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The concept of “Floquet engineering” relies on an external periodic drive to realize novel,
effectively static Hamiltonians. This technique is being explored in experimental platforms across
physics, including ultracold atoms, laser-driven electron systems, nuclear magnetic resonance, and
trapped ions. The key challenge in Floquet engineering is to avoid the uncontrolled absorption of
photons from the drive, especially in interacting systems in which the excitation spectrum becomes
effectively dense. The resulting dissipative coupling to higher-lying modes, such as the excited bands
of an optical lattice, has been explored in recent experimental and theoretical works, but the
demonstration of a broadly applicable method to mitigate this effect is lacking. Here, we show how
two-path quantum interference applied to strongly correlated fermions in a driven optical lattice
suppresses dissipative coupling to higher bands and increases the lifetime of double occupancies and
spin correlations by 2 to 3 orders of magnitude. Interference is achieved by introducing a weak
second modulation at twice the fundamental driving frequency with a definite relative phase. This
technique is shown to suppress dissipation in both weakly and strongly interacting regimes of an off-
resonantly driven Hubbard system, opening an avenue to realizing low-temperature phases of matter
in interacting Floquet systems.
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I. INTRODUCTION

Dissipation emerges when a system is coupled to a large
number of degrees of freedom in its environment. In
periodically driven systems, dissipation thus naturally arises
when the low-energy modes are coupled to lossy excited
modes by the drive. This form of dissipation presents a
formidable challenge to Floquet engineering, in which
periodic driving is used to create a host of novel, effectively
static Hamiltonians, with ultracold atoms [1–4] and beyond
[5–9]. The success of Floquet engineering relies on the
existence of a favorable timescale on which a given Floquet
Hamiltonian remains valid before heating kicks in and harms
the quantum state. Adding interactions to the picture, the
effects of unwanted energy absorption are further compli-
cated by a dense excitation spectrum [10–17]. Consequently,
the choice of Floquet driving frequency is always a com-
promise [18].On the one hand, the Floquet driving frequency
should be chosen as high as possible so as to maximize the

detuning between the drive and the natural (low-) energy
scale of interest [7,14,18]. On the other hand, the presence of
higher-lying modes of the underlying Hamiltonian, such as
energetically higherBlochbands in anoptical lattice [3,4,18–
26] or in solid state [9], pose a limit on how high the drive
frequency can be. In practice, the dissipative coupling to
higher bands, due to tunneling within the excited band,
inhomogeneities, or subsequent excitations to even higher
bands, is the limiting factor in realizing many-body states
with Floquet driving. While tailored lattice potentials can be
employed to push excited bands to higher frequencies and
keep the lowest band dispersive [22], a broadly applicable
solution to counteract this form of dissipation has so far not
been demonstrated in many-body systems in which the
excited modes are densely spaced.
In this paper, we study strongly correlated fermions

in an amplitude-modulated optical lattice, i.e., the
driven Fermi-Hubbard model, in which the drive cou-
ples dissipatively to higher Bloch bands. We demon-
strate control of dissipation by introducing a second
excitation pathway at twice the fundamental driving
frequency and tuning the relative phase [27–30]
between the two drives to maximize quantum interfer-
ence. The performance of this method of dissipation
control is quantified by comparing the driven lattice to
an equivalent static configuration.
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II. EXPERIMENTAL SETUP

The starting point for our experiments is an equal spin
mixture of 45 000 to 60 000 ultracold potassium-40 atoms
loaded in an optical lattice, realizing the Fermi-Hubbard
model [Fig. 1(a)]. The three-dimensional hexagonal lattice
structure [the y direction is not shown in Fig. 1] is
characterized by tunnel couplings ðtx; ty; tzÞ=h ¼ ð340;
90; 106Þ Hz (see the Appendix C for detailed experimental
and theoretical methods) and the Hubbard U=h can be
tuned to values between −7 and 7 kHz (h is Planck’s
constant). Of the lowest two (S-type) bands of the optical
lattice, the ground band is typically populated by 65% of
the atoms. The excited-orbital bands (P, D, …) give rise to
a multiband Hubbard model and are not populated in the
static case [Fig. 1(a)].
Periodic driving is introduced via amplitude modulation

of the lattice depth in the x direction with the waveform

VX̄ðτÞ¼V0× ½1þAω cosðωτÞþA2ω cosð2ωτþφÞ�; ð1Þ

leading predominantly to time-periodic modulation of the
tunneling energy tx (Appendix C). In the Floquet frame-
work, the periodic modulation of txðτÞ could be recast
into an effective (static) tunneling teff when modulating
at resonance with an energy scale of the underlying
Hamiltonian [2,4]. For instance, modulating t resonantly
with both a static site offset and the Hubbard U allows for
engineering of anyon-Hubbard models [31]. In general,
however, lattice modulation also causes unwanted higher-
band excitations, particularly for the large driving ampli-
tudes typically required for Floquet engineering [2,4,31]. In
particular, the appearance of multiphoton resonances
[Fig. 1(b)] represents a limitation on the choice of
Floquet driving frequency and amplitude [18,20,24].
We characterize single- and multiphoton resonances

experimentally by tuning the Hubbard U to zero and

recording the excitation spectrum for two different values
of the single-frequency modulation amplitude Aω [Fig. 2(a),
A2ω ¼ 0]. Here, we modulate the lattice at frequencyω for a
duration of 20 ms and record the number of atoms in the
ground band (Nground) by counting atoms in the Brillouin
zones after band mapping and time of flight (see
Appendix C). The measurement is in good agreement with
a numerical solution to the time-dependent Schrödinger
equation, taking into account the nonseparable lattice
potential in the x-z plane but neglecting any inhomogene-
ities (Appendix C). Since the modulation is performed on
the tx bonds, atoms are predominantly excited to the fifth (P)
bandwhich arises fromhybridized orbitals in the x direction.
Correspondingly, the spectrum in Fig. 2(a) shows pro-
nounced dips in the ground-band population at 24.5 kHz
(single-photon resonance) as well as multiphoton resonan-
ces at 12.25 kHz (two photon) and 8.17 kHz (three photon).
When modulating for a varying amount of time, we never
observe a revival of the ground-band population; moreover,
the excitations are accompanied by severe atom loss during
the modulation (see below). These observations confirm the
dissipative nature of the resonance features.

III. DISSIPATION CONTROL VIA DESTRUCTIVE
INTERFERENCE

In the following, we outline the strategy to mitigate the
previously described dissipation process via destructive
interference. Modulation at frequency ω (let us call it the
“Floquet” drive) effectively leads to a Rabi coupling to the
higher band [19], which in general can be written as a
complex number. Now, the key idea is to add a second
modulation at 2ω (the “control” drive) that produces a Rabi
coupling of the same magnitude as the Floquet drive but
with opposite sign, such that both couplings add up to zero,
i.e., interfere destructively. Experimentally, we introduce

(a) (b) (c)

FIG. 1. Two-frequency driving suppresses dissipative coupling to higher bands. (a) Ultracold fermionic atoms in two internal states
↑;↓ occupy a three-dimensional hexagonal optical lattice (y direction omitted for clarity). They are described by the ground-band
Fermi-Hubbard model with characteristic energies t (tunneling) and U (on-site interaction), while energetically higher-lying bands
(tunneling t0) are not populated in the absence of periodic driving. Here, only the fifth band is shown, which originates from hybridized
(P) orbitals in the x direction. (b) Periodic driving close to resonance with an interband transition leads to dissipation in the ground-band
Fermi-Hubbard system, originating from excited-band tunneling (t0), inhomogeneities, or subsequent excitation to even higher bands.
The first relevant resonance is a two-photon process at frequency ω (shown in orange), whereas the single-photon transition is located at
2ω (blue). (c) When applying two driving frequencies simultaneously with matched transition strengths, tuning the relative phase φ
coherently enhances or suppresses dissipative coupling to higher bands.
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the control drive with amplitude A2ω and vary the relative
phase φ between the two drives [Fig. 2(b), Aω ¼ 0.115ð2Þ,
A2ω ¼ 0.019ð2Þ]. In the presence of the control drive,
the ground-band atom number Nground shows a strong
dependence on φ, which is direct evidence of phase-only
control of the dissipation channel. In particular, Nground

peaks at φ ¼ 0.00ð1Þπ, corresponding to a time-reversal-
symmetric waveform [Eq. (1)] for which both couplings
are real valued but differ by a relative minus sign.
This measurement is in good agreement with the theoretical
prediction (lines in Fig. 2), as maximal destructive inter-
ference leads to a ground-band atom number as high as
30.6ð8Þ × 103, which corresponds to 94% of the static
value [black arrow in Fig. 2(b)]. In contrast, a relative phase
of π causes depopulation of the ground band with less than
20% of atoms remaining, compared to 43% in the absence
of the control drive (red arrow). Fixing the relative phase to
φ ¼ 0 allows us to achieve destructive interference for
increasing values of Floquet amplitude Aω with the

optimum control amplitude shifting to larger values, in
good agreement with theory, as is shown in Fig. 2(c). This
observation highlights the flexibility of the dissipation
control scheme, which is not bound to any particular
Floquet amplitude. As the single-photon excitation strength
is much larger than the two-photon coupling [24], only a
weak control amplitude is necessary to achieve control. In
addition, we verify the technique for driving frequencies
that are detuned from the higher band resonance (see
Appendix B for additional measurements).

IV. DISSIPATION CONTROL IN THE STRONGLY
CORRELATED REGIME

Having demonstrated the control technique in the single-
particle case, we now investigate the influence of inter-
actions on canceling the dissipative coupling to higher
bands. The many-body state in the driven Fermi-Hubbard
model is experimentally characterized by four different
observables, namely, the total atom number Ntotal, ground-
band population Nground, double occupancy, and nearest-
neighbour spin correlations (see Appendix C). In order to
maximize our sensitivity, we choose to drive our system
resonantly with a two-photon higher-band transition with
ω=ð2πÞ ¼ 12.25 kHz with an amplitude of Aω ¼ 0.115ð2Þ,
giving rise to a strong dissipative coupling. The driving
frequency is chosen to be off resonant to any static
energy scale such that the lowest-band effective Floquet
Hamiltonian is approximately equal to the Fermi-Hubbard
model, i.e., teff ≃ tx. In particular, the Floquet frequency is
larger than all probed values of HubbardU, thus precluding
density-assisted tunneling or resonant creation of double
occupancies, and allowing the quantitative comparison of
the static and the driven system [22]. In the experiment, we
modulate the system for a varying duration τ and different
values of Hubbard jUj < ℏω. These data are then fitted by
an exponential decay in order to extract a lifetime. For each
measurement, we compare single-frequency modulation
[Aω ¼ 0.115ð2Þ, A2ω ¼ 0] to the two-frequency driving
scheme [Aω ¼ 0.115ð2Þ, A2ω ¼ 0.019ð2Þ, φ ¼ 0.00ð1Þπ],
as well as the static system. An additional measurement
reveals that the optimum relative driving phase φ does not
depend on the value of Hubbard U (Appendix B).
The measured lifetime of both the total atom number

τtotal and the ground-band population τground (Fig. 3) shows
a strongly increased lifetime in the presence of the control
drive compared to the singly driven case. For weak and
intermediate interactions (jUj=h≲ 1.5 kHz ¼ bandwidth),
the lifetime of the ground-band atom number [Fig. 3(d)] is
increased by more than 2 orders of magnitude from
20þ3

−3 ms to 1.3þ0.1
−0.1 s at U=h ¼ 1 kHz, comparable to the

static lifetime. Strong interactions (U ≳ bandwidth) lead to
a slight reduction in lifetime in the two-frequency driving
protocol compared to the weakly interacting case. Applying
dissipation control nevertheless increases the lifetime by

(a)

(b) (c)

FIG. 2. Optimizing dissipation control in the noninteracting
regime. (a) Single-frequency excitation spectrum for noninter-
acting atoms. The data are obtained by modulating the amplitude
of the lattice beam in the x direction for 20 ms for two relative
strengths Aω of 0.014(2) (gray circles) and 0.123(2) (red squares).
Single- and multiphoton resonance features appear at the S-P
interband transition at 24.5 kHz and fractions thereof, in agree-
ment with the theoretical calculation (lines) that takes into
account the full lattice potential in the x-z plane (see Appendix C).
(b) Ground-band population Nground after 20 ms of two-frequency
modulation [Eq. (1)] as function of the relative phase φ. A
matched excitation strength gives rise to a strong dependence on
the relative phase in agreement with ab initio theory (lines). The
black (red) arrow shows the ground-band population in the
absence of any drive (in the presence of a single drive at ω).
(c) Ground-band population at φ ¼ 0 as a function of the control
amplitude A2ω for various Floquet amplitudes Aω. As the Floquet
amplitude increases, the optimum control amplitude is shifted to
larger values. Error bars to measured data points are the standard
error of at least three measurements (see Appendix C).
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about an order of magnitude. For example, the lifetime of
the ground-band atom number at strong repulsive inter-
actions (U=h ¼ 7 kHz) shows an 18-fold increase from
10þ4

−2 to 184þ27
−9 ms, corresponding to more than 2000

Floquet driving cycles.
The improved lifetimes in the band-mapping measure-

ments (Fig. 3) strongly suggest that dissipative coupling to
higher bands can be efficiently counteracted by adding the
control drive, even for large Hubbard U. However, the
single Floquet drive already leads to heating on timescales
shorter than the onset of atoms loss in the ground band
(10 to 100 ms). In order to investigate this effect, we
complement our previous data with measurements of
ground-band double occupancy, that is, the fraction of
atoms in doubly occupied sites in the lowest Bloch band
[22]. This observable is ideally suited to characterize many-
body states in the driven Fermi-Hubbard model, and it has
been used in the past for an ab initio comparison of our
experiment with nonequilibrium dynamical mean-field
theory [32]. In the experiment, we start with a certain
level of double occupancy in the static lattice set by the
value ofU, assuming a thermally equilibrated state [22,32].
As before, we introduce the modulation for varying
amounts of time τ and then freeze the lattice in order to
suppress any further dynamics (see Appendix C). Atoms on

doubly occupied sites are then associated with Feshbach
molecules which experience a shifted zero-point on-site
energy. As this on-site energy depends on the Bloch band,
we are able to spectroscopically resolve double occupan-
cies in the ground band; atoms in higher bands are expelled
from the trap during the band-mapping ramp, while atoms
in the lowest band remain trapped (Appendix C). The
results of this measurement and the extracted lifetimes
(τDO) are shown in Figs. 4(a) and 4(b). We observe a fast
drop in double occupancy (τDO ¼ 0.7þ0.1

−0.1 ms for U=h ¼
1 kHz) in the single-frequency case, which precedes the
ground-band atom loss [τDO≪τground¼20þ3

−3 ms, Fig. 3(d)].
This observation is consistent with a fast increase in
entropy, i.e., heating, which causes the cloud to expand
in the trap, resulting in a lower density at the center of the

(a) (c)

(b) (d)

FIG. 3. Effect of interactions on suppressing dissipation.
Measured total atom number Ntotal (a) and ground-band atom
number Nground (b) as a function of the modulation time, to which
an exponential decay is fitted (lines). While a single Floquet drive
leads to strong atom loss and depopulation of the ground band via
higher-band excitations (red points), the presence of the control
drive at 2ω (blue) cancels this dissipation mechanism. (c),(d)
Resulting 1=e-lifetimes of the total atom number [τtotal, (c)] and
ground-band population [τground, (d)] as a function of Hubbard U.
Since the longest measurement time is 1 s, fitted lifetimes longer
than this value can be unreliable (blue shaded area). Data points
in (a),(b) show the mean and standard error of three individual
measurements, whereas the points in (c),(d) result from a least-
squares fit. The shaded areas in (a),(b) and the error bars in (c),(d)
show the estimated uncertainty of the fitted value via boot-
strapping (Appendix C).

(b)(a)

(c)

FIG. 4. Suppressing dissipation in the strongly correlated
Fermi-Hubbard model. (a) Measured double occupancy as a
function of the modulation time. Double occupancy is the fraction
of atoms in doubly occupied lattice sites in the ground band.
When applying two-frequency control (blue), the level of double
occupancy remains almost unchanged up to 1 s, similar to the
static case (gray). (b) Fitted exponential lifetimes of double
occupancy τDO as a function of Hubbard U. For weak and
intermediate interactions, the control method (blue) restores the
lifetime of double occupancy almost to the static value (gray). We
restrict this measurement to values of Hubbard U=h ≤ 1 kHz as
the initial value of double occupancy for strong repulsive
interactions becomes too low to reliably extract a lifetime.
(c) Tracing the nearest-neighbor spin correlator with modulation
time for U=h ¼ 1 kHz in the presence of the control drive (blue),
compared to the single-frequency case (red). The static reference
values are plotted in gray. Data points in (a) and (c) show the
mean and standard error of at least three and ten individual
measurements, respectively, whereas the plotted lifetimes in
(b) result from a least-squares fit. The shaded areas in (a),(c)
and the error bars in (b) show the estimated uncertainty of the
fitted value via bootstrapping (Appendix C). Since the longest
measurement time is 1 s, fitted lifetimes longer than this value can
be unreliable [blue shaded area in (b)].
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trap and reduced double occupancy. In stark contrast,
the lifetime of double occupancy is increased by up to a
factor of 100 when applying two-frequency control. For
example, this lifetime exceeds 1 s for U=h ¼ 1 kHz, which
is similar to our static lifetimes, reaching the limit within
which we can reliably extract a lifetime (blue shaded
areas). This measurement corroborates the previous results
for strongly attractive and weakly repulsive interactions
[Figs. 3(c) and 3(d)].
While charge dynamics (e.g., double occupancy) in the

Fermi-Hubbard model are governed by t and U, the lowest
hierarchy in the system is the spin exchange energy 4t2=U.
Therefore, spin correlations are highly susceptible to
temperature changes, and we thus expect them to vanish
quickly in the Floquet-only driven case. The experimental
data are plotted in Fig. 4(c), which show that nearest-
neighbor spin correlations are indeed destroyed within just
a few driving cycles, with a 1=e-lifetime of 410þ360

−280 μs.
Remarkably, dissipation control extends the lifetime of
nearest-neighbor spin correlations by 3 orders of magnitude
to 200þ200

−110 ms, which is within measurement error of the
static value (160þ80

−70 ms).

V. CONCLUSION

In conclusion, we demonstrate how adding a weak
harmonic to the fundamental driving frequency can suppress
dissipative coupling to higher-lyingmodes in a drivenmany-
body system, even in the presence of strong interactions. The
comparison of these results to an equivalent static system
suggests that low-temperature phases may become acces-
sible even for Floquet Hamiltonians with no static analog,
for example, in an anyon-Hubbard model [31]. Numerical
calculations on a two-site, two-band Hubbard model (see
AppendixA) reveal excellent performance of two-frequency
canceling even when driving on resonance with another
energy scale, e.g., the Hubbard U. In addition to previous
experimental evidence [22], these calculations indicate that
driving at resonance with an energy scale within the ground
band does not greatly influence loss to higher bands. We
therefore anticipate the two-frequency method to be appli-
cable to both off-resonant and near-resonant Floquet driving
schemes. The theoretical considerations in Appendix A
show potential pathways for understanding the two-fre-
quency method in the presence of interactions. Going
further, a detailed theoretical analysis, possibly using non-
equilibrium dynamical mean-field theory [32], could reveal
the precise interference mechanism in the presence of a
dense many-body spectrum. One advantage of the two-
frequency method is that it results from quantum inter-
ference only, and, consequently, the transition to the
excited-band state vanishes (in the time-averaged
Hamiltonian). Correspondingly, this method does not rely
on favorable coherence times of the excited state. However,
very large driving amplitudes, which may be necessary to

create specific Floquet Hamiltonians, will lead to further
resonances and loss channels. These channels could be
counteracted by employing additional control frequencies,
in the spirit of pulse-shaping techniques in laser-driven
molecular dynamics [33]. Moreover, this procedure will
depart from the simple Floquet versus control drive picture
presented in this work, necessitating an interplay between
several driving frequencies along of the lines of an
“enriched” drive scheme. Lastly, it should be pointed out
that tuneable couplings to higher bands can be an asset,
rather than a nuisance, for instance, in designing novel
cooling schemes, not only for optical lattices [19,34] but also
in condensed matter [35].
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APPENDIX A: DISSIPATION CONTROL FOR
STRONG INTERACTIONS AND
NEAR-RESONANT DRIVING

In this section, we elaborate on the case of strong
Hubbard interaction U. Additionally, we cover the case
of near-resonant driving in which the drive frequency
ω is close to another energy scale in the underlying
Hamiltonian, e.g., the Hubbard U. In general, the simple
1ω − 2ω canceling scheme works whenever the ground
state and the excited orbital can be considered a two-level
system. We show how this is indeed the case in the limit of
strong interactions and resonant modulation.

1. Atomic limit

For the case of complete suppression of tunneling to
neighboring sites, we can study the excitation mechanism
induced by the driving on a single site corresponding to the
“atomic limit.” This limit has been studied by Ref. [19], in
which an interaction shift Uge for excited orbital was
identified, resulting from the s-wave scattering between
the ground and excited orbital. The value of Uge is roughly
half the value of Ugg, which is the interaction within the
lowest orbital (the usual Hubbard U). Since the coupling of
one atom to the higher orbital is the dominant effect (in the
case, where Ugg < E), we do not consider the case of two
particles occupying the excited orbital (with scatteringUee).
Consequently, there are two types of states that need to be
considered for dissipation control in the atomic limit: the
singly and doubly occupied site. In the former case,
dissipation control applies as in the noninteracting regime
[main text and Fig. 5(a)]. In the latter case, the difference in
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interaction Ugg and Uge will shift the excited orbital out of
resonance [Fig. 5(b)], as experimentally observed in
Ref. [19]. Therefore, both the Floquet drive and control
drivewill shift out of resonancewith the higher band but not
affect the dissipation control of single particles. The same
applies to the near-resonantly-driven case [Fig. 5(c)], which
agrees with Ref. [22], in which no resonant higher-band
features were observed in the vicinity of ℏω ≃U. In some
driving schemes, however, ground and excited states could
experience the same externally imposed energy shift, lead-
ing to two possible couplings from the ground to the excited
manifold. This situation might occur for driving resonantly
to a static tilt Δg ≃ Δe. In Fig. 5(d), we propose a scheme to
circumvent additional resonance features by adding a third
frequency to the driving protocol.

2. Beyond the atomic limit

The atomic limit can be viewed as a good description
for deep lattices and strong interactions but cannot
account for the more complicated spectrum arising when
taking into account correlations between different sites. In
this section, we present numerical simulations for a two-site
model and demonstrate how the control scheme can be
successfully applied to a driving regime resonant to the
interaction.

a. Two-site, two-band Fermi-Hubbard model

We begin by writing down the Hamiltonian that captures
the dominating microscopic processes of the Hubbard
model on two lattice sites including two separated bands,

H ¼ Ht þHU þHE

¼
X
σ∈f↑;↓g
b∈fg;eg

− tbðĉ†bL;σ ĉbR;σ þ H:c:Þ þ E
X

σ∈f↑;↓g
ðn̂eL;σ þ n̂eR;σÞ

þ
X

i∈fL;Rg
½Uggn̂

g
i;↓n̂

g
i;↑ þ Ueen̂ei;↓n̂

e
i;↑ þ Uegðn̂ei;↓n̂gi;↑ þ n̂gi;↓n̂

e
i;↑Þ −Uegðĉ†gi;↓ĉ†ei;↑ĉei;↓ĉgi;↑ þ ĉ†ei;↑ĉ

†e
i;↓ĉ

g
i;↑ĉ

g
i;↓ þ H:c:Þ�; ðA1Þ

where n̂bi;σ ¼ ĉ†bi;σ ĉ
b
i;σ and ĉð†Þbi;σ is the annihilation (creation)

operator for a particle at site i ∈ fL;Rg in the band b ∈
fe; gg with spin σ ∈ f↑;↓g. The tight-binding parameters
te and tg describe the tunneling between neighboring sites
in the higher and lower band, respectively. The on-site
(contact) interaction between two fermions is represented
by Uee (both particles in excited orbital), Ueg (one particle
in the excited and the other particle in the ground state), and
Ugg (both particles in the ground state). The interorbital

interaction also gives rise to a spin exchange and a pair-
hopping term (−Ueg). The band gap E describes the energy
offset of higher orbital states to the ground band. Here,
we consider only a single higher band. For amplitude
modulation, processes of order higher than two are strongly
suppressed [24], and coupling between opposite parity
bands is symmetry forbidden in the localized Wannier basis
[23]. Consequently, the most relevant higher band coupled
to the ground band is the third band. In this configuration,

(a) (b) (c) (d)

FIG. 5. Dissipation control scheme in the atomic limit for off-resonant and near-resonant driving. This simplified schematic applies to
the strongly localized case, the atomic limit, in which the Hubbard U (a)–(c) or, equivalently, a strong site offset Δg (d), prohibits
tunneling. For strong interactions, two types of states have to be considered: the single occupancy (a) and the double occupancy (b).
In the singly occupied case (a), the two-frequency control scheme applies as in the noninteracting regime (as explained in the main text).
In the doubly occupied case (b), the distinction between the lower-band Ugg and the upper-band Uge interaction leads to a shift in the
higher-band resonance [19], reducing the excitation rate to the higher band. The same logic as in (b) applies to near-resonant driving
(c) in which ℏω ¼ Ugg, showing no additional loss features. Near-resonant driving with a static tilt Δg in the noninteracting regime
(d) can lead to additional resonances, depending on the overlap of the S2 and the P1 orbitals. If the overlap is small, the control scheme
can be used as in (a). If the overlap is large, additional frequencies can be employed to cancel this type of resonance, as shown in (d) for
the case of a three-photon resonance from S1 to P1 and a two-photon resonance from S2 to P1.
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an additional extended Hubbard term appears coupling lower- and higher-band terms. This term is on the same order asUeg

but, since for the case of strong interactions (near-resonant regime) the initial assumption of isolated band states breaks
down, we do not consider it here. The tight-binding parameters are estimated fromWannier states calculated for a static one-
dimensional lattice using the first and third band as the ground and excited band (see Table I).

b. Fock basis and static spectrum

We consider all 16 possible states using two fermions with opposite spin. The Hamiltonian can be written down in a
matrix form using the Fock basis where we use the normal ordering convention

ĉ†eR;↑ĉ
†g
R;↑ĉ

†e
L;↓ĉ

†g
L;↑j0i ¼

����↓ ↑

↑ ↑

�
:

The Hamiltonian does not couple states with a doubly occupied band and states with only singly occupied bands. The
subspace of doubly occupied bands consists of the eight Fock states

����↑ ↓

�
;

����↑↓
�
;

����↓ ↑

�
;

���� ↑↓

�
;

����↑ ↓�
;

����↑↓
�
;

����↓ ↑�
;

���� ↑↓�
; ðA2Þ

and the subspace of singly occupied bands involves the Fock states

����↓↑
�
;

���� ↓

↑

�
;

���� ↓

↑

�
;

����↓ ↑

�
;

����↑↓
�
;

���� ↑

↓

�
;

���� ↑

↓

�
;

����↑ ↓

�
: ðA3Þ

The Hamiltonian in the given basis is written in block diagonal matrix form

H0 ¼
�
Hd 0

0 Hs

�
;

with the subspace matrices

Hd ¼

0
BBBBBBBBBBBBB@

0 −tg 0 −tg 0 0 0 0

−tg Ugg tg 0 0 Ueg 0 0

0 tg 0 tg 0 0 0 0

−tg 0 tg Ugg 0 0 0 Ueg

0 0 0 0 2E −te 0 −te
0 Ueg 0 0 −te 2Eþ Uee te 0

0 0 0 0 0 te 2E te
0 0 0 Ueg −te 0 te 2EþUee

1
CCCCCCCCCCCCCA

;

TABLE I. Tight-binding parameters used for the two-site two-band Fermi-Hubbard model [Eq. (A4)]. These include tunneling
energies tb in the ground and excited band, the ratios of on-site interactions Ubb0 for two particles in the ground and excited bands, the
band gap E, the Floquet shaking frequency ω, and the coupling parameters Wb;bb0 of the time-dependent Hamiltonian. The values are
obtained using Wannier states of the first (ground) and third (excited) band of a one-dimensional lattice with a depth of V0 ¼ 5ER.

Quantity Value (Hz) Quantity Value Quantity Value

tg=h 291 Ueg=Ugg 0.294 Wg 0.227
te=h 5480 Uee=Ugg 0.382 We 0.579
E=h 31 340 Wgg 0.017
ω=2π 9420 Weg 0.015

Wee 0.011
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Hs ¼

0
BBBBBBBBBBBBB@

EþUeg −te 0 tg −Ueg 0 0 0

−te E −tg 0 0 0 0 0

0 −tg Eþ Ueg te 0 0 −Ueg 0

tg 0 te E 0 0 0 0

−Ueg 0 0 0 EþUeg −te 0 tg
0 0 0 0 −te E −tg 0

0 0 −Ueg 0 0 −tg Eþ Ueg te
0 0 0 0 tg 0 te E

1
CCCCCCCCCCCCCA

:

We are mainly interested in the lowest-band states whose
physics we want to study. In the limit of strong interactions
tg ≪ Ugg < E, the eigenstates corresponding to the lowest
band states are approximately given by

jti ¼ 1ffiffiffi
2

p
�����↑ ↓

�
þ
����↓ ↑

��
;

jsi ¼ 1ffiffiffi
2

p
�����↑ ↓

�
−
����↓ ↑

��
;

jD�i ¼
1ffiffiffi
2

p
�����↑↓ �

���� ↑↓

��
:

At zero interaction, the singlet state jsi undergoes an
avoided crossing with the jDþi state, which becomes the
ground state in the limit of strong attractive interactions
(Fig. S2).

c. Including amplitude modulation

We include amplitude modulation in our system con-
sisting of a Floquet drive (frequency resonant to interac-
tion) and a control drive (frequency resonant to a higher

band). The single-particle time-dependent Hamiltonian is
given by

H0
SPðτÞ ¼ V0ðα cos ðωτÞ þ γ cos ð2ωτ þ ϕÞÞ sin2 ðklxÞ;

where α (γ) is the relative strength of the modulation with
frequency ω (2ω). For the second-quantized form, we
approximate the Wannier states to be time independent and
write the matrix elements as

Wss0
bb0 ¼ hs; bj sin2ðklxÞjs0; b0i;

where js; bi denotes the Wannier state at site s ∈ fL; Rg
and band b ∈ fe; gg. Because of the symmetry between the
left and right site, we can drop the superscript and are left
with Wannier overlaps on the same site Wb and neighbor-
ing sites Wbb0 . The resulting Hamiltonian includes time-
dependent contributions for the tunneling and band-gap
energies, as well as an additional interband coupling term

HðτÞ ¼ HtðτÞ þHU þHEðτÞ þH0ðτÞ; ðA4Þ

with the time-dependent parts

HtðτÞ ¼
X
σ∈f↑;↓g
b∈fg;eg

½−tb þ V0Wbbðα cos ðωτÞ þ γ cos ð2ωτ þ ϕÞÞ�ðĉ†bL;σ ĉbR;σ þ H:c:Þ;

HEðτÞ ¼ ½Eþ V0Weðα cos ðωτÞ þ γ cos ð2ωτ þ ϕÞÞ�
X
σ;i

n̂ei;σ

þ V0Wgðα cos ðωτÞ þ γ cos ð2ωτ þ ϕÞÞ
X
σ;i

n̂gi;σ;

H0ðτÞ ¼ V0Wegðα cos ðωτÞ þ γ cos ð2ωτ þ ϕÞÞ
X
σ;i

ðĉ†ei;σ ĉgi;σ þ H:c:Þ:

We can write the time-dependent part of Hamiltonian (A4) in the basis defined in Eqs. (A2) and (A3) as the matrix form

V0ðα cosðωτÞ þ γ cosð2ωτ þ ϕÞÞ
�
W1 W

WT W2

�
; ðA5Þ

with the coupling matrices
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W1 ¼

0
BBBBBBBBBBBBBBB@

2Wg Wgg 0 Wgg 0 0 0 0

Wgg 2Wg −Wgg 0 0 0 0 0

0 −Wgg 2Wg −Wgg 0 0 0 0

Wgg 0 −Wgg 2Wg 0 0 0 0

0 0 0 0 2We Wee 0 Wee

0 0 0 0 Wee 2We −Wee 0

0 0 0 0 0 −Wee 2We −Wee

0 0 0 0 Wee 0 −Wee 2We

1
CCCCCCCCCCCCCCCA

; ðA6Þ

W2 ¼

0
BBBBBBBBBBBBBBB@

Wg þWe Wee 0 −Wgg 0 0 0 0

Wee Wg þWe Wgg 0 0 0 0 0

0 Wgg Wg þWe −Wee 0 0 0 0

−Wgg 0 −Wee Wg þWe 0 0 0 0

0 0 0 0 Wg þWe Wee 0 −Wgg

0 0 0 0 Wee Wg þWe Wgg 0

0 0 0 0 0 Wgg Wg þWe −Wee

0 0 0 0 −Wgg 0 −Wee Wg þWe

1
CCCCCCCCCCCCCCCA

; ðA7Þ

W ¼

0
BBBBBBBBBBBBBBB@

0 Weg 0 0 0 0 0 Weg

Weg 0 0 0 −Weg 0 0 0

0 0 0 Weg 0 Weg 0 0

0 0 Weg 0 0 0 −Weg 0

0 Weg 0 0 0 0 0 Weg

Weg 0 0 0 −Weg 0 0 0

0 0 0 Weg 0 Weg 0 0

0 0 Weg 0 0 0 −Weg 0

1
CCCCCCCCCCCCCCCA

: ðA8Þ

The Floquet states of the full time-dependent problem of
Eq. (A4) are calculated using exact diagonalization of the
Hamiltonian in the extended Sambé space [3]. For the
calculations, we truncate the extended space to�11 photon
numbers being left with a 368 by 368 matrix for the
quasienergy operator.

d. Results

The energy scales of our model are determined by the
depth of the chosen one-dimensional lattice. We use a depth
of V0 ¼ 5ER and calculate the Wannier states of the static
lattice to extract the tight-binding parameters for our model
shown in Table I. The Floquet states are then calculated and
ordered corresponding to the highest overlap with the static
eigenstates. In Fig. 6(a), the full quasienergy spectrum is
plotted against the ground-band interaction Ugg for a fixed

driving frequency ω=ð2πÞ ¼ 9420 Hz and strength
α ¼ 0.5. The four ground-band states are highlighted as
colored solid lines. At zero interaction, an avoided crossing
appears between the jsi and jDþi with gap 4tg. When the
interaction becomes resonant to the driving frequency, we
can observe another avoided crossing between the jsi and
jDþi state. A enlargement of this region is provided in
Fig. 6(b), corresponding to the small black-boxed region in
Fig. 6(a) at 9.5 kHz. This avoided crossing resembles the
physics of the effective Floquet Hamiltonian in the lowest
band [36]. However, the resonant coupling to the higher
band creates an additional coupling between the ground-
band state jD−i to a state jϑi involving both ground- and
higher-orbital contributions. This unwanted process can be
suppressed using the control drive. In Fig. 6(c), the addi-
tional drive with strength γ ¼ 0.1 closes the gap without
changing the gap opening between the lowest band states.
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APPENDIX B: ADDITIONAL MEASUREMENTS

1. Dissipation control when being detuned
from higher-band transitions

The control drive destructively interferes with the
Floquet drive, causing the coupling to the higher band to
vanish. Thus, one may ask what happens when the Floquet
drive is not exactly on resonance with the higher-band
transition. In order to investigate this question, we repeat
the measurement from Fig. 2(a) by taking a frequency scan
with and without the control drive present. The result is
shown in Fig. 7 and shows complete cancellation of the loss
feature at all measured frequencies.

2. Optimum canceling phase for various values
of Hubbard U

Interactions modify the excitation spectrum of atoms in
the optical lattice. Therefore, one could expect the optimum
relative driving phase for dissipation control to vary as a
function of the interaction strength. We investigate this
effect by measuring the ground-band atom number as a
function of the relative driving phase for a broad range of
Hubbard U values. The results are displayed in Fig. 8 and

FIG. 7. Dissipation control when being not resonant with
higher bands. The lattice is modulated for 20 ms with an
amplitude of Aω ¼ 0.110ð2Þ using the same configuration as
in Fig. 2 in the main text. Without the control drive present (red
points), the resonant loss to higher bands leads to a strong
depopulation of the ground-band atom number Nground. When
adding the control drive at 2ω with an amplitude A2ω ¼ 0.014ð2Þ
and relative driving phase φ ¼ 0.00ð2Þ, keeping the 1∶2 ratio of
frequencies of the Floquet drive and the control drive fixed,
destructive interference completely cancels the loss resonance at
all measured frequencies (blue points).

(a)

(b) (c)

FIG. 6. Quasienergy spectra of the two-site two-band Fermi-Hubbard model (spins ↑;↓) with resonant amplitude modulation. All
states that solely occupy ground-band orbitals (hn̂ei ¼ 0) are denoted by thick colored lines. (a) Full quasienergy spectrum (one Floquet
zone) for a single-frequency amplitude modulation of strength α ¼ 0.5 and frequency ω=ð2πÞ ¼ 9420 Hz. (b) Enlarged spectrum [black
box in (a) at 9.5 kHz]. The Floquet drive couples the jsi state (red) to the jDþi state (blue), leading to an avoided crossing at roughly
U ≃ ℏω. This resonant effect is accompanied by an additional unwanted avoided crossing of the jD−i ground-band state (light brown) to
a state involving both ground- and excited-orbital contributions (black dashed, jϑi). (c) The addition of a second control drive at 2ω
(strength γ ¼ 0.10) decouples the higher-orbital manifold from the Floquet physics in the ground band by closing the gap between
ground- and excited-orbital states. The avoided crossing between jsi and jDþi is unaffected by the second drive.
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show that the optimum canceling phase does not depend on
the value of Hubbard U.

APPENDIX C: EXTENDED EXPERIMENTAL
AND THEORETICAL METHODS

1. General preparation

To realize the driven Fermi-Hubbard model, we first
prepare a gas of 40K fermionic atoms in the two magnetic
sublevels mF ¼ −9=2;−7=2 of the F ¼ 9=2 manifold,
which is trapped in a harmonic optical dipole trap. We
prepare an incoherent spin-balanced mixture of the two
spins by performing many radio-frequency sweeps over the
transition resonance between the two states. The cloud is
then evaporatively cooled to quantum degeneracy at a
scattering length of a ¼ 116ð1Þa0, where a0 is the Bohr
radius. The mean number of atoms in this cloud is
46ð2Þ × 103 at a temperature of 0.09ð1ÞT=TF. For strong
attractive and weak repulsive interactions, we use the
−9=2;−7=2 mixture, whereas for strong repulsive inter-
actions, we use a −9=2;−5=2 mixture. The lattice mixture
is prepared by applying a Landau-Zener sweep to transfer
all atoms from the −7=2 to the −5=2 spin state.
We create a three-dimensional optical lattice by retrore-

flecting four beams of wavelength λ ¼ 1064 nm. The
resulting lattice potential perceived by the atoms is

Vðx;y;zÞ ¼−VX̄ cos
2ðkLxþθ=2Þ−VX cos2ðkLxÞ

−VỸ cos
2ðkLyÞ−VZ cos2ðkLzÞ

−2α
ffiffiffiffiffiffiffiffiffiffiffiffi
VXVZ

p
cosðkLxÞcosðkLzÞcosφSL; ðC1Þ

where kL ¼ 2π=λ and x, y, z are the three experimental
axes. The lattice depths VX̄;X;Ỹ;Z are measured in units of
the recoil energy ER ¼ h2=2mλ2, where h is the Planck
constant and m the mass of the atoms. Each lattice depth is
independently calibrated by modulating its amplitude in the
presence of a 40K degenerate Fermi cloud. The visibility
α ¼ 0.958ð8Þ is also calibrated using amplitude modulation
on a degenerate 40K Fermi cloud but in an interfering lattice
configuration. The phase θ that fixes the geometry of the

lattice is set to θ ¼ 1.000ð2Þπ, whereas the superlattice
phase φSL is actively stabilized to 0.00ð3Þπ.
Nonzero temperature leads to a significant population of

the second-lowest band which accounts for the difference
between Nground and Ntotal in Fig. 3 in the main text.

2. Lattice configurations and modulation

The potential from Eq. (C1) yields a hexagonal lattice
structure, which is characterized by the lowest-band tun-
neling rates tx, tx;inter, ty, and tz. We load the atoms from the
optical trap into an intermediate lattice within 200 ms,
where the tunneling tx;inter between dimers remains finite
VX̄;X;Ỹ;Z=ER ¼ ½7.89ð9Þ; 0.10ð2Þ; 9.7ð2Þ; 8.2ð2Þ�. We then
linearly ramp up the lattice in 20 ms to a hexagonal
configuration with VX̄;X;Ỹ;Z=ER¼½21.0ð3Þ;3.70ð4Þ;9.7ð2Þ;
6.81ð8Þ� in which the modulation is performed. Here, the
resulting tunneling energies are ½tx; tx;inter; ty; tz�=h ¼
½340ð50Þ; 0.8ð1Þ; 90ð4Þ; 106ð7Þ� Hz, where the interdimer
tunneling tx;inter is negligibly small. To implement the
periodic drive in the system, we modulate the intensity
of the noninterfering X̄ lattice beam by applying a
sinusoidal signal to the rf power of an acousto-optic
modulator resulting in a modulation of the lattice depth.
We obtain a periodically varying lattice depth of the form
VX̄ðτÞ ¼ VX̄ð1þ Aω sin ðωτÞÞ, where ω corresponds to the
Floquet driving frequency and Aω to the relative amplitude
of the drive. The lattice modulation leads to a modulation of
all Hubbard parameters. However, the influence of the
modulation on tz remains smaller than 13% and that on U
smaller than 5%. Such a periodic modulation will also
introduce transitions to higher bands, specifically to the
fifth band, which results from hybridized orbitals in the x
direction. While in separable square lattices the coupling
resulting from amplitude modulation between S and P
bands reduces to zero at the band center and at the band
edges [34], for other quasimomentum states this process is
in general allowed. In our nonseparable lattice, in particu-
lar, the process is allowed, corroborating the agreement
between measurement and ab initio theory.
To compensate for these losses, we add an additional

“control” contribution to the drive A2ω sin ð2ωtþ φÞ at

FIG. 8. Effect of interactions on the optimum canceling phase. The measurement of Fig. 2(b) in the main text is repeated for three
different values of HubbardU, namely, −3 kHz (left), −5 kHz (middle), and −7 kHz (right). The optimum relative driving phase φ does
not shift as a function of the interaction strength.
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twice the frequency. The amplitude and phase of the drive
are calibrated by recording the intensity of the lattice beam
and performing a fast Fourier transform on the signal. The
remaining systematic deviations are 2° ¼ 0.01π in the
single-frequency driving phase and 0.002 in the amplitude;
statistical deviations are smaller than these values. In all
measurements presented in the paper, the amplitude of the
modulation is ramped to its final value within two periods
of the fundamental modulation frequency ω and suddenly
switched off after the duration of the modulation τ.

3. Detection methods

The experimental realization of the Fermi-Hubbard
model is characterized by four observables: atom number
and band population in Fig. 3, as well as double-occupancy
fraction and spin correlations in Fig. 4.

a. Band-mapping detection

The atom number and band population are obtained
through a detection method called band mapping. Directly
after the modulation, we ramp down the optical lattice
slowly enough for the atoms to stay adiabatically in their
band but fast enough to avoid redistribution between bands.
We thereby map quasimomentum to real momentum. We
do this by an exponential ramp to zero of the lattice depth
within 500 μs. After 500 μs, we switch off the homo-
geneous magnetic field and trapping potential and allow for
15-ms time of flight (TOF) to map momentum onto
position and thereby resolve the Brillouin zones in real
space. We then take an absorption image of the expanded
cloud. To assess the distribution of atoms among bands, we
divide the image into zones for the different bands and
integrate the atomic density in each zone. The center
position of the first Brillouin zone (BZ) is determined
by fitting a Gaussian to a 40K cloud released adiabatically
from the trap. The size of the BZ is determined by a
separate calibration method where we use a 87Rb con-
densate and flash the lattice: The 2ℏkL diffraction peaks
yield the edges of the first zone and are corrected by a factor
87=40 due to the mass difference between 87Rb and 40K.

b. Stern-Gerlach detection

The measurement of double-occupancy fractions and
spin correlations requires another detection method. We
release the atoms from the lattice within 100 ms: longer
than the 500 μs from the band mapping to allow for the
atoms to redistribute into Gaussian cloud shapes and for
atoms in higher bands to be lost from the trap but still short
enough to avoid atom loss. Also, these observables require
a spin-resolved measurement: To distinguish between the
different Zeeman sublevels, we apply a short magnetic field
gradient which leads to a separation of the spin states
during TOF of 8 ms.

c. Double-occupancy detection

Directly after the modulation, we freeze the dynamics
through a quench to a deep cubic “freeze” lattice VX̄;X;Ỹ;Z ¼
½30.6ð5Þ; 0.0; 39.9ð2Þ; 29.6ð8Þ� within 100 μs. We then
ramp the magnetic field over the −7=2, −9=2 Feshbach
resonance at B ¼ 202.1G and spectroscopically resolve the
interaction shift by radio-frequency radiation. As a result,
only the atoms sitting in pairs on a lattice site are transferred
to another spin state. For the−7=2,−9=2mixture, the atoms
in the −7=2 are transferred to the −5=2 state, while for the
−5=2, −9=2 mixture, atoms in the −5=2 are transferred to
the −7=2 state. These Zeeman sublevels are then detected
with the previously described Stern-Gerlach method.
The detection efficiency of double occupancy is inde-

pendently calibrated to be 1.00(1) in the simple-cubic
lattice and 1.04(3) in the checkerboard configuration
(see below). The calibration involves measuring the
double-occupancy fraction as described above and compar-
ing it to an alternative method that independently measures
the total atom number and then only the singly occupied
sites (by removing the double occupancies in a cleaning
procedure, as described below). The difference between the
total atom number and single occupancies is plotted against
the measured double occupancy as a function of the total
atom number. These data are fitted with a straight line
whose slope is the efficiency stated above in the two lattice
configurations.

d. Spin-correlations detection

This measurement scheme is described in detail in
Ref. [37]. In this paper, we use only the −7=2, −9=2
mixture in the spin-correlations measurement. As for
the double-occupancy detection, we start by ramping the
lattice to a cubic freeze lattice. We then eliminate the
double occupancies: Through consecutive radio-frequency
Landau-Zener sweeps, we transfer the atoms in the −7=2 to
the −3=2 spin state. In doubly occupied sites, the −3=2,
−9=2 mixture is very short-lived, and therefore lost from
the trap. The remaining single atoms in the −3=2 state
are transferred back to the −7=2 state with two consecutive
radio-frequency Landau-Zener sweeps. The nearest-
neighbor spin correlator along tx can be written as

spin correlator ¼ −
1

N

X
i

½hŜxi Ŝxiþexi þ hŜyi Ŝyiþex
i�

¼ singlet fraction − triplet fraction
2

; ðC2Þ

where Ŝi is the standard vector spin operator on lattice site
i, the sum runs over all two-site unit cells, ex is the unit
vector in the x direction, and N is the total number of atoms
in the ground band. Therefore, full antiferromagnetic
correlations along tx would result in a spin correlator of
1. In order to measure the singlet and triplet fraction, we
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apply a magnetic field gradient which leads to an oscil-
lation between the two populations. We measure these
populations at the two extrema of the oscillations (4.2 and
7.8 ms) and infer the spin correlations from the difference.
To do so, we ramp the lattice to a checkerboard configu-
ration VX̄;X;Ỹ;Z ¼ ½0.0; 29.6ð5Þ; 39.9ð2Þ; 29.6ð8Þ� thereby
merging adjacent sites with singlets and triplets. Because
of the Pauli exclusion principle, the triplets are then
converted to one atom in the lowest and another in the
first excited band. The singlets, on the other hand, form
double occupancies in the lowest band. These single or
double occupancies in the lowest band can be detected with
the same method as described previously for double
occupancies. To normalize these fractions, we determine
the total number of atoms N including double occupancies
in a separate measurement.

4. Lifetime and band population fits

To extract a characteristic timescale for the band pop-
ulation transfer and lifetimes for the atom number, double-
occupancy fraction, and spin correlations, we use an
exponential decay function

PðτÞ ¼ P0 exp ð−τ=τPÞ; ðC3Þ

where P0 corresponds to the initial value of the observable,
τ is the modulation time, and τP the fitted lifetime of the
observable. The data points and corresponding error bars as
a function of the modulation duration correspond to the
mean value and standard error from three [Figs. 3(a), 3(b),
and 4(a)] to ten [Fig. 4(c)] independent measurements. The
curves in these figures correspond to the result of fitting
Eq. (C3) to all measured values. To obtain an estimate on
the uncertainty of the lifetime,we use two different sampling
methods. For the double-occupancy fraction, atom number,
and ground-band population [Figs. 3, 4(a), and 4(b)], we use
a method called bootstrapping: We randomly resample
values from the measured points and fit the exponential
decay function to this dataset. For the spin correlations, we
assume a normal distribution around the mean measured
value for each modulation time. We then sample random
values from these distributions and apply an exponential fit
to the resulting dataset. We repeat both methods 500 times
while varying the initialization parameters by plus minus
10%: P0 and τP for the atom number and band population

and only τP for the double-occupancy fraction and spin
correlations (P0 is then fixed to the initial value from the fit
on all measured data points). We plot the mean standard
deviation of the distribution of fitted parameters as the
shaded area in Figs. 3(a), 3(b), 4(a), and 4(c) and as
asymmetric error bars in Figs. 3(c), 3(d), and 4(b).

5. Band-transfer calculations

We calculate the band structure of our lattice and use the
results to determine the expected population transfer
between bands induced by the drive. We extend the
methods described in Ref. [24] to 2D lattices. In brief,
we start with the time-dependent Hamiltonian where we
include the modulation as a periodic relative modulation of
the lattice depth:

H ¼ p2

2μ
þ Vðx; y; z; τÞ; ðC4Þ

where the lattice potential is similar to Eq. (C1). Themass of
the atom is μ. The modulation is implemented by multiply-
ing the noninterfering lattice depth in the x directionwith the
time-dependent waveform of the modulation:

VX̄ðτÞ¼VX̄× ½1þAω sinðωτÞþA2ω sinð2ωτþφÞ�: ðC5Þ

The modulation in the x direction predominantly affects the
dynamics in the x-z plane, and we therefore neglect the y
direction in all subsequent calculations. To simplify further,
we apply a coordinate transformation by rotating our frame
by 45°:

x0 ¼ xþ zffiffiffi
2

p ; z0 ¼ z − xffiffiffi
2

p : ðC6Þ

The Bloch waves of the static Hamiltonian can be
decomposed into their Fourier components:

Ψn
qx0 ;qz0 ðx0;z0Þ¼

Xþ∞

l;m¼−∞
cnl;mðqx0 ;qz0 Þeiðð2lkLþqx0 Þx0þð2mkLþqz0 Þz0Þ:

ðC7Þ

Expressing the Hamiltonian in the basis of these coeffi-
cients cnl;mðqx0 ; qz0 Þ, we can rewrite it as

Hl;l0;m;m0 ¼

8>>>>>>>><
>>>>>>>>:

ℏ2
2μ ½2ð

qx0
2
þ lkLÞ2 þ 2ðqz0

2
þmkLÞ2� for l ¼ l0 and m ¼ m0;

− α
2

ffiffiffiffiffiffiffiffiffiffiffiffi
VXVZ

p
cosðϕÞ for ðjl − l0j ¼ 1 and m ¼ m0Þ or ðl ¼ l0 and jm −m0j ¼ 1Þ;

− VZ
4

for l ¼ l0 � 1 and m ¼ m0 � 1;

− VX̄ðτÞ
4

− VX
4
e�iθ for l ¼ l0 � 1 and m ¼ m0 ∓ 1;

0 otherwise:

ðC8Þ
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We sample the positive quadrant of ðqx; qzÞ in steps of
0.25 × kL. For each q vector, we integrate the time-
dependent Schrödinger equation for a finite number of
evenly spaced steps in time up to Δτ, which corresponds to
the modulation time. We assume that the atoms are initially
in the lowest band and evolve that state in time. For each
time step, we calculate the overlap of the time-evolved state
with the static eigenstate of the ground band. The curves in
Figs. 2(a) and 3 are obtained by taking the minimum
overlap for each quasimomentum and averaging over the
entire Brillouin zone.
The Hubbard parameters t and U are numerically

calculated from the Wannier functions of the lattice
potential, which we obtain from band-projected position
operators [38].
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