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Anisotropic magnetoresistance (AMR) is a ubiquitous and versatile probe of magnetic order in
contemporary spintronics research. Its origins are usually ascribed to extrinsic effects (i.e., spin-dependent
electron scattering), whereas intrinsic (i.e., scattering-independent) contributions are neglected. Here,
we measure AMR of polycrystalline thin films of the standard ferromagnets Co, Ni, Ni81Fe19, and Ni50Fe50
over the frequency range from dc to 28 THz. The large bandwidth covers the regimes of both diffusive
and ballistic intraband electron transport and, thus, allows us to separate extrinsic and intrinsic AMR
components. Analysis of the THz response based on Boltzmann transport theory reveals that the AMR
of the Ni, Ni81Fe19, and Ni50Fe50 samples is of predominantly extrinsic nature. However, the Co thin
film exhibits a sizable intrinsic AMR contribution, which is constant up to 28 THz and amounts to more
than 2=3 of the dc AMR contrast of 1%. These features are attributed to the hexagonal structure of the
Co crystallites. They are interesting for applications in terahertz spintronics and terahertz photonics.
Our results show that broadband terahertz electromagnetic pulses provide new and contact-free insights
into magnetotransport phenomena of standard magnetic thin films on ultrafast timescales.

DOI: 10.1103/PhysRevX.11.021030 Subject Areas: Condensed Matter Physics, Magnetism,
Spintronics

I. INTRODUCTION

The electrical resistance of a ferromagnet along the
applied electric field is known to depend on the direction
of the magnetization M [Fig. 1(a)]. This anisotropic
magnetoresistance (AMR) [1–7] is a well-studied magneto-
resistive effect and a powerful tool to detect the magnetic
order parameter of ferromagnets as well as ferrimagnets
[8,9]. As AMR is even in the magnetic order parameter, it
has received additional attention as a probe of the Néel
vector of antiferromagnets [10]. Therefore, AMR has

great potential for applications in future spintronic
devices [11].
The canonic way to describe the origins of AMR relies

on an extrinsic mechanism, that is, spin-dependent electron
scattering due to crystal imperfections such as impurities
and phonons. In transition metals, the M-dependent rate
of electron scattering out of the current-carrying s-states is
understood to arise from spin-orbit coupling, which reduces
the symmetry of the target d-states [2,3,5,12]. Other
extrinsic scenarios involve magnetic impurities acting on
spin-orbit-coupled p-states (in, for instance, dilute magnetic
semiconductors [13]) and nonmagnetic impurities acting
on states with isotropic band dispersion but anisotropic
wavefunctions [14].
Recently, theoretical works pointed out that AMR can

already be significant in perfect crystals. An example of
such an intrinsic (i.e., scattering-independent) mechanism
is a change in the group velocity of Bloch states due to spin-
orbit coupling [15–19], which is a concept that extends to
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giant magnetoresistance [20]. First signatures of intrinsic
contributions to dc AMR were reported [21,22] based on
extensive electric transport measurements and ab initio
theory. These highly promising results also show that more
direct and versatile experimental methods are required to
extract extrinsic and intrinsic AMR contributions.
To straightforwardly separate extrinsic (scattering-

dependent) and intrinsic (scattering-independent) electron
transport, we propose to probe the AMR dynamics on
timescales that are both slower and faster than the timescale
τ at which electron scattering takes place. To implement
this idea, AMR needs to be measured over a wide
frequency range from dc to several 10 THz. The lower
frequencies ω=2π of this interval probe diffusive (i.e.,
scattering-dominated) transport in which an electron under-
goes many collisions during one oscillation of the probing
electric field (ωτ ≪ 1). In contrast, the frequencies at the
higher end are more sensitive to electron motion in the
ballistic limit (i.e., without scattering) because the probing
electric field oscillates many times between subsequent
electron collisions (ωτ ≫ 1). So far, measurements of
AMR of common magnets were reported at either dc,
at frequencies around 1 THz (Refs. [23–25]), or in the
infrared, where AMR is usually referred to as magnetic
linear birefringence [26,27].
In this work, we measure AMR of common ferromagnets

in the regime of both ballistic and diffusive electron
transport by means of low-noise broadband THz spectros-
copy from dc to 28 THz. A frequency-resolved data
analysis based on Boltzmann transport theory allows us
to robustly separate the (A) extrinsic and (B) intrinsic
components of AMR. We find that component (B) is
significant and even dominates the total AMR for the
case of polycrystalline Co. Using numerical estimates, we
attribute this observation to the hexagonal structure of the
Co crystallites. Owing to its instantaneous response up to at
least 28 THz, the intrinsic AMR of Co is highly interesting
for applications in future THz spintronic devices. Our
results also highlight that broadband THz AMR is a
powerful and versatile probe of ultrafast spin dynamics.

II. AMR IN THE DRUDE-BOLTZMANN
FRAMEWORK

The AMR contrast at frequency ω=2π is defined as

AMRðωÞ ¼ − σ k − σ⊥
σ⊥

≈ −Δσ
σ̄

ð1Þ

where σjðωÞ is the conductivity for the magnetization M
parallel (j ¼ k ) or perpendicular (j ¼ ⊥ ) to the applied
electric-field amplitude EðωÞ. Typically, the dc AMR
contrast (ω ¼ 0) is positive and reaches values of the
order of 1% to 10% (Ref. [2]). Therefore, the difference
Δσ ¼ σ k − σ⊥ is relatively small, and σ k and σ⊥ are very
close to the mean conductivity σ̄ ¼ ðσ k þ σ⊥ Þ=2. We note

that the σjðωÞ, like all frequency-domain quantities, are
generally complex valued.
In contrast to the anomalous Hall effect (which is of

first order in M), there are significantly less theoretical
studies of the microscopic mechanism of AMR (which is
quadratic in the order parameter). A frequently used
theoretical approach is based on the Boltzmann equation
describing intraband transport [14,17,21,28,29]. Assuming
state-independent relaxation rates, one can derive the Drude
formula [30–33]

σjðωÞ ¼
σjð0Þ

1 − iωτj
¼ 1

Z0c

Ω2
plj

τ−1j − iω
ð2Þ

where j ¼ k or ⊥ , ω=2π is the frequency of the driving
field, σjð0Þ equals the dc conductivity, and τj is the current
relaxation time.
The second part of Eq. (2) is a rewritten Drude formula,

where Z0 ≈ 377 Ω is the free-space impedance, c is the
speed of light, and Ωplj=2π is the plasma frequency. This
formulation allows us to identify (A) extrinsic contributions
(due to electron scattering) and (B) intrinsic (scattering-
independent) contributions to the AMR contrast. Inequality
σ k ≠ σ⊥ of the k and ⊥ conductivities and, thus, AMR
can arise from the M-direction dependence of (A) the
current relaxation time (τ k ≠ τ⊥ ) and (B) the plasma
frequency (Ωpl k ≠ Ωpl⊥ ). Because Ω2

plj is given by a
summation of the squared electron-group-velocity compo-
nent j over the Fermi surface [34–38], it is a measure of the
weight of intrinsic (scattering-independent) contributions
to the conductivity. In contrast to Ω2

plj, the velocity
relaxation rate τ−1j arises from electron-impurity and
electron-phonon collisions and, thus, captures extrinsic
(scattering-related) effects. Note that previous studies using
the Boltzmann approach ascribed AMR to contribu-
tion (A) [2,28].
We expect that in the diffusive transport regime

(ωτj ≪ 1), both extrinsic and intrinsic effects contribute
to AMR, whereas in the ballistic regime (ωτj ≫ 1),
intrinsic contributions dominate. To analyze this expect-
ation quantitatively, we substitute the Drude formula
[Eq. (2)] into the definition of the AMR contrast [see
Eq. (1) and Appendix B]. The resulting relationship,

AMR ¼ A
1 − iωτ⊥

þ B; ð3Þ

has remarkable implications: First, the two terms on the
right-hand side scale with A ¼ −Δτ=τ⊥ and B ¼
−ΔðΩ2

plÞ=Ω2
pl⊥ , where Δ always refers to the difference

of the k and ⊥ component—for instance, Δτ ¼ τ k − τ⊥ .
Therefore, the A and B terms, respectively, quantify the
strength of the (A) extrinsic (scattering-based) and
(B) intrinsic (scattering-independent) contribution to AMR.
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Second, as expected, components (A) and (B) exhibit a
distinctly different frequency dependence. The extrinsic
contribution (A) rolls off with frequency just as the
conductivity σ⊥ [Eq. (2)] does. The frequency scale of
this decrease is set by the velocity relaxation rate τ−1⊥ =2π,
which is typically of the order of 10 THz [39,40]. The
intrinsic contribution (B), in contrast, is ω independent,
thereby making it interesting for potential high-frequency
applications in THz spintronics.
Finally, Eq. (3) shows us how to determine the weight

of the two AMR contributions: We need to conduct a
sufficiently broadband AMR measurement. Therefore, our
goal is to measure the anisotropic conductivity of common
ferromagnets over the broad range from ω=2π ∼ 0 to tens
of THz.

III. EXPERIMENTAL SETUP

A. Samples

As samples, we chose thin films of common ferromag-
netic metals with in-plane magnetic anisotropy: Ni81Fe19
(thickness of 8 nm), Ni50Fe50 (10 nm), Ni (10 nm), and
Co (10 nm). As detailed in Appendix A and Supplemental
Material [41], they were grown by sputtering on isotropic
Si substrates. Subsequently, the samples were cut in two
pieces to enable the dc and THz experiments. For the THz
experiments, part of the substrate was not covered by the
metal layer to permit reference transmission measurements
to extract the THz conductivity.
All thin films were prepared in the polycrystalline

phase. As compiled in Table I, they consist of crystallites
having cubic (Ni81Fe19, Ni50Fe50, Ni) or hexagonal sym-
metry (Co). Because the size of the randomly oriented
crystals is orders of magnitude smaller than the wavelength
of the probing THz radiation, all films are macroscopically
isotropic in the sample plane in the absence of magnetic
order (M ¼ 0). A symmetry analysis of our samples

(see Appendix C) shows that the in-plane conductivity
tensor is fully determined by the two conductivity values
σ k and σ⊥ parallel and perpendicular to the magnetization,
independent of the sample azimuth. The difference σ k −
σ⊥ equals 2hGixyxyM2, where hGixyxy is the only relevant
element of the rotationally averaged AMR tensor.

B. Conductivity and AMR measurements

dc measurements.—In general, determination of the
AMR contrast [Eq. (1)] of our samples relies on measuring
the ratio of the conductivities for M kE and M⊥E. At dc
frequency, this goal was achieved by a four-point approach
[42]. A rectangular piece was cleaved from the sample and
contacted in the corners. A constant current was applied
along the longer side, and the voltage drop and, thus,
resistance RðαÞ along this fixed direction were measured as
a function of the angle α of the in-plane magnetization M
[see Fig. 1(a)]. The AMR contrast [Eq. (1)] is given by
−Δσdc=σ̄dc ¼ ΔR=R̄, where ΔR and R̄ are, respectively,
the modulation depth and mean value of RðαÞ.
Note that the mean dc conductivity σ̄dc of the metal film

is related to R̄ through an unknown factor that is given by
the current distribution. Consequently, we used the van der
Pauw method [43,44] to measure σ̄dc.
THz measurements.—To determine the AMR contrast of

our samples at THz frequencies, we did not use any electrical
contacts. Instead, we measured the transmission of a broad-
band THz electromagnetic pulse through the specimen in a
quasioptical manner [Fig. 1(b)]. To this end, THz pulses
were obtained by difference-frequency generation of femto-
second laser pulses (duration of 10 fs, center wavelength of
800 nm, energy of 1 nJ) from a Ti:sapphire laser oscillator
(repetition rate of 80 MHz) in a suitable nonlinear-optical
material. The THz pulses were linearly polarized along the x
axis and normally incident onto the sample [see Fig. 1(b) and
Fig. S1(a) in Ref. [41] for more details].

TABLE I. Sample properties and fit parameters. All films are polycrystalline. The parameters σ̄ðω ¼ 0Þ, τ̄,Δσð0Þ=σ̄ð0Þ, A, and Bwere
obtained by fitting the Drude model for conductivity [Eq. (2)] and AMR contrast [Eq. (3)] to the data shown in Fig. 3. The ratio B=A of
extrinsic and intrinsic contributions to the AMR reveals a different AMR regime in Co as compared to the other materials. The
parameters A and B were obtained by fitting over the whole frequency range 0.2–28 THz and over the range 8–28 THz, both yielding
consistent values (see Supplemental Material [41]). The uncertainties arise from the precision and accuracy of our measurements as
detailed in Appendix A.

Ni81Fe19 Ni50Fe50 Ni Co

Crystallite symmetry Cubic Cubic Cubic fcc Hexagonal hcp
σdc (MS/m) 2.5� 0.3 3.1� 0.2 1.5� 0.1 3.2� 0.2
σ̄ð0Þ (MS/m) 2.9� 0.2 2.8� 0.1 1.4� 0.2 2.9� 0.2
τ̄ (fs) 9� 2 9� 2 5� 1 11� 2
Δσdc=σdc (%) 1.0� 0.1 0.7� 0.1 0.37� 0.05 0.9� 0.1
Δσð0Þ=σ̄ð0Þ (%) 1.6� 0.4 0.5� 0.1 0.3� 0.1 0.7� 0.2
B ¼ −ΔðΩ2

plÞ=Ω̄2
pl ð0.0� 0.1Þ × 10−2 ð0.0� 0.1Þ × 10−2 ð0.00� 0.07Þ × 10−2 ð0.5� 0.1Þ × 10−2

A ¼ −Δτ=τ̄ ð1.6� 0.2Þ × 10−2 ð0.5� 0.1Þ × 10−2 ð0.28� 0.07Þ × 10−2 ð0.2� 0.1Þ × 10−2
B=A 0.0� 0.1 0.0� 0.2 0.0� 0.3 2.5� 1.5
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After transmission through the sample, a wire-grid
polarizer projected the THz field E onto the x axis, that
is, the polarization direction of the incident THz electric
field. The THz pulses were detected by electro-optic
sampling using a suitable electro-optic crystal [45]. The
resulting THz signal S vs time t is related to the THz
electric-field component ExðtÞ directly behind the sample
[Fig. 1(d)] by a linear transfer function that cancels in the
subsequent data analysis.
To ensure optimum frequency coverage and signal-to-

noise ratio, we used various combinations of THz sources
and detectors. For AMRmeasurements, we used a bias-free
bimetallic emitter (TeraBlast, Protemics GmbH) and a
1-mm-thick ZnTe(110) crystal as the detector for the range
0.2–2 THz, while a 90 μm thick GaSe emitter and a 10 μm

thin ZnTe detection crystal were employed for the range
8–28 THz. This combination delivers sufficient THz signal
amplitude to resolve the small AMR-induced changes of
the sample transmission upon rotation of the magnetization
from 0° to 90°.
For measurement of the mean (diagonal) conductivity σ̄,

where signal amplitudes are sufficiently large, we replaced
the bimetallic emitter by a spintronic THz emitter [45]

(TeraSpinTec GmbH) and used a 250 μm thick GaP crystal
as a detector. This combination delivers an order-of-
magnitude less signal amplitude but covers the range
1–6 THz, which is useful for the precise determination
of parameters of the Drude formula [Eq. (2)].
Typical examples of transmitted THz signal waveforms

are shown in Fig. 1(d). As detailed in Sec. IV and
Appendix A, the measured THz transmission signals can
be used to determine the mean THz conductivity σ̄ of a thin
metallic layer. Similarly, by modulating the magnetization
angle α between 90° and 0°, we can infer the THz AMR
contrast.

C. Magnetization control

Slow modulation.—The magnetization angle α relative
to the fixed direction of the applied dc or THz electric field
[see Figs. 1(a) and 1(b)] was controlled by a suitable
external magnetic field. For the dc measurements, we
used a magnetic field of 1.1 T from a Halbach array of
permanent magnets that was slowly rotated about the
sample [see Fig. S1(b) in Ref. [41] ]. For the THz
measurements as a function of all magnetization angles

(a)

(c) (d) (e)

(b)

FIG. 1. Measuring dc and THz AMR. (a) Schematic of a dc electrical AMR measurement. The resistance R of a magnetic thin film
with magnetization M (red arrow) is measured along the applied dc electric field Edc (blue arrow) for different rotation angles α of M.
(b) Schematic of the THz AMR measurement. An x-polarized THz pulse with transient electric field EincðtÞ (blue arrow) is incident on
the magnetic thin film. After traversal of the sample, we detect the x component of the THz electric field E, that is, E projected onto the
fixed direction of Einc, as a function of the magnetization angle α. (c) dc longitudinal resistance of Ni81Fe19 vs α (red open circles) with a
fit by R⊥ þ ΔRcos2α (black solid line). (d) THz waveforms Sðt; αÞ for α ¼ 90° (blue solid line) and 0° (red dashed line) vs time t for the
emitter-detector configuration covering the frequency range 0.2–2 THz. The inset shows a magnified version of the signal around its
minimum, indicating a signal change of about 1%. (e) Peak-to-peak amplitude of the THz signal waveform Sðt; αÞ as a function of α
(open circles) with a fit as in panel (c). The signal extrema used for the evaluation are indicated by the black arrows in panel (d).
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α between 0 and 360°, we employed a rotatable pair of
permanent magnets with a field of approximately 40 mT at
the sample position [Fig. S1(c) in Ref. [41] ].
Fast modulation.—To drastically enhance the signal-to-

noise ratio of the THz AMR measurements, we modulated
the magnetization angle α at kilohertz rates by super-
imposing a sinusoidal ac magnetic field (frequency of
6 kHz) from an electromagnet and a perpendicular dc
magnetic field from a permanent magnet [Fig. S1(d) in
Ref. [41] ]. As the two fields had an amplitude of
approximately 30 mT at the sample position, the magneti-
zation angle α was varied between αmin ≈ 0° and
αmax ≈ 90°, that is, between approximately parallel and
perpendicular to the polarization of the THz wave [see
Fig. 1(b)]. Lock-in-type phase-sensitive demodulation of
the THz signal allowed us to extract its magnetic-field-
induced and, thus, AMR-induced signal variations.
The magnetic-field strength of the 6-kHz arrangement

was sufficient to fully saturate the sample magnetization,
as confirmed by measuring the magnetization direction by
THz emission spectroscopy [45]. Note that the expected
AMR signal is determined by the sample magnetization
rather than the external magnetic field, which induces only
isotropic and, thus, negligible conductivity changes
[2,46,47]. Therefore, our various methods of magnetization
modulation deliver conductivity modulations that can be
directly compared to each other.

IV. RESULTS

A. Impact of magnetization direction

To study the sample conductivity as a function of the
magnetization angle α [Fig. 1(b)], we vary the direction
of the external magnetic field by the slowly rotating
permanent magnets. Figure 1(c) shows the measured dc
resistance of the Ni81Fe19 thin film vs α. We observe the
typical cos2α-like resistance modulation that is expected
for samples described by two conductivities σ k and σ⊥
(Ref. [2]). Indeed, a fit by R⊥ þ ΔRcos2α yields
excellent agreement with the experimental data. From
the modulation depth and the average resistance R̄ ¼
½Rð0°Þ þ Rð90°Þ�=2, we estimate an AMR contrast
ΔR=R̄ ≈ −Δσdc=σ̄dc of approximately 1%. The dc AMR
data for the other samples are shown in Fig. S2 of Ref. [41],
while the fit parameters are displayed in Table I.
We now turn to the THz measurements. Figure 1(d)

displays the signals Sðt; αÞ of THzwaveforms after traversal
of the sample for α ¼ 0° and 90°. For these measurements,
the emitter-detector pair covering the range 0.2–2 THz is
used.While the two signals are nearly identical, a magnified
plot around the signal minimum reveals that the signal for
α ¼ 0° has larger amplitude than the signal for α ¼ 90°.
This observation is consistent with the dc measurements
[Fig. 1(c)] and Eq. (A2): Changing the magnetization angle
from α ¼ 0° to 90° yields a smaller sample resistance and,

thus, larger conductivity, resulting in better screening of the
incident THz field and, therefore, in a smaller THz field
amplitude behind the sample.
To complete the picture, we determine the peak-to-peak

amplitude of all THz signals Sðt; αÞ as indicated by the two
black arrows in Fig. 1(d). The resulting THz peak-to-peak
amplitude is displayed in Fig. 1(e) as a function of the
magnetization angle α. It exhibits the same α dependence
and comparable contrast as the dc resistance [Fig. 1(c)].
Again, a cos2α fit yields excellent agreement with the
experimental data [Fig. 1(e)]. We explicitly confirm that the
α-dependent signal component disappears when either
(i) test samples without a magnetic layer are used, (ii) the
strength of the magnetic field is lowered below a critical
value, or (iii) the THz beam is blocked.
We conclude that the α-dependent THz signal arises

from the anisotropic conductivity of the magnetic thin film
under study. As the α dependence and relative magnitude of
this signal [Fig. 1(e)] coincide with that of the dc AMR
signal [Fig. 1(c)], we assign the α-dependent THz signal
modulation to the AMR effect at THz frequencies.

B. THz AMR differential spectra

To enable spectral analysis of the THz AMR with a
strongly increased signal-to-noise ratio, we modulate the
magnetization angle α at a frequency of 6 kHz between
αmin ≈ 0° and αmax ≈ 90° [see Fig. 1(b)]. By demodulation
with a lock-in-type technique, we obtain the difference
signal

ΔSðtÞ ¼ Sðt; αminÞ − Sðt; αmaxÞ; ð4Þ

while in a separate measurement, the mean signal

S̄ðtÞ ¼ Sðt; αminÞ þ Sðt; αmaxÞ
2

ð5Þ

is acquired.
Typical time-domain raw data and their spectra are

shown in Figs. 2(a)–2(d) for the case of the Ni81Fe19 thin
film. While Fig. 2(a) displays the signals ΔSðtÞ and S̄ðtÞ
for an incident 0.2–2-THz pulse, Fig. 2(b) shows corre-
sponding traces for an 8–28-THz pulse. By Fourier trans-
formation of the data of Figs. 2(a) and 2(b), the amplitude
spectra ΔSðωÞ and S̄ðωÞ of Figs. 2(c) and 2(d) are
obtained. The relative α-induced spectral amplitude
changes jΔSðωÞ=S̄ðωÞj are displayed in Figs. 2(e) and 2(f)
for Ni81Fe19 and Co, respectively.
The raw data of Figs. 2(c) and 2(d) reveal an interesting

behavior: Both ΔSðωÞ and S̄ðωÞ have exactly the same
spectrum at 0.2–2 THz [Fig. 2(c)] but differ noticeably at
8–28 THz [Fig. 2(d)]. Figures 2(e) and 2(f) confirm this
observation: The ratio jΔSðωÞ=S̄ðωÞj, which scales with the
AMR magnitude [see Eq. (6)], is independent of frequency
below 2 THz [Fig. 2(e)] but starts decreasing above 2 THz,
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eventually reducing to about 50% at 20 THz [Fig. 2(f)].
This behavior is consistent with the amplitudes of the
time-domain data [Figs. 2(a) and 2(b)] and their spectra
[Figs. 2(c) and 2(d)]. Thus, Figs. 2(e) and 2(f) show that the
AMR of Ni81Fe19 is operative at frequencies up to 30 THz
but decreases on a scale of about 10 THz, which coincides
with typical current relaxation rates [39,40]. In contrast, the
AMR contrast of Co remains constant up to 30 THz.

C. From signals to conductivities and AMR

Mean conductivities.—To better understand these obser-
vations, we also determine the mean conductivity σ̄ of
our samples at 1–6 THz and 8–28 THz (see Sec. III B). For
this purpose, we measure the signals S̄ðtÞ [mean signal of
Eq. (5) with respect to the full sample] and the reference
signal SrefðtÞ corresponding to transmission through the
plain substrate in sample regions without a metal film.
Using the Tinkham formula [48] (see Appendix A), we
obtain the mean conductivity of the metal layer.

The real and imaginary parts of the mean conductivity σ̄
vs frequency ω=2π are displayed in Figs. 3(a)–3(d) (top
panels) along with the dc conductivity σdc for all four
samples studied. We note that the measured dc conductivity
agrees well with the THz mean conductivity between
1 and 4 THz.
To gain access to microscopic parameters, we fit the

measured conductivities using the Drude formula [Eq. (2)].
As shown by the solid lines of Figs. 3(a)–3(d), the Drude-
Boltzmann framework provides a very good description
of our experimental data over more than two frequency
decades. Broadband Drude-like behavior of metals is quite
common and was previously observed also for other
magnetic thin films [49–52], magnetic multilayers [33],
and nonmagnetic metals [30,53]. The best-fit parameters of
our data, the mean zero-frequency conductivity σ̄ð0Þ and
the mean scattering rate τ̄, are summarized in Table I.
Again, we obtain a good match between the measured
dc conductivity σdc and the zero-frequency extrapolation
σ̄ð0Þ. The current relaxation times τ̄ are found to be of
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FIG. 2. THz AMR probes of Ni81Fe19 and Co. (a) THz signal waveforms ΔSðtÞ ¼ Sðt; 0°Þ − Sðt; 90°Þ (red line) and S̄ðtÞ ¼
½Sðt; 0°Þ þ Sðt; 90°Þ�=2 (blue line) of a THz pulse from a source-detector combination with a bandwidth 0.2–2 THz after having
traversed the Ni81Fe19 thin film. The difference waveform ΔSðtÞ reports on the change in the sample transmission when the
magnetization is rotated from α ¼ 90° to 0° [see Fig. 1(b)]. It is a signature of the AMR. (b) Same as panel (a), but for measurements
with bandwidth 8–28 THz. (c,d) Fourier amplitude spectra jΔSðωÞj and jS̄ðωÞj of the traces of panels (a) and (b), respectively. Signals
are normalized to their respective maximum. The mean noise level of jΔSðωÞj is indicated by the grey dashed lines and amounts to 0.01
and 0.04, respectively. (e,f) Relative spectral amplitude changes jΔSðωÞ=S̄ðωÞj as derived from panels (c) and (d), respectively (red
circles). Results for Co are also shown (black circles). Note that jΔSðωÞ=S̄ðωÞj is closely related to the AMR contrast through Eq. (6).
The error bars indicate the precision of the measurements as estimated from the noise level in panels (c) and (d). Data in all panels are
scaled by the indicated factors for clarity.
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the order of 10 fs, which is a typical value for metal thin
films [33,39,40].
AMR contrast.—To infer the AMR contrast [Eq. (1)], we

use the σ̄ðωÞ as determined by the fits above and the
relationship (see Appendix A)

AMRðωÞ ¼ ΔSðωÞ
S̄ðωÞ

�
1þ nSðωÞ þ nAðωÞ

Z0dσ̄ðωÞ
�
: ð6Þ

Here, nS and nA are the frequency-dependent refractive
indices of air and substrate, and d is the thickness of the
metal layer.
The modulus jAMRðωÞj is displayed in Fig. 3 (bottom

panels) vs frequency for all materials investigated. We see
that the AMR contrast is approximately frequency inde-
pendent for ω=2π < 2 THz with magnitudes ranging
from 0.3% (Ni) up to 1.6% (Ni81Fe19). These values are
compatible with the dc quantities obtained by contact-based
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measurements within the uncertainties of our methodology.
The various error sources are discussed in Appendix A.
We do not attempt to determine the phase of the AMR

contrast because the signals ΔS and S̄ are taken at different
times. Therefore, the complex-valued ratio ΔSðωÞ=S̄ðωÞ
may be subject to an unknown phase shift, which does not
allow us to determine the phase of AMRðωÞ through
Eq. (6). We emphasize that this lack of information is,
however, no issue because the modulus of AMRðωÞ is fully
sufficient to determine the ratio B=A of intrinsic and
extrinsic AMR contributions as shown in the following.

D. Intrinsic AMR component

Figure 3 allows us to tackle the major goal of this work:
to determine the weight of scattering-based and scattering-
independent components of AMR [see Eq. (3)]. For
ω=2π > 2 THz, we find that the AMR contrast decreases
by about 50% from 10 to 20 THz for both Ni81Fe19 and
Ni50Fe50. The slope of this decrease is similar to that of the
conductivity Reσ̄. This observation and the discussion
following Eq. (3) suggest that the AMR contribution
(A) is dominant for these films. In contrast, for Co, we
find an AMR decrease of less than 10% from 10 to 20 THz,
although the conductivity rolls off by more than 50% in this
range. This finding is consistent with Fig. 2(f). Along with
Eq. (3), it indicates that the AMR of Co has a significant
frequency-independent contribution (B).
To address the last point quantitatively, we determine the

weightsA andB of the twoAMRcontributions (A) and (B) by
fitting Eq. (3) to the measured jAMRðωÞj (Fig. 3). Here,A,B
are the only fit parameters, whereas the value of the scattering
time τ⊥ ≈ τ̄ is fixed by our analysis of themean conductivity.
Fitting is performed over both the full frequency range
0.2–28 THz and the high frequency range 8–28 THz (see
Supplemental Material [41]). With both procedures, we
obtain excellent and consistent agreement of measured data
and fits for all four investigated materials (Fig. 3).
The relevant parameters are summarized in Table I. We

find very small ratios B=A of the order of 10−3 for Ni81Fe19,
Ni50Fe50, and Ni. According to Eq. (3), an increase of B=A
would make the calculated curve jAMRðωÞj even flatter at
frequencies above 8 THz and result in less agreement with
the experimental data [Figs. 3(a)–3(c)]. Therefore, the
intrinsic contribution (B) to the AMR of the Ni81Fe19,
Ni50Fe50, and Ni samples is negligible.
We witness a strongly contrasting behavior for our

Co thin film. A fit without the presence of an intrinsic
contribution [B ¼ 0 in Eq. (3)] yields a curve with
significantly larger slope above 8 THz [grey dotted line
in Fig. 3(d)], which agrees poorly with experimental data.
A fit without this constraint results in very good agreement
of Eq. (3) with the measured modulus of the AMR contrast
for B=A ¼ 2.5� 1.5. Therefore, the intrinsic contribution
to the AMR contrast [red dashed horizontal line in
Fig. 3(d)] is a factor of about 2 larger than the extrinsic

component. At the same time, Co exhibits a THz AMR of
0.7%, only 50% smaller than that of Ni81Fe19, which turns
out to have the largest THz AMR of the four materials
studied here. Thus, we have found direct experimental
evidence for intrinsic contributions to AMR in a common
ferromagnet.

V. DISCUSSION

To summarize, we successfully measure AMR of thin
films of the standard ferromagnets Ni81Fe19, Ni50Fe50, Ni,
and Co from dc to 28 THz. Our data can be excellently
described by the Drude formula for the conductivity
parallel and perpendicular to the sample magnetization.
We identify two distinctly different contributions to
AMR: (A) a frequency-dependent extrinsic component
due to magnetization-dependent electron scattering and
(B) a frequency-independent intrinsic component arising
from magnetization-dependent electronic group velocities.
While contribution (B) is usually neglected in Boltzmann-
type models of AMR [2,3,5,12], it can be significant
already at dc and even dominate the AMR above 20 THz
in Co.

A. Origin of the intrinsic AMR of Co

The question arises as to why contribution (B) to AMR is
much larger in Co than in Ni, Ni50Fe50, and Ni81Fe19. We
ascribe this distinctly different behavior to the crystal
symmetry of the materials studied here. While crystalline
Ni, Ni50Fe50, and Ni81Fe19 are cubic (fcc, point group
m3m), Co has hexagonal symmetry (hcp, point group
6/mmm). The lower symmetry of Co allows for different
values of observables for directions parallel and
perpendicular to the c axis. Examples include the refractive
index (making Co optically anisotropic already forM ¼ 0),
the electron orbital angular momentum, and spin-orbit
coupling energies [54].
The strongly anisotropic spin-orbit coupling strength

implies that the electronic band structure changes
substantially when the magnetization M is parallel or
perpendicular to the c axis. Therefore, the squared plasma
frequency Ω2

plj, which is a summation of the squared
electron-group-velocity component j over the Fermi sur-
face [34,35,38], should change strongly as well.
We put this expectation to the test by numerically

estimating the weight B of the scattering-independent
component (B) of the conductivity, that is, the M-
dependent variation of the squared plasma frequency
Ω2

plj of Co [see Eq. (3) and Appendix C]. Preliminary
results indicate that when M is tilted out of the basal plane
into a direction parallel to the c axis (local z axis) of Co, the
plasma frequency Ωplz decreases by a value of the order
of 4%. In contrast, the calculations for Ni indicate that the
plasma frequency varies significantly less than 1% as a
function of the magnetization direction. Our numerical
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estimates, thus, confirm the expected variation of the
plasma frequency Ωplz when M is rotated out of the basal
plane of Co.

B. Impact of polycrystallinity

We note that the samples of our experiment are poly-
crystalline. In a simplified picture, one can imagine this
situation as an ensemble of three subsets of Co crystallites
whose c axes point along either the x, y, or z axis with the
same probability of 1=3. For simplicity, we assume that
only the magnetization component along the c axis will
modify the conductivity. When the driving THz field E is
applied along the z direction and the resulting current
density j is measured along E, the relevant conductivity σzz
changes only due to those crystallites whose c axis is
parallel to the z axis. Therefore, the current density along E
will change whenM is rotated fromM kE toM⊥E, and at
least part of the AMR of the crystallites is inherited by the
polycrystalline sample.
In a more rigorous way, the polycrystallinity of the

sample can be taken into account by averaging the
conductivity tensor over all crystal orientations while
keeping the magnetization M fixed. Equivalently, one
can perform a rotational average of the AMR tensor
Gjklm ¼ ð1=2Þ∂2σjk=∂Ml∂Mm (see Appendix C). The
elements Gjjll are proportional to the change in Ω2

pll with
respect to M2

l . While the refractive index of polycrystalline
Co in the absence of magnetic order (M ¼ 0) becomes
completely isotropic, the AMR, to a large extent, survives
the rotational averaging process. For polycrystalline Co,
we estimate the scattering-independent AMR contrast
by a linear combination of the numerically estimated tensor
elements Gjjll. As detailed in Appendix C, we obtain an
AMR contrast of ð0.8� 0.5Þ% for Co and 0% for Ni,
which is in excellent agreement with the measured scatter-
ing-independent contribution of B ¼ ð0.5� 0.1Þ% and
ð0� 0.07Þ% (Table I), respectively.

C. Role of interband transitions

The Drude-Boltzmann theory of AMR and other elec-
tronic transport phenomena relies on intraband transitions:
The probing THz field, possibly in conjunction with a
phonon or an impurity, causes an electron to scatter from
one Bloch state into another in the same band of the
electronic band structure. Above a certain probing fre-
quency, however, interband transitions—that is, transitions
between different bands—become operative.
Intraband transitions can often be well described by

the Drude formula [Eq. (2)], and their contribution to the
conductivity decays with 1=ω for large enough frequencies.
For interband transitions, we expect a different frequency
dependence of the conductivity than for intraband tran-
sitions. Such a crossover from intraband to vertical (i.e.,
wavevector-conserving) interband transitions was, for

example, observed for the semimetal graphite already at
frequencies between 10 and 20 THz (Ref. [55]).
In our conductivity spectra (Fig. 3), however, we do not

observe indications of interband transitions because we are
able to describe all measured curves well by the simple
Drude formula [Eq. (2)] over the full frequency range
0–28 THz. For Ni, this notion is consistent with earlier
work [49] in which the onset of interband transitions was
found at a photon energy of 0.15 eV (corresponding to
36 THz), which is outside the frequency range considered
here. Similarly, for Co and Fe, previous studies report that
the lowest interband transitions are at 0.18 eV (44 THz)
[56,57] and 0.20 eV (48 THz) [50,51]. We conclude that in
the materials studied here, intraband transitions dominate
the response at least up to 30 THz. Therefore, our insights
into intrinsic and extrinsic AMR contributions at THz
frequencies can directly be transferred to the dc AMR.

VI. CONCLUSIONS

In conclusion, low-noise broadband THz spectroscopy
enables one to measure AMR from about 0.2 to tens of THz.
The wide bandwidth provides access to important transport
parameters. Our measurements reveal extrinsic and sizable
intrinsic contributions to the AMR contrast, thereby provid-
ing new and surprising insights into a mature effect.
Polycrystalline Co exhibits a sizable intrinsic contribu-

tion, which can consistently be ascribed to the crystalline
anisotropy of the hexagonal (hcp) structure of Co crystal-
lites. Our interpretation is supported by rotational averaging
of the AMR tensor and numerical estimates. It highlights a
strategy to identify materials with a large intrinsic AMR
contribution, which is relevant for potential broadband THz
spintronic applications.
Probing of the intrinsic AMR component is also highly

interesting from a spectroscopic viewpoint because it
reports on magnetic-order-induced variations of the elec-
tronic band structure. We anticipate that broadband THz
AMR will be a highly useful, versatile, and ultrafast probe
of all flavors of magnetic order and transport parameters of
spintronic materials. It can be applied to standard thin films,
both crystalline [22] or polycrystalline, and under ambient
conditions without the need for microstructuring and
contacting. In particular, THz AMR should also be appli-
cable to metallic antiferromagnets such as CuMnAs and
Mn2Au, which have recently moved into the focus of
spintronics research [11,58].
As our THz radiation is pulsed, THz AMR can be

measured with a time resolution down to 100 fs. This
feature opens up the exciting possibility to monitor
material-relevant parameters on the timescales of spin,
electron, and lattice dynamics [59]. In this way, THz
AMR complements other recently developed ultrafast spin-
tronic techniques such as the THz anomalous Hall effect
[52,60,61], THz tunnel magnetoresistance [25], THz giant
magnetoresistance [33], and magnetization-dependent THz
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emission [45,62–65], which have provided new insights
into the dynamics of spin transport and spin-to-charge-
current conversion. Finally, because the THz range coin-
cides with a variety of excitations (such as phonons and
magnons), the method presented here allows us to study the
impact of such resonances on magnetotransport at their
natural frequencies.
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APPENDIX A: EXPERIMENTAL DETAILS

1. Sample growth and characterization

All samples were deposited by sputtering or thermal
evaporation techniques [66] on thermally oxidized
SijSiO2ð100 nmÞ substrates. Details on growth and char-
acterization can be found in the Supplemental Material
[41]. In brief, the Ni81Fe19 thin film (thickness of 8 nm) was
grown by dc sputtering (sputter power of 800 W, Ar
pressure of 0.5 Pa). X-ray diffraction (θ-2θ scans) reveals
a very weak (111) reflection, indicating a crystallite size of
about 3 nm. A weak (220) reflection confirms the poly-
crystalline growth of the sample. The layer thicknesses
were inferred from the X-ray reflectometry measurements.
The Ni50Fe50 (10 nm) layer was deposited by dc

magnetron sputtering (sputter power 30 W, Ar pressure
0.4 Pa). After the sputtering process, the sample was
capped with an MgO (7 nm) layer grown by in situ
molecular beam epitaxy (MBE) and electron-beam evapo-
ration and by an Al2O3 (5 nm) layer by ex situ atomic-layer
deposition. The Co (10 nm) film was grown by thermal
evaporation in ultrahigh vacuum (MBE) and capped by
MgO (5 nm) and Al2O3 (5 nm) using the techniques
described above. The Ni (10 nm) film was prepared by
thermal evaporation in a vacuum chamber and capped by
Al (3 nm), which fully oxidizes under ambient conditions
[67]. The crystal structure of the Co film was monitored
during growth using reflection high-energy electron dif-
fraction. We find a polycrystalline hcp structure with
random crystal orientation.

2. THz conductivity measurements

Our sample system is a stack SjFjA consisting of a metal
thin filmF(thicknessd) betweensubstrateS (refractive index
nS) and air A (refractive index nA). To determine the
conductance of F, we conduct transmission measurements
[see Fig. 1(b)]. In a first measurement, we characterize the
THz field E directly behind the F layer. As the field Einc
incident on the sample is unknown, we conduct a second
measurementona reference sampleSjRjA,where the sample
filmF is replacedby a reference filmRwith known refractive
index. Inpractice, the referencemeasurement is performed in
sample regions where no metal film is deposited. Thus, our
reference material is air (R ¼ A), whose refractive index
equals 1 to a very good approximation.
In our setup, the field Einc ¼ Eincu is normally incident

on the sample and linearly polarized parallel to the vertical
unit vector u [Fig. 1(b)]. The field E behind the sample is
projected onto the same direction u by means of a polarizer.
Thus, we measure a signal S which is related to the
projection u · E through the transfer function of our setup.
Likewise, the signal Sref from the reference sample is
obtained. By dividing the signals SðωÞ and SrefðωÞ in the
frequency domain, the setup transfer function is canceled.
As derived in Appendix B, the ratio SðωÞ=SrefðωÞ is related
to sample-intrinsic parameters by

SðωÞ
SrefðωÞ

¼ 1

1þ ZrefðωÞσ̄ðωÞd
�
1þ AMRðωÞcos2α

1þ ½ZrefðωÞσ̄ðωÞd�−1
�

ðA1Þ
where Zref ¼ Z0=½nSðωÞ þ nAðωÞ� is the impedance of the
reference sample.
As the AMR contrast AMRðωÞ amounts to only a few

percent, the second term in the square brackets of Eq. (A1)
is much smaller than the first one. Consequently, we
determine the first term by a simple transmission meas-
urement through the sample averaged over all magnetiza-
tion directions and through the reference without metal
film. We obtain the familiar Tinkham formula [48]

S̄ðωÞ
SrefðωÞ

¼ 1

1þ ZrefðωÞσ̄ðωÞd
ðA2Þ

which implies that

σ̄ðωÞ ¼ 1

ZrefðωÞd
�
SrefðωÞ
S̄ðωÞ − 1

�
: ðA3Þ

To measure the AMR-related term in Eq. (A1), we
modulate α between 0 and 90°. We obtain ΔSðωÞ ¼
Sðω; 0°Þ − Sðω; 90°Þ, and thus,

ΔSðωÞ
S̄ðωÞ ¼ AMRðωÞ

1þ ½ZrefðωÞσ̄ðωÞd�−1
; ðA4Þ

which is equivalent to Eq. (6) of the main text.
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3. Error considerations

THz measurements.—The uncertainties of the fit param-
eters σ̄ð0Þ, τ̄ [Eq. (2)] and A, B [Eq. (3)] are given by the
uncertainties of the signals ΔS and S̄ and the statistics of
the fit procedure. They are summarized in Table I and in
Table S1 of Ref. [41].
The precision of S̄ is estimated by the standard error of

repeated measurements of this signal. To estimate the
uncertainties of ΔS, two contributions are considered.
The first one is the statistical error of ΔS that arises from
the shot noise of our measurement. It is estimated by the
constant noise floor outside the signal bandwidth of the
THz-emitter-detector configuration used. An example
of the noise floor for Ni81Fe19 is shown in Fig. S6
in Ref. [41].
The second error contribution to ΔS arises from the

finite precision with which the magnets for rapid modu-
lation of the angle α of the external magnetic field could
be positioned. As a consequence, the minimum angle αmin
and the maximum angle αmax deviate from the target
angles 0° and 90°, respectively. This systematic error only
results in an overall rescaling of ΔS by an estimated upper
limit of 30%. Importantly, it does not affect the frequency
dependence of ΔS. It may, however, differ between the
measurements in the ranges 0.2–2 THz and 8–28 THz,
where the permanent magnet and the electromagnet were
repositioned. This issue was tackled by fitting Eq. (3)
over the full frequency range 0.2–28 THz and the higher
range 8–28 THz only. We obtain consistent results, as
summarized in the Supplemental Material [41], including
Table S1.
dc measurements.—For the electrical measurements of

σdc by the van der Pauw method, the measurement error is
of the order of 5% and predominantly arises from the
nonvanishing size of the contacts and their positioning
within the sample perimeter [42–44]. The error of the
electrical measurement of the AMR contrast by our four-
point approach is governed by the uncertainty of the
direction of the current flow between electrical contacts,
the directional homogeneity of the external magnetic field
of the Halbach array, and the fit statistics of the raw data
(see Fig. S1 of Ref. [41]).
Comparison of dc and THz.—From Fig. 3, we observe

that the values of the THz AMR contrast below 2 THz are
smaller than the dc AMR contrast for Ni50Fe50, Ni, and Co.
This behavior can be explained by a deviation of αmax −
αmin from 90°, which leads to a reduction of the measured
THz AMR contrast. For Ni81Fe19, we observe the opposite
behavior, which we believe arises from the different aspect
ratios of the rectangular samples used for the dc AMR
measurements. While the aspect ratio of the Ni81Fe19
sample is close to 1∶1, it is roughly 4∶1 for the other
samples. As a consequence, the current flow in the Ni81Fe19
sample is less homogeneous, resulting in an apparently
smaller measured dc AMR contrast.

APPENDIX B: DERIVATION
OF EQS. (3) AND (A1)

The following derivations refer to complex-valued quan-
tities in the frequency domain. For the sake of simplicity,
the argument ω is omitted.

1. Derivation of Eq. (3)

First, we rewrite the Drude formula [30,31] [Eq. (2)] as

σjðωÞ ¼
Ω2

plj=Z0c

τ−1j − iω
≕

Nj

Dj
ðB1Þ

where j ¼ 1; 2 refers to the ⊥ and k configurations,
respectively. Linearization with respect to ΔðΩ2

plÞ ¼ Ω2
pl2 −

Ω2
pl1 ≪ Ω2

plj and Δτ ¼ τ2 − τ1 ≪ τj yields

−AMR ¼ Δσ
σ1

¼ σ2 − σ1
σ1

¼ ΔN
N1

− ΔD
D1

¼ ΔðΩ2
plÞ

Ω2
pl1

þ Δτ
τ21

1

τ−11 − iω
¼ −B − A

1 − iωτ1

ðB2Þ

with B ¼ −ΔðΩ2
plÞ=Ω2

pl1 and A ¼ −Δτ=τ1. Further analy-
sis shows that the error of the linearization is of the order of
ΔðΩ2

plÞΔτ, which is negligible here.

2. Derivation of Eq. (A1)

Wave equation.—In our setup, the incident THz pulse
propagates along the z axis, which is perpendicular to the
sample plane [see Fig. 1(b)]. Therefore, z is the only
relevant spatial coordinate, and we choose its origin such
that the metal film F is located between z ¼ 0 and d. We
assume that the substrate S and air A are optically isotropic
and homogeneous and can thus be described by scalar
refractive indices nS and nA, respectively. The metal thin
film F, in contrast, is allowed to be inhomogeneous along z
and is optically anisotropic. It is adequately described by
the conductivity tensor (matrix) σðzÞ.
In frequency space, the THz field EðzÞ is determined by

the wave equation [68]

ð∂2
z þ β2ÞE ¼ Qext: ðB3Þ

Here, Qext quantifies the sample-external source of the
incident THz wave, and the squared wave-number matrix
β2ðzÞ captures the linear-optical properties of the system.
Its difference from the reference system fulfills

ðβ2 − β2refÞðzÞ ¼
iZ0

ω=c
σðzÞ ðB4Þ

BROADBAND TERAHERTZ PROBES OF ANISOTROPIC … PHYS. REV. X 11, 021030 (2021)

021030-11



where Z0 ≈ 377Ω is the free-space impedance. The refer-
ence system is the sample without the metal film,
that is, just the substrate and air half-spaces. We rewrite
Eq. (B3) as

ð∂2
z þ β2refÞE ¼ Qext þ Q ≔ Qext þ

Z0

iω=c
σE ðB5Þ

where the term QðzÞ quantifies the source of the field
component that arises from the response of the metal film
with conductivity σ. By inverting the operator ∂2

z þ β2ref in
Eq. (B5), one obtains the integral equation [68]

EðzÞ ¼ ErefðzÞ þ
Z

dz0Grefðz; z0ÞQðz0Þ ðB6Þ

where Grefðz; z0Þ is the optical Green’s function of the
reference sample [45]. Equation (B6) has a clear physical
interpretation: The total THz field EðzÞ is the sum of
the field ErefðzÞ of the reference sample (no metal film)
plus the field generated by the field-induced currents in
the metal.
Thin-film approximation.—To solve Eq. (B6), we apply

the so-called thin-film approximation and assume that the
field is constant throughout the thickness of the metal film,
that is,

EðzÞ ¼ E; ErefðzÞ ¼ Eref ðB7Þ

in the vicinity of z ¼ 0. This assumption is fulfilled if the
thickness of the metal film is much smaller than the
wavelength and the attenuation length of the THz wave
inside the metal. Likewise, for z ≈ 0, the Green’s function
of the reference sample becomes a ðz; z0Þ-independent
scalar, that is [45],

Grefðz; z0Þ ¼ gref ≔
1

i · ðβS þ βAÞ
ðB8Þ

where βj ¼ njω=c is the wave number of the substrate
(j ¼ S) and air (j ¼ A). By combining Eqs. (B5), (B7),
and (B8) with Eq. (B6), we finally obtain the total field

E ¼ 1

1þ ZrefGF
Eref ; ðB9Þ

where

Zref ¼
Z0

nS þ nA
and GF ¼

Z
dz0σðz0Þ; ðB10Þ

respectively, are the impedance of the reference system
close to the S/A interface and the (anisotropic) conductance

of the metal film F. For a homogeneous film with
z-independent conductivity σ, we have GF ¼ σd.
Application to our sample.—For our magnetic thin

film F, the conductivity can be split according to
σ ¼ σ0 þ Δσ, where σ0 is the isotropic conductivity in
the absence of magnetization (M ¼ 0), while the aniso-
tropic part Δσ captures all magnetoresistive effects. By
linearizing Eq. (B9) with respect to Δσ, we find

E ¼ Eref

1þ ZrefGF0
− ZrefΔGFEref

ð1þ ZrefGF0Þ2
; ðB11Þ

whereGF0 ¼
R
dz0σ0ðz0Þ is the conductance forM ¼ 0 and

ΔGF ¼ R
dz0Δσðz0Þ is the magnetoresistive contribution.

In our experiment, the incident field and, thus, reference
are linearly polarized parallel to the x axis [see Fig. 1(b)].
Therefore, they can be written as Einc ¼ Eincu and
Eref ¼ Erefu, where u is the unit vector (juj2 ¼ u2 ¼ 1)
of the x axis. In addition, the field E behind the sample is
projected onto the same direction u by a polarizer, resulting
in E ¼ u · E. We multiply Eq. (B11) by u from the left side
and arrive at

E
Eref

¼ 1

1þ ZrefGF0
− ZrefΔGFuu

ð1þ ZrefGF0Þ2
; ðB12Þ

where ΔGFuu ¼ u · ΔGFu is the magnetization-induced
change in the conductance projected onto u.
For our polycrystalline, homogeneous, and ferromag-

netic F layer, we have GF0 ¼ σ0d and ΔGF ¼ Δσd.
According to Eq. (C2), the magnetoresistive part Δσ of
the conductivity tensor fulfills

Δσu ¼ aM × uþ bMðM · uÞ: ðB13Þ

The first term is the anomalous Hall effect [52], and the
second term is the AMR. The contribution of isotropic
magnetoresistance can be added to σ0, but it was neglected
here because it is much smaller than σ0. The constants a
and b are material-specific, and b is directly related to the
AMR tensor.
Equations (B13) and (C3) imply that u · Δσu ¼

bM2cos2α ¼ ðσ k − σ⊥ Þcos2α, where α is the angle bet-
ween M and u [Fig. 1(b)]. Therefore, projection of the
transmitted field onto u does not contain any contribution
of the anomalous Hall effect since these field changes
are perpendicular to u. By substituting this result into
Eq. (B12), we obtain

E
Eref

¼ 1

1þ Zref σ̄d
− Zrefdðσ k − σ⊥ Þcos2α

ð1þ Zref σ̄dÞ2
: ðB14Þ

Here, we replaced σ0 by σ̄ ¼ ðσ k þ σ⊥ Þ=2 in the denom-
inators of Eq. (B14) with negligible error because
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jσ k − σ⊥ j ≪ σ0 ≈ σ̄. Along with the AMR contrast AMR ¼ −ðσ k − σ⊥ Þ=σ̄, Eq. (B14) turns into the desired
relationship

E
Eref

¼ 1

1þ Zref σ̄d

�
1þ AMR cos2α

1þ ðZref σ̄dÞ−1
�
: ðB15Þ

APPENDIX C: AMR OF POLYCRYSTALLINE SAMPLES

1. Symmetry analysis

The AMR tensor of an arbitrary ferromagnetic material is defined by Gjklm ¼ ð1=2Þ∂2σjk=∂Ml∂Mm. Depending on the
point-symmetry group of the material, a substantial number of tensor elements are strictly zero or depend on each other,
thereby resulting in a relatively small number of independent tensor elements. For the hexagonal crystal structure of Co
(hcp, point group 6/mmm), we have [69,70]

0
BBBBBBBBB@

σxx

σyy

σzz

σyz

σzx

σxy

1
CCCCCCCCCA

¼

0
BBBBBBBBB@

Gxxxx Gxxyy Gxxzz 0 0 0

Gxxyy Gxxxx Gxxzz 0 0 0

Gzzxx Gzzxx Gzzzz 0 0 0

0 0 0 2Gyzyz 0 0

0 0 0 0 2Gyzyz 0

0 0 0 0 0 Gxxxx −Gxxyy

1
CCCCCCCCCA

0
BBBBBBBBB@

M2
x

M2
y

M2
z

MyMz

MzMx

MxMy

1
CCCCCCCCCA
; ðC1Þ

where the z axis is oriented along the c axis of Co.

For the cubic crystal structure of Ni, Ni50Fe50, and
Ni81Fe19 (fcc, point group m3m), one has the additional
constraints Gxxyy ¼ Gxxzz ¼ Gzzxx, Gxxxx ¼ Gzzzz, and
Gxxxx −Gxxyy ¼ 2Gyzyz. Therefore, two independent ele-
ments such as Gxxyy and Gyzyz ¼ Gzxzx ¼ Gxyxy completely
determine the AMR tensor in this case.

2. Rotational averaging

The AMR tensor of a polycrystalline material is obtained
by rotational averaging [71,72] of the tensor hGijklm of the
crystalline material. The resulting tensor hGijklm fulfills the
same symmetry constraints as the AMR tensor of a cubic
crystal with point group m3m. Thus, knowledge of the
two independent elements hGixyxy and hGixxyy is sufficient.
For a ferromagnetic material of this symmetry class, the
current density j induced by an electric field E, up to
second order in the magnetization M, can be compactly
written as [69,70]

j ¼ σE ¼ σ0Eþ aM × Eþ bMðM · EÞ þ cM2E: ðC2Þ

Here, the first term on the right-hand side is the current in
the absence of magnetic order, the second term with
constant a is the anomalous Hall effect, the third term is
the AMR with b ¼ 2hGixyxy, and the last term is an
isotropic magnetoresistance with c ¼ hGixxyy. For a thin

film of this material with M and E in the film plane, the
conductivity is σ⊥ ¼ σ0 þ cM2 if M⊥E, whereas it is
σ k ¼ σ⊥ þ bM2 if M kE. Thus, we have

σ k − σ⊥ ¼ bM2 ¼ 2hGixyxyM2: ðC3Þ

For polycrystalline Co, we perform rotational averaging
[71,72] of the AMR tensor and obtain

30hGixyxy ¼ 7Gxxxx þ 2Gzzzz − 5Gxxyy − 2Gxxzz

− 2Gzzxx þ 12Gyzyz ðC4Þ

whereas for polycrystalline Ni, we find

hGixyxy ¼ Gxyxy: ðC5Þ

3. AMR estimate of polycrystalline samples

We conducted ab initio calculations of the plasma
frequency of crystalline Ni and Co as detailed in
Supplemental Material [41]. These values can be compared
to the weight B of the intrinsic AMR contribution we
measured on polycrystalline samples of Ni and Co. For
Ni, the calculated plasma frequencies are independent of
the magnetization direction (see Table S3 in Ref. [41]),
consistent with B ¼ ð0� 0.07Þ% as inferred from our
measurements.
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To deal with Co, we assume that its AMR exclusively
arises from intrinsic contributions, and we use Eqs. (1),
(C3), and (C4) to write

−B ¼ Δσ
σ̄

¼ 2

σ̄
hGixyxyM2 ¼ 2

σ̄

X
M2Gijklaijkl

≈
2

σ̄

X
M2Gzzjjazzjj: ðC6Þ

The coefficients aijkl are related to the rotational aver-
aging [see Eq. (C4)], and in the last step of Eq. (C6), we
neglected Gyzyz. According to our ab initio calculations
(see Table S3 in Ref. [41]), we infer that only the plasma
frequencies and, thus, the conductivities σzz [see Eq. (2)]
along the c axis (z axis) of crystalline Co depend on
the direction of the magnetization M. On the other hand,
from Eq. (C4), we see that azzxx ¼ −1=15, azzyy ¼ 0, and
azzzz ¼ 1=15. With these conditions, Eq. (C6) becomes

−B ≈
2

15σ̄
ðM2Gzzzz −M2GzzxxÞ ¼

2

15

σzz;zz − σzz;xx
σ̄

:

ðC7Þ

In the last step, we used M2Gzzjj ¼ σzz;jj − σ0zz, where
σzz;jj is the z conductivity when the sample is magnetized
along the j direction and σ0zz is the z conductivity for
M ¼ 0. We finally assume that the current relaxation time
of Co is isotropic for M ¼ 0. By combining Eqs. (2) and
(C7) and using Table S3 in Ref. [41], we obtain

B ≈ − 2

15

Ω2
plzz;zz −Ω2

plzz;xx

Ω2
pl

¼ ð0.8� 0.5Þ%; ðC8Þ

which is in excellent agreement with the experimentally
determined value of B ¼ ð0.5� 0.1Þ%.

[1] W. Thomson, On the Electro-Dynamic Qualities of Metals:
Effects of Magnetization on the Electric Conductivity of
Nickel and of Iron, Proc. R. Soc. London 8, 546 (1857).

[2] T. McGuire and R. Potter, Anisotropic Magnetoresistance
in Ferromagnetic 3d Alloys, IEEE Trans. Magn. 11, 1018
(1975).

[3] I. A. Campbell, A. Fert, and O. Jaoul, The Spontaneous
Resistivity Anisotropy in Ni-Based Alloys, J. Phys. C 3, S95
(1970).

[4] H. Brooks, Ferromagnetic Anisotropy and the Itinerant
Electron Model, Phys. Rev. 58, 909 (1940).

[5] J. Smit, Magnetoresistance of Ferromagnetic Metals and
Alloys at Low Temperatures, Physica 17, 612 (1951).

[6] L. Berger, Influence of Spin-Orbit Interaction on the Trans-
port Processes in Ferromagnetic Nickel Alloys, in the
Presence of a Degeneracy of the 3d Band, Physica 30,
1141 (1964).

[7] I. A. Campbell and A. Fert, Transport Properties of
Ferromagnets, in Handbook of Ferromagnetic Materials
(Elsevier, New York, 1982), Vol. 3, Chap. 9 pp. 747–804,
https://doi.org/10.1016/S1574-9304(05)80095-1.

[8] R. C. O’Handley, Modern Magnetic Materials: Principles
and Applications (Wiley, New York, 2000).

[9] S. Andreev and P. Dimitrova, Anisotropic-Magnetoresistance
Integrated Sensors, J. Optoelectron. Adv.Mater. 7, 199 (2005).

[10] X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R. J.
Paull, J. D. Clarkson, J. Kudrnovský, I. Turek, J. Kuneš,
D. Yi, J.-H. Chu, C. T. Nelson, L. You, E. Arenholz, S.
Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh,
Room-Temperature Antiferromagnetic Memory Resistor,
Nat. Mater. 13, 367 (2014).

[11] P. Wadley et al., Electrical Switching of an Antiferromagnet,
Science 351, 587 (2016).

[12] H. Ebert, A. Vernes, and J. Banhart, Anisotropic Electrical
Resistivity of Ferromagnetic Co-Pd and Co-Pt Alloys, Phys.
Rev. B 54, 8479 (1996).

[13] K. Výborný, J. Kučera, J. Sinova, A. W. Rushforth, B. L.
Gallagher, and T. Jungwirth,Microscopic Mechanism of the
Noncrystalline Anisotropic Magnetoresistance in
ðGa;MnÞAs, Phys. Rev. B 80, 165204 (2009).

[14] M. Trushin, A. H. C. Neto, G. Vignale, and D. Culcer,
Hidden Anisotropy in the Drude Conductivity of Charge
Carriers with Dirac-Schrödinger Dynamics, Phys. Rev. B
100, 035427 (2019).

[15] T. Kato, Y. Ishikawa, H. Itoh, and J. Inoue, Magnetoresist-
ance and Hall Effect in Spin-Polarized Two-Dimensional
Electron Gas with Spin-Orbit Interaction, Phys. Status
Solidi (b) 244, 4403 (2007).

[16] J. Velev, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal,
Ballistic Anisotropic Magnetoresistance, Phys. Rev. Lett.
94, 127203 (2005).

[17] K. Výborný, A. A. Kovalev, J. Sinova, and T. Jungwirth,
Semiclassical Framework for the Calculation of Transport
Anisotropies, Phys. Rev. B 79, 045427 (2009).

[18] T. Kato, Y. Ishikawa, H. Itoh, and J. Inoue, Intrinsic
Anisotropic Magnetoresistance in Spin-Polarized Two-
Dimensional Electron Gas with Rashba Spin-Orbit Inter-
action, Phys. Rev. B 77, 233404 (2008).

[19] T. Kato, Y. Ishikawa, H. Itoh, and J.-I. Inoue, Intrinsic
Anisotropic Magnetoresistance in Spin-Polarized Two-
Dimensional Electron Gas with Rashba Spin-Orbit Inter-
action, Phys. Rev. B 77, 233404 (2008).

[20] P. Zahn, I. Mertig, M. Richter, and H. Eschrig, Ab Initio
Calculations of the Giant Magnetoresistance, Phys. Rev.
Lett. 75, 2996 (1995).

[21] K. M. Seemann, F. Freimuth, H. Zhang, S. Blügel, Y.
Mokrousov, D. E. Bürgler, and C. M. Schneider, Origin
of the Planar Hall Effect in Nanocrystalline Co60Fe20B20,
Phys. Rev. Lett. 107, 086603 (2011).

[22] F. L. Zeng, Z. Y. Ren, Y. Li, J. Y. Zeng, M.W. Jia, J. Miao,
A. Hoffmann, W. Zhang, Y. Z. Wu, and Z. Yuan, Intrinsic
Mechanism for Anisotropic Magnetoresistance and Exper-
imental Confirmation in CoxFe1−x Single-Crystal Films,
Phys. Rev. Lett. 125, 097201 (2020).

[23] K. J. Chau and A. Y. Elezzabi, Photonic Anisotropic Mag-
netoresistance in Dense Co Particle Ensembles, Phys. Rev.
Lett. 96, 033903 (2006).

LUKÁŠ NÁDVORNÍK et al. PHYS. REV. X 11, 021030 (2021)

021030-14

https://doi.org/10.1098/rspl.1856.0144
https://doi.org/10.1109/TMAG.1975.1058782
https://doi.org/10.1109/TMAG.1975.1058782
https://doi.org/10.1088/0022-3719/3/1S/310
https://doi.org/10.1088/0022-3719/3/1S/310
https://doi.org/10.1103/PhysRev.58.909
https://doi.org/10.1016/0031-8914(51)90117-6
https://doi.org/10.1016/0031-8914(64)90105-3
https://doi.org/10.1016/0031-8914(64)90105-3
https://doi.org/10.1016/S1574-9304(05)80095-1
https://doi.org/10.1038/nmat3861
https://doi.org/10.1126/science.aab1031
https://doi.org/10.1103/PhysRevB.54.8479
https://doi.org/10.1103/PhysRevB.54.8479
https://doi.org/10.1103/PhysRevB.80.165204
https://doi.org/10.1103/PhysRevB.100.035427
https://doi.org/10.1103/PhysRevB.100.035427
https://doi.org/10.1002/pssb.200777260
https://doi.org/10.1002/pssb.200777260
https://doi.org/10.1103/PhysRevLett.94.127203
https://doi.org/10.1103/PhysRevLett.94.127203
https://doi.org/10.1103/PhysRevB.79.045427
https://doi.org/10.1103/PhysRevB.77.233404
https://doi.org/10.1103/PhysRevB.77.233404
https://doi.org/10.1103/PhysRevLett.75.2996
https://doi.org/10.1103/PhysRevLett.75.2996
https://doi.org/10.1103/PhysRevLett.107.086603
https://doi.org/10.1103/PhysRevLett.125.097201
https://doi.org/10.1103/PhysRevLett.96.033903
https://doi.org/10.1103/PhysRevLett.96.033903


[24] T. J. Huisman, R. V. Mikhaylovskiy, A. V. Telegin, Yu. P.
Sukhorukov, A. B. Granovsky, S. V. Naumov, T. Rasing,
and A. V. Kimel, Terahertz Magneto-Optics in the Ferro-
magnetic Semiconductor HgCdCr2Se4, Appl. Phys. Lett.
106, 132411 (2015).

[25] Z. Jin, J. Li, W. Zhang, C. Guo, C. Wan, X. Han, Z. Cheng,
C. Zhang, A. V. Balakin, A. P. Shkurinov, Y. Peng, G. Ma,
Y. Zhu, J. Yao, and S. Zhuang, Magnetic Modulation of
Terahertz Waves via Spin-Polarized Electron Tunneling
Based on Magnetic Tunnel Junctions, Phys. Rev. Applied
14, 014032 (2020).

[26] J. van Driel, F. R. de Boer, R. Coehoorn, and G. H. Rietjens,
Magnetic Linear Dichroism of Infrared Light in Ferromag-
netic Alloy Films, Phys. Rev. B 60, R6949 (1999).
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