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High-fidelity two-qubit gates at scale are a key requirement to realize the full promise of quantum
computation and simulation. The advent and use of coupler elements to tunably control two-qubit
interactions has improved operational fidelity in many-qubit systems by reducing parasitic coupling and
frequency crowding issues. Nonetheless, two-qubit gate errors still limit the capability of near-term
quantum applications. The reason, in part, is that the existing framework for tunable couplers based on the
dispersive approximation does not fully incorporate three-body multilevel dynamics, which is essential for
addressing coherent leakage to the coupler and parasitic longitudinal (ZZ) interactions during two-qubit
gates. Here, we present a systematic approach that goes beyond the dispersive approximation to exploit the
engineered level structure of the coupler and optimize its control. Using this approach, we experimentally
demonstrate CZ and ZZ-free iSWAP gates with two-qubit interaction fidelities of 99.76� 0.07% and
99.87� 0.23%, respectively, which are close to their T1 limits.
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I. INTRODUCTION

A key challenge for large-scale quantum computation
and simulation is the extensible implementation of high-
fidelity entangling gates [1]. Over the past two decades,
superconducting qubits have made great strides in gate
fidelities and scalability [2], heralding the era of noisy
intermediate-scale quantum (NISQ) systems [3,4]. The
introduction of tunable couplers, which dynamically
control the qubit-qubit interaction, is an architectural
breakthrough that helps resolve many scalability issues
such as frequency crowding and parasitic coupling
between adjacent qubits and enables fast, high-fidelity
two-qubit gates [4–20]. Recently, two-qubit gates with
bosonic qubits have also been demonstrated by using a
driven transmon coupler [21,22]. Despite tremendous

progress, however, the two-qubit gate error still remains
a major bottleneck for realizing the full promise of NISQ
hardware and ultimately building error-corrected logical
qubits [3,23].
To further improve the fidelity of coupler-mediated

entangling gates, a systematic approach for optimizing
control and level structure of the coupler is required.
However, the existing theoretical framework based on
the perturbative approach, which assumes a dispersive
qubit-coupler interaction [13], has several limitations.
First, when performing fast two-qubit gates, the qubit-
coupler coupling generally enters into the non- or weakly
dispersive regime. Therefore, the perturbative approach
breaks down and coherent energy exchange between the
qubit and coupler arises, which is not captured within the
existing framework. In other words, theoretical treatments
are simplified at the cost of overlooking coherent leakage to
the coupler—nonadiabatic error—when performing fast
two-qubit gates. Furthermore, the perturbative treatment
of tunable couplers disregards the presence of higher levels
of the coupler [13]. This omission is significant; the higher
level of the coupler participates in the multilevel dynamics
of two-qubit gates and, thereby, adds a considerable
amount of residual two-qubit interactions.
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In this paper, we engineer the control and level structure
of the coupler by going beyond the dispersive approxima-
tion in order to realize high-fidelity two-qubit gates. We
implement both longitudinal (CZ) and transversal (iSWAP)
two-qubit gates; the availability of both type of gates
generally reduces gate overheads of NISQ algorithms
[3,24]. We propose an intuitive yet systematic approach
for optimizing control to suppress coherent leakage to the
coupler. Via optimized control, we significantly reduce the
nonadiabatic error of a 60-ns-long CZ gate, thereby
demonstrating a two-qubit interaction fidelity of 99.76�
0.07% in interleaved randomized benchmarking. We also
address a fundamental issue of the iSWAP gate when
coupling two transmon qubits: parasitic ZZ interaction due
to their higher levels [10,17,25–27]. We successfully
suppress the residual ZZ interaction of the iSWAP gate
in a passive manner, by exploiting the engineered coupler
level structure, and demonstrate a two-qubit interaction
fidelity of 99.87� 0.23% with a 30-ns gate duration.

II. DEVICE SETUP

We consider a pairwise interacting three-body quantum
system, in which each constituent body is a multilevel
anharmonic oscillator [Fig. 1(a)]. Quantum bits are
encoded in the first two levels of the leftmost and rightmost
anharmonic oscillators with resonant frequencies ω1 and
ω2, respectively. The middle anharmonic oscillator serves
as the coupler. These two distant qubits and the coupler are
coupled through exchange-type interactions with coupling
strengths g1c, g2c, and g12. We assume the qubit-coupler
interactions to be much stronger than the direct qubit-qubit
interaction g1c ¼ g2c ≫ g12. This assumption is valid for
our device and is a practical parameter regime for tunable
couplers, in general [13]. We approximate the qubits and
the coupler as Duffing oscillators, a common model for
anharmonic multilevel qubit systems such as the transmon
[28] and the C-shunt flux qubit [29]. Thus, the system
Hamiltonian can be written as follows (ℏ≡ 1):

H ¼
X
i

�
ωib

†
i bi þ

ηi
2
b†i b

†
i bibi

�
þ
X
i<j

gijðbi − b†i Þðbj − b†jÞ; ð1Þ

where b†i and bi (i; j ∈ f1; 2; cg) are, respectively, the
raising and lowering operators defined in the eigenbasis
of the corresponding oscillators. The level anharmonicity of
each oscillator is denoted by ηi. As shown in Ref. [13], the
destructive interference between the coupler-mediated and
direct qubit-qubit couplings enables the resulting net qubit-
qubit coupling to be turned on and off by adjusting the
coupler frequency ωc.
We realize this pairwise interacting three-body system in

a circuit quantum electrodynamics setup [30,31] using

three capacitively coupled transmons [Figs. 1(b)–1(d)]
[28,32]. The transmon coupler at the center mediates
interaction between the two distant transmon qubits.
While the resonant frequency ω1=2π of qubit 1 (QB1) is
fixed at 4.16 GHz, the frequencies of qubit 2 (QB2) and the
coupler (CPLR) are tunable (ω2=2π ¼ 3.7–4.7 GHz and
ωc=2π ¼ 3.7–6.7 GHz) by modulating the external mag-
netic flux threading through their asymmetric superconduct-
ing quantum interference device (SQUID) loops [33]. More
details about the device are provided in the Appendix B.
Coupler-mediated two-qubit gates are implemented by
dynamically tuningω2 andωc. Both qubits have microwave
control lines to drive single-qubit X- and Y-rotation gates.
Both the qubits and the coupler are dispersively coupled to
coplanar waveguide resonators for their state readout. We
discriminate between the ground, first, and second excited
states, such that we can distinguish 27 different states of the
system (see Appendix D for details).

(c)

(d)

(a) (b)

FIG. 1. (a) Schematic diagram of a pairwise interacting three-
body system. Each constituent body has anharmonic multiple
energy level structure. (b),(c) Experimental realization of a three-
body system in superconducting circuits. (d) Circuit schematic. In
(c), false colors (blue, red, pink, green, and brown) are used to
indicate the corresponding circuit components in (d).
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III. TWO-QUBIT GATES USING A
TUNABLE COUPLER

We use the notation jQB1;CPLR;QB2i to represent the
eigenstates of the system [Eq. (1)] in the idling configu-
ration, where CPLR is placed at the frequency such that the
effective QB1-QB2 coupling is nearly zero [dashed lines in
Fig. 2(a)]. Note that these states approximate the diabatic
(bare) states, i.e., the eigenstates of the uncoupled system,
because QB1 and QB2 are effectively decoupled and both
are far detuned from CPLR [gic=ðωc − ωiÞ < 1=20,
i ∈ f1; 2g]. To implement CZ and iSWAP gates, we use
nonadiabatic transitions between j101i and j200i, and
j100i and j001i, respectively [26,34–36]. The nonadiabatic
transitions are regulated by adjusting ωc, which effectively
tunes the coupling strengths between j101i and j200i
(2g̃CZ) or between j100i and j001i (2g̃iSWAP). For example,
biasing ωc closer to ω1 and ω2 leads to opening of the

avoided crossings (jg̃CZj > 0, jg̃iSWAPj > 0) and downward
level shifts induced by qubit-coupler interactions [solid
curves in Fig. 2(a)]. The CZ gate is performed by suddenly
bringing the states j101i and j200i into resonance at their
“bare” energy degeneracy point, which projects these bare
states onto the dressed states formed by the coupling g̃CZ
and results in Larmor precession within the dressed-state
basis. We let them complete a single period of an
oscillation, such that j101i picks up an overall phase eiπ .
To implement the iSWAP gate, we put j100i and j001i on
resonance and let them complete half an oscillation, so that
the two states are fully swapped.

A. Tunable coupling

We first demonstrate the tunability of the effective
QB1-QB2 coupling strengths g̃CZ and g̃iSWAP by measuring
the energy exchange between j101i and j200i, and j100i
and j001i, respectively, as a function of CPLR frequency
ωc. To measure the energy exchange between j101i and
j200i, we first prepare j101i by applying π pulses to both
QB1 and QB2 at the idling configuration. Next, we rapidly
adjust QB2 frequency ω2 so that j101i and j200i are on
resonance and then turn on g̃CZ by shifting ωc. We wait a
variable delay time τ and measure the state population of
j200i. We repeat these measurements with varying ωc
[Fig. 2(b)]. In a similar manner, to measure giSWAP, we
prepare j100i and measure the state population transferred
to j001i as a function of τ and ωc [Fig. 2(c)].
In Fig. 2(d), we plot the effective coupling strengths

2g̃CZ=2π and 2g̃iSWAP=2π as a function of CPLR frequency
ωc by fitting the excitation exchange oscillations. To
implement fast two-qubit gates (we use a 60-ns-long CZ
gate and a 30-ns-long iSWAP gate), a strong coupling
strength is required, which strongly hybridizes the CPLR
with both QB1 and QB2 [gic=ðωc − ωiÞ ≈ 1=3]. However,
dynamically entering and exiting such a nondispersive
regime easily leads to coherent leakage into the CPLR
(nonadiabatic error). Hence, well-engineered control is
required to avoid the coherent leakage when implementing
fast two-qubit gates.

B. Suppressing leakage into the coupler

To implement an optimized control scheme, we propose
a tractable model for analyzing the leakage dynamics. We
first note that the energy levels of the system interact via
excitation-preserving exchange within the rotating-wave
approximation, such that the dynamics can be analyzed
in the two independent manifolds, one involving single
excitation and one involving double excitations [Figs. 3(a)
and 3(b), respectively]. In each manifold, we identify the
subspaces spanned by the states which strongly interact
with computational qubit states and cause leakage during
the CZ gate (dashed boxes in Fig. 3; see Appendix G for
details). For the sake of simplifying the leakage dynamics,
we intentionally choose a small anharmonicity for the

(a) (b)

(c) (d)

FIG. 2. The tunable coupling for the CZ and the iSWAP gates.
(a) Illustrations of level crossings relevant to the CZ and the
iSWAP gates. The energy splittings (2g̃CZ and 2g̃iSWAP) are
tunable by adjusting ωc. See the main text for details. (b),(c)
Experimental data for the energy exchange between j200i and
j101i, and j100i and j001i, as a function of the coupler frequency
ωc, respectively. The pulse sequences are illustrated at the
top. (d) By fitting the oscillations with sinusoidal curves, we
extract the swap rates j2g̃CZj=2π and j2g̃iSWAPj=2π (circles). The
top x axis shows the corresponding perturbation parameter
g1c=ðωc − ω1Þ at each ωc.
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coupler to avoid strong hybridization of j020i with other
states during CZ gates (see Appendix I for details). Of these
states, j100i and j101i are computational qubit states, and
all others are leakage states. In the double-excitation
manifold, the transition between j200i and j011i is dipole
forbidden (requires a second-order process) and is, there-
fore, suppressed. This suppression allows the description
of the corresponding three-level dynamics to be further
simplified by introduction of a partially hybridized
basis: a bright state jBi≡ cosΘj011i þ sinΘj200i and a
dark state jDi≡ cosΘj200i − sinΘj011i, where Θ≡
tan−1ð ffiffiffi

2
p

g12=g1cÞ [37].
If g1c ≫ g12, within this truncated three-level subspace,

the computational state j101i interacts only with the
bright state jBi, and we can neglect the dark state jDi.
Consequently, the leakage dynamics within the single-
and double-excitation manifolds are described by the
following effective two-level Hamiltonians H1ðtÞ and
H2ðtÞ, respectively:

H1ðtÞ ¼
j100i j010i 
ω1 g1c
g1c ωcðtÞ

!
;

H2ðtÞ ¼
j101i jBi 

ω1 þ ω2 gB
gB ωBðtÞ

!
; ð2Þ

where the coupling strength between j101i and jBi is given
by gB ¼ g1c cosΘþ ffiffiffi

2
p

g12 sinΘ and the energy of the jBi
is ωB ¼ cos2Θ½ωcðtÞ þ ω2� þ sin2 Θðω1 þ ω2Þ. Such a
mapping of the multilevel dynamics onto two-level systems
is useful, because optimal control techniques are well
studied for two-level cases [38]. This technique of simplify-
ingmultilevel leakage dynamics using bright and dark states
is also used to optimize the control pulse for our iSWAP gate
(see Appendix G).
Since g1c ≫ g12 (Θ ≈ 0, jBi ≈ j011i, and jDi ≈ j200i),

the effective Hamiltonians H1ðtÞ and H2ðtÞ are equiv-
alent up to offset energies. This equivalence enables us
to suppress leakage in both single- and double-excitation
manifolds by optimizing a single control parameter
ωcðtÞ. Note that, although j200i behaves as a dark
state in this truncated subspace, it still interacts with
j101i via a second-order process through the intermedi-
ate state j110i (outside the truncated subspace), which
enables the CZ gate. Our goal here is to suppress fast,
nonadiabatic transitions between j101i and jBi ≈ j011i
(a first-order interaction) that occur much faster than a
slow swapping between j101i and jDi ≈ j200i (a sec-
ond-order interaction through the intermediate state
j110i). Therefore, our two-level system model addresses
only the predominant, leading-order leakage dynamics.
Developing a theoretical framework for addressing addi-
tional leakage dynamics, such as leakage into j110i, is
the subject of future work.
Following Ref. [38], we take the Slepian-based approach

to devise an optimal control waveform ωcðtÞ that targets
adiabatic evolutionwithin the effective two-level systems. In
Appendix H, we present numerical simulation results that
validate the suppression of leakage to CPLRwhen using the
optimized pulse shape for both CZ and iSWAP gates.
We experimentally assess the performance of an opti-

mized control pulse for the CZ gate by comparing its
performance to a simple square pulse (Fig. 4). First, to
characterize the leakage into CPLR, we vary the control
pulse amplitude and measure the leakage of the CZ gates
into j011i [Figs. 4(b), 4(c), 4(f), and 4(g)]. The amplitude is
parametrized by the minimum point of CPLR frequency
fmin
c [see Figs. 4(a) and 4(e)]. The chevron patterns of the

j101i population pj101i represent coherent energy exchange
between j101i and j200i. We predistort the pulses to
eliminate nonidealities, such as transients in the control
lines, to ensure the desired pulse shape is faithfully
delivered to the device (see Appendix F for details) and,
thereby, achieve symmetric chevron patterns [39–41]. On
top of the chevrons, we observe distinctive periodic
resonances for the square pulse, which are due to the
leakage to j011i. We suppress this leakage via an optimized
control pulse shape [Fig. 4(g)]. Although we present
measurements of only the leakage population to j011i in
Fig. 4, we experimentally confirm that the leakage to other
states in the two-photon manifolds—j020i, j110i, and

(a) (b)

(c)

(d)

FIG. 3. (a),(b) Energy level diagrams of the single- and double-
excitation manifolds. The dashed boxes indicate subspaces
spanned by energy levels that are relevant to coherent leakage
during the CZ gate. The red double-headed arrows denote
exchange interactions between the energy levels. (c) Bloch-sphere
representation of the relevant subspace in the single-excitation
manifold. (d) Bloch-sphere representation of the two-level
approximation for the relevant subspace in the double-excitation
manifold. When g1c ≫ g12, and because the transition between
j200i and j011i is dipole forbidden, the state j101i primarily
interacts with a bright state jBi≡ cosΘj011i þ sinΘj200i,
where Θ≡ tan−1ð ffiffiffi

2
p

g12=g1cÞ.
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j002i—are negligible (see Appendix T), thereby validating
our two-level system model in Eq. (2).
Next, we confirm the improvement due to optimal pulse

shaping by comparing the gate errors of the CZ gates. The
tune-up procedures for the CZ gate are illustrated in
Appendix N. The single-qubit XY gates are performed
in the idling configuration where the static ZZ interaction
between QB1 and QB2 is eliminated (see Appendixes E
and L). In Figs. 4(d) and 4(h), we measure the fidelities of
the CZ gates via interleaved randomized benchmarking
(RB) [42–44]. Because of a dynamic change of the qubit
frequencies during a two-qubit gate, additional Z rotations
accrue during the gate. Such Z rotations need to be undone
by applying compensating Z rotations. Therefore, the
error rate of an interleaved two-qubit gate consists of
two factors: the error rate of the native two-qubit interaction
(which contains unwanted Z rotations due to the change of
the qubit frequencies) and the error rate of the compensa-
tion Z rotations. Throughout this paper, we focus on the
quality of the native two-qubit interaction. In the case
of CZ gates, we correct the additional Z rotations by
applying virtual Z gates that are essentially error-free [45].
Therefore, the error rate rint of the interleaved CZ gate

is equivalent to the two-qubit interaction error rate rCZ ≡
1 − FCZ of the native CZ gate. The CZ gate with optimal
pulse shaping shows a higher two-qubit interaction
fidelity FCZ ¼ 1 − rint ¼ 99.76� 0.07%, which amounts
to a 70% error reduction compared to the square-shaped
control pulse.
Based on the average gate composition for the two-qubit

Cliffords [44], we estimate the two-qubit Clifford error
rates rClifford;est using the following formula: rClifford;est ¼
8.25 × r1qb þ 1.5 × rCZ. The estimated Clifford error rates
rClifford;est for the square and optimal pulses are 1.79�0.29%
and 1.02� 0.11%, respectively. Differences between
rClifford;est and rClifford are possibly due to residual distortion
of the two-qubit gate pulses, which may additionally
degrade the quality of subsequent single-qubit gates. By
comparing Figs. 4(d) and 4(h), we find that change in rClifford
(0.79%) is very close to 1.5× the change in rint (0.77%),
conforming to the theory.
By solving a Lindblad master equation, we find that the

T1 limit for a 60-ns-long CZ gate is approximately 99.85%
(see Appendix R). We also simulate the contribution of
1=fα flux noise (which predominantly limits the pure
dephasing times T�

2 of QB2 and CPLR at the idling

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 4. Suppressing leakage to the coupler by optimizing the coupler control. (a),(e) Square-shaped and Slepian-based optimal control
waveforms for 60-ns-long CZ gates, respectively. (b),(f) State population of j101i after applying repeated CZ gates versus the coupler
pulse amplitude (fmin

c − f1) and the number of CZ gates NCZ. (c),(g) Leakage population to j011i after applying repeated CZ gates. The
square-shaped pulse shows periodic leakage to j011i, which is suppressed down to the background noise limit by optimizing the pulse
shape. (d),(h) Interleaved randomized benchmarking (RB) results of the CZ gates. The pulse sequence is illustrated at the top; we apply
NClifford random two-qubit Clifford gates (C2) and the recovery Clifford gate C−1

2 , which makes the total sequence equal to the identity
operation. Errors bars represent �1 standard deviations. We measure 30 random sequences for each sequence length NClifford. To ensure
accurate uncertainties of the error rates (rClifford and rint), we perform a weighted least-squares fit using the inverse of variance as the
weights.

REALIZATION OF HIGH-FIDELITY CZ AND ZZ-FREE … PHYS. REV. X 11, 021058 (2021)

021058-5



configuration) to the gate error rate and find it to be an order
of magnitude smaller than the T1 contribution (see
Appendixes C and S for details). The gap between the
measured fidelity FCZ and its coherence limit implies
additional coherent, leakage errors due to imperfect control.
We find the leakage rate of the CZ gate with an optimal
pulse shape is 0.06� 0.07% possibly due to residual pulse
distortion of Z pulses (see Appendix O for details).

C. Suppressing residual ZZ of the iSWAP gate

Now, we move on to engineering the level structure of
the coupler to suppress residual ZZ interactions during the
iSWAP gate. The transmon qubit has a weak negative
anharmonicity [28]. Therefore, the second excited levels of
the transmons j200i and j002i are located near the
computational qubit state j101i when the two qubits are
in resonance. Interaction between these three energy
levels leads to level repulsion [red arrows in Fig. 5(a)].
Because of the repulsion, the frequency of j101i is
shifted upward (note that j200i and j002i are located
below j101i), which results in a positive ZZ interaction
of strength ζ ≡ ðEj101i − Ej001iÞ − ðEj100i − Ej000iÞ, where
Ejmi denotes the eigenenergy of jmi. Such residual ZZ
interactions are generally either accommodated [26] or
actively corrected by applying a partial CZ gate [17] within
the transmon qubit architecture. Recently, an approach to
suppress the ZZ interactions by using qubits with opposing
signs for their anharmonicity (e.g., a transmon qubit and a
C-shunt flux qubit) has been proposed and demonstrated
[46,47]. In this work, we utilize the higher level of the
coupler j020i to counteract the level repulsion while using
only transmon qubits. Note that j020i is located above
j101i, thereby providing a means to cancel the unwanted
ZZ term [blue arrow in Fig. 5(a)].
In Fig. 5(b), we measure the residual ZZ strength ζ as a

function of ωc, when QB1 and QB2 are in resonance. To
measure ζ, we perform a cross-Ramsey-type experiment,
which measures the conditional phase accumulation ϕZZ of
QB1 while initializing QB2 in either its ground or excited
state. We measure ϕZZ at full periods of the swap
oscillation, where the net amount of excitation exchange
is zero. Dividing ϕZZ by the swap period (2π=g̃iSWAP), we
extract ζ=2π. The experimental data show good agreement
with numerical simulation [green curve in Fig. 5(b); see
Appendix Q for details about the simulation]. We also
compare the experimental data with simulated ζ for a two-
level CPLR [yellow curve in Fig. 5(b)]. Owing to the
presence of the higher level of CPLR, ζ is significantly
suppressed. We also note that levels beyond the second
excited level of CPLR have little impact on the dynamics,
since they are outside the relevant manifolds. This result
clearly indicates that using a well-engineered multilevel
coupler can significantly reduce a residual ZZ error of the
iSWAP gate, thereby further enhancing the fidelity.

(a) (b)

(c)

(e)

(d)

FIG. 5. Canceling out residual ZZ interaction of the iSWAP by
exploiting the engineered coupler level structure. (a) The residual
ZZ interaction during iSWAP originates from the level repulsion
between j101i and the second excited level of the qubits
(red arrows). This level repulsion is counteracted by utilizing
the level repulsion from the second excited state of the coupler
(blue arrow). (b) Residual ZZ strength ζ as a function of the
coupler frequency ωc, when the two qubits are on resonance. The
top x axis shows the corresponding perturbation parameter
g1c=ðωc − ω1Þ. The solid curves correspond to numerical sim-
ulation assuming either ηc ¼ ∞ (yellow) or ηc=2π ¼ −90 MHz
(green). (c) ZZ angle of the iSWAP gate ϕZZ=NiSWAP as a
function of the gate length tG. We cancel out the ZZ angle by
exploiting the tunability of ζ from positive to negative values. The
inset shows the dynamic change of ζ during the excursion of ωc
for a 30-ns-long iSWAP gate. Each data point is obtained by
fitting the accumulated ZZ angle ϕZZ of NiSWAP-times repeated
iSWAP gates with a linear function as shown in (d). (e) The
results of interleaved RB for the ZZ-free 30-ns-long iSWAP gate
(see the main text for details). We measure 30 random sequences
for each sequence length (NClifford). Error bars represent �1
standard deviations. The error rates (rClifford and rint) and their
uncertainties are extracted by performing a weighted least-
squares fit using the inverse of variance as the weights.
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When performing the iSWAP gate, its residual ZZ angle
ϕZZ is accumulated by a dynamic change of ζ during the
excursion of CPLR frequency ωc. If the negative and
positive portions of ζ during the gate are equal, the overall
ZZ phase is completely canceled out. We measure the
residual ZZ angle ϕZZ of the iSWAP gate by adjusting the
pulse length in sync with the pulse amplitude such that
the excitation is always fully swapped [Fig. 5(c)]. We
optimize the iSWAP pulse shape in the same manner to
suppress coherent leakage to CPLR (see Appendixes G
and H for details). Therefore, we simultaneously address
both coherent leakage to CPLR and residual ZZ interaction
by optimizing the pulse shape and duration. Owing to the
cancellation induced by the higher level of CPLR, the
iSWAP gate with a 30-ns duration features negligible
residual ZZ (ϕZZ=NiSWAP ¼ 0.02� 0.03°), which we refer
to as the ZZ-free iSWAP gate [Fig. 5(d)]. Note that the
duration of a ZZ-free iSWAP gate depends on the coupler’s
anharmonicity ηc. Here, we engineer the coupler’s level
structure such that its anharmonicity is relatively small
(ηc=2π ¼ −90 MHz), in order to implement a faster ZZ-
free iSWAP gate than what would be possible with larger ηc
(see Appendix I for details).
We measure the two-qubit interaction fidelity of the ZZ-

free iSWAP gate by performing interleaved RB in Fig. 5(e).
The tune-up procedures for the iSWAP gate are described
in Appendix N. Unlike the CZ gate, when performing
single-qubit gates, we bias QB1 and QB2 in resonance to
synchronize their XY axes in the Bloch sphere (see
Appendix J for details). This biasing is facilitated by the
tunable coupler, which switches off the effective transverse
coupling between QB1 and QB2. Since they are put in
resonance, the microwave cross talk between the XY drive
tones becomes critical. We cancel out this microwave cross
talk by applying active cancellation tone for each of the
drive lines (see Appendix K for details). We find that using
a long microwave pulse is desirable for better active
cancellation. Hence, we apply 70-ns-long microwave
pulses when implementing X and Y single-qubit gates,
even though they show lower average gate fidelities
(QB1 ¼ 99.92%, QB2 ¼ 99.81%) than the 30-ns-long
pulses used in the CZ gate benchmarking experiments
(QB1 ¼ 99.94%, QB2 ¼ 99.90%). See Appendix L for
single-qubit Clifford randomized benchmarking data.
Unlike the CZ gate, we implement actual (not virtual)

Z gates using XY gates (see Appendix P) to cancel out
Z rotations that are accompanied by the iSWAP gate. As
a consequence, when performing the interleaved RB, the
iSWAP-interleaved sequence acquires 0.1125 additional
XY gates per Clifford on average (see Appendix M for
details). We extract the two-qubit interaction fidelity
FiSWAP by subtracting the contribution of single-qubit
gate error 0.1125 × r1QB ≈ 0.015% from the error rate
rint of the interleaved gate: FiSWAP≡1−riSWAP ¼
1−ðrint−0.1125×r1QBÞ. Owing to the ZZ cancellation

and a short gate length, the measured iSWAP gate exhibits
high two-qubit interaction fidelity FiSWAP ¼ 99.87�
0.23%. Based on the average gate composition for the
two-qubit Cliffords (see Appendix M for details), we
estimate the two-qubit Clifford error rates rClifford;est using
the following formula: rClifford;est ¼ 10.9375 × r1qb þ
1.5 × riSWAP. The estimated Clifford error rate is
1.73� 0.37%. The difference between rClifford;est and
rClifford could be due to residual distortion of the two-qubit
gate pulses. The measured two-qubit interaction fidelity is
close to the T1 limit of 99.91% obtained by solving the
Lindblad master equation (see Appendix R). We confirm
that error contribution of 1=fα flux noise is relatively
insignificant (see Appendixes C and S for details). Again,
note that this two-qubit interaction fidelity quantifies only
the quality of the native iSWAP gate, which contains
additional unwanted single-qubit Z rotations. In practice,
such additional Z rotations can be compensated by compil-
ing the correctional Z rotations into adjacent single-qubit
gates (see Appendix M, for example).
We note a large uncertainty in an estimate for the two-

qubit interaction fidelity FiSWAP. The large uncertainty is
mainly due to relatively low single-qubit gate fidelities
(approximately 99.86%), which degrades the fidelity of
reference Clifford sequences [48]. These low single-qubit
gate fidelities arise from biasing the qubits on resonance to
avoid phase swapping, which necessitates microwave
cross talk cancellation. Further research should be under-
taken to improve the single-qubit gate fidelities in this
architecture. One alternative is to bias the qubits off-
resonantly and correct for the accumulated single-qubit
phases in software [49]. Exploring the viability of this
approach is the subject of our future work. In addition,
applying iterative randomized benchmarking [50,51]
would be useful to better characterize the contributions
of systematic coherent errors versus incoherent noise to
the two-qubit gates.

IV. DISCUSSION

Looking forward, our work provides a path toward
building quantum information processors that are capable
of running near-term quantum applications and ultimately
achieving fault-tolerant quantum computation. Our optimal
control approaches to suppressing coherent leakage of
multiqubit gates is of particular importance, because
leakage error is especially detrimental to the implementa-
tion of quantum error correcting codes [44,52–56].
Additionally, the high-fidelity ZZ-free iSWAP gate (more
generally, XY entangling gates without residual ZZ) is
beneficial for NISQ applications, since it enables efficient
circuit compilation and improves the accuracy of NISQ
algorithms such as quantum simulation of molecular
eigenstates [57–59], quantum approximate optimization
algorithms for solving high-dimensional graph problems
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[60,61], and quantum simulation of many-body condensed
matter systems (e.g., the 2D XY model) [49,62–64].
While the residual ZZ of an iSWAP gate can be canceled

by applying an additional CPHASE gate, this inevitably
increases the circuit depth, which degrades the performance
of (NISQ) algorithms. Alternatively, one can implement
error mitigation techniques to alleviate the detrimental
effect of residual ZZ on algorithms [59], but this process
may also introduce overhead, such as additional measure-
ments and classical postprocessing, depending on the
mitigation protocols. Notably, all these efforts to reduce
the impact of residual ZZ of XY entangling gates can be
simply avoided by using our ZZ cancellation approach.
Taken together, the principles and demonstrations shown

in this work help resolve major challenges in the imple-
mentation of quantum computing hardware for NISQ-era
applications.

The data that support the findings of this study may be
made available from the corresponding authors upon
request and with the permission of the U.S. government
sponsors who funded the work.
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APPENDIX A: MEASUREMENT SETUP

The experiments are performed in a BlueFors XLD-600
dilution refrigerator with a base temperature of 10 mK.

We magnetically shield the device with a superconducting
can surrounded by a Cryoperm-10 cylinder. All attenuators
in the cryogenic samples are made by XMA and installed to
remove excess thermal photons from higher-temperature
stages. We apply microwave readout tones to measure the
transmission of the device. We pump the Josephson
traveling wave parametric amplifier (JTWPA) [65] using
an rf source (Berkeley Nucleonics Corp Model No. 845), in
order to preamplify the readout signal at base temperature.
A microwave isolator placed after the sample allows for the
signal to pass through to the JTWPA without being
attenuated while removing all the reflected noise of the
JTWPA and dumping it in a 50 Ω termination. Two
microwave isolators are placed after the JTWPA to prevent
noise from higher-temperature stages to the JTWPA and the
sample. We amplify the signal by using a high-electron
mobility transistor amplifier, which is thermally connected

rf Source dc Source

FIG. 6. A schematic diagram of the experimental setup.
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to the 4 K stage. The output line is further amplified outside
of the cryostat with an amplifier (MITEQ AMF-5D-
00101200-23-10P) with a quoted noise figure of 2.3 dB
and a preamplifier (Stanford Research SR445A).
Outside of the cryostat, we have all of the control

electronics which allow us to apply signals used for the
XY and Z controls of the qubits and the coupler. Pulse
envelopes of XY control signals and readout signals are
programmed in Labber software and then uploaded to
arbitrary waveform generators (AWG Keysight M3202A).
Subsequently, the pulses generated by AWGs are mixed
with coherent tones from rf sources (Rohde and Schwarz
SGS100A). Z control signals are generated by AWGs
(AWG Keysight M3202A). We also apply magnetic flux
globally through a coil installed in the device package
as an additional dc flux bias source (Yokogawa GS200).
All components for generating signals are frequency
locked by a common rubidium frequency standard
(Stanford Research Systems FS725) (10 MHz). A detailed
schematic is given in Fig. 6.

APPENDIX B: DEVICE SETUP

The device parameters are summarized in Table I. The
j0i → j1i transition frequencies of the qubits and the
coupler as a function of flux bias are shown in Fig. 7.
We note that the maximum frequencies have decreased 1–
2 MHz in each cooldown, due to device aging.
The coupling strengths between the qubit and coupler

g1c=2π; g2c=2π are approximately 72 MHz. Note that
further increasing g1c, g2c enables faster gates with fewer
nonadiabatic effects. However, solely increasing g1c, g2c
results in an increase of the idling coupler frequency ωc;idle

at which the net qubit-qubit coupling is nearly zero.
There are practical considerations that place an upper
limit on ωc;idle. For example, other modes in the system
such as readout resonators or/and spurious package modes
should not be within the operating frequency range
of the coupler. Alternatively, one could also increase
the direct qubit-qubit coupling g12 to compensate for
the increased g1c, g2c such that ωc;idle remains at a lower
frequency and is within the ideal operating range (no
other modes fall within this range). However, increasing
g12 can be potentially problematic when scaling up due
to strong parasitic ZZ coupling between next-nearest-
neighboring qubits. Given these constraints, we choose
the coupling strengths that enable fast two-qubit gates
(30–60 ns) via our optimized control techniques and avoid
unwanted resonances between a coupler and other modes
on the chip.
We measure coherence times of QB1, QB2, and CPLR at

the idling configuration (ω1=2π ¼ 4.16 GHz, ω2=2π ¼
4.00 GHz, and ωc=2π ¼ 5.45 GHz) for 16.5 h (Fig. 8).
At the idling configuration, we bias QB2 away from its
flux-insensitive point (commonly referred to as a “sweet

spot”) in order to avoid two-level systems (TLSs) [66,67]
during two-qubit gate operations.
We also measure T1 of QB2 and CPLR as functions

of their frequencies ω2 and ωc (Fig. 9). We find TLSs
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FIG. 7. j0i→ j1i transition frequencies of the qubits (red
and blue) and the coupler (black). Circles correspond to
experimental data. Solid curves correspond to simulations based
on the fitted circuit parameters: QB1 (EJ=h¼12.2GHz and
Ec=h¼ 0.195GHz), CPLR (E1

J=h ¼ 46 GHz, E2
J=h ¼ 25 GHz,

and Ec=h¼0.085GHz), and QB2 (E1
J=h¼13GHz, E2

J=h¼
2.8GHz, and Ec=h ¼ 0.19 GHz), where EJ and Ec denote the
corresponding Josephson energy and the charging energy, re-
spectively [28].

TABLE I. Device parameters.

QB1 CPLR QB2

ω=2πa (GHz) 4.16 5.45 4.00
η=2πb (MHz) −220 −90 −210
g1c=2π

c (MHz) 72.5
g2c=2π

c (MHz) 71.5
g12=2π

c (MHz) 5.0
T1

d (μs) 60 10 30
T�
2
d (μs) 66 1 5

Techo
2

d (μs) 103 6 16

ωr=2π
e (GHz) 7.12 7.17 7.07

κr=2π
f (MHz) 0.5 0.5 0.5

χð0;1Þr =2πg (kHz) 170 392 140

χð1;2Þr =2πh (kHz) 182 313 141

aj0i → j1i transition frequencies at the idling configuration.
bAnharmonicities at the idling configuration.
cPairwise coupling strengths at ω1=2π¼ω2=2π¼ωc=2π ¼

4.16GHz.Note that g1c, g2c, and g12 depend onω1,ω2, andωc [13].
dEnergy decay time (T1), Ramsey decay time (T�

2), and spin-
echo decay time (Techo

2 ) measured at the idling configuration.
eReadout resonator frequency.
fReadout resonator linewidth.
gEffective dispersive shifts for the j0i → j1i transition due to

the interaction with the readout cavity mode.
hEffective dispersive shifts for the j1i → j2i transition due to

the interaction with the readout cavity mode.
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in both QB2 and the coupler, but they are located out of
the operating frequency ranges, so that they negligibly
affect the performance of two-qubit gates. However, we
note that the TLS landscape varies between cooldowns,
occasionally causing TLSs to jump into the operating
range for CPLR. We observe degradation of the two-qubit
gate fidelities (below 99%), when TLSs are strongly
coupled to the coupler in its operating frequency range
[Fig. 10(a)].
In these experiments, we use relatively large area

Josephson junctions (1–3 μm× 200 μm). This choice is
to (i) achieve a much higher coupler frequency than the
qubit frequencies while using only a single e-beam layer
and (ii) use asymmetric SQUIDs, which are advantageous
for their lower flux sensitivity. When using only a single
e-beam layer and, therefore, a single critical current
density, the need for both large and small EJ results in
certain junctions being necessarily large in area. These
large junctions ultimately lead to an increase in the number
of TLSs [68,69]. To mitigate this issue, one can employ
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FIG. 9. (a) Energy relaxation times of QB2 as a function of its
frequency ω2. Its T1 drops at ω2=2π ¼ 3.75 and 4.07 GHz due to
TLSs. (b) Energy relaxation times of CPLR as a function of its
frequency ωc. Its T1 drops at ω2=2π ¼ 5.1 and 5.9 GHz due
to TLSs.
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multiple e-beam layers with different critical current
densities, such that both large and small EJ values can
be fabricated using only small-area Josephson junctions
(approximately 200 nm × 200 nm). These smaller junc-
tions reduce the probability of strongly coupled TLSs
appearing in the operating regime. This approach will be
implemented in future work.

APPENDIX C: 1=f α FLUX NOISE
IN THE DEVICE

We characterize 1=fα flux noise which predominantly
limits the dephasing times T�

2 and T
echo
2 of QB2 andCPLR at

the idling configuration. Following Ref. [70], we estimate
the power spectral densities SechoΦ ðωÞ ¼ ðAecho

Φ =ωÞ of 1=f
flux noise from spin-echo measurement data. The flux noise
amplitude

ffiffiffiffiffiffiffiffiffiffi
Aecho
Φ

p
is calculated from the following equation:ffiffiffiffiffiffiffiffiffiffi

Aecho
Φ

p
¼ ðΓecho

ϕ =
ffiffiffiffiffiffiffi
ln 2

p Þð∂ω=∂ΦÞ−1, where Γecho
ϕ is a

Gaussian pure dephasing rate and ð1=2πÞð∂ω=∂ΦÞ is
a flux sensitivity of the j0i → j1i transition frequency. To
compute Γecho

ϕ , we perform a fit to the decay curve
fðtÞ ∝ exp ½−t=ð2Texp

1 Þ − ðΓecho
ϕ tÞ2�, where Texp

1 is the

energy relaxation time measured in a preceding T1 experi-
ment. Table II presents the power spectral densities at 1 Hz
for QB2 and CPLR. We find that these values are compa-
rable with the numbers in the literature [70,71].
We compute the noise power spectral density at long

timescales (5 × 10−4 − 10−1 Hz) from repeated Ramsey
measurements [72,73] (see Figs. 11 and 12). The estimated
power spectral density shows a 1=fα dependence and
is fitted to the following equation (an orange dashed
curve in Fig. 12): SRamsey

Φ ðωÞ ¼ ðARamsey
Φ =ωαÞ, where the

exponent α ≈ 1.33 and ARamsey
Φ ≈ ð6μΦ0Þ2 × ðHzÞðα−1Þ. We

find that the corresponding power spectral density at
1 Hz SRamsey

Φ ðω=2π ¼ 1 HzÞ ≈ ð1.77 μΦ0Þ2=Hz.

APPENDIX D: STATE READOUT

We probe quantum states of QB1, QB2, and CPLR via
the dispersive readout scheme [30]. We drive the readout
resonators by applying a square-shaped 3-μs-long micro-
wave pulse. We discriminate the three states—ground state
j0i, the first excited state j1i, and the second excited state
j2i—for QB1, QB2, and CPLR. The first excited state j1i is
prepared by applying a 250-ns-long π pulse that drives the
j0i → j1i transition. The second excited state j2i is
prepared by applying two consecutive 250-ns-long π
pulses, which drive the j0i → j1i and j1i → j2i transitions,
respectively.
For state discrimination, we use a linear support vector

machine, which finds hyperplanes separating the I-Q data
into three parts which corresponding to j0i, j1i, and j2i,
respectively (Fig. 13) [74]. We characterize the readout
performance by computing assignment probability matri-
ces. See Table III for the assignment probability matrices.
Note that the assignment probabilities include state prepa-
ration errors.
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FIG. 11. Fluctuation in the QB2 frequency as a function of time,
measured via repeated Ramsey experiments. We compute the
PSD of the frequency fluctuation by using the scipy.signal.welch
function from the open-source PYTHON library SciPy.

FIG. 12. The estimated flux noise PSD affecting QB2 from
repeated Ramsey measurements (blue circles and the correspond-
ing fit, orange dashed curve) and spin-echo experiments (green
dashed curve).

TABLE II. Power spectral densities SechoΦ ðfÞ at 1 Hz of 1=f flux
noise estimated from echo experiments.

Γecho
ϕ

(103 s−1)

ð1=2πÞð∂ω=∂ΦÞ
ðGHz=Φ0Þ SechoΦ ðf ¼ 1 HzÞ

QB2 55� 9 2.92 ð1.4μΦ0Þ2=Hz
CPLR 118� 4 8.73 ð1.0μΦ0Þ2=Hz
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APPENDIX E: STATIC ZZ INTERACTION
IN THE DISPERSIVE LIMIT

In this section, we present experimental data and
perturbative calculations of the static ZZ interaction ζ as
a function of CPLR’s frequency ωc. For the perturbative
analysis, we assume that QB1, QB2, and CPLR are
dispersively coupled to each other gij=jωi − ωjj ≪ 1

(i; j ∈ f1; 2; cg, i < j).
Figure 14 shows experimental data of ZZ interaction

strength ζ as a function of ωc. In this measurement, we bias
the frequencies of QB1 and QB2 at 4.16 and 4.00 GHz,
respectively. We measure ζ via a cross-Ramsey-type experi-
ment which measures the QB1 frequency while initializing

TABLE III. Assignment probability matrices PðmjnÞi
(i ∈ f1; 2; cg) for the state readout of QB1, QB2, and CPLR.

Prepared state n

Qubit 1 P1ðmjnÞ j0i j1i j2i
Assigned state m j0i 0.9885 0.0673 0.0304

j1i 0.0115 0.9266 0.0907
j2i 0 0.0061 0.8789

Qubit 2 P2ðmjnÞ j0i j1i j2i
Assigned state m j0i 0.9946 0.0772 0.0385

j1i 0.0053 0.905 0.1734
j2i 0.0001 0.0178 0.7881

Coupler PcðmjnÞ j0i j1i j2i
Assigned state m j0i 0.9915 0.1918 0.0741

j1i 0.0052 0.7796 0.1891
j2i 0.0033 0.0286 0.7368

(a)

(b)

(c)

FIG. 13. Single-shot measurements in the I-Q plane for the
qubits (a),(b) and the coupler (c). For the same color points, we
repetitively prepare at the corresponding state and measure the
I-Q outcomes (number of repetitions, 10 000). Black markers
denote the median points.

FIG. 14. Static ZZ interaction strength ζ as a function of the
coupler frequency ωc. QB1 and QB2 are biased at ω1=2π ¼
4.16 GHz and ω2=2π ¼ 4.00 GHz. The solid black curve cor-
responds to ζ obtained by the perturbation theory up to the fourth
order without rotating-wave approximation [Eq. (E3)]. The blue
dashed curve corresponds to ζ obtained by numerically diagonal-
izing the system Hamiltonian [Eq. (1); see Appendix Q for the
parameters used].
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QB2 in either its ground or excited state. The static ZZ
interaction is nearly eliminated when ωc=2π ¼ 5.45 GHz.
At this bias point (the idling configuration), we perform
single-qubit gates in the CZ gate benchmarking experi-
ments (Fig. 4 in the main text).
Following Ref. [75], we use perturbation theory to

calculate theoretical values of ζ up to the fourth order
according to the following formula:

ζ ¼ ðEj101i − Ej001iÞ − ðEj100i − Ej000iÞ; ðE1Þ
where Ejmi denotes the eigenenergy of the eigenstate
jmi ∈ fj000i; j100i; j001i; j101ig. Specifically, we calcu-
late the ZZ contributions of the nth-order perturbations ζðnÞ

by computing the nth-order corrections EðnÞ
jmi to the eige-

nenergies of jmi (n ∈ f2; 3; 4g, jmi ∈ fj101i; j001i; j100i;
j000i) as follows:

ζðnÞ ¼ ðEðnÞ
j101i − EðnÞ

j001iÞ − ðEðnÞ
j100i − EðnÞ

j000iÞ: ðE2Þ

The ZZ contributions from the nth-order perturbation terms

can be split into the rapid counterrotating-wave terms ζðnÞCRW

and the slow rotating-wave terms ζðnÞRW. In general, the rapid
oscillating terms are neglected by applying the rotating-
wave approximation [16]. However, in our case, we note
that the fast-oscillating terms considerably contribute to the
static ZZ interaction.
The total ZZ contribution up to the fourth-order pertur-

bation is given as

ζ ¼ ζð2ÞRW þ ζð3ÞRW þ ζð4ÞRW þ ζð2ÞCRW þ ζð3ÞCRW þ ζð4ÞCRW: ðE3Þ

For brevity’s sake, we introduce the following notations:

Δij ≡ ωi − ωj; ðE4Þ

Σij ≡ ωi þ ωj; ðE5Þ

where i; j ∈ f1; 2; cg. The ZZ contributions from the nth-
order perturbation terms are calculated as follows:

ζð2ÞRW ¼ g212

�
2

Δ12 − η2
þ 2

Δ21 − η1

�
; ðE6Þ

ζð3ÞRW ¼ g1cg2cg12

�
4

ðΔ12 − η2ÞΔ1c
þ 4

ðΔ21 − η1ÞΔ2c

þ 2

Δ1cΔ2c
−

2

Δ12Δ1c
−

2

Δ21Δ2c

�
: ðE7Þ

For the fourth-order slow rotating-wave terms, we omit
smaller contributing terms containing g12:

ζð4ÞRW ¼ g21cg
2
2c

�
2

�
1

Δ1c
þ 1

Δ2c

�
2 1

Δ1c þ Δ2c − ηc

þ 2

Δ2
2cðΔ21 − η1Þ

þ 2

Δ2
1cðΔ12 − η2Þ

−
�

1

Δ2c
þ 1

Δ12

�
1

Δ2
1c
−
�

1

Δ1c
þ 1

Δ21

�
1

Δ2
2c

�
; ðE8Þ

ζð2ÞCRW ¼ g212

�
−4

Σ12þη1þη2
þ 2

Σ12þη1
þ 2

Σ12þη2

�
: ðE9Þ

Since ζð3ÞCRW and ζð4ÞCRW are expressed by a large number of
terms, for the sake of clarity, we instead write the

corresponding eigenenergy corrections EðnÞ
jmi as follows.

Namely, ζð3ÞCRW is given by

ζð3ÞCRW ¼ ðEð3Þ
j101i − Eð3Þ

j001iÞ − ðEð3Þ
j100i − Eð3Þ

j000iÞ; ðE10Þ

where the eigenenergy corrections EðnÞ
jmi are given as

Eð3Þ
j101i ¼ g1cg2cg12

�
8

ðΣ1cþη1ÞðΣ12þη1þη2Þ
þ 8

ðΣ1cþη1ÞðΣ2cþη2Þ
þ 8

ðΣ2cþη2ÞðΣ12þη1þη2Þ
−

4

Δ2cðΣ1cþη1Þ
−

4

ðΔ12−η2ÞðΣ2cþη2Þ
−

4

ðΔ21−η1ÞðΣ1cþη1Þ

−
4

Δ1cðΣ2cþη2Þ
þ 2

Δ1cΣ12

þ 2

Δ2cΣ12

�
; ðE11Þ

Eð3Þ
j100i ¼ g1cg2cg12

�
4

ðΣ1c þ η1ÞðΣ12 þ η1Þ
þ 4

ðΣ12 þ η1ÞΣ2c

þ 4

ðΣ1c þ η1ÞΣ2c
−

2

Δ1cΣ2c
−

2

Δ12Σ2c

�
; ðE12Þ

Eð3Þ
j001i ¼ g1cg2cg12

�
4

ðΣ2c þ η2ÞðΣ12 þ η2Þ
þ 4

ðΣ12 þ η2ÞΣ1c

þ 4

ðΣ2c þ η2ÞΣ1c
−

2

Δ2cΣ1c
−

2

Δ21Σ1c

�
; ðE13Þ

Eð3Þ
j000i ¼ g1cg2cg12

�
2

Σ1cΣ12

þ 2

Σ1cΣ2c
þ 2

Σ2cΣ12

�
: ðE14Þ

For the fourth-order fast oscillating terms, we omit
smaller contributing terms. Specifically, terms of the
order of Oðg4ic=Δ2

icΣicÞ and Oðg4ic=ΔicΣ2
icÞ are calculated,

whereas terms of the order of Oðg4ic=Σ3
icÞ (i ∈ f1; 2g) and

Oðg12Þ are neglected. Therefore, ZZ contribution ζð4ÞCRW
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from the fourth-order fast oscillating terms is given as

ζð4ÞCRW ¼ ðEð4Þ
j101i − Eð4Þ

j001iÞ − ðEð4Þ
j100i − Eð4Þ

j000iÞ; ðE15Þ

where the eigenenergy corrections EðnÞ
jmi for the predominantly contributing terms are given as follows.

1. Order Oðg21cg22c=Δ2
icΣicÞ, i ∈ f1;2g

Eð4Þ
j101i ¼ g21cg

2
2c

�
−

4

Δ2
2cðΔ12þη1þ2ωcþηcÞ

−
4

Δ2
1cðΔ21þη2þ2ωcþηcÞ

þ 1

Δ2
1cΣ12

þ 1

Δ2
2cΣ12

−
4

Δ2cðΔ21−η1ÞðΣ1cþη1Þ

−
4

Δ1cðΔ12−η2ÞðΣ2cþη2Þ
−

4

Δ2cð2ωcþηcÞΔ1c
þ 2

Δ1cΔ2cΣ12

þ 2

Δ2
2cðΣ1cþη1Þ

þ 2

Δ2
1cðΣ2cþη2Þ

�
−

2g42c
Δ2

2cð2ωcþηcÞ
−

2g41c
Δ2

1cð2ωcþηcÞ
þ 2g41c
Δ2

1cðΣ1cþη1Þ
þ 2g42c
Δ2

2cðΣ2cþη2Þ
; ðE16Þ

Eð4Þ
j100i ¼ g21cg

2
2c

�
−

2

Δ2
1cðΔ21 þ 2ωc þ ηcÞ

−
2

Δ1cΔ12Σ2c
þ 1

Δ2
1cΣ2c

�
þ 2g41c

Δ2
1c

�
−

1

2ωc þ ηc
þ 1

Σ1c þ η1

�
; ðE17Þ

Eð4Þ
j001i ¼ g21cg

2
2c

�
−

2

Δ2
2cðΔ12 þ 2ωc þ ηcÞ

−
2

Δ2cΔ21Σ1c
þ 1

Δ2
2cΣ1c

�
þ 2g42c

Δ2
2c

�
−

1

2ωc þ ηc
þ 1

Σ2c þ η2

�
; ðE18Þ

Eð4Þ
j000i ¼ 0: ðE19Þ

2. Order Oðg21cg22c=ΔicΣ2
icÞ, i ∈ f1;2g

Eð4Þ
j101i ¼ g21cg

2
2c

�
8

Δ2cðΔ12þη1þ2ωcþηcÞðΣ1cþη1Þ
þ 8

Δ1cðΔ21þη2þ2ωcþηcÞðΣ2cþη2Þ
þ 8

Δ2cð2ωcþηcÞðΣ1cþη1Þ

þ 8

Δ1cð2ωcþηcÞðΣ2cþη2Þ
þ 2

ðΔ12−η2ÞðΣ2cþη2Þ2
þ 2

ðΔ21−η1ÞðΣ1cþη1Þ2
−

2

Δ2cðΣ1cþη1Þ2
−

2

Δ1cðΣ2cþη2Þ2
�

þ 8g42c
Δ2cð2ωcþηcÞðΣ2cþη2Þ

þ 8g41c
Δ1cð2ωcþηcÞðΣ1cþη1Þ

−
2g41c

Δ1cðΣ1cþη1Þ2
−

2g42c
Δ2cðΣ2cþη2Þ2

; ðE20Þ

Eð4Þ
j100i ¼ g21cg

2
2c

�
4

Δ1cΣ2cðΔ21 þ 2ωc þ ηcÞ
þ 4

Δ1cΣ2cð2ωc þ ηcÞ
þ 1

Δ12Σ2
2c
−

1

Δ1cΣ2
2c

�
þ g41c

�
8

Δ1cð2ωc þ ηcÞðΣ1c þ η1Þ
−

2

Δ1cðΣ1c þ η1Þ2
�
; ðE21Þ

Eð4Þ
j001i ¼ g21cg

2
2c

�
4

Δ2cΣ1cðΔ12 þ 2ωc þ ηcÞ
þ 4

Δ2cΣ1cð2ωc þ ηcÞ
þ 1

Δ21Σ2
1c
−

1

Δ2cΣ2
1c

�
þ g42c

�
8

Δ2cð2ωc þ ηcÞðΣ2c þ η2Þ
−

2

Δ2cðΣ2c þ η2Þ2
�
; ðE22Þ

Eð4Þ
j000i ¼ 0: ðE23Þ
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In Fig. 14, we plot the theoretical values of ζ obtained by
the calculation of Eq. (E3). The theoretical calculation
(solid black curve) shows good agreement with both
experimental data (orange circles) and a numerical simu-
lation (blue dashed curve).

APPENDIX F: Z-PULSE TRANSIENT
CALIBRATION

The shape of the Z control (flux control) pulses are
distorted as they pass through various electric components.
This pulse distortion can be analyzed in the frequency
domain by measuring the step response. In general, the
qubit is employed as a sensor to characterize the step
response of the flux control line [39,40,44]. Specifically,
we measure a Ramsey-type experiment, which measures
the dynamic frequency change of the qubit as a response to
the flux change.
The step response can be fitted by multiple exponential

time constants τk and settling amplitudes ak (k ¼ 1; 2;…)
as follows.

Vout;stepðtÞ ¼ V in;stepðtÞ ×
�
1þ

X
k

ake−ðt=τkÞ
�
; ðF1Þ

whereV in;stepðtÞ corresponds to a step function generated by
AWG and Vout;stepðtÞ corresponds to the response of the
qubit to the step function. Note that we express the qubit
responseVout;stepðtÞ in the unit ofAWGvoltage and calculate
the relative amplitude change Vout;stepðtÞ=V in;stepðtÞ.
To reliably characterize long-timescale transients of the

Z control pulses, we use a new protocol, which utilizes the
Han spin echo technique [76] (detailed procedures are
described in a forthcoming manuscript [41]). We measure
the turn-off transients of a square-shaped pulse with fixed
duration τpulse and fit the response with the following
equation:

Vout;pulseðtÞ ¼ V in;pulseðtÞ
X
k

akðe−ðt−τpulseÞ=τkÞ − e−ðt=τkÞÞ;

ðF2Þ
where V in;pulseðtÞ corresponds to a τpulse-long square-shaped
Z pulse generated by AWG and Vout;pulseðtÞ corresponds
to the response of the qubit to the pulse. Figures 15(a)
and 15(b) show the turn-off transients of the QB2 and
CPLR Z pulses, respectively. The pulse sequences are
illustrated in the insets. We plot the relative amplitude
change Vout;stepðtÞ=V in;stepðtÞ as a function of the time delay
between the Z pulse and the tomography pulse (t − τpulse).
We fit the transients with a sum of multiple exponential
curves and extract the exponential time constants τk and the
corresponding settling amplitudes (Table IV). Notably, we
observe long-time transients (approximately 30 μs) in our
experimental setup, which are critical to correct in order to
achieve high-fidelity two-qubit gates. We also measure and

correct transients in the flux cross talk [Fig. 15(c)], possibly
due to an additional pulse distortion that occurs during the
transmission from the end of CPLR’s flux line to the
QB2’s SQUID.

(a)

(b)

(c)

FIG. 15. (a) Measurement of a turn-off transient of a 5-μs-long
QB2Z pulse (τpulse ¼ 5 μs)withoutpredistortion (orangecrosses) and
withpredistortion (blue circles). (b)Measurementof a turn-off transient
for a 1-μs-long CPLR Z pulse (τpulse ¼ 1 μs). (c) Measurement of a
turn-off transient of flux cross talk from the CPLR’s flux line to QB2’s
SQUID. A 3-μs-long CPLR Z pulse (τpulse ¼ 3 μs) is applied. The
pulse sequences are illustrated in the insets.

TABLE IV. Summary of the fitted flux-transient parameters.

QB2 CPLR Cross talk (CPLR → QB2)

a1 (%) −0.179 −0.220 −0.1152
τ1 (ns) 21.9 31.0 1152
a2 (%) −1.024 −0.459 −1.758
τ2 (ns) 50 32.4 29 770
a3 (%) −0.251 −0.567
τ3 (ns) 87 45.7
a4 (%) −0.484 −0.938
τ4 (ns) 158 127
a5 (%) −0.487 −0.358
τ5 (ns) 773 730
a6 (%) −1.143 −1.36
τ6 (ns) 26 440 30 000
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APPENDIX G: THE EFFECTIVE
HAMILTONIANS FOR LEAKAGE DYNAMICS

DURING THE TWO-QUBIT GATES

In this section, we derive the effective two-level
Hamiltonians that describe the coherent leakage of CZ
[Eq. (2) in the main text] and iSWAP gates. We first identify
the states that strongly interact with the computational qubit
states (j000i, j100i, j001i, and j101i) during the two-qubit
gates and cause the coherent leakage. Subsequently, we
truncate the system Hamiltonian [Eq. (1)] into the relevant
subspaces spanned by these leakage states and the asso-
ciated computational qubit states.
We identify the leakage states for the CZ gate in the

single- and double-excitation manifolds (Fig. 16). Recall
that, when performing the CZ gate, we bring j101i in
resonance with j200i (ω1 þ η1 ¼ ω2) and bias the coupler
closer to the qubits to switch on the effective qubit-qubit
coupling g̃CZ. Therefore, in the single-excitation manifold,
j010i strongly interacts with j100i, since j010i (CPLR) is
brought closer to j100i (QB1) in terms of energy. On the
other hand, j001i (QB2) is detuned from j100i (QB1) by
QB1’s anharmonicity η1, and, thus, j001i is located farther
from j010i and is less hybridized with QB1 and CPLR.
Thus, we focus on the two-level dynamics between j100i
and j010i and define the relevant subspace accordingly [a
dashed purple box in Fig. 16(a)].
Along the same line, in the double-excitation manifold,

we identify the leakage states which strongly interact with
the computational qubit state j101i and cause the coherent
leakage during the CZ gate. We first rule j020i out as a
leakage state, since it couples to j101i via a second-order
process that is generally weaker than first-order inter-
actions. Next, we rule out j110i and j002i, since they
are relatively far detuned from j101i compared to j011i
and j200i. Specifically, j002i is detuned from j101i by
QB2’s anharmonicity η2, of which magnitude is much

greater than the direct QB1-QB2 coupling strength
ffiffiffi
2

p
g12

(jη2j ≫
ffiffiffi
2

p
g12). In addition, j110i is located farther from

j101i than j011i by QB1’s anharmonicity jη1j. After ruling
these out as leakage states, we determine the relevant
subspace as shown in Fig. 16(b) (spanned by the states
within the dashed green box).
Next, we truncate the system Hamiltonian to the relevant

subspaces in both the single- and double-excitation mani-
folds and obtain the following effective Hamiltonians HCZ

1

and HCZ
2 :

HCZ
1 ¼

�
ω1 g1c
g1c ωc

�j100i j010i
;

HCZ
2 ¼

0B@ω1 þ ω2

ffiffiffi
2

p
g12 g1cffiffiffi

2
p

g12 ω1 þ ω2 0

g1c 0 ωc þ ω2

1CA
j101i j200i j011i

; ðG1Þ

where we replace ω1 þ η1 by ω2, since ω1 þ η1 ¼ ω2 is
assumed here. Note that this Hamiltonian truncation is valid
only in the regime where jη1j; jη2j ≫ g1c; g2c (in our device,
jη1j ≈ jη2j ≈ 3g1c ≈ 3g2c). To analyze the leakage dynamics
under general conditions, the leakage contribution from
additional levels needs to be considered and will be of
interest in future research.
To further simplify the three-level dynamics of HCZ

2 , we
introduce a partially hybridized basis: a bright state jBi≡
cosΘj011iþsinΘj200i and a dark state jDi≡ cosΘj200i−
sinΘj011i, where Θ≡ tan−1ð ffiffiffi

2
p

g12=g1cÞ [37]. To this end,
we rewrite HCZ

2 in the hybridized basis as follows:

H̄CZ
2 ¼

0B@ω1 þ ω2 0 gB
0 ω̃D gr
gB gr ω̃B

1CA
j101i jDi jBi

; ðG2Þ

where the eigenenergies of jDi and jBi are given, respec-
tively, as

ω̃D ¼ cos2Θðω1 þ ω2Þ þ sin2Θðωc þ ω2Þ; ðG3Þ

ω̃B ¼ cos2Θðωc þ ω2Þ þ sin2 Θðω1 þ ω2Þ: ðG4Þ

The coupling strength gB between jBi and j101i is given as

gB ¼ g1c cosΘþ
ffiffiffi
2

p
g12 sinΘ; ðG5Þ

and the coupling strength gr between jBi and jDi is
given as

gr ¼ cosΘ sinΘðω1 − ωcÞ: ðG6Þ

(a) (b)

FIG. 16. Energy level diagrams of the single-excitation mani-
fold (a) and the double-excitation manifold (b) when performing
the CZ gate. The dashed boxes indicate subspaces spanned by
energy levels that are relevant to coherent leakage during the CZ
gate. The red double-headed arrows denote exchange interactions
between the energy levels.
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In the parameter regime, where g1c ≫ g12 (Θ ≈ 0), gr
becomes zero, and, therefore, j101i interacts only with
the bright state jBi; the dark state jDi is decoupled from
both of the states. This result allows us to further reduce the
three-level dynamics onto an effective two-level system, as
described by Eq. (2) in the main text. As a result, the
two effective HamiltoniansHCZ

1 (j100i and j001i subspace)
and H̄CZ

2 (j101i and jBi subspace) are equivalent to the
following effective Hamiltonian HCZ

eff up to offset energies:

HCZ
eff ¼

�
0 g1c
g1c ωc − ω1

�
: ðG7Þ

Optimal control techniques are well studied for this class
of effective Hamiltonians, which we further discuss in
Appendix H.
Next, we identify the leakage states for the iSWAP gate.

When performing the iSWAP gate, we bring j100i (QB1) in
resonance with j001i (QB2) and bias the coupler closer to
the qubits to switch on the effective qubit-qubit coupling
g̃iSWAP. Unlike the CZ gate, the computational qubit states
j100i and j001i are equally detuned from a leakage state
j010i in terms of energy. Therefore, we consider leakage
from both j001i and j100i to j010i. Accordingly, we
determine the relevant subspace in the single-excitation
manifold as shown in Fig. 17 (spanned by states in the purple
dashed box). In the double-excitation manifold, we rule
j020i out as a leakage state, because it couples to the
computational qubit state j101i via a second-order process.
We also rule out j200i and j002i, since they are detuned from
j101i by QB1 and QB2 anharmonicities, respectively, of
which both are much greater than the QB1-QB2 direct
coupling strength

ffiffiffi
2

p
g12 (jη1j; jη2j ≫

ffiffiffi
2

p
g12). Given that,

we determine the relevant subspace in the double-excitation
manifold as shown in Fig. 17(b) (spanned by states in the
green dashed box).

We truncate the system Hamiltonian to the relevant
subspaces for the iSWAP gate. Within the relevant sub-
spaces, the effective Hamiltonians HiSWAP

1 and HiSWAP
2 in

the single- and double-excitation manifolds, respectively,
are given as follows:

HiSWAP
1 ¼

0BB@
ωc g1c g2c
g1c ω1 g12
g2c g12 ω1

1CA
j010i j100i j001i

;

HiSWAP
2 ¼

0B@ 2ω1 g1c g2c
g1c ω1 þ ωc g12
g2c g12 ω1 þ ωc

1CA;

j101i j011i j110i

ðG8Þ

where we replace ω2 by ω1, since ω1 ¼ ω2 is assumed here.
To simplify the three-level dynamics of HiSWAP

1 , we
introduce a hybridized basis: a bright state jB1i≡cosξj001iþ
sinξj100i and a dark state jD1i≡ cos ξj100i − sin ξj001i,
where ξ≡ tan−1ðg1c=g2cÞ. Along the same line, we introduce
a hybridized basis forHiSWAP

2 as follows: a bright state jB2i≡
cos ξj110i þ sin ξj011i and a dark state jD2i≡ cos ξj011i−
sin ξj110i. Using these hybridization bases, we can rewrite
the effective Hamiltonians as follows:

H̄iSWAP
1 ¼

0B@ ωc gB1
0

gB1
ω̃B1

gr1
0 gr1 ωD1

1CA
j010i jB1i jD1i

;

H̄iSWAP
2 ¼

0B@ 2ω1 gB2
0

gB2
ω̃B2

gr2
0 gr2 ω̃D2

1CA
j101i jB2i jD2i

; ðG9Þ

where the coupling strengths gB1
, gB2

, and gr are given,
respectively, as

gB1
¼ gB2

¼ g1c sin ξþ g2c cos ξ; ðG10Þ

gr1 ¼ gr2 ¼ g12ðcos2 ξ − sin2 ξÞ; ðG11Þ

and the eigenenergies ω̃B1
, ω̃D1

, ω̃B2
, and ω̃D2

are given,
respectively, as

ω̃B1
¼ ω1 þ 2g12 sin ξ cos ξ; ðG12Þ

ω̃D1
¼ ω1 − 2g12 sin ξ cos ξ; ðG13Þ

ω̃B2
¼ ω1 þ ωc þ 2g12 sin ξ cos ξ; ðG14Þ

(a) (b)

FIG. 17. Energy level diagrams of the single-excitation mani-
fold (a) and the double-excitation manifold (b) when performing
the iSWAP gate. The dashed boxes indicate subspaces spanned
by energy levels that are relevant to coherent leakage during the
iSWAP gate. The red double-headed arrows denote exchange
interactions between the energy levels.
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ω̃D2
¼ ω1 þ ωc − 2g12 sin ξ cos ξ: ðG15Þ

We assume g1c ¼ g2c ≫ g12 (ξ ¼ π=4), which is
the case in our device and a practical parameter regime
for tunable couplers [13]. In this regime, j010i interacts
only with jB1i and j101i interacts only with jB2i.
Assuming ωc − ω1 ≫ g12, the corresponding two-level
Hamiltonians H̄iSWAP

2 (j010i and jB1i subspace) and
H̄iSWAP

2 (j101i and jB2i subspace) are approximately equal
to the following effective Hamiltonian HiSWAP

eff up to offset
energies:

HiSWAP
eff ¼

�
0

ffiffiffi
2

p
g1cffiffiffi

2
p

g1c ωc − ω1

�
: ðG16Þ

Once again, we reduce the system description to this two-
level Hamiltonian so that we can easily apply optimal
control techniques for the gate.

APPENDIX H: SUPPRESSION OF LEAKAGE
USING A SLEPIAN-BASED OPTIMAL CONTROL

As detailed in Appendix G, the effective Hamiltonians
that describe the leakage dynamics of CZ and iSWAP gates
are given as follows:

HCZ
eff ðtÞ ¼

�
0 g1c
g1c ωcðtÞ − ω1

�
; ðH1Þ

HiSWAP
eff ðtÞ ¼

�
0

ffiffiffi
2

p
g1cffiffiffi

2
p

g1c ωcðtÞ − ω1

�
: ðH2Þ

We optimize the control waveform ωcðtÞ for adiabatic
behavior under these two-level systems. Note that these
effective two-level systems address only predominant
leakage channels, not all possible leakage channels during
the two-qubit gates. Specifically, HCZ

eff ðtÞ addresses leakage
from j100i to j010i (in the single-excitation manifold) and
leakage from j101i to j011i (in the double-excitation
manifold) during the CZ gate. In the case of the iSWAP
gate, HiSWAP

eff ðtÞ addresses leakage from j100i and j001i to
j010i (in the single-excitation manifold) and leakage
from j101i to j110i and j011i (in the double-excitation
manifold).
Following Ref. [38], we take a Slepian-based approach

to implement an optimal control pulse that minimizes
leakage errors for any pulse longer than the chosen pulse
length. For example, a Slepian control pulse for a 60-ns-
long CZ gate minimizes the leakage error of CZ pulses
which have the same pulse amplitude but longer pulse
lengths than 60 ns.
In Fig. 18, we numerically simulate coherent leakage

of CZ gates (see Appendix Q for details about the
simulation). We assess the performance of an optimized

control pulse by comparing to a simple square pulse
[Fig. 18(a)]. Considering the bandwidth limitation of our
AWGs, the square pulse is smoothed by applying a
Hanning filter with a window width of five points (1-ns
intervals). The control pulse amplitudes, which are para-
meterized by the minimum point of CPLR frequency fmin

c ,
are chosen such that 60-ns-long control pulses perform the

(a)

(b)

(c)

FIG. 18. Numerical simulation of coherent leakage of CZ gates.
(a) Square-shaped and optimal control waveforms for 60-ns-long
CZ gates, respectively. (b) Coherent leakage in the double-
excitation manifold. We prepare j101i, apply a control pulse,
and then measure the state populations. By using the optimal
pulse shaping, we suppress population of the leakage state j011i
(orange curve) below 10−7 for pulses longer than 60 ns. (c) Co-
herent leakage in the single-excitation manifold. We prepare
j100i, apply a control pulse, and then measure the state
populations. By using optimal pulse shaping, we suppress
population of the leakage state j010i (blue curve) below 10−7

for pulses longer than 60 ns. The leakage to j001i is not
suppressed as much, since the optimal control relies on the
effective Hamiltonian HCZ

eff ðtÞ that addresses only leakage from
j100i to j010i in the single-excitation manifold. The data points
in (b),(c) are obtained every 1 ns.
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CZ gate. In Fig. 18(b), to characterize the leakage in the
double-excitation manifold, we prepare j101i, apply a
control pulse, and then measure the population of leakage
states j110i, j011i, j200i, j020i, and j002i with varying the
pulse length. We note that the square pulse shaping causes
significant leakage, especially to j011i [an orange curve in

Fig. 18(b)]. By using the optimal pulse, we suppress
leakage populations pj110i, pj011i, pj020i, and pj002i below
10−7 for pulses longer than the chosen gate length: 60 ns.
Figure 18(c) shows leakage in the single-excitation mani-
fold. Here, we characterize leakage from the computational
qubit state j100i after applying a CZ pulse. As in the case of
double-excitation manifold, a square-shaped control pulse
causes significant leakage to both j010i and j001i. By
using the optimal control, we suppress the leakage pop-
ulation pj010i to j010i below 10−7. However, we note that
the leakage to j001i is not suppressed as much, compared
to j010i. This result is because our theoretical model
HCZ

eff ðtÞ addresses only leakage from j100i to j010i without
taking j001i into account.
In Fig. 19, we simulate coherent leakage of iSWAP

gates. We compare the performance of an optimal control
pulse to a square pulse [Fig. 19(a)]. The control pulse
amplitudes (fmin

c ) are chosen such that 30-ns-long control
pulses perform the iSWAP gate. In Figs. 18(c) and 18(d),
we characterize leakage in the double-excitation manifold
as in the case of the CZ gates. The square control pulse
causes significant leakage. By using the optimized pulse,
we suppress the leakage population to j110i (a blue curve)
and j110i (a orange curve) below 10−7 for pulses longer
than the chosen gate length: 30 ns. Figure 19(c) shows the
leakage in the single-excitation manifold. Here. we char-
acterize leakage from the computational qubit state j100i.
The square-shaped pulse causes significant leakage errors.
By using the optimal control, we suppress the state
population of a leakage state j010i below 10−7.
In this section, we demonstrate our Slepian-based

optimal control by presenting numerical simulation results.
We suppress population of the predominant leakage states
below 10−7, by using the optimized control. However, not
every leakage channel is suppressed to the same level, since
our theoretical model addresses only the predominant
leakage channels. Developing a theoretical framework
for addressing the full leakage channels is the subject of
future work.

APPENDIX I: ADVANTAGES OF SMALL
ANHARMONICITY ηc FOR THE COUPLER

Smaller ηc enables the ZZ-free iSWAP interaction at a
lower coupler frequency ωc, which allows for a stronger
g̃iSWAP such that we can implement faster ZZ-free iSWAP
gates. Figures 20(a) and 20(b) show numerical simulations
of coupling strength (2g̃iSWAP) of the iSWAP interaction
and its residual ZZ strength (ζiSWAP) as a function of the
coupler anharmonicity (ηc). QB1 and QB2 frequencies are
on resonance, which is the standard configuration for
activating iSWAP gates. In each figure, the blue dashed
curve represents our parameter choice for the coupler
anharmonicity (ηc=2π ¼ −90 MHz), and the red dashed
curve represents a parameter regime, where residual ZZ

(a)

(b)

(c)

FIG. 19. Numerical simulation of coherent leakage of iSWAP
gates. (a) Square-shaped and optimal control waveforms for 30-
ns-long iSWAP gates, respectively. (b) Coherent leakage in the
double-excitation manifold. We prepare j101i, apply a control
pulse, and then measure the state populations. By using optimal
pulse shaping, we suppress population of the leakage states j110i
and j011i (blue and orange curves) below 10−7 for pulses longer
than 30 ns (black dashed line). The leakage to j200i and j002i is
not suppressed as much, since the optimal control relies on the
effective Hamiltonian HiSWAP

eff ðtÞ that addresses only the leakage
from j101i to j110i and j011i in the double-excitation manifold.
(c) Coherent leakage in the single-excitation manifold. We
prepare j101i, apply a control pulse, and then measure the state
populations. By using the optimal pulse shaping, we suppress
population of the leakage state j010i (blue curve) below 10−7 for
pulses longer than 30 ns (black dashed line). The data points in
(b),(c) are obtained every 1 ns.
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interaction becomes zero owing to the cancellation induced
by the second excited state of the coupler. We note that, as
ηc decreases, the coupler frequency at which residual ZZ
interaction is canceled also decreases (red dashed curve),
while g̃iSWAP remains constant approximately. Therefore,
the resultant g̃iSWAP for the ZZ-free iSWAP increases,
thereby reducing the gate duration. Hence, owing to our
relatively small coupler anharmonicity, we are able to make
a short (30 ns) ZZ-free iSWAP gate.
In addition, smaller ηc prevents j020i from being

strongly hybridized with j101i and j200i during a CZ
gate; this small ηc enables us to simplify multilevel leakage
dynamics and use the Slepian-based optimal control. In the
following paragraph, we explain how we numerically
estimate the state overlap of j020i with j101i and j200i.
The eigenstates (i.e., dressed states) jψ̃i of our system

[see Eq. (1) for the system Hamiltonian] can be expressed
by a linear combination of basis states (i.e., bare states) jϕji
as follows:

jψ̃i ¼
XN
1

hϕjjψ̃ijϕji; ðI1Þ

where N denotes the dimension of our Hilbert space. We
estimate the complex state overlap coefficients h020jg101i and
h020jg200i by numerically diagonalizing the Hamiltonian
based on the device parameters (see Appendix Q for the
device parameters used for simulation). We define a sum of
squares of these coefficients (jh020jg101ij2 þ h020jg200ij2)
as a metric that quantifies how strongly j020i hybridizes
with j101i and j200i. Figures 21(a) and 21(b) show
numerical simulation results of coupling strength
(2g̃CZ) of the CZ interaction and the state overlap
(jh020jg101ij2 þ h020jg200ij2) as a function of CPLR anhar-
monicity (ηc). QB1 and QB2 frequencies are set such that
ω1 þ η1 ¼ ω2, which is the standard configuration for
activating CZ gates. We note that, as ηc decreases, the state
overlap jh020jg101ij2 þ h020jg200ij2 also decreases, while
the coupling strength g̃CZ remains constant approximately.
Hence, by using a relatively small coupler anharmonicity,
we are able to reduce the hybridization of j020i with j101i
and j200i when performing CZ gates.

(a)

(b)

FIG. 20. Numerical simulations of (a) coupling strength g̃iSWAP
and (b) residual ZZ strength ζiSWAP for an iSWAP interaction
versus the coupler anharmonicity ηc (y axis) and the coupler
frequency ωc (x axis), where ω1=2π ¼ ω2=2π ¼ 4.16 GHz. Note
that smaller ηc enables ZZ-free iSWAP interaction (ζiSWAP ¼ 0,
red dashed curves) with stronger g̃iSWAP, thereby enabling faster
ZZ-free iSWAP gates.

(a)

(b)

FIG. 21. Numerical simulations of (a) coupling strength g̃CZ for
the CZ interaction and (b) the state overlap jh020jg101ij2 þ
h020jg200ij2 versus CPLR anharmonicity ηc (y axis) and CPLR
frequency ωc (x axis), where ðω1þη1Þ=2π¼ω2=2π¼3.94GHz.
Note that smaller ηc prevents j020i from being strongly hybridized
with j101i and j200i during the CZ interaction while keeping g̃CZ
constant; this constraint enables us to simplify the multilevel
leakage dynamics and use the Slepian-based optimal control.
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APPENDIX J: SYNCHRONIZATION OF
XY AXES FOR THE iSWAP GATE

The computational qubit state is generally defined in a
reference frame, rotating at the frequency of qubit driving
tone (this frame is often called the logical frame).
Accordingly, in a multiqubit system, we use multiple
independently rotating frames to refer the computational
state of each qubit. Notably, performing iSWAP-like gates
by tuning qubit frequencies into resonance [26] causes a
nontrivial local phase shift in the logical frame due to the
unmatched rotating frequencies. In this section, we explain
how this phase shift occurs by presenting a simple example
and discuss how it can be avoided.
We consider an uncoupled two-qubit system with

Hamiltonian defined as follows in the laboratory frame
(ℏ≡ 1):

Hlab ¼ ω1ðj1ih1jÞ ⊗ I þ ω2I ⊗ ðj1ih1jÞ; ðJ1Þ

where ω1 and ω2 denote the transition frequencies of each
qubit. Consider an arbitrary state ψðtÞ evolving under the
Hamiltonian Hlab as follows:

ψðtÞ ¼

0BBB@
c00ðtÞ
c01ðtÞ
c10ðtÞ
c11ðtÞ

1CCCA ¼

0BBB@
c00ð0Þ

eiω2tc01ð0Þ
eiω1tc10ð0Þ

eiðω1þω2Þtc11ð0Þ

1CCCA; ðJ2Þ

where cmðtÞ denotes the probability amplitude of a basis
state jmi ∈ fj00i; j01i; j10i; j11ig at time t. In the doubly
rotating frame (i.e., the logical frame), where each frame
rotates at the corresponding qubit frequency, the logical
state vector ψ̃ðtÞ is given by

ψ̃ðtÞ ¼

0BBB@
c̃00
c̃01
c̃10
c̃11

1CCCA ¼

0BBB@
c00ð0Þ

ðe−iω2tÞeiω2tc01ð0Þ
ðe−iω1tÞeiω1tc10ð0Þ

ðe−iðω1þω2ÞtÞeiðω1þω2Þtc11ð0Þ

1CCCA

¼

0BBB@
c00ð0Þ
c01ð0Þ
c10ð0Þ
c11ð0Þ

1CCCA: ðJ3Þ

Now, suppose that we apply an iSWAP gate at t ¼ τ1
(τ1 > 0). In the lab frame, the iSWAP gate swaps the
probability amplitudes c01ðτ1Þ and c10ðτ1Þ and adds a
relative phase of i as follows:

ψðtÞjt¼τ1
¼

0BBB@
1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1

1CCCA
0BBB@

c00ðτ1Þ
c01ðτ1Þ
c10ðτ1Þ
c11ðτ1Þ

1CCCA

¼

0BBB@
c00ðτ1Þ
ic10ðτ1Þ
ic01ðτ1Þ
c11ðτ1Þ

1CCCA ¼

0BBB@
c00ð0Þ

ieiω1τ1c10ð0Þ
ieiω2τ1c01ð0Þ

eiðω1þω2Þτ1c11ð0Þ

1CCCA: ðJ4Þ

Subsequently, in the logical frame (the doubly rotating
frame), the state vector ψ̃ðtÞjt¼τ1

can be written as

ψ̃ðtÞjt¼τ1
¼

0BBB@
c00ð0Þ

ðe−iω2τ1Þieiω1τ1c10ð0Þ
ðe−iω1τ1Þieiω2τ1c01ð0Þ

ðe−iðω1þω2Þτ1Þeiðω1þω2Þτ1c11ð0Þ

1CCCA

¼

0BBB@
c̃00

eiðω1−ω2Þτ1ðic̃01Þ
eiðω2−ω1Þτ1ðic̃10Þ

c̃11

1CCCA: ðJ5Þ

Note that the logical state vector acquires additional local
phase shifts eiðω1−ω2Þτ1 and eiðω2−ω1Þτ1 on the basis j01i and
j10i, after the iSWAP gate. These phase shifts are artifacts
of the frequency difference between the two rotating frames
jω2 − ω1j. Notably, longitudinal entangling gates (e.g., the
CZ gate) do not cause this phase shift, since they do not
involve any energy exchange. Also, parametrically driven
two-qubit gates [10,77], which activate resonant exchange
interactions in the logical frame (not the lab frame), do not
result in this phase shift.
In this paper, we avoid this phase shift by putting the

qubits in the same rotating frame; we drive the qubits using
tones with the same frequency to synchronize their XY
axes. However, driving one qubit, which is in resonance
with other qubits, requires careful attention when imple-
menting single-qubit gates. Because of the microwave cross
talk, one microwave pulse can considerably drive multiple
qubits at the same time. To resolve this issue, we actively
cancel out the microwave cross talk by applying cancella-
tion tones simultaneously (see Appendix K for details).

APPENDIX K: MICROWAVE CROSS TALK
CANCELLATION

We quantify the microwave cross talk between the XY
control lines and the qubits by measuring Rabi oscillations
(Fig. 22). The normalized microwave cross talk matrix
Mmw is shown below, defined as Ωactual ¼ MmwΩideal,
where jΩj is the Rabi frequency of each qubit and ∠Ω
is the phase of the Rabi drive:
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Mmw ¼
�

1 0.1875∠101.2°

0.1505∠ − 108.3° 1

�
: ðK1Þ

We apply cancellation drives to orthonormalize the XY
control and find a remaining cross talk of below 3 × 10−5

[Fig. 22(e)].

APPENDIX L: SINGLE-QUBIT GATE FIDELITIES

We measure the single-qubit gate fidelities via Clifford-
based randomized benchmarking [42–44] in the following
two configurations:
(1) QB1 and QB2 are detuned by approximately

160 MHz (ω1=2π¼4.16GHz, ω2=2π¼ 4.00GHz),
and CPLR is biased at 5.45 GHz, where the static
ZZ coupling between the qubits is eliminated
(see Fig. 14). This configuration is the idling
configuration when performing the CZ gate. We use
a 30-ns-long microwave pulse for implementing
X- and Y-rotation gates. Figure 23 shows the
randomized benchmarking data.

(2) QB1 and QB2 are in resonance (ω1=2π ¼ ω2=2π ¼
4.16 GHz) and CPLR is biased at 5.8 GHz, where

the effective QB-QB coupling giSWAP is switched
off. This configuration is the idling configuration
when performing the iSWAP gate. For better can-
cellation of microwave cross talk, we use a longer
(70-ns-long) microwave pulse for implementing
X- and Y-rotation gates. Figure 24 shows the
randomized benchmarking data.

APPENDIX M: TWO-QUBIT CLIFFORD
RANDOMIZED BENCHMARKING

FOR THE iSWAP GATE

Following Refs. [42,44], we construct the two-qubit
Clifford group, which has four distinct classes as shown in
Fig. 25. The single-qubit Clifford group C1 is the group of
24 single-qubit rotations, which can be written in terms of
the X and Y rotations [44]. One of the three-element single-
qubit rotation groups S1 is shown in Table V.
By rewriting the CNOT and the SWAP in terms of the

iSWAP (Fig. 26), we generate the two-qubit Cliffords in
terms of the iSWAP and single-qubit XY gates as shown in
Fig. 27. Our native iSWAP gate accompanies single-qubit
Z rotations, since the qubit frequencies are dynamically

(a)

(b)

FIG. 23. Experimental results of single-qubit randomized
benchmarking, when QB1 and QB2 are detuned by 150 MHz.
(a) Single-qubit RB measurement data for QB1. (b) Single-qubit
RB measurement data for QB2. “S” denotes the simultaneous
application of single-qubit Cliffords, and “I” denotes the isolated
application of single-qubit Cliffords. The pulse duration of X- and
Y-rotation gates is 30 ns. QB1 and QB2 are biased at 4.16 and
4.00 GHz, respectively. The gate fidelities are degraded, when
measured simultaneously, possibly due to microwave cross talk.
The data are averaged over 20 random sequences for each
sequence length.
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FIG. 22. Measurements and cancellation of a microwave cross
talk. (a),(b) Rabi oscillations of QB1 (blue) and QB2 (orange)
when driving through the QB2 local drive line. (c),(d) Rabi
oscillations of QB1 (blue) and QB2 (orange) when driving
through the QB1 local drive line. (e) Rabi oscillations of QB2
when driving through the QB1 local drive line.
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tuned during the gate. We undo these unwanted Z rotations
by incorporating compensating Z rotations into the existing
single-qubit gates that are either preceded or followed
by the iSWAP gate. For example, in the case of “the

iSWAP-like Cliffords” (Fig. 27), we update the single-qubit
gates that are preceded by an iSWAP gate such that they
undo the Z rotations of the iSWAP gate. Specifically, we
replace the corresponding single-qubit Clifford gate (C1)
by three rotation gates along x − y − x axes, which can
implement an arbitrary single-qubit rotation according to
Euler’s rotation theorem (see also Appendix P).
We now calculate the average gate composition

for the two-qubit Cliffords. The single-qubit class has
576 elements and contains 90=24 single-qubit gates per
element, on average. The CNOT-like class has 5184
elements and contains two iSWAP gates and 13 sin-
gle-qubit gates per element, on average. The iSWAP-like
class has 5184 elements and contains one iSWAP gate
and 70=3 single-qubit gates per element, on average. The
SWAP-like class has 576 elements and contains three
iSWAP gates and 14 single-qubit gates per element, on
average. Given these, we find that the two-qubit Cliffords
are composed of 1.5 iSWAP gates and 10.9375 single-
qubit gates, on average. Therefore, the average error rate
of two-qubit Cliffords can be calculated as follows:
rClifford ¼ 10.9375 × r1qb þ 1.5 × riSWAP, where r1qb and

FIG. 25. Two-qubit Clifford classes.

FIG. 27. Two-qubit Clifford classes written in terms of the
iSWAP gate and single-qubit gates. Since our native iSWAP gate
accompanies additional unwanted single-qubit Z rotations, we
incorporate compensating Z rotations into the existing single-
qubit gates that are either preceded or followed by the iSWAP
gate to undo the unwanted Z rotations. The orange arrows denote
which single-qubit gates are subject to be updated to undo the Z
rotations of the iSWAP.

(a)

(b)

FIG. 26. (a) Decomposition of the CNOT gate into the
iSWAP gates. (b) Decomposition of the SWAP gate into the
iSWAP gates.

TABLE V. The three-element single-qubit rotation groups S1
and Sz=2 written in terms of X- and Y-rotation gates in time.

S1 I Y=2, X=2 −X=2, −Y=2
Sz=2 −X=2, Y=2, X=2 Y=2, X −X=2

(a)

(b)

FIG. 24. Experimental results of single-qubit randomized
benchmarking, when QB1 and QB2 are in resonance. (a) Sin-
gle-qubit RB measurement data for QB1. (b) Single-qubit RB
measurement data for QB2. S denotes the simultaneous appli-
cation of single-qubit Cliffords, and I denotes the isolated
application of single-qubit Cliffords. The pulse duration of
X- and Y-rotation gates is 70 ns. Both QB1 and QB2 are biased
at 4.16 GHz. We apply cancellation pulses to offset microwave
cross talk (orange and green circles) and reduce the gate errors by
more than a factor of 10. The data are averaged over 20 random
sequences for each sequence length.
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riSWAP are the average error rates of single-qubit gates
and an iSWAP gate, respectively.
To characterize the two-qubit interaction fidelity of

the iSWAP gate, we perform interleaved randomized
benchmarking [42–44]. The benchmarking sequences are
illustrated in Fig. 28. Note that, when interleaving the
iSWAP gate, we incorporate compensating Z rotations into
the subsequent reference Clifford. For example, in the case
of “1QB-gates-like” reference Clifford, the constituent
single-qubit Clifford C1 on each qubit is replaced by three
single-qubit gates along x − y − x axes. Other two-qubit
Clifford classes already have three single-qubit gates along
x − y − x axes at their front ends (see Fig. 27), so they do
not require additional XY gates when interleaving the
iSWAP gate. As a consequence, the iSWAP-interleaved
sequence acquires additional 0.1125XY gates on average.
The error contribution of additional XY gates is accounted
for when estimating the two-qubit interaction fidelity of the
iSWAP gate.

APPENDIX N: TWO-QUBIT GATE
TUNE-UP PROCEDURES

We calibrate the CZ gate by adjusting the Z control
amplitudes for a fixed gate length (60 ns) and measuring the
leakage from j101i and the conditional phase (CPHASE)
angle ϕCZ. A control pulse for the CZ gate and pulse
sequences for these measurements are illustrated at the top
in Fig. 29. To measure the leakage from j101i, we prepare
j101i by applying π pulses to both QB1 and QB2 and
measure the state population of j101i after a CZ gate
[Fig. 29(a)]. To measure the CPHASE angle, we perform a
cross-Ramsey-type experiment, which measures the condi-
tional phase accumulation of QB1, while initializing QB2
in its ground state or excited state [Fig. 29(b)].
We find the optimal spot [red circles in Figs. 29(a)

and 29(b)] in the parameter space for the CZ gate, which
minimizes both the leakage and the CPHASE angle error
(≡ϕCZ − 180°). Notably, the measured data have a slight
tilt (the leakage and the CPHASE angle data are not

symmetric about their x axes: the qubit-qubit detuning)
due to the level repulsion induced by qubit-coupler inter-
actions. These tune-up measurements are qualitatively
reproduced by time-dependent Hamiltonian simulations
for three-interacting qutrits [Figs. 29(c) and 29(d)]. See
Appendix Q for details about the simulations.

(a) (b)

(c) (d)

FIG. 29. Tune-up measurements for the CZ gate. (a),(b)
Experimental data of tune-up measurements for a 60-ns-long
CZ gate. We measure leakage from j101i and conditional phase
(CPHASE) angle ϕCZ as functions of QB2 Z-pulse amplitude
(x axis) and CPLR Z-pulse amplitude (y axis). The control pulse
and sequences to measure leakage and CPHASE angle are
illustrated at the top. We find an optimal parameter set that
minimizes both the leakage and CPHASE angle error (red
circles). (c),(d) Numeric simulation reproducing the experimental
data of tune-up measurements.

(a)

(b)

FIG. 28. (a) A diagram of the standard (or reference) two-qubit
RB sequence. (b) A diagram of the two-qubit RB sequence
interleaved by the iSWAP gate. The additional unwanted Z
rotations of the interleaved iSWAP gate are canceled out by the
subsequent two-qubit Clifford (orange arrows).
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Near the optimal spot, we note that the leakage is
predominantly controlled by the CPLR Z-pulse amplitude
(the y axes of the plots), while the CPHASE angle is
controlled by the QB2 Z-pulse amplitude (the x axes of the
plots). Keeping this fact in mind, we individually adjust
the CPLR Z-pulse amplitude and the QB2 Z-pulse
amplitude by measuring the leakage and the CPHASE

angle error, respectively. For fine adjustment of the
amplitudes, we measure multiple CZ pulses to amplify
the effects of small amplitude errors (Fig. 30). The
measurement data exhibit symmetric chevron patterns
that allow us to easily find optimal values for the pulse
amplitudes to minimize the leakage and the CPHASE
angle error (≡ϕCZ − NCZ × 180°). We repeat this class of
fine-tuning measurements 2–3 times within narrower
amplitude ranges so that we can make the most precise
adjustments possible (ultimately limited by the amplitude
resolution limit of our AWGs).
Finally, to offset single-qubit phase accumulation that

accompanies the CZ gate, we subsequently apply virtual Z
gates [45]. To calibrate these virtual Z gates, we perform
Ramsey experiments on QB1 and QB2 and measure the
single-qubit phase accumulation of each qubit due to the
CZ gate. Fine-tuning the angles of the virtual Z gates is
done by a numerical optimization method (the Nelder-
Mead algorithm) with the fidelity of two-qubit randomized
benchmarking sequences as an objective function [78].
Along the same line, we calibrate the iSWAP gate by

adjusting the Z control pulse amplitudes for a fixed
gate length (30 ns) and measure the swap angle (Fig. 31).
The swap angle θiSWAP quantifies how much the population
of QB1 has been transferred to QB2 and vice versa.
Accordingly, to measure θiSWAP, we prepare j100i and
measure how much the population of j100i has transferred
to the population of j001i by an iSWAP gate (θiSWAP≡
tan−1ðpj001i=pj100iÞ, where pj001i and pj100i are the mea-
sured populations of j001i and j100i, respectively, at the
end. We find an optimal spot for the iSWAP gate [red circle
in Fig. 31(a)] which maximizes θiSWAP (0°≤ θiSWAP ≤ 90°).

(a) (b)

FIG. 32. Experimental data of fine-tuning measurements for the
iSWAP gate. (a) Measurements of the swap angle θiSWAP for
multiple iSWAP pulses to finely adjust the CPLR Z amplitude
(fmin

c ). (b) Measurements of the swap angle θiSWAP for multiple
iSWAP pulses to finely adjust the QB2 Z amplitude (fpeak2 ).

(a) (b)

FIG. 30. Experimental data of fine-tuning measurements for the
CZ gate. (a) Measuring the leakage of multiple CZ pulses to
finely adjust the CPLR Z amplitude (fmin

c ). (b) Measuring the
CPHASE angle error (ϕCZ − NCZ × 180°) of multiple CZ pulses
to finely adjust the QB2 Z amplitude (fpeak2 ).

(a) (b)

FIG. 31. Tune-up measurement for the iSWAP gate. (a) Exper-
imental data of tune-up measurements for a 30-ns-long iSWAP
gate. We measure the iSWAP angle θiSWAP as functions of
QB2Z-pulse amplitude (x axis) and CPLR Z-pulse amplitude
(y axis). The control sequence to measure the iSWAP angle is
illustrated at the top. A red circle denotes an optimal parameter set
that maximizes θiSWAP. (b) Numeric simulation reproducing the
experimental data of tune-up measurements.
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In Fig. 31(b), we numerically simulate this tune-up meas-
urement and show good qualitative agreement with the
experimental result.
To finely adjust theCPLRZ-pulse amplitude and theQB2

Z-pulse amplitude, we measure multiple iSWAP pulses
(Fig. 32). Since the swap angle is controlled by both the
CPLR Z and QB2 Z amplitudes, we adjust both amplitudes
in an alternating manner—that is, adjusting the amplitudes
of QB2-Z, CPLR-Z, QB2-Z, CPLR-Z, …—with varying
the number of iSWAP pulses (NiSWAP ∈ f21; 51; 101g).
Finally, to offset single-qubit phase accumulation that is

accompanied when performing the iSWAP gate, we apply
actual Z gates using XY control (see Appendix P for
details). To calibrate these Z gates, we perform Ramsey
experiments on QB1 and QB2 and measure the single-qubit
phase accumulation of each qubit due to the iSWAP gate.
As in the case of the CZ gate, we numerically search the
optimal angles of the Z gates that maximize the sequence
fidelity of two-qubit RB sequences.

APPENDIX O: RESIDUAL LEAKAGE
OF THE CZ GATE

Following Refs. [79,80], we estimate the average leak-
age rate of our 60-ns-long CZ gate with an optimized pulse
shape from our interleaved randomized benchmarking
measurement [Fig. 4(h)]. To estimate the leakage rate,
we fit the population in the computational subspace pX1

≡
pj000i þ pj001i þ pj100i þ pj101i to an exponential model
(for both reference and interleaved RB curves, see Fig. 33):

pX1;ref ¼ Aref þ Brefðλ1;refÞNClifford ; ðO1Þ

pX1;int ¼ Aint þ Bintðλ1;intÞNClifford : ðO2Þ

To ensure accurate uncertainties of the leakage rates, we
perform a weighted least-squares fit using the inverse of

variance as the weights. Then, we estimate the average
leakage rates L1;ref and L1;int per Clifford as follows:

L1;ref ¼ ð1 − ArefÞð1 − λ1;refÞ; ðO3Þ

L1;int ¼ ð1 − AintÞð1 − λ1;intÞ: ðO4Þ

The average leakage rate LCZ
1 per CZ gate is subsequently

obtained by the following equation:

LCZ
1 ¼ 1 −

1 − L1;int

1 − L1;ref
: ðO5Þ

The leakage rate LCZ
1 per CZ gate is estimated to be

0.06� 0.07%. We find that most of the residual leakage is
introduced into the second excited state of QB1
(1 − pX1

≈ pj200i þ pj201i), which indicates the residual
leakage may be due to residual pulse distortion in
Z-control pulses of QB2 and CPLR.

APPENDIX P: Z CORRECTIONS FOR THE
TWO-QUBIT GATES

Two-qubit gates are accompanied by local phase shifts
(single-qubit Z rotations), since the qubit frequencies are
dynamically tuned during the gates. To undo these phase
shifts, we apply additional single Z rotations either before
or after the two-qubit gates. In the case of the CZ gate, we
utilize virtual Z gates [45] which are simply implemented
by shifting phase offsets of microwave pulses. In contrast,
in the case of the iSWAP gate, we implement actual Z gates,
since the iSWAP gate that we consider in this work is not
compatible with virtual Z gates, in general [45].
We implement actual Z rotations by combining X and Y

rotations. According to Euler’s rotation theorem, any
rotation matrix can be described by the multiplication of

FIG. 33. Characterization of the leakage rate of the CZ gate
with an optimized pulse shape. Population in the computational
subspace pX1

¼ pj000i þ pj001i þ pj100i þ pj101i for the reference
and interleaved two-qubit randomized benchmarking sequences.

FIG. 34. Implementation of arbitrary Z gates by combining X
and Y rotations. Experimental data of the Ramsey-type experi-
ment to validate the Euler-Z gate. We vary the angle θz of Y
rotation, which effectively adjusts the rotation angle of the Euler-
Z gate.
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three rotation matrices along x − y − x axes. Subsequently,
arbitrary Z gates (we call the Euler-Z gate) with rotation
angle θz can be implemented by a series of X and Y
rotations: Rxð−π=2Þ − RyðθzÞ − Rxðπ=2Þ, where Rx and Ry

are single-qubit rotations along the x and y axes, respec-
tively (Fig. 34).

APPENDIX Q: NUMERICAL SIMULATION OF
THE DYNAMICS

We numerically simulate the three-body dynamics
[Eq. (1)] presented in this work by treating our system
as three interacting qutrits (for both time-dependent and
time-independent Hamiltonian simulations). Given the
control waveforms ω1ðtÞ, ω2ðtÞ, and ωcðtÞ, we modulate
the b†i bi (i ∈ f1; 2; cg) terms in the system Hamiltonian.
The coupling strengths g1cðtÞ, g2cðtÞ, and g12ðtÞ are
subsequently modulated, as they are determined by
ω1ðtÞ, ω2ðtÞ, ωcðtÞ, and the capacitance matrix of the
superconducting circuit (see Appendix A in Ref. [13] for
details). The capacitances that are used to model the circuit
are summarized in Table VI. The anharmonicities of the
qubits and the coupler are assumed to be fixed and
set as follows: η1=2π¼−220MHz, η2=2π ¼ −210 MHz,
and ηc=2π ¼ −90 MHz.

APPENDIX R: T1 CONTRIBUTION TO
GATE ERRORS

We perform numerical simulations to estimate the
contributions of (both qubits’ and the coupler’s) energy
relaxations to the errors of the CZ and iSWAP gates. The
time evolution of the system is calculated by solving the
Lindblad master equation in QuTiP [81]:

_ρðtÞ ¼ −
i
ℏ
½HðtÞ; ρðtÞ� þ

X
j¼1;2;c

Γ1;jL½bj�½ρðtÞ�; ðR1Þ

where ρðtÞ is the density matrix of the system, HðtÞ is the
system Hamiltonian [Eq. (1)], and Γ1;j ≡ 1=T1;j (j ¼ 1, 2,
and c) are the relaxation rates of QB1, QB2, and CPLR,
respectively. The Lindblad superoperator acting on a
density matrix ρ, for a generic operator C, is defined by

L½C�ðρÞ≡ CρC† − fρ; C†Cg=2: ðR2Þ

Following Ref. [13], we compute the average gate fidelity
Fg by numerically simulating quantumprocess tomography.
We prepare 16 different input states fðj0i; j1i; jþi; j−iÞg ⊗
fðj0i; j1i; jþi; j−iÞg and reconstruct the process matrix χ
from the resulting density matrices. By comparing it to the
ideal process matrix χideal, we compute the process fidelity
Fp ¼ Tr½χidealχ�. The ideal process matrix includes addi-
tional unwanted single-qubitZ rotations that accompany our
native two-qubit gates. The average gate fidelity Fg is
subsequently obtained from the simple relationship between
Fp and Fg [82,83].

TABLE VI. The capacitances used for the numerical simula-
tions (see Ref. [13] for the notations).

C1 Cc C2 C1c C2c C12

95 fF 228 fF 98 fF 5.36 fF 5.36 fF 0.125 fF

(a) (b)

FIG. 35. Numerical simulation results for the average gate errors of the CZ and the iSWAP gates. (a) The average gate infidelity
(1 − Fg) of the iSWAP gate as a function of its gate length tG. For each gate length, the control pulse shape is optimized as detailed in
Appendixes G and H. Each data point is obtained by numerically simulating quantum process tomography and computing the
corresponding gate infidelity. (b) The average gate infidelity (1 − Fg) of the iSWAP gate as a function of its gate length tG. The lowest
gate error is achieved when tG ≈ 25 ns. At this point, the residual ZZ interaction of the iSWAP is minimized, owing to the cancellation
induced by the higher level of CPLR.
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Figure 35(a) shows the average gate infidelity (1 − Fg)
of the CZ gate as a function of its gate length tG. For each
gate length, the optimized control pulse is used and
calibrated in a manner similar to that described in
Appendix N. We run simulations in the absence of energy
relaxation (blue circles) and in the presence of only QB1’s
relaxation (orange circles), only QB2’s relaxation (green
circles), only CPLR’s relaxation (red circles), and all
possible relaxations (purple circles). Experimental values
of Γ1;j are used for the simulations. We find that gate errors
due to parasitic interactions (blue circles) diminish drasti-
cally when tG ≥ 60 ns. We extract dissipation-induced (T1-
induced) gate errors by taking the difference between the
fidelities Fg in the presence and the absence of energy
relaxations. Table VII summarizes T1 contributions to the
average gate error of a 60-ns-long CZ gate (which is
realized in our experiments).
Figure 35(b) shows the average gate errors of the iSWAP

gate in the absence and the presence of energy relaxations.
The lowest gate error is achieved when tG ≈ 25 ns; this
point is where the residual ZZ interaction of the iSWAP is
minimized, owing to the cancellation induced by the higher
level of CPLR. The T1 contributions of QB1, QB2, and
CPLR to the 30-ns-long iSWAP gate error are summarized
in Table VII.

APPENDIX S: 1=f α FLUX NOISE
CONTRIBUTION TO GATE ERRORS

We simulate the error contribution of 1=fα flux noise,
which predominantly limits the dephasing times T�

2 and
Techo
2 of QB2 and CPLR. While there are other noise

sources affecting the qubits and coupler such as charge
noise and photon-shot noise, we assume that their impacts
are negligible. Specifically, our transmon qubits and
coupler have large EJ=Ec ð>60Þ, which makes their charge
dispersions smaller than approximately 1 kHz such that
they are insensitive to charge noise. Notably, owing to large
EJ=Ec and negligible photon shot noise, QB1 (which has a

fixed frequency) exhibits nearly T1-limited dephasing
times T�

2 ≈ T1 and Techo
2 ≈ 2T1.

We extract the power spectral density SΦðfÞ ≈
½ð1.43μΦ0Þ2=f� þ ½ð1.77μΦ0Þ2 × ðHzÞ0.33=fð1.33Þ� of flux
noise from the repeated Ramsey and echo experiments
of QB2 (see Appendix C for details). We simulate
contribution of 1=fα flux noise to gate error by performing
Monte Carlo simulations with 1000 random flux
noise realizations; flux noise samples are generated
based on the power spectral density SΦðfÞ. We assume
that QB2 and CPLR experience the same flux noise
power (but we independently sample noise waveforms
for QB2 and CPLR). We set the low-cutoff frequency of
the noise power spectral density (PSD) at 10−4 Hz, which
is close to 1=ð2 × the total length of the RB experimentÞ.
We set the high-cutoff frequency at 5 × 109 Hz, which is
close to the j0i → j1i transition frequencies of the qubits
and coupler; following Ref. [84], we assume that only the
noise below the qubit frequency results in the phase noise.

TABLE VII. T1 contributions to the average gate errors of a
60-ns-long CZ and a 30-ns-long iSWAP gate. Each T1 contri-
bution is computed by taking the difference between the gate
errors in the presence and the absence of corresponding energy
relaxation. We find that the sum of individual T1 contributions is
approximately equal to the total T1-induced error computed from
a separate simulation that takes all possible relaxations into
account (purple circles in Fig. 35).

60-ns-long CZ 30-ns-long iSWAP

QB1, T1;1 ¼ 60 μs 5.2 × 10−4 2.6 × 10−4

QB2, T1;2 ¼ 30 μs 7.8 × 10−4 5.2 × 10−4

CPLR, T1;c ¼ 10 μs 1.6 × 10−4 7.6 × 10−5

Total T1-induced error 1.5 × 10−3 8.6 × 10−4
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FIG. 36. Contribution of 1=fα flux noise to error rates of CZ
gates. Notably, the error contribution from CPLR flux noise
increases as the gate duration decreases (orange circles), possibly
due to stronger qubit-coupler hybridization.
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FIG. 37. Contribution of 1=fα flux noise to error rates of
iSWAP gates. Notably, the error contribution from CPLR flux
noise increases as the gate duration decreases (orange circles),
possibly due to stronger qubit-coupler hybridization.
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Figures 36 and 37 show the estimated contribution of
the flux noise to gate error rates for CZ and iSWAP gates,
respectively. We extract the error contribution of 1=fα flux
noise by subtracting the error rate in the presence of flux
noise by the error rate in the absence of flux noise. We
compare the flux noise-induced error rates and T1-

induced error rates for 60-ns-long CZ and 30-ns-long
iSWAP gates in Table VIII. We find that flux noise
contribution is quite small. This result is because our
gate lengths are short (30–60 ns) such that the impact of
long-time correlated noise, i.e., 1=f noise, is significantly
suppressed. This result is consistent with Ref. [25]. It also
explains how flux-tunable qubits can achieve high-fidelity
gates (both single- and two-qubit gates) in general, even
though they operate at flux sensitive points at the idling
configuration.

APPENDIX T: SUPPLEMENTAL
EXPERIMENTAL DATA FOR FIG. 4

IN THE MAIN TEXT

In Figs. 38 and 39, we present the state population of
j101i, j200i, j011i, j110i, j020i, and j002i as supplemental
experimental data for Fig. 3 in the main text.

TABLE VIII. 1=fα flux noise contributions to the average
gate errors of a 60-ns-long CZ and a 30-ns-long iSWAP
gate. Each flux noise contribution is computed by taking the
difference between the gate errors in the presence and the absence
of flux noise.

60-ns-long CZ 30-ns-long iSWAP

QB2 flux noise 1.5 × 10−4 4.7 × 10−5

CPLR flux noise 4.8 × 10−6 2.1 × 10−6

QB2+CPLR flux noise 1.6 × 10−4 4.9 × 10−5

(a) (b)

(c) (d)

(e) (f)

FIG. 38. State population of (a) j101i, (b) j200i, (c) j011i,
(d) j110i, (e) j020i, and (f) j002i for the repeated square CZ
pulses.

(a) (b)

(c) (d)

(e) (f)

FIG. 39. State population of (a) j101i, (b) j200i, (c) j011i,
(d) j110i, (e) j020i, and (f) j002i for the repeated optimal CZ
pulses.
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