these assumptions, Giomi’s
mean-field theory predicts [36]

hjω̃iðqÞj2i ¼
Nω2

vR4�
8π2

e−q
2R2�=2

�
I0

�
q2R2�
2

�
− I1

�
q2R2�
2

�	
;

ðB23Þ

where I0 and I1 are modified Bessel functions of the first
kind. Introducing this result into Eq. (B22), and into
Eq. (B15), we obtain the kinetic energy spectrum,

EðqÞ ¼ BqR4�e−q
2R2�=2½I0ðq2R2�=2Þ− I1ðq2R2�=2Þ�

½qþ ηoil=ηn tanhðqHoilÞþ ηwater=ηn cothðqHwaterÞ�2
;

ðB24Þ

where B ¼ Nω2
v=ð32π3AÞ is a prefactor related to the total

enstrophy, and independent of both the wave number q and
the mean vortex radius R�.

3. Scaling laws

Here, we extend the discussion of the predicted scaling
regimes given in the main text. As in the main text, we
consider a situation with just one external fluid layer and
classify the scaling regimes in terms of three characteristic
lengths: the mean vortex radius R�, the viscous length
lv ¼ ηn=ηext, and the external layer thickness H. In the
main text, we discuss the scaling regimes at scales much
smaller than the layer thickness, qH ≫ 1, summarizing our
results in Fig. 2. Here, we give the results in the opposite
limit, looking at scales much larger than the layer thickness,
qH ≪ 1. In this thin-layer limit, the scaling laws depend on
the boundary condition of the external fluid at the nonactive
interface. We considered both a no-slip boundary

condition, as for the water-substrate interface in our experi-
ments, and a free surface, as for the oil-air interface in our
experiments (Fig. 5). We summarize the results for all these
situations in Fig. 6, which shows two additional scaling
regimes, EðqÞ ∼ q3 and EðqÞ ∼ q0, for no-slip boundary
conditions.

APPENDIX C: VORTEX SIZE SELECTION

Here, we discuss the physical origin of the mean vortex
size R�, a key parameter in the description of active
turbulent flows. Active nematic turbulence results from
the well-known spontaneous-flow instability in active
nematic fluids [1,2,4]. Here, we ask whether vortex size
is selected at the early stages of the instability, i.e., by its
linear dynamics, or later on by the nonlinear dynamics.
In isolated active nematic films, the spontaneous-flow

instability is a long-wavelength instability, whose growth
rate is maximal at the longest wavelengths. As a result, the
linear regime of the instability does not select any intrinsic
wavelength but rather produces flow patterns with wave-
lengths determined by the system size. Indeed, system-size-
dependent, stationary vortex patterns were observed in
simulations at small activities, just past the instability
threshold [37]. At high activity, however, these stationary
vortices were unstable and evolved into turbulent flows.
Simulations without flow alignment revealed a sequence of
instabilities whereby vortices break into smaller vortices,
down to a characteristic vortex size proportional to the
critical wavelength of the instability λc, which is itself
proportional to the active length la [37]. In the presence of
flow alignment, a similar transient cascade may exist.

FIG. 6. Scaling regimes of turbulent flows in an active nematic
film in contact with an external fluid. The different regimes are
predicted at length scales (∼1=q) either larger or smaller than the
mean vortex radius R�, the viscous length lv ¼ ηn=ηext, and the
thicknessH of the external fluid layer. This figure summarizes the
scalings in the thin-layer limit qH ≪ 1; see the main text and
Fig. 2 for the predictions in the thick-layer limit qH ≫ 1.
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Moreover, flow alignment introduces a new nonlinearity in
the problem enabling an additional potential mechanism of
energy transfer in the steady state. It is thus reasonable to
expect that, also in the presence of flow alignment, the
vortex size for an isolated nematic is selected by a nonlinear
mechanism.
This scenario is modified when the active nematic is not

isolated but coupled either to a frictional substrate [62,70]
or to external fluids [24,53–55], as in our system. The
external fluids are isotropic and in the Stokes regime, and
therefore they cannot transfer energy across scales at the
steady state. However, the coupling to an external fluid
modifies the spontaneous-flow instability of the active
nematic at the linear level, making the growth rate achieve
a maximum at finite wavelengths [54,55]. Consequently, an
intrinsic wavelength λm is selected from the very onset of
spontaneous flows, which dominates the early stages of
turbulence development [24]. To what extent nonlinear
effects may modify this characteristic scale at later stages of
turbulence is an open question that we can now analyze in
light of our data.
To this end, we derive the wavelength λm that is selected

in the linear regime by the coupling between the active
nematic and the external fluids in our experiments. We then
compare these predictions to our experimental measure-
ments of the vortex size in fully developed turbulence at
different oil viscosities.
To obtain the selected wavelength, we analyze the dynam-

ics around the uniformly oriented quiescent state of the active
nematic film. Ignoring flow alignment and topological
defects, the dynamics of the angle θ of the nematic director
field n̂ ¼ ðcos θ; sin θÞ can be written as [37]

∂tθ þ v · ∇θ þ ω

2
¼ K

γ
∇2θ: ðC1Þ

The right-hand side of this equation accounts for the
relaxation of distortions of the director field, which generate
elastic nematic stress. We describe this stress in the approxi-
mation of one Frank constant K which, together with the
rotational viscosity γ, controls the director relaxation rate
[71]. Respectively, the second and third terms on the left-
hand side of Eq. (C1) account for the advection and
corotation of the nematic director by the flow field v, with
vorticity ω ¼ ẑ · ð∇ × vÞ.
In turn, the flow field is driven by nematic forces f as

specified by the force balance Eq. (B1). Ignoring flow
alignment as in Eq. (C1), the nematic forces are given by

fα ¼ ∂βðσantαβ þ σactαβ Þ: ðC2Þ

The first contribution accounts for elastic nematic stresses
described by the antisymmetric part of the stress tensor [71],

σantαβ ¼ 1

2
ðnαhβ − nβhαÞ: ðC3Þ

Here, h ¼ −δFn=δn̂ ¼ K∇2n̂ is the molecular field com-
puted from the Frank free energy for nematic elasticity
which, in the one-constant approximation, is given by [71]

Fn ¼
K
2

Z
ð∂αnβÞð∂αnβÞd2r ¼

K
2

Z
j∇θj2d2r: ðC4Þ

Respectively, the second contribution in Eq. (C2) corre-
sponds to the active nematic stress [4,72–74],

σactαβ ¼ −ζqαβ; ðC5Þ

where ζ is the active stress coefficient, and qαβ ¼ nαnβ −
1=2 δαβ is the nematic orientation tensor in two dimensions,
with Cartesian components:

qxx ¼ −qyy ¼
1

2
cosð2θÞ; ðC6aÞ

qxy ¼ qyx ¼
1

2
sinð2θÞ: ðC6bÞ

To perform a linear stability analysis, we introduce pertur-
bations around the reference state as θ ¼ 0þ δθ and
v ¼ 0þ δv, and we decompose them into Fourier-Laplace
modes as

δθðr; tÞ ¼
Z

dΩ
2π

Z
d2q
ð2πÞ2 δθ̃ðq;ΩÞe

Ωtþiq·r; ðC7aÞ

δvðr; tÞ ¼
Z

dΩ
2π

Z
d2q
ð2πÞ2 δṽðq;ΩÞe

Ωtþiq·r; ðC7bÞ

withwavevector q and frequencyΩ. In terms of thesemodes,
and to first order in perturbations, Eq. (C1) is written as

Ωδθ̃ þ 1

2
ðiqyδṽx − iqxδṽxÞ ¼ −

K
γ
q2δθ̃: ðC8Þ

In turn, the Fouriermodes of the flow field are related to those
of the nematic force f̃ via Eqs. (B3) and (B11). To first order
in perturbations, Eqs. (C2)–(C6) yield

δf̃x ¼ iqy

�
−ζ −

K
2
q2
�
δθ̃; ðC9aÞ

δf̃y ¼ iqx

�
−ζ þ K

2
q2
�
δθ̃: ðC9bÞ

Introducing these results into Eq. (B3), using Eq. (B11), and
then introducing the resulting δṽ into Eq. (C8), we obtain the
growth rate of perturbations:
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ΩðqÞ ¼ −
K
γ
q2 þ ζq2 cosð2ϕÞ=2 − Kq4=4

ΛðqÞ ; ðC10Þ

where ϕ is the angle formed by the wave vector q and the
director n̂, such that q · n̂ ¼ q cosϕ, and ΛðqÞ is the hydro-
dynamic kernel given by Eq. (B17).
To get insight into wavelength selection, we consider a

situation with only one external fluid layer with thickness
H → ∞ and viscous length lv ¼ ηn=ηext. In this situation,
Eq. (C10) takes the simpler form:

ΩðqÞ ¼ −
K
γ
q2 þ 1

ηext

ζq2 cosð2ϕÞ=2 − Kq4=4
lvq2 þ q

: ðC11Þ

Rescaling length and time by the active length and time,
respectively,

la ¼
ffiffiffiffiffiffiffiffiffiffi
K
jζj

ηn
γ

s
; τa ¼

γ

K
l2
a ¼

ηn
jζj ; ðC12Þ

the growth rate Eq. (C11) can be expressed in dimension-
less form as

Ω̄ðq;ϕÞ ¼ −q̄2 þ sgnðζÞq̄2 cosð2ϕÞ=2 − rq̄4=4
q̄2 þ q̄=l̄v

: ðC13Þ

Here, Ω̄ ¼ Ωτa, and q̄ ¼ qla are dimensionless variables.
We have also introduced three dimensionless parameters:
the viscosity ratio r≡ γ=ηn, the dimensionless viscous
length l̄v ¼ lv=la, and the sign of the active stress
sgnðζÞ ¼ �1 for extensile and contractile stresses,
respectively.
The direction of most unstable perturbations is along the

director (ϕ� ¼ 0) for extensile stresses (ζ > 0), and
perpendicular to the director (ϕ� ¼ π=2) for contractile
stresses (ζ < 0). Along the most unstable direction, the

growth rate Eq. (C13) has the shape shown in Fig. 7(a).
This figure shows that the coupling of the active nematic to
the external fluid layer, represented by a finite l̄v ¼ lv=la,
produces a maximum of the growth rate at a finite wave-
length. This selected wavelength, λm ¼ 2π=qm, is obtained
from the single real solution of the following cubic
equation:

�
2þ r

2

�
l̄2
vq̄3m þ

�
4þ 3r

4

�
l̄vq̄2m þ 2q̄m −

1

2
l̄v ¼ 0:

ðC14Þ

As shown in Fig. 7(b), and also apparent in Fig. 7(a), the
selected wavelength λm has a nonmonotonic dependence on
the viscous length lv. In the common situation in which the
viscous length is larger than the active length, the selected
wavelength decreases with the viscosity of the external
fluid. However, when the viscous length becomes smaller
than the active length, the selected wavelength increases
with the viscosity of the external fluid.
The coupling to the external fluid not only gives rise to

the selected wavelength λm but also modifies the critical
wavelength of the instability, λc ¼ 2π=qc. This wavelength
is determined by the condition ΩðqcÞ ¼ 0 along the most
unstable direction, which gives

qc ¼
1

ð2þ r=2Þlv

"
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2þ r=2Þl

2
v

l2
a

s #
; ðC15Þ

with la given in Eq. (C12). As shown in Fig. 7(c), the
critical wavelength λc increases monotonically with the
viscosity ηext of the external fluid. At small ηext, i.e., large
lv ¼ ηn=ηext, the critical wavelength saturates at its value
for isolated nematic films:

(a) (b) (c)

FIG. 7. Vortex size selection. (a) Growth rate [Eq. (C13)] along the most unstable direction for the spontaneous-flow instability in an
active nematic film coupled to an external fluid layer. The viscosity ratio is set to r ¼ γ=ηn ¼ 1, and flow alignment is ignored. The
different curves correspond to different values of the external fluid viscosity ηext, expressed in terms of the viscous length lv ¼ ηn=ηext.
The blue line corresponds to an isolated active nematic film, without external fluid. Lengths and time are rescaled by the active length
and time, la and τa defined in Eq. (C12). (b) Wavelength at which the growth rate is maximum, as obtained from Eq. (C14), as a function
of the viscous length. This wavelength is selected by the linear dynamics upon the spontaneous-flow instability. (c) Critical wavelength
of the spontaneous-flow instability [Eq. (C15)] as a function of the viscous length.
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lim
lv≫la

λc ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ r=2

p
la: ðC16Þ

In the opposite limit, when dissipation is dominated by the
viscosity of the external fluid, the critical wavelength
becomes proportional to the external fluid viscosity:

lim
lv≪la

λc ¼ 4πla
1

l̄v
¼ 4πl2

a
ηext
ηn

: ðC17Þ

In summary, the coupling to the external fluid endows
the spontaneous flow instability with a linear wavelength-
selection mechanism. This mechanism selects the charac-
teristic scale of turbulent flows at early stages [24].
However, nonlinear effects may modify the selected scale
at later stages, and thereby dictate the vortex size in the
stationary, fully developed turbulent regime. To assess this
point in our experiments, we analyze how stationary vortex
size varies with oil viscosity.
If stationary vortex size were dictated by the linear

wavelength-selection mechanism, vortex size should vary
with oil viscosity as in Fig. 7(b). In our experiments, the oil
viscous length is loil ≳ R�, and the vortex size should be
R� ≳ la. Therefore, we are in the regime lv > la, and
vortex size should moderately decrease with oil viscosity
[Fig. 7(b)]. Instead, if vortex size were dictated by the
nonlinear selection mechanism of Ref. [37], vortex size
should be proportional to the critical wavelength, and
therefore vary with oil viscosity as in Fig. 7(c). Thus,
again in the regime lv > la, vortex size should remain
roughly independent of oil viscosity [Fig. 7(c)].
Our experimental measurements show that the mean

vortex radius, as measured from the vortex area distribu-
tion, is rather independent of oil viscosity over a range
spanning several orders of magnitude of oil viscosity
[Fig. 4(b)]. At very high oil viscosities, we observe a
moderate decrease of vortex radius [Fig. 4(b)], whose
interpretation remains an open question.
This analysis suggests that the linear selection mecha-

nism alone does not explain the observed vortex size in the
stationary regime, thus implying some form of energy
transfer across scales, be it transient and/or steady.
Elucidating the mechanism of vortex size selection in more
detail thus remits to fundamental open questions in active
turbulence that we defer to future work.
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