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We numerically investigate the morphology and disclination line dynamics of active nematic droplets in
three dimensions. Although our model incorporates only the simplest possible form of achiral active stress,
active nematic droplets display an unprecedented range of complex morphologies. For extensile activity,
fingerlike protrusions grow at points where disclination lines intersect the droplet surface. For contractile
activity, however, the activity field drives cup-shaped droplet invagination, run-and-tumble motion, or the
formation of surface wrinkles. This diversity of behavior is explained in terms of an interplay between
active anchoring, active flows, and the dynamics of the motile disclination lines. We discuss our findings in
the light of biological processes such as morphogenesis, collective cancer invasion, and the shape control of
biomembranes, suggesting that some biological systems may share the same underlying mechanisms as
active nematic droplets.
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I. INTRODUCTION

Active particles use energy from their surroundings to
do work. Examples range from eukaryotic cells, bacterial
suspensions, and motor proteins to active colloids and
shaken granular rods [1,2]. Active systems have recently
received considerable attention in the community because
of their potential in designing mesoscopic engines, as a
way of interpreting biological mechanics, and as examples
of nonequilibrium statistical physics [3,4]. Here, we focus
on dense active systems and, in particular, the continuum
theory of active nematics, which describes active systems
with hydrodynamic interactions. The archetypal exper-
imental example is microtubules driven by kinesin motor
proteins [5,6]. Other active nematics include myosin-
driven actin-microtubule networks [7], swimming bacte-
rial swarms, and confluent eukaryotic cells [8–11].
A key property of active nematics, which distinguishes

them from passive liquid crystals, is active turbulence. This
turbulence is a chaotic flow state characterized by strong
vorticity and motile topological defects which are continu-
ally created and destroyed. Considerable experimental
and theoretical work is devoted to understanding the
properties of active turbulence, and the associated topo-
logical defects, in two dimensions. More recently, it has
proved possible to design an active material that allows

imaging of a three-dimensional active nematic and, in
particular, the associated motile disclination loops and lines
[12]. This imaging is achieved by dispersing force-
generating microtubule bundles in a passive colloidal liquid
crystal based on filamentous viruses. The temporal evolu-
tion of disclination lines is measured using light-sheet
microscopy, revealing that the primary topological excita-
tions in bulk active nematics are charge-neutral disclina-
tion loops.
Numerical simulations reveal that flows and morphologi-

cal dynamics of disclination lines in three-dimensional (3D)
active nematics are governed by the local director profile
surrounding the disclination line and that defect loops in
extensile systems are generally formed via the well-known
bend instability [13]. Three-dimensional active nematic
turbulence and disclination line dynamics in spherical
confinement is also investigated using numerical modeling
in both achiral [14] and chiral systems [15,16]. Enforcing
strong in-plane surface alignment allows the formation of
defects on the surface and is used to highlight the coupling of
surface and bulk topological defect dynamics.
The theories of active materials are increasingly being

used to describe biological systems in two dimensions, with
examples including biofilm initiation [17], topological
defects in cell monolayers [8–10], and epithelial expansion
[18]. This use suggests that in three dimensions there may
be relevance to the collective motion of groups of cells, in
morphogenesis, or to the growth and spread of tumors.
Therefore, to underpin extension of these approaches to
3D, in this paper, we investigate active, self-deforming
droplets in three dimensions, describing the interplay
between disclination dynamics and droplet morphology.
We find that extensile droplets form protrusions at points
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where disclination lines reach the surface. In contractile
droplets, however, disclinations lead to a wrinkled drop
surface. Moreover, for small, contractile droplets, we find
that invagination, to form a cuplike configuration, can be
driven by nematic activity alone. We present evidence
explaining the reasons behind the different behaviors,
stressing, in particular, the role of active anchoring, an
effective surface alignment resulting from active flows.
We start by presenting the mathematical description of

an active nematic and the equations of motion which we
solve numerically and follow this presentation by a
summary of 3D active nematics and the classification of
disclination lines. The main results are presented in Sec. IV,
which is split into four subsections: First, we investigate
the nematic structure on the surface of an active droplet
(Sec. IVA) and how this structure affects the dynamics
of disclination lines in the bulk of spherical droplets
(Sec. IV B). We then move on to show how active forces
can deform the interface by highlighting mechanisms
causing droplet deformations triggered by both extensile
(Sec. IV C) and contractile (Sec. IV D) activity. The last
section of the paper summarizes the key results and points
out possible connections to biological systems.

II. EQUATIONS OF MOTION

We summarize the continuum equations of motion
describing the dynamics of a deformable, nematic droplet
in an isotropic fluid background. In the absence of activity,
the system is described by a free energy F ¼ R

fdV ¼R
fGL þ fLCdV. The first contribution, which controls the

formation of the nematic droplet, is chosen to take the
Ginzburg-Landau form

fGL ¼ κ�

2
ð−φþ φ3 − ϵ2∇2φÞ2 þ Kφ

2
ð∇φÞ2: ð1Þ

This describes phase separation into two stable phases with
concentrations φ ¼ �1 with an interface of width ϵ
separating the two phases [19,20]. The bending rigidity
κ of the interface is related to κ� by κ ¼ ð2ϵ3=3 ffiffiffi

2
p Þκ�. The

final term penalizes gradients in the concentration field and
introduces a surface tension σ. We outline the mechanical
properties of the interface generated with this phase-field
modeling approach in Appendix A.
The second contribution to the free energy density is

fLC ¼ ALC

�
1

2

�
1 −

ηðφÞ
3

�
trðQ2Þ − ηðφÞ

3
trðQ3Þ

þ ηðφÞ
4

trðQ2Þ2
�
þ 1

2
KLCð∇QÞ2; ð2Þ

which includes the usual Landau–de Gennes bulk energy of
the liquid crystal expanded in terms of the nematic tensorQ
which has elements Qij ¼ 3S0=2ðninj − δij=3Þ, where S0

is the magnitude and n the direction of the nematic order,
and a term which penalizes elastic deformations of the
director field [21].ALC sets the bulk energy scale, andwe use
the one-elastic-constant approximation which assigns the
same elastic constant KLC to twist, splay, and bend defor-
mations. The function ηðφÞ, which quantifies the depend-
ence of bulk energy on the local liquid crystal concentration,
predicts a first-order phase transition between a nematic and
an isotropic phase of the liquid crystal at the value ηc ¼ 2.7.
We define ηðφÞ ≔ ηc þ η1φ and choose a value of η1 that
ensures that the system forms a nematic droplet (φ ¼ þ1)
which is surrounded by isotropic fluid (φ ¼ −1). Alternative
expressions for ηðφÞ or the liquid crystal bulk energy
expressions are used in other work [22,23], resulting in
qualitatively the same dynamics, as long as the droplet in the
nematic phase [ηðφ ¼ 1Þ > ηc] and the environment is
isotropic [ηðφ ¼ −1Þ < ηc].
Since the total concentration

R
φdV is assumed to stay

constant, diffusive transport follows model-B dynamics,
and the time evolution of φ is governed by the following
reaction-diffusion equation [24]:

ð∂t þ u ·∇Þφ ¼ Γφ∇2μ: ð3Þ

Here, u is the velocity field, and the mobility Γφ quantifies
how fast φ responds to gradients in the chemical poten-
tial μ ¼ δF=δφ.
Unlike the total concentration, the local nematic align-

ment Q is not a conserved quantity, and its time evolution
follows modified model-A dynamics [25]:

ð∂t þ u ·∇ÞQ − S ¼ ΓQH; ð4Þ

where ΓQ is the rotational diffusivity and H, the molecular
field, is given by

H ¼ −
�
δF
δQ

−
1

3
Itr

�
δF
δQ

��
: ð5Þ

Rodlike particles can not only be advected by the fluid, but
also rotate in response to flow gradients. This behavior is
accounted for by the corotational term [25]

Sij¼ðξDikþΩikÞ
�
Qkjþ

δkj
3

�
þ
�
Qikþ

δik
3

�
ðξDkj−ΩkjÞ

−2ξ

�
Qijþ

δij
3

�
QklWlk; ð6Þ

where Dij ¼ ð∂jui þ ∂iujÞ=2 and Ωij ¼ ð∂jui − ∂iujÞ=2
are the symmetric and antisymmetric parts of the velocity
gradient tensor Wij ¼ ∂iuj, respectively. The parameter ξ
determines whether the director aligns with, or tumbles in,
a shear flow. Its value depends on the molecular details of
the liquid crystal, and it is related to the flow alignment
parameter λ defined within Ericksen-Leslie theory by
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λ ¼ ð3S0 þ 4=9S0Þξ. This work mostly focuses on flow
tumbling nematics, for which the flow alignment param-
eter λ < 1.
We assume that the buildup of active flows occurs over

timescales which are much longer than any viscoelastic
relaxation time of the system. We therefore consider the
liquid limit and solve the incompressible Navier-Stokes
equations to obtain the flow field u:

∇ · u ¼ 0; ð7Þ

ρð∂t þ u · ∇Þu ¼ ∇ · Π; ð8Þ

where the stress tensor Π ¼ Πviscous þ Πelastic þ Πcapillaryþ
Πactive. The passive contributions, well known from liquid
crystal hydrodynamics [26], are

Πviscous ¼ 2ηD; ð9Þ

Πcapillary ¼ ðf − μφÞI −∇φ

� ∂f
∂ð∇φÞ

�
þ∇φ∇

� ∂f
∂ð∇2φÞ

�

−∇∇φ
� ∂f
∂ð∇2φÞ

�
; ð10Þ

Πelastic ¼ −pI − ξ½HQ̃þ Q̃H − 2Q̃trðQHÞ�

þQH −HQ −∇Q
� ∂f
∂ð∇QÞ

�
; ð11Þ

where ρ is the density, η the viscosity, p the bulk pressure,
and Q̃ ¼ ðQþ 1

3
IÞ. In addition to the passive terms, the

stress due to the dipolar flow fields produced by the active
particles is [27]

Πactive ¼ −ζQ; ð12Þ

where ζ quantifies the magnitude of active stress. For
extensile activity, ζ > 0, nematic particles direct the fluid
outward along their elongated direction and inward along
the two perpendicular axes. The flow direction is reversed
for contractile activity, ζ < 0.
We solve the equations of motion using a hybrid lattice-

Boltzmann–finite-difference method. This method involves
solving Eqs. (3) and (4) using finite-difference methods
and Eqs. (7) and (8) using a lattice-Boltzmann algorithm
[21,22,25,28]. Simulations are performed on a three-
dimensional lattice of size 100 × 100 × 100, and discrete
space and time steps are chosen as unity. We use periodic
boundary conditions for the simulation box, and the system
initially consists of a spherical, nematic drop of radius
R ¼ 30 (φ ¼ þ1) embedded in an isotropic fluid (φ ¼ −1),
unless otherwise stated. Initially, we let the system relax for
t ¼ 500 time steps such that the droplet interface and the
nematic tensor Q reach their equilibrium profile before we
switch on activity. We use the following parameter set for

all simulations: ρ ¼ 1, p ¼ 0.25, ΓQ ¼ 0.1, Γφ ¼ 0.2,
κ� ¼ 0.1, ϵ ¼ 1.4, Aφ ¼ 0.1, η1 ¼ 0.3, ξ ¼ 0.1, and η ¼
1=3 in lattice-Boltzmann units. For spherical droplets in
Secs. IVA and IV B, we use KLC¼0.1, Kφ¼0.4, ALC ¼
0.75, and jζj ¼ 0.01. For soft droplets in Secs. IV C
and IV D, we use the following parameters, unless
otherwise stated: KLC ¼ 0.2, Kφ ¼ 0.2, ALC ¼ 1.5, and
jζj ¼ 0.02. In Appendix B, we provide a mapping of the
simulation parameters to physical units.

III. DISCLINATION LINES IN
THREE-DIMENSIONAL ACTIVE NEMATICS

Active stress leads to an instability of the nematic phase
(Fig. 1). This hydrodynamic instability constantly pushes
the system out of equilibrium, leading to a chaotic steady
state termed active turbulence [29]. 3D active turbulence is
characterized by spatiotemporally chaotic flows and the
presence of disclination lines which constantly undergo
transformation events such as breakup, recombination,
nucleation, and annihilation [14]. In bulk systems, discli-
nation lines typically form closed, charge-neutral loops
[12]. However, in the presence of a confining interface, as
for nematic droplets, disclination lines can also terminate at
the boundary, and the dynamics of the resultant defects on
the surface is coupled to disclination line dynamics in the
bulk by elastic interactions and flows.
Unlike in two-dimensional active nematics, where �1=2

defects carry topological charge and can therefore nucleate
or annihilate only in pairs of opposite charge, disclination
lines in three dimensions can continuously transform from
a local −1=2 configuration (in the plane perpendicular to
the line) into aþ1=2 configuration through an intermediate
twist winding as indicated in Fig. 2. As one moves around
the core of a disclination in the plane perpendicular to the
local disclination line segment, the director field winds
around a specific axis, the rotation vector Ω (black arrows)
by an angle π. The angle β between Ω and the local line
tangent t (yellow arrow) is called the twist angle and can be
used to locally characterize the disclination line. For − 1=2
(þ1=2) wedge-type defects, the twist angle corresponds to
β ¼ 0ðπÞ, while line segments with local twist-type defects
are indicated by β ¼ π=2.

FIG. 1. Bend (a) and splay (b) perturbations of the director field
n cause active forces which set up active flows which further
enhance or stabilize the respective perturbation. Forces in
extensile or contractile systems are denoted by red or blue
arrows, respectively. It is apparent that extensile (contractile)
systems are unstable to bend (splay) deformations.
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Because of activity, disclination lines act as self-
propelled entities moving through the fluid. Based on a
simplified model neglecting elastic interactions, each dis-
clination line segment can be associated with a local self-
propulsion velocity which depends on the local director
profile [13]. The self-propulsion velocity component
perpendicular to the local tangent of the line depends on
twist angle β as

vSP⊥ ∝ ð1 − cos βÞ2: ð13Þ
Thus, unlike in two-dimensional active turbulencewhere the
dynamics is dominated by two species of quasiparticles
(�1=2 defects), disclination lines in three-dimensional
active turbulence act as quasiparticles with an intrinsic
degree of freedom, the twist angle 0 ≤ β ≤ π. Line segments
with β ¼ 0 are passive, while β ¼ π line segments are most
active in pushing around the surrounding fluid. Please refer
to Appendix C for further information about the detection of
disclination lines and the calculation of twist angle β on a
finite grid used for the lattice-Boltzmann simulation.

IV. RESULTS

A. Activity leads to preferred director
alignment at an interface

In 2D active nematics, the flow induced by active stresses
leads to an alignment of the director at an interface with an
isotropic phase [23]. This active anchoring of the director
field is parallel to the interface for extensile stress and
perpendicular for contractile stress. For 2D systems, the
active alignment can be significant, but it is not immediately

obvious whether the effect persists in a 3D geometry or how
it is affected by any defects present on the surface.
Therefore, to investigate the effects of active anchoring

in 3D, we measure the angle θ between the director field n
and the surface normal at the interface of spherical droplets.
Since there are more possible configurations for in-plane
alignment (θ ¼ π=2) than for perpendicular alignment
(θ ¼ 0), we use the distribution of cos θ to quantify
alignment effects. A randomly aligned director field results
in a uniformly distributed cos θ ∼ U½0; 1�, while preferred
perpendicular or in-plane alignment leads to bias of the
distribution toward 1 or 0, respectively. The results in Fig. 3
show clear evidence that both extensile and contractile

FIG. 2. A local −1=2 wedge can continuously transform into a
þ1=2 wedge via an intermediate twist disclination [12]. The
director field winds about the rotation vector Ω (black arrows) by
an angle π. The angle between the rotation vector Ω and the local
disclination line tangent t (yellow arrow), called the twist angle β,
varies continuously along a disclination line. Twist disclinations
correspond to β ¼ π=2 and þ1=2 and −1=2 wedge disclinations
to β ¼ π and 0, respectively.

FIG. 3. Surface alignment of the director field for extensile (a)
and contractile activity (b). Surface defects, shown as blue
arrows, are connected via disclination lines running through
the bulk. The surface alignment is indicated by the color bar,
where orange (black) indicates in-plane (perpendicular) director
alignment with respect to the interface. Upper right: surface
alignment in projection. Lower right: distribution of surface angle
cosðθÞ over the total surface area.

LIAM J. RUSKE and JULIA M. YEOMANS PHYS. REV. X 11, 021001 (2021)

021001-4



activity lead to strong active anchoring on the surface,
which weakly depends on the flow-alignment parameter λ
(Fig. S1 [30]).
The director orientation also shows signatures of the

places where disclination lines end at the surface. Consider
first the case of extensile activity. The director lies in plane
over most of the surface, although there are localized
regions with perpendicular alignment [see Fig. 3(a) and
Movie S1 [30]]. The disclination lines present in the bulk of
the droplet create quasi-two-dimensional defects at the
positions where they terminate at the interface which we
shall term surface defects. The distribution of the twist
angle β of surface defects has distinct peaks at β ¼ 0 and
β ¼ π, showing that most defects on the surface are of
wedge type (Fig. 4), corresponding approximately to 2Dþ
1=2 and −1=2 configurations. There are fewer twist-type
surface defects with β ≈ π=2, as these introduce a perpen-
dicularly aligned region in the vicinity of the defect, which
is suppressed by active anchoring.
A two-dimensional nematic sheet confined to the surface

of a sphere always has at least four þ1=2 defects present,
as the total topological charge is conserved and must
add up to two, the Euler-characteristic χ of a sphere.
Active anchoring does not confine the director field to the
surface everywhere, so the topological charge is not strictly
conserved.
By contrast, contractile activity leads to a remarkable

stripe pattern in the director alignment on the surface.

While most parts of the surface show strong perpendicular
(homeotropic) active alignment, this alignment is inter-
spersed with thin stripes of clear in-plane ordering [see
Fig. 3(b) and Movie S1 [30]]. The stripes start and
terminate at surface defects which are mostly twist type
with β ≈ π=2 (Fig. 4). Wedge-type surface disclinations
with β ¼ 0; π are suppressed, as they would create a region
of in-plane alignment in the vicinity of the defect. Twist-
type disclinations, on the other hand, introduce only a small
region of in-plane alignment along one specific direction
(Fig. 2) and are, therefore, favored. Adjacent twist-type
disclinations tend to align with their rotation vectors
antiparallel, in a way that minimizes the area of unfavorable
in-plane alignment, thereby creating the observed stripe
pattern (Fig. 5).
Perfect perpendicular alignment at the surface prevents

disclination lines in the bulk terminating there, as all
disclination lines introduce some degree of in-plane align-
ment at the surface. Indeed, because topological charge is
conserved, a sphere with perfect homeotropic alignment at
the interface forces the system to form a þ1 hedgehog
defect in the bulk. Like in two dimensions where a þ1
disclination splits into two þ1=2 defects, in three dimen-
sions the hedgehog defect forms a small þ1 defect loop in
the bulk [13,14]. However, þ1 defect loops are associated
with large elastic energy of the liquid crystal which usually
cannot be overcome by active anchoring.

B. Disclination line dynamics in spherical droplets

We now focus on disclination line dynamics inside
spherical droplets which are essentially undeformed by
active forces. In the regime of active turbulence, disclina-
tion lines constantly form and annihilate. Previous inves-
tigations of active turbulence in bulk systems find that the
dominant excitations of three-dimensional active nematics
are charge-neutral disclination loops which undergo com-
plex dynamics and recombination events [12]. In droplets,
however, disclination lines do not need to form loops, as
they can also exist as growing or shrinking half-circles or
lines which terminate at the surface at positions ½x1;x2�.
The distance between end points (surface defects) of

FIG. 4. Distribution of twist angles of surface defects βsurf , i.e.,
at positions where disclination lines intersect the droplet inter-
face, obtained from a time average in the active turbulent regime.
Surface defects are preferentially wedgelike (twistlike) in ex-
tensile (contractile) systems where active anchoring favors in-
plane (normal) director alignment. The relative probability is
given by Ni=maxðfNigÞ, where Ni is the number of observations
in bins of range Xi � h=2, and error bars denote the bin errorffiffiffiffiffi
Ni

p
=maxðfNigÞ. The averaging is performed over T ¼ 250 000

time steps, which is much longer than the average time it takes for
a disclination line to move across the droplet τSP ≈ 15 000.

FIG. 5. Adjacent twist-type surface defects (green) tend to align
antiparallel to each other in contractile systems to minimize the
region of in-plane alignment. This alignment results in lines of
planar surface anchoring between the defects (orange directors).
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disclination lines D ¼ jx1 − x2j first scales linearly with
the total length L of lines before plateauing at a finite value
as the lines increase in length. For disclination lines which
are short compared to the droplet radius (L < R), the mean
end point separation scales as D ≈ ð2=πÞL, showing that
the lines mainly nucleate or annihilate at the droplet’s
surface as half-circles. The end points of very long
disclination lines (L ≫ R) are randomly distributed over
the droplet’s surface, so the mean separation of end points
converges toward D=R ≈ 4=3 (Fig. S2 [30]). The local
properties of disclination lines can be classified by the twist
angle β, which varies continuously along the line. We find
that the director profiles of disclination lines close to the
surface are heavily influenced by active anchoring which
favors wedge- (twist)-type disclination lines for extensile
(contractile) activity (Fig. 6 and Movie S1 [30]). This result
is in contrast to the bulk of the drop, where extensile
(contractile) activity favors twist- (wedge)-type disclina-
tions. The distributions of β at the surface and in the bulk

are compared for extensile and contractile droplets in
Figs. 6(c) and 6(d), respectively. The excess of twist
disclinations in extensile bulk systems has been recently
confirmed by both experiments and simulations [12,13].
Behind the apparent disorder of three-dimensional

active turbulence, we identify an active length scale lζ ∝ffiffiffiffiffiffiffiffiffiffiffiffiffi
KLC=ζ

p
which controls the average disclination line

density and coincides with the active length scale gov-
erning the decay of the vorticity correlations in two-
dimensional active turbulence [3]. Figure 7 shows the area

FIG. 6. Snapshots of disclination lines in an (a) extensile and
(b) contractile droplet. The color bar shows the twist angle β
which characterizes the director configuration which varies
continuously along the line. (c) As a consequence of active
anchoring, for extensile systems, disclinations close to the surface
tend to be wedge type, whereas those in the bulk tend to be twist
disclinations as is evident from the distribution of β. (d) For
contractile systems, disclinations close to the surface slightly tend
to be twist type, whereas those in the bulk tend to be wedge
disclinations. Averaging in (c) and (d) performed over T ¼
250 000 time steps. The noisiness of the colors seen for some
disclination line segments in (a) occurs because of a finite grid
resolution and does not significantly impact the statistics (see
Appendix C).

FIG. 7. (a) Mean area density of disclination lines, defined
as the total length Ltot of all disclination lines divided by the
volume V, as a function of the inverse active length scale
1=lζ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ=KLC

p
. Either KLC or ζ are varied, while the other

parameter is set to a fixed value, which is indicated by the legend
entries. (b) Persistence length ξβ of the twist angle β as a function
of the active length scale. (c) Mean curvature κ̃ of disclination
lines as a function of activity number A ¼ R=lζ. Averaging
performed over T ¼ 20 000 time steps.
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density of disclination lines, defined as the total length Ltot
of all disclination lines divided by the droplet volume V, as
a function of KLC and ζ, confirming that it scales with the
active length scale as l−2

ζ . Moreover, measuring the mean
variation of twist angle β along disclination lines shows an
exponential convergence toward a plateau with a character-
istic length scale ξβ (Fig. S3 [30]). We find that, in the
turbulent regime, the correlation length ξβ of twist angle β

scales with the active length scale as ξβ ∝ l4=3
ζ . The

exponent 4=3 > 1 reflects that disclination lines are curved
structures in three-dimensional space; hence, correlations
do not decay linearly along lines. Based on these obser-
vations, we define the dimensionless activity number
A ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ=KLC

p
as the ratio of droplet size R to active

length scale lζ. The mean curvature κ̃ of disclination lines
increases with activity number roughly as κ̃ ∼ A0.6.
Deviations at large activity A, equivalent to small active
length scale lζ, are caused by the finite grid size of the
simulation as lζ approaches the grid resolution limit Δx.
Because of activity, disclination lines move through the

fluid with an associated transverse self-propulsion velocity
vSP⊥ [Eq. (13)]. In addition, they are passively advected by
the surrounding flow, and, thus, the mean transverse
velocity of disclination line segments is expected to
follow hv⊥i ≈ vrms þ vSP⊥ , where vrms denotes the root-
mean-square velocity of the fluid inside the droplet.
Surprisingly, this simplified model of uncoupled, self-
propelled line segments closely matches the velocity profile
we observe in turbulent droplets for large β [Fig. 8(a)]. As
disclination lines consist of line segments with varying self-
propulsion velocities, more active line segments are elas-
tically coupled with more passive segments. Passive line
segments are, thus, pulled around by elastic interactions in
addition to passive advection by the flow, which is the
reason for the deviation of hv⊥i from the theoretical
prediction for small β.
We argue that, as a consequence of active anchoring, the

distribution of β varies between disclination lines near the
surface and those deep into the bulk [Fig. 8(b), solid lines].
This variation is mirrored in the average self-propulsion
velocity [Fig. 8(b), diamonds]. In extensile systems, the
wedge-type defects close to the surface on average move
faster than the twist-type line segments in the bulk.
Similarly, contractile activity causes line segments in the
bulk, which are mostly wedge type, to move faster than
surface defects.

C. Extensile activity triggers the formation
of fingerlike protrusions

We now consider lower values of the surface tension
such that the active flows are strong enough to deform the
droplet, which leads to the formation of defect-mediated,
fingerlike protrusions for extensile activity. Unlike in stiff
droplets, the active flow field around disclination lines

close to the surface can push the interface outward, creating
a bulge along the self-propulsion direction of a disclination
line [Fig. 9(a)]. As the disclination line continues to move
outward toward the interface, the local bulge extends and
forms a thin protrusion. Because of the reduced separation
of interfaces compared to the spherical droplet, the proper-
ties of disclination lines inside protrusions are dominated
by active anchoring which favors in-plane surface align-
ment. This domination causes disclination lines to span the

FIG. 8. (a) Mean transverse velocity hv⊥i of disclination line
segments as a function of local twist angle β. The transverse
velocity is normalized by the average root-mean-square velocity
vrms of the fluid. The fit is to the theoretical prediction [13],
Eq. (13), with the constant of proportionality obtained from a
least-square fit. (b) Mean twist angle hj cosðβÞji and mean
transverse velocity hv⊥i as a function of the relative position
along disclination lines, where values 0 and 1 denote positions
close to the surface and in the bulk, respectively. The relative
position is measured as the ratio of Γ, which is the path length
between each point and the nearest end point of the disclination
line, and L1=2, which is half the total line length. Averaging
performed over T ¼ 250 000 time steps.
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width of the protrusion as a straight line with most line
segments resembling wedge-type þ1=2 defect profiles
(β ≈ π), thereby enhancing the directed self-propulsion

of the disclination line even further. The þ1=2 defect
profile aligns along the protrusion axis, as this configura-
tion satisfies the in-plane anchoring condition everywhere
at the surface [Figs. 9(b) and 9(d)]. This quasi-two-dimen-
sional movement of þ1=2 defect lines is also observed in
active nematic films confined to a channel below a critical
wall separation [31]. Wedge-type −1=2 defect profiles
(β ≈ 0) are not observed in protrusions, as they are passive
and lack the self-propulsion necessary to form a bulge in
the first place.
The þ1=2 defect line eventually reaches the tip of the

growing protrusion and moves out of the nematic droplet,
leaving behind a homogeneous director field which is
aligned along the protrusion axis [Figs. 9(c) and 9(e)].
Thereby, an area of perpendicular surface alignment is
introduced at the end of protrusions, which are points of
large negative mean curvature. The surface alignment
cosðθÞ is, therefore, correlated to the local mean curvature
of the interface (Fig. S4 [30]). In the absence of disclination
lines mediating active forces, the aligned protrusions
slowly retract due to surface tension and bending energy.
The constant formation and retraction of droplet protru-
sions is also shown in Movie S2 [30].
To further quantify the mechanism of protrusion for-

mation, we measure several properties of disclination lines
as a function of radial position xr, with the droplet’s center
of mass being the reference point of a spherical coordinate
system. For approximately ellipsoidal droplet shapes, xr
can be used as a proxy to divide the initially spherical
droplet of radius R into a bulk domain (xr < R) and a
protrusion domain (xr > R). Disclination lines in the bulk
(xr < R) of soft droplets undergo chaotic movement
(hvri ≈ 0) and are mostly twist type. By contrast, in
protrusions (xr > R), disclination lines mostly consist of
þ1=2 line segments (approximately 70%) and show
persistent self-propulsion along the radial protrusion axis
[hvri ≫ 0; see Fig. 10(a)]. Disclination lines in protrusions
are nearly straight, and their total length L is limited by the
width of the protrusion [LðxrÞ ≈ const for xr > R; see
Fig. 10(b)].
Droplets of sizes much larger than the active length scale

R ≫ lζ are strongly deformed, and protrusions do not
always grow along the radial axis [Fig. S5(a) [30]], thereby
rendering the spherical approximation unsuitable. Still, it
can be observed that þ1=2 defect lines are much more
frequent in soft droplets with protrusions than in spherical
droplets without protrusions [Fig. S5(b) [30]].
The morphology of extensile droplets is determined

by two control parameters: The activity number A ¼
R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ=KLC

p
controls the density of disclination lines inside

the bulk of droplets, while the ratio of elastic constant to
surface tension Ψ ¼ KLC=Kφ quantifies the energetic cost
associated with nematic deformations in the bulk compared
to deformations of the interface (assuming surface tension
dominates the bending stiffness). The morphology of

FIG. 9. Formation of fingerlike protrusions by motile discli-
nation lines shown by three snapshots at times t1 < t2 < t3. (a)–
(c) show the three-dimensional droplet shape with color coding
showing the local surface alignment of the director field.
Disclination line segments are colored according to the twist
angle β with the same color coding as in Fig. 6. (a) Disclination
line with varying twist angle β moves toward the interface. Active
flow pushes the interface outward, creating a bulge along the self-
propulsion direction of the disclination line. (b) The small
protrusion width combined with in-plane alignment at the surface
stabilizes the disclination line into an almost straight configura-
tion with β ≈ π. (c) The disclination line moves out of the droplet,
leaving behind a defect-free protrusion with an aligned director
field. Disclination lines exit protrusions as nearly straight lines
and violate in-plane alignment within a small area, as active
anchoring is not strong enough to force the creation of a
surface point defect. (d) and (e) show a schematic diagram of
the director field and active forces. The red arrow in (d) denotes
the self-propulsion direction of the β ≈ π disclination lines. As
shown in (c), disclinations leave behind an area of perpendicular
surface alignment (dark regions) at the end of protrusions which
slowly retract due to surface tension and bending rigidity.
Snapshots created from simulation with droplet size R ¼ 15 at
times t1 ¼ 71 500, t2 ¼ 72 500, and t3 ¼ 73 500; see also
Movie S2 [30].
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droplets as a function of A and Ψ is shown in Fig. 11. For
very stiff interfaces (Ψ ≪ 1), droplets are nearly spherical
and host disclination lines if the activity A is sufficiently
large (blue diamonds and purple triangles). Soft interfaces
(Ψ ≥ 1), however, allow the formation of fingerlike pro-
trusions as soon as disclination lines are formed inside

droplets (yellow circles). If active forces become much
larger than the passive restoring force of the interface,
active flows tear apart the droplet, which breaks up into
smaller parts (orange squares; see also Movie S5 [30]).
The strength of protrusion formation can be quantified by
the gyrification index, which is a function of A and Ψ
[Fig. S8(a) [30]].

D. Contractile activity triggers droplet
invagination and surface wrinkles

We now consider contractile activity which causes
droplet invagination or the formation of comb-shaped
droplet deformations creating wrinkle patterns on the
surface. Unlike protrusion formation in extensile systems,
droplet deformations in contractile systems originate from
smooth director field deformations and are not mediated via
disclination lines.
In contractile systems, active anchoring favors normal

surface alignment. Every spherical or topologically equiv-
alent surface with normal surface alignment everywhere
enforces the formation of at least one þ1 disclination loop
in the bulk due to topological constraints. These loops are
usually associated with a large elastic energy cost due to
strong deformations of the director field and, thus, are
observed in drops only if strong normal anchoring is
enforced by additional terms in the free energy.
Otherwise, in the absence of disclination lines, the director
field forms a ring with in-plane surface alignment encir-
cling the droplet [Fig. 12(a)] to maximize the area of
perpendicular surface alignment favored by active anchor-
ing while avoiding the formation of a þ1 defect loop in the
bulk. The ring of in-plane surface alignment is associated
with nematic bend deformations in the bulk; thus, we refer

FIG. 11. Morphology diagram of extensile droplets (ζ > 0) as a
function of the activity number A ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ=KLC

p
and the elastic

constant to surface tension ratio KLC=Kφ. Parameters ζ and KLC

are varied, while the surface tension and droplet size are fixed to
one of the following values: Kφ ∈ f0.1; 0.2g and R ∈ f15; 30g.

FIG. 10. Disclination line properties for extensile activity as a
function of radial position xr in an initially spherical droplet of
radius R. (a) Most of the disclination lines in protrusions (xr > R)
show aþ1=2 director configuration for which the self-propulsion
velocity vr points radially outward. (b) Disclination lines in
protrusions (xr > R) are nearly straight lines whose length is
limited by the diameter of the protrusion. The radial component
of the self-propulsion velocity vr is obtained by taking the
droplet’s center of mass as the reference point of a spherical
coordinate system. The fraction of þ1=2 disclination lines is
defined as the fraction of disclination line segments with twist
angle 3=4π ≤ β ≤ π and the persistence of disclination lines as
the ratio of end point distance over total line length. Disclination
line properties are calculated by sorting observations fYg into
bins of range Xi � h=2. The position of error bars shows the bin
mean hfYigi, and the size of error bars indicates the standard
error of the mean ϵ ¼ stdðfYigÞ=

ffiffiffiffiffi
Ni

p
, where Ni is the number of

observations in bin Xi � h=2. The averaging is performed over
T ¼ 100 000 time steps, which is much longer than the mor-
phological timescale on which protrusion formation happens
(approximately 2000 time steps; see Fig. 9).
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to this structure as a bend ring from now on [Fig. 12(d)].
Contractile activity causes the bend ring to push outward,
thereby deforming the droplet to an oblate ellipsoid until
passive forces arising from surface tension and membrane
rigidity counterbalance the active force.
If active forces are small compared to the passive

restoring forces arising from membrane and director field
deformations, the oblate bend-ring configuration is stable.
Perturbations of ring shape and position are associated with
increasing elastic deformations of the membrane and the
director field, thereby creating an energy barrier which

stabilizes the configuration (Fig. S6 [30]). The exact free
energy profile depends on model parameters such as the
surface tension Kφ, membrane rigidity κ, nematic elastic
constant KLC, and bulk properties.
If active forces are sufficiently strong to overcome the

passive restoring force, however, the bend ring at the
equator is unstable. It contracts while moving toward
one of the poles, and its motion results in invagination,
leading to a cup-shaped configuration of the droplet.
This instability arises from the active flow set up by the

director configuration of the bend ring which pushes
outward along the deformation axis [Fig. 1(a)]. Any small
deviations from a perfect ellipsoidal droplet shape cause a
component of the active flow to point toward one of the
poles. The resulting droplet deformation rotates the axis of
the bend ring further toward the pole, thereby in turn further
increasing the active force component in the direction of the
pole [Figs. 12(b) and 12(e)].
As the contracting bend ring approaches the pole, it

creates an area of splay deformation in its center due to
active anchoring enforcing perpendicular surface alignment
[Fig. 12(e)]. This splay deformation sets up an active flow
pointing inward [Fig. 1(b)]. The outward-pointing forces of
the bend ring together with the inward-pointing forces in its
center combine to drive droplet invagination [Figs. 12(c)
and 12(f)]. If the magnitude of active stress ζ is not
significantly reduced after complete invagination, this
process eventually causes the cavity that is driven into
the drop to break off (cup closure), as the passive restoring
forces resulting from membrane rigidity and surface
tension are not sufficient to compensate the active forces
(see Movie S5 [30]). However, if the system is active only
for a certain amount of time and ζðtÞ is reduced after the
initial invagination, the cup-shaped drop can be stabilized,
analogous to the natural course of morphogenetic events,
which are controlled by biochemical signals and begin and
end at a predefined time [32].
Alternatively, if the interface is too stiff for active forces

to initiate drop invagination, droplets perform an active
run-and-tumble motion (Fig. 13 and Movie S3 [30]).
Instead of a large cavity, only a small dip is formed at
the center of the bend ring, where the interface resists
further deformations and the splay configuration of the
director field leads to flows which push the droplet forward
(run phase). Eventually, the director deformations relax via
the nucleation of a β ¼ π half-loop, and the self-propulsive
disclination line travels from the position of the dip to the
opposing interface. This process reorientates the bend ring
along a random direction perpendicular to the axis of the
dip (tumble phase), and the process repeats along the new
direction. During the run phase, the droplet approximately
moves on straight lines, after which it makes a 90° turn into
a random direction. The long time dynamics of the droplet
motion is diffusive and resembles a three-dimensional
random walk known as a freely rotating chain in polymer

FIG. 12. Initiation of droplet invagination by contractile activity
shown by three snapshots at times t1 < t2 < t3. (a)–(c) show the
three-dimensional droplet shape with color coding indicating the
local surface alignment of the director field. (d)–(f) are schematic
diagrams of the director field n, showing the active forces (red
arrows) and the position of the bend ring (red, dotted circle).
(d) The ring of in-plane alignment at the equator causes nematic
bend deformations in the bulk. Contractile activity causes these
bend deformations to push outward (red arrows), thus deforming
the droplet to an oblate shape. (e) While the ring of in-plane
alignment moves toward one of the poles, the bend deformations
in the bulk point perpendicular to the surface, which causes the
active forces to develop a component pointing toward the pole.
This process creates a dent in the center of the ring. (f) Because of
the perpendicular surface alignment caused by active anchoring,
the dent in the center of the ring leads to a director splay
deformation in the bulk. Contractile activity causes this splay
deformation to push inward, thus increasing the depth of the dent.
Snapshots created from simulation with elastic constant KLC ¼
0.4 at times t1 ¼ 15 000, t2 ¼ 30 000, and t3 ¼ 50 000.
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physics with a turn angle θ ¼ 90°. Tumbling occurs
periodically at low activity and becomes more chaotic
close to the transition to active turbulence at larger activity
(Fig. S9 [30]).
In contractile droplets which are larger than the active

length scale R ≫ lζ, many disclination lines are present in

the bulk, and the surface shows characteristic stripes of in-
plane director alignment connecting the end points of
disclination lines (Fig. 3). The stripes on the surface are
associated with nematic bend deformations in the bulk
which induce active forces pushing outward. This process
creates comb-shaped deformations along the stripes of
in-plane alignment, resulting in a surface wrinkle
pattern which we term active wrinkling (Fig. 14 and
Movie S4 [30]). In addition, the droplet deformation causes
the perpendicularly aligned surface areas between in-plane
stripes to form splay deformations in the bulk, which cause
inward-pushing, active forces that create dimples and
valleys, further enhancing the wrinkle pattern. Along the
in-plane ridges the mean curvature is negative, while in the
center of holes it is positive. Surface alignment cosðθÞ is,

FIG. 14. Snapshots of a contractile drop showing (a) the mean
curvature and (b) the orientation of the director field on the
surface. Contractile droplets which contain disclination lines
show stripes of in-plane director alignment on the surface which
connect end points of the disclination lines in the bulk (Fig. 3).
Bend and splay deformations of the director field near the surface
create comb-shaped deformations along the stripes of in-plane
alignment, resulting in a wrinkle pattern. In between stripes of in-
plane alignment, dimples and valleys are driven into the drop as
shown in snapshot (c), which depicts the local radius on a
semitransparent drop. The dynamical structure of active surface
wrinkles is shown in Movie S4 [30], together with a 3D view of
the surface structure.

FIG. 13. Droplets perform a run-and-tumble motion if the
interface is too stiff for active forces to cause complete droplet
invagination. Instead, a bend stripe at the equator deforms the
droplet to an oblate shape (a), which then shrinks, forming a dip
at the center of the bend ring, where a splay deformation in the
bulk pushes the droplet forward (b). Then, the elastic deforma-
tions relax via the nucleation of a β ¼ π half-loop (c). The self-
propulsive disclination line moves through the droplet and
eventually reaches the interface. This event, which we refer to
as a tumbling event, reorientates the bend ring along a random
direction perpendicular to the axis of the dip, and the process
repeats (d). The long time dynamics of the droplet’s motion is
diffusive and resembles a three-dimensional random walk (e),
which is known in polymer physics as a freely rotating chain with
a turn angle θ ¼ 90° (f). Tumbling events are shown as cyan dots,
and the start and end points are shown as red and green dots,
respectively. Snapshots and random walk created from simula-
tions with droplet size R ¼ 15; see also Movie S3 and
Fig. S9 [30].
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therefore, correlated to the local mean curvature of the
interface with in-plane surface alignment [cosðθÞ ≈ 0]
associated with points of negative mean curvature and
perpendicular surface alignment [cosðθÞ ≈ 1] predominat-
ing at points of positive mean curvature (Fig. S7 [30]).
As for the extensile case, the morphology of contractile

droplets is determined by the activity number A ¼
R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ=KLC

p
and ratio of elastic constant to surface tension

Ψ ¼ KLC=Kφ (Fig. 15). Very stiff interfaces (Ψ ≪ 1) cause
droplets to be nearly spherical and host disclination lines if
activity A is sufficiently large (blue diamonds and purple
triangles). If interfaces are sufficiently soft (Ψ ≈ 1), drop-
lets can be either be static, oblate ellipsoids without
disclination lines (blue diamonds), perform a run-and-
tumble motion (yellow circles), or form active surface
wrinkles (green stars). For very soft interfaces (Ψ ≫ 1),
droplets are static ellipsoids at low activity, and full
droplet invagination takes place at larger activity, leading
the droplet to eventually break up (orange squares).
The degree of invagination and wrinkling can also be
quantified by a gyrification index, which varies with A and
Ψ [Fig. S8(b) [30]].

V. DISCUSSION

In this paper, we investigate the morphology and defect
dynamics in active deformable droplets in three dimen-
sions, considering both extensile activity, as present in
experimental systems such as microtubule-kinesin mixtures
[33], human bronchial epithelial cells [34], and Madin-
Darby canine kidney cells [8], as well as contractile

activity, which is found in systems such as mouse fibroblast
cells [10] or actomyosin gels [35]. We show that active
stresses cause in-plane (extensile) or perpendicular
(contractile) surface alignment of the director field at the
interface of droplets.Unlike thermodynamic surface anchor-
ing, which involves an anchoring free energy, active
anchoring is a hydrodynamic effect due to the flows driven
by gradients of the nematic ordering Q at the interface.
Active anchoring has important consequences for the
dynamics of disclination lines close to the interface, such
as the preferential formation of wedgelike surface disclina-
tions in extensile systems or the creation of in-plane aligned
stripes connecting twistlike surface disclinations in con-
tractile systems. This consequence, in turn, triggers the
formation of fingerlike protrusions in soft, extensile droplets
or the creation of surface wrinkles and droplet invagination
in contractile systems. Furthermore, we apply the ideas of
2D active turbulence, such as defect velocities and the
existence of an active length scale, to three dimensions. We
identify an active length scalelζ of three-dimensional active
turbulence, which controls both the density of disclination
lines and the correlation length of the twist angle β along
disclination lines in the bulk of nematic droplets.
Recent work interprets several 2D biological systems

including bacteria biofilms [17,36], epithelial tissue [8],
spindle-shaped cell monolayers [10], and actin fibers in
regenerating hydra [37] in terms of the theories of active
nematics. It is interesting to ask whether similar ideas may
prove useful in 3D to describe biological systems in which
nematic constituents, such as protein filaments, eukaryotic
cells, or bacteria, are organized as solid, 3D structures with
a confining interface. There are several examples where
cells migrate collectively as a cohesive group, thereby
maintaining supracellular properties such as collective
force generation and tissue-scale hydrodynamic flow
[38–40]. For example, in some modes of collective cell
movement implicated in cancer invasion, a blunt budlike tip
consisting of multiple cells that variably change position
and lack well-defined leader cells protrudes from the tumor
[41,42]. Hence, the natural appearance of fingerlike pro-
trusions in active nematic droplets could serve as a new
approach to explain collective cell invasion of tumors.
In eukaryotic cells, membrane shapes under mechanical

stress are mostly controlled by the mechanics of the cortical
actin cytoskeleton underlying the cell membrane which
produces contractile stresses. It has been observed that
membrane shapes mainly depend on the actin thickness,
where thin shells show a cup-shaped deformation and thick
shells produce membrane wrinkles [43]. Our work provides
a possible link between contractile activity and the emer-
gence of cell-surface ruffles, circular dorsal ruffles, and
caveolae [44–46] at the surface of cells. Surface invagina-
tion which plays a role in active transport through cell
membranes might also be related to local contractile forces.
During macropinocytosis (fluid endocytosis), extracellular

FIG. 15. Morphology diagram of contractile droplets (ζ < 0) as
a function of the activity number A ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ=KLC

p
and elastic

constant to surface tension ratio KLC=Kφ. There is a smooth
transition between spherical droplets with disclination lines and
active wrinkling. Parameters ζ and KLC are varied, while the
surface tension and droplet size are fixed to one of the following
values: Kφ ∈ f0.1; 0.2g and R ∈ f15; 30g.
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fluid is brought into the cell through an invagination of the
cell membrane forming a small vesicle inside the cell.
Vesicles form from cell-surface ruffles that close first into
open cups (ruffle closure) and then into intracellular
vesicles (cup closure) [47,48], which is reminiscent of
the dimples that are driven into contractile drops. Some
morphologies observed in contractile drops, such as partial
invagination and run-and-tumble motion, are known to also
occur in active polar droplets [49,50]. In contrast to nematic
systems, which are characterized by a headless director
field n ↔ −n, polar systems are described by a polariza-
tion vector p. As a result, polar models do not exhibit�1=2
topological defects, which are shown to contribute to the
dynamics and flows in cell cultures and bacterial biofilms
[8,10,17,34,36].
Up to now, most of the research on three-dimensional

active nematics has been focused on the topology and
dynamics of closed disclination loops in the bulk or
disclination lines in fixed geometries [12–16]. Previous
investigations of two-dimensional active nematicswhich are
confined to the surface of a 3D shell explore the connection
between 2D topological defects and shell morphology [51].
With this work, we expand the current understanding of
three-dimensional active nematics, considering the interplay
between motile disclination lines, deformations of the
nematic director field, and the droplet interface.
Future directions include the consideration of more

complex geometries, in particular, thick, nematic shells
or the addition of an anchoring free energy enforcing a
given surface alignment. The motivation behind this
direction is that most biological systems during embryonic
development form sheets or shells rather than solid struc-
tures. It will be interesting to return to a more detailed
investigation of time-dependent activity ζðtÞ in the future,
analogous to the natural course of morphogenetic events,
which are controlled by biochemical signals which may
vary over time. Another aspect when considering cell
aggregates such as embryos or tumors is that they are
often composed of different cell types with different
mechanical properties and cellular responses [52]. It would
be interesting to extend our model to two or more distinct,
nematic fluid phases with different mechanical properties
and activity coefficients, thereby incorporating cellular
heterogeneity within cell aggregates. Another important
aspect is that cells are usually surrounded by a three-
dimensional dense network of macromolecules, the extrac-
ellular matrix, which provides structural support and is
known to strongly affect cell migration behavior [53,54].
The investigation of how a viscoelastic medium or a dense
polymer solution affects active droplets therefore appears to
be a promising direction.
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APPENDIX A: PHASE-FIELD MODELING OF
BIOLOGICAL MEMBRANES

The elasticity of a two-dimensional cell membrane is
usually described by the following curvature energy pro-
posed by Helfrich [20]:

FH ¼ κ=2
Z

ðC−C0Þ2dAþ κG

Z
GdAþ γ

Z
dA; ðA1Þ

where C ¼ ðc1 þ c2Þ and G ¼ c1c2 are the total and
Gaussian curvatures of the membrane, respectively, given
in terms of the principal curvatures c1 and c2. κ and κG are
the bending rigidity and saddle-splay modulus, respec-
tively, C0 is the spontaneous curvature caused by any
asymmetry in the membrane structure, and γ is the surface
tension. In our model, we consider a smooth concentration
field φ associated with a Landau free energy density
fGL½φ� ¼ fb þ fst to model the mechanical properties of
a droplet. The first part of our Landau free energy includes
the membrane bending energy:

fb ¼
κ�

2
ð−φþ φ3 − ϵ2∇2φÞ2: ðA2Þ

This free energy can be minimized analytically along the
surface normal direction z in equilibrium, resulting in a
smooth concentration profile φ0ðzÞ ¼ tanhðz=lÞ connect-
ing phases φ ¼ −1 and φ ¼ þ1 over a characteristic width
l ¼ ffiffiffi

2
p

ϵ. Given the profile φ0ðzÞ, we can compare the free
energies of the phase-field representation and classical
Helfrich theory to obtaining a mapping between model
parameters [19]:

γ¼ 0; C0 ¼ 0; κG¼ 0; κ¼ 2ϵ3

3
ffiffiffi
2

p κ�; ðA3Þ

which includes only a bending contribution (κ > 0) of the
membrane. To include surface tension, we need to add the
following term to the free energy:

fst ¼
Kφ

2
ð∇φÞ2: ðA4Þ

It should be noted that the shape of φ0ðzÞ coincides with the
equilibrium profile of the well-known Cahn-Hilliard equa-
tion, which is usually used to describe phase separation in
systems with surface tension and without bending rigidity.
If the interface is narrow, then ð∇φ0Þ2 behaves as a δ
function, liml→0ð3=4lÞsech4ðz=lÞ ¼ δðzÞ, and the volume
integral over fst converges to a surface integral over the
interface:
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γ

Z
dS ¼ γ

Z
δðz − z0ÞdV ≈

3l
4
γ

Z
ð∇φ0Þ2dV; ðA5Þ

where z0 is the position of the interface. Thus, the
membrane surface tension is related to the phase-field
parameters via γ ¼ ð2Kφ=3lÞ, where l ¼ ffiffiffi

2
p

ϵ is the width
of the membrane. However, it should be noted that this
equation is valid only as long as the bending term fb is
dominant and ϵ sets the length scale of the membrane
width. If the term for the surface tension fst is dominant
(Kφ=κ� > ϵ2), the characteristic width of the equilibrium
concentration profile φ0ðzÞ is given by l ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kφ=κ�

p
, and,

thus, the surface tension scales as γ ∼
ffiffiffiffiffiffi
Kφ

p
.

Using phase-field theories to model droplets and mem-
branes does not necessarily need that the interface width l
is on the same scale as the width of the physical interface,
but it is sufficient to require that l is much smaller than any
other length of the system, such as the active length scale lζ

or droplet size R.

APPENDIX B: MAPPING OF LB
UNITS TO FULL UNITS

In order to map LB simulation parameters to dimensional
quantities in physical units, one requires a physical refer-
ence scale for three independent LB parameters, such as
lattice spacing Δx, time step Δt, and viscosity. For
modeling the organization of three-dimensional, multicel-
lular spheroids, the lattice spacing corresponds to the size
of individual cells Δx ≈ 10 μm. Assuming disclinations in
3D move with similar velocities to þ1=2 defects in 2D cell
monolayers, we can compare the velocity of motile þ1=2
disclination lines in our simulation vsimSP ¼ 0.002Δx=Δt
with typical flow velocities around þ1=2 defects in
experiments vexpSP ≈ 20 μm=h [2], which yields Δt ¼ 4 s.
We run most simulations for up to 250000 time steps,
which corresponds to an observation window of T ≈ 12d.
If we choose the shear viscosity of embryonic tissues
η ≈ 14 kPa s [55,56] as a viscous reference scale, the LB
units are mapped to the following physical units:

Parameters LB units Full units

Lattice spacing Δx 1 10 μm
Time step Δt 1 4 s
Viscosity η 1=3 14 kPa s

Droplet radius R 15–30 150–300 μm
Interface width ϵ 1.4 14 μm
Surface tension γ≈ð2=3ϵÞKφ 0.05–0.19 0.5–2×10−2N=m
Bending rigidity κ≈ð ffiffiffi

2
p

ϵ3=3Þκ� 0.13 1.4 × 10−13 Nm
Elastic const KLC 0.1–0.2 1–2 × 10−7 N
Active stress ζ 0.01–0.02 100–200 Pa
Rotational diffusivity ΓQ 0.1 2×10−6 ðPasÞ−1
Mobility Γφ 0.2 2×10−15m2=Pas
Nematic bulk energy ALC 0.75–1.5 7.5–15 kPa
Droplet bulk energy Aφ 0.1 1 kPa

These parameters are in good agreement with mechani-
cal properties of cell aggregates measured in experiments.
Assuming the width of the interface giving rise to surface
tension is about the size of individual cells, ϵ ¼ 14 μm, the
resulting surface tension γ ∼ 10−2 N=m [55,57–59] and
bending rigidity κ ∼ 10−13 Nm [60,61] are within the range
of values found for tissues and epithelial monolayers.
Living cells embedded in a 3D matrix typically generate
long-ranged contractile stress of the order of ζ ≈ 200 Pa
close to the cell [62].
To estimate KLC in experiments, we need to relate this

effective constant of the nematic description to mechanical
properties of individual cells. If we assume that cells in a
dense aggregate must physically deform when the nematic
order is distorted, the elastic energy associated with cell
shape deformations is related to the cells’ Young modulus
E and cell size Δx. From dimensional arguments, it follows
that KLC ∼ E · Δx2 [2]. The typical Young’s modulus of
fibroblasts, astrocytes, and some endothelial cells is of the
order of E ∼ kPa [63,64], which yields KLC ∼ 10−7 N.
It should be noted that mechanical properties of cell

aggregates may vary greatly as the cells’ Young modulus
varies over several orders of magnitude, E ∼ 0.1–100 kPa
for different cell types [64]. Similar variations can be
observed for the effective viscosity of tissues, as some
viscoelastic cell aggregates are shown to have an effective
viscosity up to η ∼ 100 kPa s [57,58,65].

APPENDIX C: DETECTION OF DISCLINATION
LINES AND CALCULATION OF

TWIST ANGLE β

To find defect positions on a three-dimensional grid, we
use Zapotoky’s defect-finding algorithm for two-dimen-
sional systems [66], which checks if a disclination is
located at the intersection of four voxels forming a 2 × 2
square, extended to three-dimensional grids. This extended
algorithm checks if a disclination is located at a given voxel
by repeating the two-dimensional approach along all three
coordinate axes [67]. When a disclination is found, its
rotation vector Ω is determined by taking the cross product
of each pair of directors around it. Once all grid points are
classified, defect positions are sorted to form continuous
lines. A shortcoming of this algorithm is that Ω has an
arbitrary sign; hence, it cannot directly distinguish between
β ¼ 0 (−1=2-type) and β ¼ π (þ1=2-type) disclinations.
To achieve this sorting, we calculate the saddle-splay
energy

f̄24 ¼ ∇ · ½ðn · ∇Þn − nð∇ · nÞ�; ðC1Þ

which is negative at a β ¼ π disclination line segment,
positive at a β ¼ 0 segment, and zero for a local twist
profile [68]. A similar approach based on a purely local
calculation of Ω is used in related work which finds that
this algorithm agrees well with nonlocal methods which

LIAM J. RUSKE and JULIA M. YEOMANS PHYS. REV. X 11, 021001 (2021)

021001-14



compute Ω from the director n in a small circuit around
the disclination of interest (see Supplemental Material
of Ref. [12]).
The color jumps seen for some disclination line segments

in Figs. 6(a) and 13(c) occur because the calculation of the
local tangent of disclination lines is performed on a discrete
grid; hence, the local tangent does not vary continuously
along a disclination line, especially at points of large
curvature. This discontinuity can sometimes create sudden
color jumps, as the twist angle β depends on both the
rotation vector Ω and the local tangent. Another error
source is that the algorithm used to distinguish between
þ1=2 and −1=2-type disclination lines is not perfect and
sometimes misclassifies line segments [see two blue line
segments in Fig. 13(c) which are falsely classified as
−1=2]. However, neither of the error sources meaningfully
impacts the statistics, as the discretization error causes only
small jumpsΔ cosðβÞ < 0.2 and�1=2misclassifications of
line segments are very rare (<5%).
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