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While designing the energy-momentum relation of photons is key to many linear, nonlinear, and quantum
optical phenomena, a new set of light-matter properties may be realized by employing the topology of the
photonic bath itself. In this work we experimentally investigate the properties of superconducting qubits
coupled to a metamaterial waveguide based on a photonic analog of the Su-Schrieffer-Heeger model.
We explore topologically induced properties of qubits coupled to such a waveguide, ranging from the
formation of directional qubit-photon bound states to topology-dependent cooperative radiation effects.
Addition of qubits to this waveguide system also enables direct quantum control over topological edge
states that form in finite waveguide systems, useful for instance in constructing a topologically protected
quantum communication channel. More broadly, our work demonstrates the opportunity that topological
waveguide-QED systems offer in the synthesis and study of many-body states with exotic long-range

quantum correlations.
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I. INTRODUCTION

Harnessing the topological properties of photonic
bands [1-3] is a burgeoning paradigm in the study of
periodic electromagnetic structures. Topological concepts
discovered in electronic systems [4,5] have now been
translated and studied as photonic analogs in various micro-
wave and optical systems [2,3]. In particular, symmetry-
protected topological phases [6], which do not require time-
reversal-symmetry breaking, have received significant
attention in experimental studies of photonic topological
phenomena, both in the linear and nonlinear regime [7]. One
of the simplest canonical models is the Su-Schrieffer-Heeger
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(SSH) model [8,9], which was initially used to describe
electrons hopping along a one-dimensional dimerized
chain with a staggered set of hopping amplitudes between
nearest-neighbor elements. The chiral symmetry of the SSH
model, corresponding to a symmetry of the electron ampli-
tudes found on the two types of sites in the dimer chain, gives
rise to two topologically distinct phases of electron propa-
gation. The SSH model, and its various extensions, have
been used in photonics to explore a variety of optical pheno-
mena, from robust lasing in arrays of microcavities [10,11]
and photonic crystals [12] to disorder-insensitive third
harmonic generation in zigzag nanoparticle arrays [13].
Utilization of quantum emitters brings new opportunities
in the study of topological physics with strongly interacting
photons [14-16], where single-excitation dynamics [17]
and topological protection of quantum many-body
states [18] in the SSH model have recently been inves-
tigated. In a similar vein, a topological photonic bath can
also be used as an effective substrate for endowing special
properties to quantum matter. For example, a photonic
waveguide which localizes and transports electromagnetic
waves over large distances can form a highly effective
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quantum light-matter interface [19-21] for introducing
nontrivial interactions between quantum emitters. Several
systems utilizing highly dispersive electromagnetic wave-
guide structures have been proposed for realizing quantum
photonic matter exhibiting tailorable, long-range inter-
actions between quantum emitters [22-26]. With the
addition of nontrivial topology to such a photonic bath,
exotic classes of quantum entanglement can be generated
through photon-mediated interactions of a chiral [27,28] or
directional nature [29,30].

With this motivation, here we investigate the properties of
quantum emitters coupled to a topological waveguide which
is a photonic analog of the SSH model, following the
theoretical proposal in Ref. [29]. Our setup is realized by
coupling superconducting transmon qubits [31] to an engi-
neered superconducting metamaterial waveguide [32,33],
consisting of an array of subwavelength microwave reso-
nators with SSH topology. Combining the notions from
waveguide quantum electrodynamics (QED) [20,21,34,35]
and topological photonics [2,3], we observe qubit-photon
bound states with directional photonic envelopes inside a
band gap and cooperative radiative emission from qubits
inside a passband dependent on the topological configura-
tion of the waveguide. Coupling of qubits to the waveguide
also allows for quantum control over topological edge states,
enabling quantum state transfer between distant qubits via a

topological channel.
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II. DESCRIPTION OF THE TOPOLOGICAL
WAVEGUIDE

The SSH model describing the topological waveguide
studied here is illustrated in Fig. 1(a). Each unit cell of the
waveguide consists of two photonic sites, A and B, each
containing a resonator with resonant frequency w,. The
intracell coupling between A and B sites is J(1 + &) and
the intercell coupling between unit cells is J(1 —3§).
The discrete translational symmetry (lattice constant d)
of this system allows us to write the Hamiltonian in terms
of momentum-space operators, H/h = >, (V) h(k)V,,
where ¥, = (d;.b;)T is a vector operator consisting
of a pair of A and B sublattice photonic mode operators,
and the k-dependent kernel of the Hamiltonian is
given by

@y

h®_<ﬁ®

Here, f(k)=—J[(1+6)+ (1 —=35)e~*9] is the momen-
tum-space coupling between modes on different sublatti-
ces, which carries information about the topology of the
system. The eigenstates of this Hamiltonian form two
symmetric bands centered about the reference frequency
, with dispersion relation

f(k)>.
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Topological waveguide. (a) Top: schematic of the SSH model. Each unit cell contains two sites A and B (red and blue circles)

with intracell and intercell coupling J(1 & &) (orange and brown arrows). Bottom: an analog of this model in electrical circuits, with
corresponding components color coded. The photonic sites are mapped to LC resonators with inductance L, and capacitance C,, with
intracell and intercell coupling capacitance C,, C,, and mutual inductance M,, M, between neighboring resonators, respectively
(arrows). (b) Optical micrograph (false colored) of a unit cell (lattice constant d = 592 ym) on a fabricated device in the topological
phase. The lumped-element resonator corresponding to sublattice A (B) is colored in red (blue). The insets show enlarged view of the
section between resonators where planar wires of thickness (z,, #,,) = (10,2) pm (indicated with black arrows) control the intracell and
intercell distance between neighboring resonators, respectively. (c) Dispersion relation of the realized waveguide according to the circuit
model in (a). Upper band gap (UBG) and lower band gap (LBG) are shaded in gray, and middle band gap (MBG) is shaded in green.
(d) Waveguide transmission spectrum |S,; | across the test structure with 8 unit cells in the trivial (§ > 0, top) and topological (5 < 0,
bottom) phase. The cartoons illustrate the measurement configuration of systems with external ports 1 and 2 (denoted P1 and P2), where
distances between circles are used to specify relative coupling strengths between sites and blue (green) outlines enclosing two circles
indicate unit cells in the trivial (topological) phase. Black solid curves are fits to the measured data (see the Appendix A for details)
with parameters L, = 1.9 nH, C, =253 {F, coupling capacitance (C,,C,,) = (33,17) fF and mutual inductance (M,,M,,) =
(—38,—32) pH in the trivial phase (the values are interchanged in the case of topological phase). The shaded regions correspond
to band gaps in the dispersion relation of (c).
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w2 (k) = wg £ J\/2(1 + 8) + 2(1 - &) cos (kd),

where the + (—) branch corresponds to the upper (lower)
frequency passband. While the band structure is dependent
only on the magnitude of o, and not on whether 6 > 0 or
6 < 0, deformation from one case to the other must be
accompanied by the closing of the middle band gap
(MBG), defining two topologically distinct phases. For a
finite system, it is well known that edge states localized on
the boundary of the waveguide at a @ = w, only appear in
the case of 6 < 0, the so-called topological phase [3,9]. The
case for which 6 > 0 is the trivial phase with no edge states.
It should be noted that for an infinite system, the topo-
logical or trivial phase in the SSH model depends on the
choice of unit cell, resulting in an ambiguity in defining the
bulk properties. Despite this, considering the open boun-
dary of a finite-sized array or a particular section of the
bulk, the topological character of the bands can be uniquely
defined and can give rise to observable effects.

We construct a circuit analog of this canonical model
using an array of inductor-capacitor (LC) resonators with
alternating coupling capacitance and mutual inductance as
shown in Fig. 1(a). The topological phase of the circuit
model is determined by the relative size of intracell and
intercell coupling between neighboring resonators, includ-
ing both the capacitive and inductive contributions. Strictly
speaking, this circuit model breaks chiral symmetry of the
original SSH Hamiltonian [3,9], which ensures the band
spectrum to be symmetric with respect to @ = wy.
Nevertheless, the topological protection of the edge states
under perturbation in the intracell and intercell coupling
strengths remains valid as long as the bare resonant
frequencies of resonators (diagonal elements of the
Hamiltonian) are not perturbed, and the existence of edge
states still persists due to the presence of inversion
symmetry within the unit cell of the circuit analog, leading
to a quantized Zak phase [36]. For detailed analysis of the
modeling, symmetry, and robustness of the circuit topo-
logical waveguide, see Appendixes A and B.

The circuit model is realized using fabrication tech-
niques for superconducting metamaterials discussed in
Refs. [32,33], where the coupling between sites is con-
trolled by the physical distance between neighboring
resonators. Because of the near-field nature, the coupling
strength is larger (smaller) for smaller (larger) distance
between resonators on a device. An example unit cell
of a fabricated device in the topological phase is shown in
Fig. 1(b) (the values of intracell and intercell distances are
interchanged in the trivial phase). We find a good agree-
ment between the measured transmission spectrum and a
theoretical curve calculated from a LC lumped-element
model of the test structures with 8 unit cells in both trivial
and topological configurations [Figs. 1(c) and 1(d)]. For
the topological configuration, the observed peak in the
waveguide transmission spectrum at 6.636 GHz inside

the MBG signifies the associated edge state physics in
our system.

III. PROPERTIES OF QUANTUM EMITTERS
COUPLED TO THE TOPOLOGICAL WAVEGUIDE

The nontrivial properties of the topological waveguide
can be accessed by coupling quantum emitters to the
engineered structure. To this end, we prepare device I
consisting of a topological waveguide in the trivial phase
with 9 unit cells, whose boundary is tapered with specially
designed resonators before connection to external ports [see
Fig. 2(a)]. The tapering sections at both ends of the array
are designed to reduce the impedance mismatch to the
external ports (Z, = 50 Q) at frequencies in the upper
passband (UPB). This is crucial for reducing ripples in the
waveguide transmission spectrum in the passbands [33].
Every site of the 7 unit cells in the middle of the array is
occupied by a single frequency-tunable transmon qubit [31]
(the device contains in total 14 qubits labeled Qf, where
i =1-7 and o = A, B are the cell and sublattice indices,
respectively). Properties of device I and the tapering section
are discussed in further detail in Appendixes C and D,
respectively.

A. Directional qubit-photon bound states

For qubits lying within the middle band gap, the
topology of the waveguide manifests itself in the spatial
profile of the resulting qubit-photon bound states. When
the qubit transition frequency is inside the band gap, the
emission of a propagating photon from the qubit is
forbidden due to the absence of photonic modes at the
qubit resonant frequency. In this scenario, a stable bound
state excitation forms, consisting of a qubit in its excited
state and a waveguide photon with exponentially local-
ized photonic envelope [37,38]. Generally, bound states
with a symmetric photonic envelope emerge due to the
inversion symmetry of the photonic bath with respect to
the qubit location [24]. In the case of the SSH photonic
bath, however, a directional envelope can be realized [29]
for a qubit at the center of the MBG (w,), where the
presence of a qubit creates a domain wall in the SSH
chain and the induced photonic bound state is akin to an
edge state (see Appendix E for a detailed description). For
example, in the trivial phase, a qubit coupled to site A (B)
acts as the last site of a topological array extended to the
right (left) while the subsystem consisting of the remain-
ing sites extended to the left (right) is interpreted as a
trivial array. Mimicking the topological edge state, the
induced photonic envelope of the bound state faces
right (left) with photon occupation only on B (A) sites
[Fig. 2(b)], while across the trivial boundary on the
left (right) there is no photon occupation. The opposite
directional character is expected in the case of the
topological phase of the waveguide. The directionality
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FIG. 2. Directionality of qubit-photon bound states. (a) Schematic of device I, consisting of 9 unit cells in the trivial phase with qubits
(black lines terminated with a square) coupled to every site on the 7 central unit cells. The ends of the array are tapered with additional
resonators (purple) with engineered couplings designed to minimize impedance mismatch at upper passband frequencies. (b) Theoretical
photonic envelope of the directional qubit-photon bound states. At the reference frequency @, the qubit coupled to site A (B) induces a
photonic envelope to the right (left), colored in green (blue). The bars along the envelope indicate photon occupation on the
corresponding resonator sites. (¢) Measured coupling rate «, , to external port numbers, p = 1, 2, of qubit-photon bound states.
Left: external coupling rate of qubit Q% to each port as a function of frequency inside the MBG. Solid black curve is a model fit to the
measured external coupling curves. The frequency point of highest directionality is extracted from the fit curve, and is found to be
wy /27 = 6.621 GHz (vertical dashed orange line). Top (Bottom), right: external coupling rate of all qubits tuned to @ = @, measured
from port P1 (P2). The solid black curves in these plots correspond to exponential fits to the measured external qubit coupling versus
qubit index. (d) Two-dimensional color intensity plot of the reflection spectrum under crossing between a pair of qubits with frequency
centered around @ = wy. Left: reflection from P1 (|S;;|) while tuning Q% across Q} (fixed). An avoided crossing of 2|gi8|/27 =
65.7 MHz is observed. Right: reflection from P2 (|S,,|) while tuning fo across Q? (fixed), indicating the absence of appreciable
coupling. Inset to the right shows an enlarged region where a small avoided crossing of 2|g48|/2z = 967 kHz is measured. The bare
qubit frequencies from the fit are shown with dashed lines. (e) Coupling | gf'jﬁ | (o, p € {A, B}) between various qubit pairs (Q%, Q/; ) at
@ = @, extracted from the crossing experiments similar to (d). Solid black curves are exponential fits to the measured qubit-qubit
coupling rate versus qubit index difference (spatial separation). Error bars in all panels indicate 95% confidence interval, and are omitted
on data points whose marker size is larger than the error itself.

reduces away from the center of the MBG, and is
effectively absent inside the upper or lower band gaps.

We experimentally probe the directionality of qubit-
photon bound states by utilizing the coupling of bound
states to the external ports in the finite-length waveguide of
device 1 [see Fig. 2(c)]. The external coupling rate

fitting the measured reflection spectrum with a Fano line
shape [40]. For fo, which is located near the center of
the array, we find «,; to be much larger than «,, at all
frequencies inside MBG. At wy/27 = 6.621 GHz, «,,
completely vanishes, indicating a directionality of the Q%
bound state to the left. Plotting the external coupling at this

k., (p =1, 2) is governed by the overlap of modes in the
external port p with the tail of the exponentially attenuated
envelope of the bound state, and therefore serves as a useful
measure to characterize the localization [24,32,39]. To find
the reference frequency @, where the bound state becomes
most directional, we measure the reflection spectrum Sy,
(S5,) of the bound state seen from port 1 (2) as a function of
qubit tuning. We extract the external coupling rate «, , by

frequency to both ports against qubit index, we observe a
decaying envelope on every other site, signifying the
directionality of photonic bound states is correlated with
the type of sublattice site a qubit is coupled to. Similar
measurements when qubits are tuned to other frequencies
near the edge of the MBG, or inside the upper band gap
(UBG), show the loss of directionality away from o =
(Appendix F).
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A remarkable consequence of the distinctive shape of
bound states is direction-dependent photon-mediated inter-
actions between qubits [Figs. 2(d) and 2(e)]. Because of the
site-dependent shapes of qubit-photon bound states, the
interaction between qubits becomes substantial only when
a qubit on sublattice A is on the left of the other qubit
on sublattice B; i.e., j > i for a qubit pair (Q4, Qf). From
the avoided crossing experiments centered at @ = w,, we
extract the qubit-qubit coupling as a function of cell
displacement i — j. An exponential fit of the data gives
the localization length of &= 1.7 (in units of lattice
constant), close to the estimated value from the circuit
model of our system (see Appendix C). While theory
predicts the coupling between qubits in the remaining
combinations to be zero, we report that couplings of
|g,ABB|/2n'<066 MHz and |g}”|/27 < 0.48 MHz (for
i > j) are observed, much smaller than the bound-state-
induced coupling, e.g., |¢4%|/2x = 32.9 MHz. We attribute
such spurious couplings to the unintended near-field
interaction between qubits. Note that we find consistent
coupling strength of qubit pairs dependent only on their
relative displacement, not on the actual location in the
array, suggesting that physics inside MBG remains intact
with the introduced waveguide boundaries. In total, the
avoided crossing and external linewidth experiments at
@ = wy provide strong evidence of the shape of qubit-
photon bound states, compatible with the theoretical photon
occupation illustrated in Fig. 2(b).

B. Topology-dependent photon scattering

In the passband regime, i.e., when the qubit frequencies
lie within the upper or lower passbands, the topology of the
waveguide is imprinted on cooperative interaction between
qubits and the single-photon scattering response of the
system. The topology of the SSH model can be visualized
by plotting the complex-valued momentum-space coupling
f (k) for k values in the first Brillouin zone [Fig. 3(a)]. In
the topological (trivial) phase, the contour of f(k) encloses
(excludes) the origin of the complex plane, resulting in the
winding number of 1 (0) and the corresponding Zak phase
of 7 (0) [36]. This is consistent with the earlier definition
based on the sign of §. It is known that for a regular
waveguide with linear dispersion, the coherent exchange
interaction J;; and correlated decay I';; between qubits at
positions x; and x; along the waveguide take the forms
J;jxsing;; and T';; xcos@;; [41,42], where ;; = k|x; — x|
is the phase length. In the case of our topological wave-
guide, considering a pair of qubits coupled to the A (B)
sublattice on ith (jth) unit cell, this argument additionally
collects the phase ¢(k) = arg f(k) [29]. This is an impor-
tant difference compared to the regular waveguide case,
because the zeros of equation,

@ij(k) = kd|i - j| — ¢(k) =0 mod =, (2)
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FIG. 3. Probing band topology with qubits. (a) f(k) in the
complex plane for k values in the first Brillouin zone. ¢ (¢y,) is
the phase angle of f(k) for a trivial (topological) section of
waveguide, which changes by 0 () rad as kd transitions from O to
7 (arc in upper plane following black arrowheads). (b) Coherent
exchange interaction J;; between a pair of coupled qubits as a
function of frequency inside the passband, normalized to indi-
vidual qubit decay rate T, [only kd € [0, z) branch is plotted].
Here, one qubit is coupled to the A sublattice of the ith unit cell
and the other qubit is coupled to the B sublattice of the jth unit
cell, where |i — j| = 2. Blue (green) curve corresponds to a trivial
(topological) intermediate section of waveguide between qubits.
The intercepts at J;; = 0 (filled circles with arrows) correspond to
points where perfect superradiance occurs. (¢) Waveguide trans-
mission spectrum |S,;| as a qubit pair are resonantly tuned across
the UPB of device I [left, (Q5.Q%); right, (05, 0%)]. Top:
schematic illustrating system configuration during the experi-
ment, with left (right) system corresponding to an interacting
qubit pair subtending a three-unit-cell section of waveguide in the
trivial (topological) phase. Middle and bottom: two-dimensional
color intensity plots of |S,;| from theory and experiment,
respectively. Swirl patterns (highlighted by arrows) are observed
in the vicinity of perfectly superradiant points, whose number of
occurrences differs by one between trivial and topological
waveguide sections.

determine wave vectors (and corresponding frequencies)
where perfect Dicke superradiance [43] occurs. Because of
the properties of f(k) introduced above, for a fixed cell
distance An=|i—j| > 1 between qubits there exists
exactly An — 1 (An) frequency points inside the passband
where perfect superradiance occurs in the trivial (topologi-
cal) phase. An example for the An = 2 case is shown in
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Fig. 3(b). Note that although Eq. (2) is satisfied at the band-
edge frequencies @y, and ., (kd = {0,x}), they are
excluded from the above counting due to breakdown of the
Born-Markov approximation (see Appendix G).

To experimentally probe signatures of perfect super-
radiance, we tune the frequency of a pair of qubits across
the UPB of device I while keeping the two qubits resonant
with each other. We measure the waveguide transmission
spectrum S,; during this tuning, keeping track of the line
shape of the two-qubit resonance as J;; and I';; varies over
the tuning. Drastic changes in the waveguide transmission
spectrum occur whenever the two-qubit resonance passes
through the perfectly superradiant points, resulting in a
swirl pattern in |S,;|. Such patterns arise from the dis-
appearance of the peak in transmission associated with
interference between photons scattered by imperfect super-
radiant and subradiant states, resembling the electromag-
netically induced transparency in a V-type atomic level
structure [44]. As an example, we discuss the cases with
qubit pairs (Q%, Q%) and (Q%, 02), which are shown in
Fig. 3(c). Each qubit pair configuration encloses a three-
unit-cell section of the waveguide; however, for the
(05, 0F) pair the waveguide section is in the trivial phase,
whereas for (Q4,0%) the waveguide section is in the
topological phase. Both theory and measurement indicate
that the qubit pair (Q%, Q%) has exactly one perfectly
superradiant frequency point in the UPB. For the other
qubit pair (05, 0%), with waveguide section in the topo-
logical phase, two such points occur (corresponding to
An = 2). This observation highlights the fact that while the
topological phase of the bulk in the SSH model is
ambiguous, a finite section of the array can still be
interpreted to have a definite topological phase. Apart
from the unintended ripples near the band edges, the
observed line shapes are in good qualitative agreement
with the theoretical expectation in Ref. [29]. The frequency
misalignment of swirl patterns between the theory and the
experiment is due to the slight discrepancy between the
realized circuit model and the ideal SSH model (see
Appendix A for details). Detailed description of the swirl
pattern and similar measurement results for other qubit
combinations with varying An are reported in Appendix G.

IV. QUANTUM STATE TRANSFER VIA
TOPOLOGICAL EDGE STATES

Finally, to explore the physics associated with topologi-
cal edge modes, we fabricated a second device, device I,
which realizes a closed quantum system with 7 unit cells in
the topological phase [Fig. 4(a)]. We denote the photonic
sites in the array by (i,a), where i = 1-7 is the cell index
and o = A, B is the sublattice index. Because of reflection
at the boundary, the passbands on this device appear as sets
of discrete resonances. The system supports topological
edge modes localized near the sites (1,A) and (7, B) at the
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FIG.4. Qubitinteraction with topological edge modes. (a) Sche-
matic of device II, consisting of 7 unit cells in the topological
phase with qubits Q; = Q¢ and Qp = Qf coupled at sites
(i,a) = (2,A) and (j,p) = (6, B), respectively. E; and E are
the left-localized and right-localized edge modes which interact
with each other at rate G due to their overlap in the center of the
finite waveguide. (b) Chevron-shaped oscillation of Q; popula-
tion arising from interaction with edge modes under variable
frequency and duration of modulation pulse. The oscillation is
nearly symmetric with respect to optimal modulation frequency
242.5 MHz, apart from additional features at (219, 275) MHz due
to spurious interaction of unused sidebands with modes inside the
passband. (c) Line cut of (b) (indicated with a dashed line) at the
optimal modulation frequency. A population oscillation involving
two harmonics is observed due to coupling of E; to Ep.
(d) Vacuum Rabi oscillations between Q; and E; when Qp is
parked at the resonant frequency of edge modes to shift the
frequency of E, during the process in (c). In panels (c) and (d) the
filled orange circles (black solid lines) are the data from experi-
ment (theory). (e) Population transfer from Q; to Qp composed of
three consecutive swap transfers Q; — E; — Ep — Qp. The
population of Q; (Qg) during the process is colored dark red
(dark blue), with filled circles and solid lines showing the
measured data and fit from theory, respectively. The light red
(light blue) curve indicates the expected population in E; (ER)
mode, calculated from theory.

boundary, labeled E; and E. The edge modes are spatially
distributed with exponentially attenuated tails directed
toward the bulk. In a finite system, the nonvanishing
overlap between the envelopes of edge states generates a
coupling which depends on the localization length £ and the
system size L as G ~ e~%/¢_In device II, two qubits denoted
Q; and Qp are coupled to the topological waveguide at
sites (2,A) and (6, B), respectively. Each qubit has a local
drive line and a flux-bias line, which are connected to
room-temperature electronics for control. The qubits are
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dispersively coupled to readout resonators, which are
coupled to a coplanar waveguide for time-domain measure-
ment. The edge mode E; (ER) has photon occupation on
sublattice A (B), inducing interaction g; (gg) with Q; (Qg).
Because of the directional properties discussed earlier, bound
states arising from Q; and Qp have photonic envelopes
facing away from each other inside the MBG, and hence
have no direct coupling to each other. For additional details
on device I and qubit control, see Appendix H.

We probe the topological edge modes by utilizing the
interaction with the qubits. While parking Q; at frequency
fq= 6.835 GHz inside MBG, we initialize the qubit into its
excited state by applying a microwave 7 pulse to the local
drive line. Then, the frequency of the qubit is parametrically
modulated [45] such that the first-order sideband of the qubit
transition frequency is nearly resonant with E;. After a
variable duration of the frequency modulation pulse, the
state of the qubit is read out. From this measurement, we find
a chevron-shaped oscillation of the qubit population in time
centered at modulation frequency 242.5 MHz [Fig. 4(b)]. We
find the population oscillation at this modulation frequency
to contain two harmonic components as shown in Fig. 4(c), a
general feature of a system consisting of three states with two
exchange-type interactions g; and g,. In such cases, three
single-excitation eigenstates exist at 0, =g with respect to the

bare resonant frequency of the emitters (g = /g7 + ¢3), and
since the only possible spacing between the eigenstates in
this case is g and 2g, the dynamics of the qubit population
exhibits two frequency components with a ratio of 2. From
fitting the Q; population oscillation data in Fig. 4(c),
the coupling between E; and Ej is extracted to be
G/2rx = 5.05 MHz. Parking Qp at the bare resonant fre-
quency wg/2x =6.601 GHz of the edge modes,
Ey strongly hybridizes with Q and is spectrally distributed
at +gp with respect to the original frequency (gz/27 =
57.3 MHz). As this splitting is much larger than the coupling
of Ey to E;, the interaction channel E; <> Ej is effectively
suppressed and the vacuum Rabi oscillation only involving
Q; and E; is recovered [Fig. 4(d)] by applying the above-
mentioned pulse sequence on ;. The vacuum Rabi
oscillation is a signature of strong coupling between the
qubit and the edge state, a bosonic mode, as described
by cavity QED [19]. A similar result was achieved by
applying a simultaneous modulation pulse on Qp to put its
first-order sideband near resonance with the bare-edge
modes (instead of parking it near resonance), which we
call the double-modulation scheme. From the vacuum Rabi
oscillation Q; <> E; (Qr <> Ep) using the double-
modulation scheme, we find the effective qubit-edge mode
coupling to be §; /27 = 23.8 MHz (gp /27 = 22.5 MHz).

The half-period of vacuum Rabi oscillation corresponds
to an iSWAP gate between Q; and E; (or Qg and Ey), which
enables control over the edge modes with single-photon
precision. As a demonstration of this tool, we perform
remote population transfer between Q; and Qp through the

nonlocal coupling of topological edge modes E; and Ejy.
The qubit Q; (Qp) is parked at frequency 6.829 GHz
(6.835 GHz) and prepared in its excited (ground) state. The
transfer protocol, consisting of three steps, is implemented as
follows: (1) an iISWAP gate between Q; and E; is applied by
utilizing the vacuum Rabi oscillation during the double-
modulation scheme mentioned above, (ii) the frequency
modulation is turned off and population is exchanged from
E; to Ey using the interaction G, (iii) another iSWAP gate
between Qp and Ej is applied to map the population from
Er to Q. The population of both qubits at any time within
the transfer process is measured using multiplexed readout
[46] [Fig. 4(e)]. We find the final population in Qf after the
transfer process to be 87%. Numerical simulations suggest
that (Appendix H) the infidelity in preparing the initial
excited state accounts for 1.6% of the population decrease,
the leakage to the unintended edge mode due to ever-present
interaction G contributes 4.9%, and the remaining 6.5% is
ascribed to the short coherence time of qubits away from the
flux-insensitive point [75 = 344 (539)ns for Q; (Qg) at
working point].

We expect that a moderate improvement on the demon-
strated population transfer protocol could be achieved by
careful enhancement of the excited state preparation and
the iISWAP gates, i.e., optimizing the shapes of the control
pulses [47-50]. The coherence-limited infidelity can be
mitigated by utilizing a less flux sensitive qubit design
[51,52] or by reducing the generic noise level of the
experimental setup [53]. Further, incorporating tunable
couplers [54] into the existing metamaterial architecture to
control the localization length of edge states in situ will fully
address the population leakage into unintended interaction
channels, and more importantly, enable robust quantum state
transfer over long distances [55]. Together with many-body
protection to enhance the robustness of topological states
[18], building blocks of quantum communication [56] under
topological protection are also conceivable.

V. DISCUSSION AND OUTLOOK

Looking forward, we envision several research directions
to be explored beyond the work presented here. First, the
topology-dependent photon scattering in photonic bands
that is imprinted in the cooperative interaction of qubits can
lead to new ways of measuring topological invariants in
photonic systems [57]. The directional and long-range
photon-mediated interactions between qubits demonstrated
in our work also opens avenues to synthesize nontrivial
quantum many-body states of qubits, such as the double
Néel state [29]. Even without technical advances in
fabrication [58—60], a natural scale up of the current system
will allow for the construction of moderate- to large-scale
quantum many-body systems. Specifically, due to the
on-chip wiring efficiency of a linear waveguide QED
architecture, with realistic refinements involving placement
of local control lines on qubits and compact readout
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resonators coupled to the tapered passband (intrinsically
acting as Purcell filters [61]), we expect that a fully
controlled quantum many-body system consisting of 100
qubits is realizable in the near future. In such systems,
protocols for preparing and stabilizing [18,62,63] quantum
many-body states could be utilized and tested.
Additionally, the flexibility of superconducting metamate-
rial architectures [32,33] can be further exploited to realize
other novel types of topological photonic baths [28-30].
While the present work was limited to a one-dimensional
system, the state-of-the-art technologies in superconduct-
ing quantum circuits [64] utilizing flip-chip methods
[59,60] will enable integration of qubits into two-
dimensional metamaterial surfaces. It also remains to be
explored whether topological models with broken time-
reversal symmetry, an actively pursued approach in systems
consisting of arrays of three-dimensional microwave
cavities [16,65], could be realized in compact chip-based
architectures. Altogether, our work sheds light on oppor-
tunities in superconducting circuits to explore quantum
many-body physics originating from novel types of photon-
mediated interactions in topological waveguide QED, and
paves the way for creating synthetic quantum matter and
performing quantum simulation [66-70].
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APPENDIX A: MODELING OF THE
TOPOLOGICAL WAVEGUIDE

In this Appendix, we provide a theoretical description
of the topological waveguide discussed in the main text,
an analog to the Su-Schrieffer-Heeger model [8]. An

<
+osy
Vj)l

/

Lo

FIG. 5.

LC resonators of inductance L and capacitance C, are
coupled with alternating coupling capacitance C,, C,, and mutual
inductance M,, M,,. The voltage and current at each resonator
node A (B) are denoted as V4,11 (VB IB).

n»

approximate form of the physically realized waveguide
is given by an array of coupled LC resonators, a unit cell of
which is illustrated in Fig. 5. Each unit cell of the
topological waveguide has two sites A and B whose
intracell and intercell coupling capacitance (mutual induct-
ance) are given by C, (M,) and C,, (M,,). We denote the
flux variable of each node as ®%(¢) = [*  dr'VE(¢') and the
current going through each inductor as ¢ (a = {A, B}).
The Lagrangian in position space reads

C, .y C, . .
T L N s

Go

F V@) + (@) -2

2 [(i4)° + (i)

(A1)

‘A :B B A
- M, iyt — M,y }
The node flux variables are written in terms of current
through the inductors as

O = Loit + M,i% + M8,

O = Loi +M,it + M,is .

(A2)

Considering the discrete translational symmetry in our
system, we can rewrite the variables in terms of Fourier
components as

1 . 1 .
(I)z _ emkdqba’ lg —_ emkdia’ (A3)
w2 v

where a = A, B, N is the number of unit cells, and k =
(2zm/Nd) (m = =N/2,...,N/2 — 1) are points in the first
Brillouin zone. Equation (A2) is written as

. - . . it .
E emk dq);c\/ — E emk d(LOlII?’ + lef/ +e ik delE/)
K 14

under this transform. Multiplying the above equation
with e~ and summing over all n, we get a linear relation
between ®f and i}
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(o) = (o,
o) \M,+ M,e*

M, + Mwe—ikd> ( it >
Ly i#)

By calculating the inverse of this relation, the Lagrangian of the system (A1) can be rewritten in k space as

Cot CotCpsn sn  op
ﬁ — v w @A (DA (DB (DB
;[ 5 (DL D + D2, DY)

Co+C,+C, -4 o
-y [02 (D] + DB P
k

where C,(k)=C,+ C,e™* and M (k)
conjugate to node flux @®f are written as

<Q1]?> - <C0+C1/‘+CW
o7 —Cy(k)

- Cy(k)

— C,(k)@*, ®f —

. . L
SO S+ 74) M, (0

Lo (@4, @f + 08, @) — M, (k)A, 0F
Ly — M (k)M (k)

|

=M, + M, e ™. The node charge variables Q% = dL/dD¢ canonically

)G
Co+C,+C, )\ /)

Note that due to the Fourier transform implemented on flux variables, the canonical charge in momentum space is related to

that in real space by

. oC L oD
o= o zk: 0dY 9T

which is in the opposite sense of regular Fourier transform in Eq. (A3). Also, due to the Fourier-transform properties, the

constraint that ®¢ and Q% are real reduces to (P)*

H= Zk,a Q(I:(DZ -

L, the Hamiltonian takes the form

=%, and (QF)" = 0%

. Applying the Legendre transformation

k)%, 07 + Cy(k) 0%, O

Ce(040F + 0%.07) + Cy(-
n=3| s

- Mg(k)q)ékq)f

n Ly(@A, @} 4 ©F, @F)

2L5(k)

where

C:=Cy+C,+C,,
LG(k) = L§ — M, (=k)M y(k).

Cfl(k) = C% - Cg(_k)cg(k)v

Note that C3(k) and L?(k) are real and even function in .
We impose the canonical commutation relation between
real-space conjugate variables [DZ, Qﬁ || = ih6, 46, , to
promote the flux and charge variables to quantum oper-
ators. This reduces to [§¢, 0] = ihé,, 40 v in the momen-
tum space [note that due to the Fourier transform,
(D) = ®%, and (QF)" = 0%, meaning flux and charge
operators in momentum space are non-Hermitian since the
Hermitian conjugate flips the sign of k]. The Hamiltonian
can be written as a sum H = Hy+ V, where the
“uncoupled” part ﬁo and coupling terms V are written as

’

- Mg(—k)q>§kq>;j]

=3[l Sy
HO = |: e + e ’
kZ 2CM (k) 2LET (k)
Z { ka cDékqA)E
1
- Ce il

Lgff ( k)
where the effective self-capacitance C§if(k), self-inductance
L§(k), coupling capacitance C¢(k), and coupling induct-
ance LE" (k) given by

+ H.c.] . (A5)

SHCE USRS
o O L®
SO = MRS S
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The diagonal part H,, of the Hamiltonian can be written in a
second-quantized form by introducing annihilation operators
a and l;k, which are operators of the Bloch waves on A and
B sublattice, respectively:

1 i .
(== =+ i LT () 04|
20 |, [7en ¢
Z8“(k) |
b=t _ Z (k _
CTVRR e Zeff %

Here, Z&T(k) = /LET (k) /CEt (k) is the effective imped-
ance of the oscillator at wave vector k. Unlike the Fourier-
transform notation, for bosonic modes d; and l;k, we use
the notation (d;)" = dz and (b,)" = 13,1. Under this defi-
nition, the commutation relation is rewritten as [dy, &Z/] =
by, Ez,] = &, v Note that the flux and charge operators are
written in terms of mode operators as

. hZet (k
& = /20 ( )(dk+&ik),

k= 2
1 h .

A _ A A
Q zzeff(k)<a —k - ak)’
. AZeT (k) ~ .
of =AW, 1 iy,
ap 1 oo
OF ==\ [55arp bk = b})-

k 275 (k) k

The uncoupled Hamiltonian is written as

(A7)

where the uncoupled oscillator frequency is given by

wo(k) = [L&T(k)CT (k)]~1/2, which ranges between values
LyCs
k = 0 = X
@olk=0) %%4%+mﬂ@—@+qﬂ
k T LOCZ
), = — = .
) @M, - M PG -1 - CP)

The coupling Hamiltonian V is rewritten as

N hgc(k . .
V= _Z[ 9c( )(a_kbk—a_kbik athy +ah’ )

(d_kl;k + &—kb,\ik + d}:l;k + deAik) + H.c. s
(A8)

where the capacitive coupling g (k) and inductive coupling
g1, (k) are simply written as

gty = 2G4 = 2D (g
respectively. Note that gf-(k) = gc(—k) and g; (k) = g, (—k).

In the following, we discuss the diagonalization of this
Hamiltonian to explain the dispersion relation and band
topology.

1. Band structure within the rotating-wave
approximation

We first consider the band structure of the system within
the rotating-wave approximation (RWA), where we discard
the counterrotating terms a b and a*H" in the Hamiltonian.
This assumption is known to be valid when the strength
of the couplings |g; (k)|, |gc(k)| is small compared to the
uncoupled oscillator frequency @ (k). Under this approxi-
mation, the Hamiltonian in Egs. (A7) and (A8) reduces to a
simple form H = 7Y, (¥,)"h(k)¥;, where the single-
particle kernel of the Hamiltonian is

wo(k)
hw:(ﬁw

fk) ) (A10)

wy(k)

Here, ¥, = (dy. by)” is the vector of annihilation operators
at wave vector k and f(k) = gc(k) — g (k). In this case, the
Hamiltonian is diagonalized to the form

H= hz[a)+(k)&j»,kd+,k +o_(ka' ], (A1)
x

where two bands w. (k) = wy(k) £ |f(k)| symmetric with
respect to (k) at each wave vector k appear [here, note
that dlk = (41 ,)"]. The supermodes d. ; are written as

:I:e_i‘/’(k)dk + bAk

fug = KTk
+.k \/i

where ¢(k) = arg f(k) is the phase of coupling term. The
Bloch states in the single-excitation bands are written as

lwy ) = d;k|0> = — (LD |1;,04) + [0z, 11)),

5l
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where |ny, n}) denotes a state with n (") photons in mode
a (bp).

As we discuss in Appendix B, the kernel of the
Hamiltonian in Eq. (A10) has an inversion symmetry in
the sublattice unit cell which is known to result in bands
with quantized Zak phase [36]. In our system the Zak phase
of the two bands is evaluated as

1 . O 1 [+eit®
s ifs () 2[5
ljliz \/§< ¢ 3k\/§ 1

1 op(k)
__2%3de ok

The Zak phase of photonic bands is determined by the
behavior of f(k) in the complex plane. If the contour of
f(k) for k values in the first Brillouin zone excludes
(encloses) the origin, the Zak phase is given by Z =0
(Z = m) corresponding to the trivial (topological) phase.

2. Band structure beyond the rotating-wave
approximation

Considering all the terms in the Hamiltonian in Eqs. (A7)
and (AS8), the Hamiltonian can be written in a compact form

H = (1/2)>(9) h(k)¥, with a vector composed of
mode operators ¥, = (dy, l;k, cf_k, Z;T_k)T and

wo(k)  f(k) 0 g(k)
[rk) wo(k) g'(k) 0

0 glk) (k) f(k)
gy 0 fr(k) a@o(k)
1wk 0

h(k) =

—ci—Iy

2 2

o=
0 k1 g

I

—C

—cil; G-l
2 0 2 1

where f(k) = gc(k) — g (k) as before and g(k)=
—gc(k) - gL(k) Here, lk EMg(k)/LO and CkECg(k)/CZ
|

are inductive and capacitive coupling normalized to fre-
quency. The dispersion relation can be found by diagonal-
izing the kernel of the Hamiltonian in Eq. (A12) with the
Bogoliubov transformation,

U, Vi,

o). (A13
Vi Uik> (A1)

Wi =SV, S = <
where W, = (d+,k,d_,k,d1__k,d:_k)T is the vector com-
posed of supermode operators ‘and U, V, are 2x2
matrices forming blocks in the transformation S;. We want
to find S; such that (¥;)"h(k)9, = (W) h(k)w,, where
h(k) is diagonal. To preserve the commutation relations,

the matrix S; has to be symplectic, satisfying
J =S, J(S;)7, with J defined as
1 0 0 O
01 0 O
=100 1 o
00 0 -1

Because of this symplecticity, it can be shown that the
matrices Jh(k) and Jh(k) are similar under transformation
Si. Thus, finding the eigenvalues and eigenvectors of the
coefficient matrix,

|k o g
Jh(k) -l i
Z® T 0 e oz
c;;l/’; 0 —c/*chlZ -

(A14)

is sufficient to obtain the dispersion relation and superm-
odes of the system. The eigenvalues of matrix m(k) are
evaluated as

2

2

Lei + 1 i + liex)?
. 1—Mi\/<l—M) =P = e,

and hence the dispersion relation of the system taking into account all terms in Hamiltonian (A12) is

(LG — My(=k)My(K)][CE — Cy (=) C, (K)]

@4 (k) = dy(k)y| 1+ \/1 -

where

{LoCs -3

(M, (=k)Cy(k) + Cy (k)M (K)]}* (A15)
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(k) = g

" \/1 _ My (K)C,(=K) + M, (=K)C, (k)
2LyCs '

The two passbands range over frequencies [@T", 7]
and [0™", @™*], where the band-edge frequencies are
written as

1

oM = nd
\/[Lo + Pz(M - Mw)][cz - Pz(Cv - Cw)] ‘
max — 1
o \/[L0+P1(My +M,)][Cs - pi(C, +C,)]
(A16a)
@™ = ! and
B VILo = pi(M, + M,)][Cs + py(C, + C,,)]
max — 1
T o= paM, —M)J[Cs + pa(C, — G
(A16b)

Here, p; = sgn[Ly(C, + C,,) = Cs(M, + M,,)] and p, =
sgn[Ly(C, - C,,) — Cs(M, —M,,)] are sign factors. In
principle, the eigenvectors of the matrix m(k) in Eq. (A14)
can be analytically calculated to find the transformation S,
of the original modes to supermodes d, ;. For the sake of
|

dk— Fe W Wx,  xypy LemK) o =
]1{32 +k Xtk Ytk yi,k) ok 2\/5

brevity, we perform the calculation in the limit of vanishing
mutual inductance (M, = M,, = 0), where the matrix m(k)
reduces to

1 Ck/2 0 —Ck/2
/2 1 —=ci/2 0
me(k) = o o (A17)
0 /2 -1  —¢ /2
/2 0 =2 -1

In this case, the block matrices Uy, V; in the transformation
in Eq. (A13) are written as

U ! < e )x+k x+.k>
- 2\/_ —ePWx_ i xi ’
Vv 1 ( e )y+,k )’+.k>
. 2\/_ —emilk -k Y-k ’
__ 4 1 _ 4 _ 1
where x, ;= li\ck|+m, yer=+v1%£|c] e
and ¢ (k) = arg c;. Note that the constants are normalized
by relation x3 , —y% , = 4.
The knowledge of the transformation S, allows us to
evaluate the Zak phase of photonic bands. In the

Bogoliubov transformation, the Zak phase can be evaluated
as [71]

+ei?®x, .
0 1 Xtk
:I:ei‘f’(k)yi ¢

Y4k

_ 1.a¢(k)2_2 22_2 __17{ (k)
_1%{de8[1 ok (XL g )’i.k)'f'ak(xi,k Yid| = > Bzdk AT

identical to the expression within the RWA. Again, the Zak
phase of photonic bands is determined by the winding of
f (k) around the origin in complex plane, leading to Z = 0
in the trivial phase and Z = z in the topological phase.

3. Extraction of circuit parameters
and the breakdown of the circuit model

As discussed in Fig. 1(d) of the main text, the parameters
in the circuit model of the topological waveguide are found
by fitting the waveguide transmission spectrum of the test
structures. We find that two lowest-frequency modes inside
the lower passband (LPB) fail to be captured according to
our model with capacitively and inductively coupled LC
resonators. We believe that this is due to the broad range of
frequencies (about 1.5 GHz) covered in the spectrum
compared to the bare resonator frequency ~6.6 GHz and

I
the distributed nature of the coupling, which can cause our
simple model based on frequency-independent lumped
elements (inductor, capacitor, and mutual inductance) to
break down. Such deviation is also observed in the fitting of
waveguide transmission data of device I (Fig. 11).

APPENDIX B: MAPPING OF THE SYSTEM TO
THE SSH MODEL AND DISCUSSION ON
ROBUSTNESS OF EDGE MODES

1. Mapping of the topological waveguide
to the SSH model

We discuss how the physical model of the topological
waveguide in Appendix A could be mapped to the photonic
SSH model, whose Hamiltonian is given as Eq. (1) in the
main text. Throughout this section, we consider the realistic
circuit parameters extracted from fitting of test structures
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given in Fig. 1 of the main text: resonator inductance and
resonator capacitance, Ly = 1.9 nH and Cy, = 253 fF, and
coupling capacitance and parasitic mutual inductance,
(C,,C,)=1(33,17) fF and (M,,M,,) = (-38,-32) pH,
in the trivial phase (the values are interchanged in the
topological phase).

To most directly and simply link the Hamiltonian
described in Egs. (A7) and (A8) to the SSH model, here
we impose a few approximations. First, the counterrotating
terms in the Hamiltonian are discarded such that only
photon-number-conserving terms are left. To achieve this,
the RWA is applied to reduce the kernel of the Hamiltonian
into one involving a 2 x 2 matrix as in Eq. (A10). Such an
assumption is known to be valid when the coupling terms in
the Hamiltonian are much smaller than the frequency scale
of the uncoupled Hamiltonian H, [72]. According to the
coupling terms derived in Eq. (A9), this is a valid
approximation given that

gC(k) |Cv + Cw|

< ~ 0.083,
’%(’Q‘ T 2Gs
wy (k) 2Ly

and the RWA affects the dispersion relation by less than
0.3% in frequency.

Also different than in the original SSH Hamiltonian are
the k-dependent diagonal elements wy(k) of the single-
particle kernel of the Hamiltonian for the circuit model.
This k dependence can be understood as arising from the
coupling between resonators beyond nearest-neighbor
pairs, which is inherent in the canonical quantization of
capacitively coupled LC resonator array (due to circuit
topology), as discussed in Ref. [33]. The variation in @ (k)
can be effectively suppressed in the limit of C,, C,, < Cy
and M, M, < L, as derived in Eq. (A6). We note
that while our coupling capacitances are small compared
to Cs (C,/Cy=0.109, C,/Cs=~0.056 in the trivial
phase), we find that they are sufficient to cause the
wo(k) to vary by ~1.2% in the first Brillouin zone.
Considering this limit of small coupling capacitance
and mutual inductance, the effective capacitance and
inductance of Eq. (A6) become quantities independent
of k, C&(k)~ Cy, L§(k)~ Ly, and the kernel of the
Hamiltonian under RWA reduces to

o= (0 f;?)'

Here,

This is equivalent to the photonic SSH Hamiltonian in
Eq. (1) of the main text under redefinition of gauge which
transforms operators as (dy, by) — (4. —by). Here, we
can identify the parameters J and o as

W C1}+CW MD+MW

J==2 - , Bl
(e (51
Ly(C, — —-CsM,— M

5= O( v Cw) Z( v W) (BZ)

B LO(CU + CW) - CE(MI/‘ + Mw) 7

where J(1+6) is defined as intracell and intercell
coupling, respectively. The dispersion relations under
different stages of approximations mentioned above are
plotted in Fig. 6, where we find a clear deviation of
our system from the original SSH model due to the
k-dependent reference frequency.

2. Robustness of edge modes under perturbation
in circuit parameters

While we have linked our system to the SSH
Hamiltonian in Eq. (1) of the main text, we find that our
system fails to strictly satisfy chiral symmetry Ch(k)C~! =
—h(k) (C =6, is the chiral symmetry operator in the
sublattice space). This is due to the k-dependent diagonal
wo(k) terms in h(k), resulting from the nonlocal nature
of the quantized charge and nodal flux in the circuit model
which results in next-nearest-neighbor coupling terms
between sublattices of the same type. Despite this, an
inversion symmetry, Zh(k)Z~! = h(-k) (Z = 4, in the
sublattice space), still holds for the circuit model. This
ensures the quantization of the Zak phase (Z) and the
existence of an invariant band winding number (v = Z/x)
for perturbations that maintain the inversion symmetry.

7.5

= — Full model
T el
(G — Within RWA
> ___ Final mapping
c L ae=EEETETIIEEEsa to SSH model
S peeemmmriIi T —
=]
o 65
o
L v/

6

-7 0 m

kd

FIG. 6. Band structure of the realized topological waveguide
under various assumptions discussed in Appendix B. The solid
lines show the dispersion relation in the upper (lower) passband,
w2 (k): full model without any assumptions (red), model within
RWA (blue), and the final mapping to SSH model (black) in the
weak coupling limit. The dashed lines indicate the uncoupled
resonator frequency w,(k) under corresponding assumptions.
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However, as shown in Refs. [73,74], the inversion sym-
metry does not protect the edge states for highly delocal-
ized coupling along the dimer resonator chain, and the
correspondence between winding number and the number
of localized edge states at the boundary of a finite section of
waveguide is not guaranteed.

For weak breaking of the chiral symmetry (i.e., beyond
nearest-neighbor coupling much smaller than nearest-
neighbor coupling) the correspondence between winding
number and the number of pairs of gapped edge states is
preserved, with winding number v = 0 in the trivial phase
(6 > 0) and v = 1 in the topological (6 < 0) phase. Beyond
just the existence of the edge states and their locality at the
boundaries, chiral symmetry is special in that it pins the
edge mode frequencies at the center of the middle band gap
(wp). Chiral symmetry is maintained in the presence of
disorder in the coupling between the different sublattice
types along the chain, providing stability to the frequency
of the edge modes. In order to study the robustness of the
edge mode frequencies in our circuit model, we perform
a simulation over different types of disorder realizations
in the circuit illustrated in Fig. 5. As the original SSH
Hamiltonian with chiral symmetry gives rise to topological
edge states which are robust against the disorder in
coupling, not in on-site energies [9], it is natural to consider
disorder in circuit elements that induce coupling between
resonators: C,, C,,, M,, M,,.

The classical equations of motion of a circuit consisting
of N unit cells is written as

o L, 0 MV
-y o0 ¢l
MYV o L, o MV
a0 ¢y o ¢
MY o L, o
c o -c¥, o P
M 0
C= c? 0 -t

i = C(>dc‘l’n+cg}>d;’ (n- 1>d‘;ntl’
o=, +C$Qd;’ “dil"t“,

where the superscripts indicate index of cell of each circuit
element and

CWh=Cot C +Ci, =l 1.

The 4N coupled differential equations are rewritten in a
compact form as

u u A
1 1 Vn
d u, u, iA
— =C! , u=| " |, (B3
dt n VE ( )
u u in
N N

where the coefficient matrix C is given by

M
L, 0 MP
0o ¢
My
M
cV
MY 0 Lo
c™ o -y o
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FIG. 7.

(a) Resonant frequencies of a finite system with N = 40 unit cells, calculated from eigenmodes of Eq. (B3). The band gap

regions calculated from dispersion relation are shaded in gray (green) for upper and lower band gaps (middle band gap). The two data
points inside the middle band gap (mode indices 40 and 41) correspond to edge modes. (b) Frequency splitting A fqq. Of edge modes
with no disorder in the system are plotted against the of number of unit cells N. The black solid curve indicates exponential fit to the edge

mode splitting, with decay constant of £ = 1.76.

Here, the matrix elements not specified are all zero. The
resonant frequencies of the system can be determined by
finding the positive eigenvalues of iC~!. Considering the
model without any disorder, we find the eigenfrequencies
of the finite system to be distributed according to the
passband and band gap frequencies from dispersion rela-
tion in Eq. (A15), as illustrated in Fig. 7. Also, we observe
the presence of a pair of coupled edge mode resonances
inside the middle band gap in the topological phase, whose
splitting due to finite system size scales as Afeqge ~ €/
with & = 1.76.

To discuss the topological protection of the edge
modes, we keep track of the set of eigenfrequencies for
different disorder realizations of the coupling capacitance
and mutual inductance for a system with N = 50 unit
cells. First, we consider the case when the mutual
inductance M, and M, between resonators are subject
to disorder. The values of MY, M are assumed to be
sampled uniformly on an interval covering a fraction +r
of the original values, i.e.,

MY =M1+ 8] MY =M+ 8y,
where 35‘2’1) , szl)‘ are independent random numbers uniformly

sampled from an interval [—1, 1]. Figure 8(a) illustrates an
example with a strong disorder with r = 0.5 under 100
independent realizations, where we find the frequencies of
the edge modes to be stable, while frequencies of modes in
the passbands fluctuate to a much larger extent. This
suggests that the frequencies of edge modes have some sort
of added robustness against disorder in the mutual induct-
ance between neighboring resonators despite the fact that our
circuit model does not satisfy chiral symmetry. The reduc-
tion in sensitivity results from the fact that the effective self-
inductance L (k) of the resonators, which influences the
on-site resonator frequency, depends on the mutual induc-
tances only to second order in small parameter (M, ,,/L). It
is this second-order fluctuation in the resonator frequencies,
causing shifts in the diagonal elements of the Hamiltonian,
which results in fluctuations in the edge mode frequencies.

(a) 7.6 (b) 7.6 (c) 76
74 7.4
~ ~ ~ 72
I T T A,
) ) O 7
9 9 268
o 0638 9638
S S 66 S 66
9 g g
o T 64 I 6.4%
6.2 6.2 %
6 6

20 40 60 80 100
Disorder realization

0

20 40 60 80 100
Disorder realization

0 20 40 60 80 100

Disorder realization

FIG. 8. Eigenfrequencies of the system under 100 disorder realizations in coupling elements. Each disorder realization is achieved by
uniformly sampling the parameters within fraction £r of the original value. (a) Disorder in mutual inductance M, and M,, between
neighboring resonators with the strength » = 0.5. (b) Disorder in coupling capacitance C, and C,, between neighboring resonators with
the strength r = 0.1. (c) The same disorder as (b) with » = 0.5, while keeping the bare self-capacitance Cy of each resonator fixed
(correlated disorder between coupling capacitances and resonator C).
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The direct fluctuation in the mutual inductance couplings
themselves, corresponding to off-diagonal Hamiltonian ele-
ments, does not cause the edge modes to fluctuate due to
chiral symmetry protection (the off-diagonal part of the
kernel of the Hamiltonian is chiral symmetric).

Disorder in coupling capacitance C, and C,, is also
investigated using a similar model, where the values of

C(y"),CSV" ) are allowed to vary by a fraction £r of the
original values (uniformly sampled), while the remaining
circuit parameters are kept constant. From Fig. 8(b) we
observe severe fluctuations in the frequencies of the edge
modes even under a mild disorder level of » = 0.1. This is
due to the fact that the coupling capacitance C, and C,,
contributes to the effective self-capacitance of each
resonator C§'(k) to first order in small parameter
(C,.w/Cp), thus directly breaking chiral symmetry and
causing the edge modes to fluctuate. An interesting
observation in Fig. 8(b) is the stability of frequencies
of modes in the upper passband with respect to disorder in
C, and C,,. This can be explained by noting the expres-
sions for band-edge frequencies in Eqs. (Al6a)
and (A16b), where the dependence on coupling capaci-
tance gets weaker close to the upper band-edge frequency
o™ =1/+/(Ly+ M, + M,,)C, of the upper passband.

Finally, we consider a special type of disorder where
we keep the bare self-capacitance Cy of each resonator
fixed. Although unrealistic, we allow C, and C,, to
fluctuate and compensate for the disorder in Cs by
subtracting the deviation in C, and C,, from C,. This
suppresses the lowest-order resonator frequency fluctua-
tions, and hence helps stabilize the edge mode frequen-
cies even under strong disorder r = 0.5, as illustrated in
Fig. 8(c). While being an unrealistic model for disorder in
our physical system, this observation sheds light on the
fact that the circuit must be carefully designed to take

advantage of the topological protection. It should also be
noted that in all of the above examples, the standard
deviation in the edge mode frequencies scale linearly to
lowest order with the standard deviation of the disorder in
the intercell and intracell coupling circuit elements (only
the precoefficient changes). Exponential suppression of
edge mode fluctuations due to disorder in the coupling
elements as afforded by the SSH model with chiral
symmetry would require a redesign of the circuit to
eliminate the next-nearest-neighbor coupling present in
the current circuit layout.

APPENDIX C: DEVICE I CHARACTERIZATION
AND EXPERIMENTAL SETUP

In this Appendix, we provide a detailed description of
elements on device I, where the directional qubit-photon
bound state and passband topology experiments are
performed. The optical micrograph of device I is shown
in Fig. 9.

1. Qubits

All 14 qubits on device I are designed to be nominally
identical with asymmetric Josephson junctions (JJs) on
superconducting quantum interference device (SQUID)
loop to reduce the sensitivity to flux noise away from
maximum and minimum frequencies, referred to as
“sweet spots.” The sweet spots of all qubits lie deep inside
the upper and lower band gaps, where the coupling of
qubits to external ports is small due to strong localization.
This makes it challenging to access the qubits with direct
spectroscopic methods near the sweet spots. Alternatively,
a strong drive tone near resonance with a given qubit
frequency was sent into the waveguide to excite the qubit,
and a passband mode dispersively coupled to the qubit is

FIG. 9. Optical micrograph of device I (false colored). The device consists of a topological waveguide with 9 unit cells [resonators
corresponding to A (B) sublattice colored red (blue)] in the trivial phase, where the intracell coupling is larger than the intercell coupling.
Qubits (cyan, labeled QF where i = 1-7 and a = A, B) are coupled to every site of the 7 inner unit cells of the topological waveguide,
each connected to on-chip flux-bias lines (orange) for individual frequency control. At the boundary of the topological waveguide
are tapering sections (purple), which provide impedance matching to the external waveguides (green) at upper band gap frequencies.
P1 (P2) denotes port 1 (port 2) of the device.
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TABLE I.  Qubit coherence in the middle band gap. The parasitic decoherence rate I'"" of qubits on device I at 6.621 GHz inside the
MBG. The data for Q5 were taken in a separate cooldown due to coupling to a two-level system defect.

of of of o ot o8 of of of o8 o o o &
I"/2z (kHz) 3257 1504 247.4 1047* 2682 1832 220.6 2244 1933 263.2 206 332.69 88.1 34638

"Measured in a separate cooldown.

simultaneously monitored with a second probe tone. With
this method, the lower (upper) sweet spot of Q1 is found to
be at 5.22 GHz (8.38 GHz), and the anharmonicity near the
upper sweet spot is measured to be 297 MHz (effective
qubit capacitance of C, = 65 fF). The Josephson energies
of two JJs of Qf are extracted to be (E;,E;)/h=
(21.85,9.26) GHz giving the junction asymmetry
of d = (Ej — Ep)/(Ep + Ejp) = 0.405.

The coherence of qubits is characterized using spectros-
copy inside the middle band gap (MBG). Here, the parasitic
decoherence rate is defined as I = 2I', — k, | — Kk, », where
2I", is the total linewidth of qubit, and «,; (k,,) is the
external coupling rate to port 1 (2) (see Supplemental Note
1 of Ref. [75] for a detailed discussion). Here, I contains
contributions from both qubit decay to spurious channels
other than the desired external waveguide as well as pure
dephasing. Table I shows the parasitic decoherence rate
of all 14 qubits at 6.621 GHz extracted from spectroscopic
measurement at a power at least 5 dB below the single-
photon level (defined as hwk,, with p =1, 2) from
both ports.

Utilizing the dispersive coupling between the qubit
and a resonator mode in the passband, we have also
performed time-domain characterization of qubits.
The measurement on Q% at 6.605 GHz in the MBG
gives T = 1.23 us and T3 = 783 ns corresponding to
I"/27z = 281.3 kHz, consistent with the result from spec-
troscopy in Table I. At the upper sweet spot, Q% was hard
to access due to the small coupling to external ports
arising from short localization length and a large physical
distance from the external ports. Instead, Q% is charac-
terized to be 7; =9.197 yus and T5 = 11.57 us at its
upper sweet spot (8.569 GHz).

2. Metamaterial waveguide and coupling to qubits

As shown in Fig. 9, the metamaterial waveguide consists
of a SSH array in the trivial configuration and tapering
sections at the boundary (the design of tapering sections is
discussed in Appendix D). The array contains 18 identical
LC resonators, whose design is slightly different from the
one in test structures shown in Fig. 1(b) of the main text.
Namely, the “claw” used to couple qubits to resonators on
each site is extended to generate a larger coupling capaci-
tance of C, =5.6 fF and the resonator capacitance to
ground was reduced accordingly to maintain the designed
reference frequency. On resonator sites where no qubit

is present, an island with shape identical to that of a qubit
was patterned and shorted to ground plane in order to
mimic the self-capacitance contribution from a qubit to the
resonator. The fitting of the whole structure to the wave-
guide transmission spectrum results in a set of circuit
parameters similar yet slightly different from ones of
the test structures quoted in Fig. 1 of the main text:
(C,,C,) =1(35,19.2) fF, (M, M,,) = (-38,-32) pH,
Cy =250 fF, Ly = 1.9 nH. Here, the definition of C
includes contributions from coupling capacitance between
qubit and resonator, but excludes the contribution to the
resonator self-capacitance from the coupling capacitances
C,, C, between resonators in the array. With these
parameters we calculate the corresponding parameters in
the SSH model to be J/2z = 356 MHz and § = 0.256
following Eq. (B2), resulting in the localization length
E=1/In[(146)/(1 -=6)] =191 at the reference fre-
quency. From the measured avoided crossing g¢4%/2z =
32.9 MHz between qubit-photon bound states facing
toward each other on nearest-neighboring sites together
with J and 8, we infer the qubit coupling to each resonator

site to be g=4/g48J(1+68) =27 x 121.3 MHz [29],

close to the value

Gy
- wy = 27 x 132 MHz

2,/C,Cs

expected from designed coupling capacitance [76]. Note
that we find an inconsistent set of values J/2z = 368 MHz
and 6 =0.282 (with £ =1.73 and g/2z = 124.6 MHz
accordingly) from calculation based on the difference in
observed band-edge frequencies, where the frequency
difference between the highest frequency in the UPB
and the lowest frequency in the LPB equals 4/ and the
size of the MBG equals 4J|5|. The inconsistency indicates
the deviation of our system from the proposed circuit model
(see Appendix A for discussion), which accounts for the
difference between theoretical curves and the experimental
data in Fig. 1(d) and the left-hand panel of Fig. 2(c). The
values of J, §, and g from the band-edge frequencies
are used to generate the theoretical curves in Fig. 3 in the
main text as well as in Fig. 15. The intrinsic quality factor
of one of the normal modes (resonant frequency
6.158 GHz) of the metamaterial waveguide was measured
to be Q; = 9.8 x 10* at power below the single-photon
level, similar to typical values reported in Refs. [32,33].
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3. Experimental setup

The measurement setup inside the dilution refrigerator
is illustrated in Fig. 10. All the 14 qubits on device I are
dc-biased with individual flux-bias (Z control) lines,
filtered by a 64 kHz low-pass filter at the 4 K plate
and a 1.9 MHz low-pass filter at the mixing chamber plate.
The waveguide input 1 (2) passes through a series of
attenuators and filters including a 20 dB (30 dB) thin-film
attenuator developed by Palmer and co-workers [77]. It
connects via a circulator to port 1 (2) of device I, which is
enclosed in two layers of magnetic shielding. The output
signals from device I are routed by the same circulator to
the output lines containing a series of circulators and
filters. The pair of 2 x 2 switches in the amplification
chain allows us to choose the branch to be further
amplified in the first stage by a traveling-wave parametric
amplifier (TWPA) from MIT Lincoln Laboratories. Both
of the output lines are amplified by an individual high
electron mobility transistor (HEMT) at the 4 K plate,
followed by room-temperature amplifiers at 300 K. All
four S parameters S;; (i, j € {1,2}) involving port 1 and 2
on device I can be measured with this setup by choosing
one of the waveguide input ports and one of the waveguide
output ports; e.g., S;; can be measured by sending the
input signal into waveguide input 1 and collecting the
output signal from waveguide output 2 with both 2 x 2
switches in the cross (x) configuration.

APPENDIX D: TAPERING SECTIONS
ON DEVICE 1

The finite system size of metamaterial waveguide gives
rise to sharp resonances inside the passband associated
with reflection at the boundary [Fig. 1(d) of the main text].
Also, the decay rate of qubits to external ports inside the
middle band gap is small, making the spectroscopic
measurement of qubits inside the MBG hard to achieve.
In order to reduce ripples in transmission spectrum inside
the upper passband and increase the decay rates of qubits
to external ports comparable to their intrinsic contribu-
tions inside the middle band gap, we added two resonators
at each end of the metamaterial waveguide in device I as
tapering section.

Similar to the procedure described in Appendix C of
Ref. [33], the idea is to increase the coupling capacitance
gradually across the two resonators while keeping the
resonator frequency the same as other resonators by
changing the self-capacitance as well. However, unlike
the simple case of an array of LC resonators with uniform
coupling capacitance, the SSH waveguide consists of
alternating coupling capacitance between neighboring res-
onators and two separate passbands form as a result. In this
particular work, the passband experiments are designed to
take place at the upper passband frequencies and hence we
have slightly modified the resonant frequencies of tapering
resonators to perform impedance matching inside the upper

Waveguide Waveguide  Waveguide Waveguide
input 1 Z control input 2 output1  output 2

. . =l .

L L - * 300 '|< -"- dc block
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FIG. 10. Schematic of the measurement setup inside the dilution refrigerator for device I. The meaning of each symbol in the
schematic on the left is enumerated on the right. The level of attenuation of each attenuator is indicated with number next to the symbol.
The cutoff frequencies of each filter are specified with numbers inside the symbol. Small squares attached to circulator symbols indicate
port termination with Z; = 502, allowing us to use the three-port circulator as a two-port isolator. The input pump line for TWPA is not

shown in the diagram for simplicity.
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Tapering section of device I. (a) The circuit diagram of the tapering section connecting a coplanar waveguide to the

topological waveguide. The coplanar waveguide, first tapering resonator, and second tapering resonator are shaded in purple, yellow,
and green, respectively. (b) Optical micrograph (false colored) of the tapering section on device I. The tapering section is colored in
the same manner as the corresponding components in (a). (c) Red: measured waveguide transmission spectrum |S,;| for device L.
Black: fit to the data with parameters (C,,C,) = (35,19.2) fF, (M, M,) = (-38,-32) pH, (C,, C,,) = (141,35) fF,

(C,.C,) = (128.2,230) fF, Cy = 250 F, Ly = 1.9 nH.

passband. The circuit diagram shown in Fig. 11(a) was used
to model the tapering section in our system. While design-
ing of tapering sections involves empirical trials, micro-
wave filter design software, e.g., iFilter module in AWR
Microwave Office [78], can be used to aid the choice of
circuit parameters and optimization method.

Figure 11(b) shows the optical micrograph of a tapering
section on device I. The circuit parameters are extracted by
fitting the normalized waveguide transmission spectrum
(§,;) data from measurement with theoretical circuit models.
We find a good agreement in the frequency of normal modes
and the level of ripples between the theoretical model and the
experiment as illustrated in Fig. 11(c). The level of ripples
in the transmission spectrum of the entire upper passband is
about 8 dB and decreases to below 2 dB near the center of
the band, allowing us to probe the cooperative interaction
between qubits at these frequencies.

APPENDIX E: DIRECTIONAL SHAPE OF
QUBIT-PHOTON BOUND STATE

In this Appendix, we provide detailed explanations on
the directional shape of qubit-photon bound states dis-
cussed in the main text. As an example, we consider a
system consisting of a topological waveguide in the trivial
phase and a qubit coupled to the A sublattice of the nth unit
cell [Fig. 12(a)]. Our descriptions are based on partitioning
the system into subsystems under two alternative pictures
[Figs. 12(b) and 12(c)], where the array is divided on the
left (description I) or the right (description II) of the site
(n,A) where the qubit is coupled to.

1. Description I

We divide the array into two parts by breaking the intercell
coupling J,, = J(1 — &) that exists on the left of the site
(n,A) where the qubit is coupled to, i.e., between sites
(n—1,B) and (n,A). The system is described in terms of
two subsystems S; and S, as shown in Fig. 12(b). The
subsystem S| is a semi-infinite array in the trivial phase
extended from the (n — 1)th unit cell to the left and the
subsystem S, comprising a qubit and a semi-infinite array in
the trivial phase extended from the nth unit cell to the right.
The coupling between the two subsystems is interpreted to
take place at a boundary site with coupling strength J,,.
When the qubit frequency is resonant to the reference
frequency w,, the subsystem S, can be viewed as a semi-
infinite array in the topological phase, where the qubit
effectively acts as an edge site. Here, the resulting topo-
logical edge mode of subsystem S, is the qubit-photon
bound state, with photon occupation mostly on the qubit
itself and on every B site with a decaying envelope. Coupling
of subsystem S, to S; only has a minor effect on the edge
mode of S, as the modes in subsystem S; are concentrated at
passband frequencies, far detuned from @ = w,. Also, the
presence of an edge state of S, at @ = @, cannot induce an
additional occupation on S; by this coupling in a way that
resembles an edge state since the edge mode of S, does not
occupy sites on the A sublattice. The passband modes S| and
S, near resonantly couple to each other, whose net effect is
redistribution of modes within the passband frequencies.
Therefore, the qubit-photon bound state can be viewed as a
topological edge mode for subsystem S, which is unper-
turbed by coupling to subsystem ;. The directionality and
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FIG. 12. Understanding the directionality of qubit-photon bound states. (a) Schematic of the full system consisting of an infinite SSH
waveguide with a qubit coupled to the A sublattice of the nth unit cell and tuned to frequency w, in the center of the MBG. Here we make
the unit cell choice in which the waveguide is in the trivial phase (6 > 0). (b) Division of system in (a) into two subsystems S; and S, in
description I. (¢) Division of system in (a) into three subsystems [qubit (Q), S, S5] in description II. For panels (b) and (c), the left-hand
side shows the schematic of the division into subsystems and the right-hand side illustrates the mode spectrum of the subsystems and the

coupling between them.

photon occupation distribution along the resonator chain of
the qubit-photon bound state can be naturally explained
according to this picture.

2. Description 11

In this alternate description, we divide the array into two
parts by breaking the intracell coupling J,, = J(1 + §) that
exists on the right of the site (n,A) where the qubit is
coupled to, i.e., between sites (n,A) and (n,B). We
consider the division of the system into three parts: the
qubit, subsystem S}, and subsystem S5, as illustrated in
Fig. 12(c). Here, the subsystem S} (S5) is a semi-infinite
array in the topological phase extended to the left (right),
where the last site hosting the topological edge mode E|
(E}) at w = wy is the A (B) sublattice of the nth unit cell
The subsystem S| is coupled to both the qubit and the
subsystem S With coupling strength g and J, = J(1 + §),
respectively. Similar to description I, the result of coupling
between subsystem modes inside the passband is the
reorganization of modes without significant change in
the spectrum inside the middle band gap. On the other
hand, modes of the subsystems at @ = wj (qubit, £/, and
E))) can be viewed as emitters coupled in a linear chain
configuration, whose eigenfrequencies and corresponding
eigenstates in the single-excitation manifold are given by

oL =wy T+ T2,

) = ( L

Yiy)=——7=\ 77—
V2\V7+ T2

and

1100) £ |010) +

J
——Lfmmo,
VI+ T3

(7,]100) — goo1)),

(1)0 = Wy,

1
U/0>:7~
V@ + T

where |nn,n3) denotes a state with (n;, n,, n3) photons in
the (qubit, E}, E}), respectively. Here, § (J,) is the coupling
between edge mode E| and the qubit (edge mode E)),
diluted from g (J,) due to the admixture of photomc
occupation on sites other than the boundary in the edge
modes. Note that in the limit of short localization length,
we recover j~ g and J,~J,. Among the three single-
excitation eigenstates, the states |y ) lie at frequencies of
approximately @, + J, and are absorbed into the passbands.
The only remaining state inside the middle band gap is
the state |y), existing exactly at @ = @y, which is an
antisymmetric superposition of qubit excited state and the
single-photon state of E’,, whose photonic envelope is
directed to the right with occupation on every B site. This
accounts for the directional qubit-photon bound state
emerging in this scenario.

APPENDIX F: COUPLING OF QUBIT-PHOTON
BOUND STATES TO EXTERNAL PORTS AT
DIFFERENT FREQUENCIES

As noted in the main text (Fig. 2), the perfect direction-
ality of the qubit-photon bound states is achieved only at
the reference frequency @, inside the middle band gap. In
this Appendix, we discuss the breakdown of the observed
perfect directionality when qubits are tuned to different
frequencies inside the middle band gap by showing the
behavior of the external coupling «,, (p=1, 2) to
the ports.
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(a) Upper (lower) plots: external coupling rate of the qubit-photon bound states to port 1 (2) at 6.72 GHz in the middle band

gap. Exponential fit (black curve) on the data gives the localization length of £ = 2. (b) Upper (lower) plots: external coupling rate of the
qubit-photon bound states to port 1 (2) at 7.485 GHz in the upper band gap. Exponential fit (black curve) on the data gives the
localization length of £ = 1.8. The localization lengths are represented in units of lattice constant. For all panels, the error bars show

95% confidence interval and are removed on data points whose error is smaller than the marker size.

1. Inside the middle band gap, detuned from the
reference frequency

Figure 13(a) shows the external coupling rate of qubits to
the ports at 6.72 GHz, a frequency in the middle band gap
close to band edge. The alternating behavior of external
coupling rate is still observed, but with a smaller contrast
than in Fig. 2 of the main text. The dependence of external
linewidth on qubit index still exhibits the remaining
directionality with qubits on A (B) sublattice maintaining
large coupling to port 2 (1), while showing small nonzero
coupling to the opposite port.

2. Inside the upper band gap

Inside the upper band gap (7.485 GHz), the coupling
of qubit-photon bound states to external ports decreases

monotonically with the distance of the qubit site to the port,
regardless of which sublattice the qubit is coupled to
[Fig. 13(b)]. This behavior is similar to that of qubit-photon
bound states formed in a structure with uniform coupling,
where bound states exhibit a symmetric photonic envelope
surrounding the qubit. Note that we find the external coupling
to port 2 (k, ») to be generally smaller than that to port 1 (x, 1),
which may arise from a slight impedance mismatch on the
connection of the device to the external wiring.

APPENDIX G: PROBING BAND TOPOLOGY
WITH QUBITS

1. Signature of perfect superradiance

Here we take a closer look at the swirl pattern in the
waveguide transmission spectrum—a signature of perfect
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FIG. 14. (a) Enlarged view of the swirl feature near 6.95 GHz of the experimental data illustrated in Fig. 3(c) in the main text.

(b) Transmission spectrum across two-qubit resonance for three different frequency tunings, corresponding to line cuts marked with
green dashed lines on (a). The insets in (b) show the corresponding level diagram with |gg) denoting both qubits in ground states and |B)
(ID)) representing the perfect bright (dark) state. The state notation with prime [double prime] in (i) [(iii)] denotes the imperfect
superradiant bright state and subradiant dark state, with the width of orange arrows specifying the strength of the coupling of states to the
waveguide channel. Panel (ii) occurs at the center of the swirl, where perfect superradiance and subradiance takes place (i.e., bright state
waveguide coupling is maximum and dark state waveguide coupling is zero). The black and red curves correspond to experimental data
and theoretical fit, respectively.
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superradiance—which is discussed in Fig. 3(c) of the main
text. In Fig. 14 we enlarge the observed swirl pattern near
6.95 GHz, and three horizontal line cuts. At the center of
this pattern [Fig. 14(b)(ii)], the two qubits form perfect
superradiant and subradiant states with maximized corre-
lated decay and zero coherent exchange interaction [42,79].
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At this point, the transmission spectrum shows a single
Lorentzian line shape (perfect superradiant state and bright
state) with linewidth equal to the sum of individual line-
widths of the coupled qubits. The perfect subradiant state
(dark state), which has no external coupling, cannot be
accessed from the waveguide channel here and is absent in

.eobe . edee-

(b)
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(a) Schematic showing two qubits separated by An unit cells in the trivial configuration. (b) Corresponding schematic for

topological phase configuration. (c) Waveguide transmission spectrum |S,; | when frequencies of two qubits are resonantly tuned across
the upper passband in the trivial configuration. (d) Waveguide transmission spectrum |S,;| for the topological configuration. For both
trivial and topological spectra, the left spectrum illustrates theoretical expectations based on Ref. [29] whereas the right shows the

experimental data.
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the spectrum. Slightly away from this frequency, the
coherent exchange interaction starts to show up, making
hybridized states |B’), |D’) formed by the interaction of the
two qubits. In this case, both of the hybridized states have
nonzero decay rate to the waveguide, forming a V-type
level structure [29]. The interference between photons
scattering off the two hybridized states gives rise to the
peak in the middle of Figs. 14(b)(i) and 14(b)(iii).

The fitting of line shapes starts with the subtraction of
transmission spectrum of the background, which are taken
in the same frequency window but with qubits detuned
away. Note that the background subtraction in this case
cannot be perfect due to the frequency shift of the upper
passband modes under the presence of qubits. Such
imperfection accounts for most of the discrepancy between
the fit and the experimental data. The fit employs the
transfer matrix method discussed in Refs. [80-82]. Here,
the transfer matrix of the two qubits takes into account
the pure dephasing, which causes the sharp peaks in
Figs. 14(b)(i) and 14(b)(iii) to stay below perfect trans-
mission level (unity) as opposed to the prediction from the
ideal case of electromagnetically induced transparency [44].

2. Topology-dependent photon scattering
on various qubit pairs

As mentioned in the main text, when two qubits are
separated by An (An > 0) unit cells, the emergence of
perfect superradiance (vanishing of coherent exchange
interaction) is governed by Eq. (2). Although Eq. (2) is
satisfied at the band edges, it does not lead to additional
point of superradiance because the non-Markovianity at
these points do not lead to effective correlated decay [83].

Therefore, the perfect superradiance takes place exactly
An —1 times in the trivial phase and An times in the
topological phase across the entire passband. The main text
shows the case of An = 2. Here we report similar mea-
surements on other qubit pairs with different cell distance
An between the qubits. Figure 15 shows good qualitative
agreement between the experiment and theoretical result in
Ref. [29]. The small avoided-crossing-like features in the
experimental data are due to coupling of one of the qubits
with a local two-level system defect. An example of this is
seen near 6.85 GHz of An = 3 in the topological configu-
ration. For An = 0, there is no perfect superradiant point
throughout the passband for both trivial and topological
configurations. For all the other combinations in Fig. 15,
the number of swirl patterns indicating perfect super-
radiance agrees with the theoretical model.

APPENDIX H: DEVICE II CHARACTERIZATION
AND EXPERIMENTAL SETUP

In this Appendix, we provide a detailed description of
the elements making up device II, in which the edge mode
experiments are performed. The optical micrograph of
device II is illustrated in Fig. 16.

1. Qubits

The parameters of qubits on device II are summarized in
Table II. The two qubits are designed to have identical
SQUID loops with symmetric JJs. The lifetime and Ramsey
coherence times in the table are measured when qubits are
tuned to their sweet spot. Qubit coherence at the working
frequency in the middle band gap is also characterized, with
the lifetime and Ramsey coherence times of Q; (Qp) at

FIG. 16. The device consists of a topological waveguide with 7 unit cells [resonators corresponding to A (B) sublattice colored red
(blue)] in the topological phase, where the intercell coupling is larger than the intracell coupling. Two qubits Q; (dark red) and Q (dark
blue) are coupled to A sublattice of the second unit cell and B sublattice of the sixth unit cell, respectively. Each qubit is coupled to a /4
coplanar waveguide resonator (purple) for dispersive readout, flux-bias line (orange) for frequency control, and charge line (yellow) for
local excitation control.
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TABLE II.

Qubit parameters on device II. f,.. is the maximum frequency (sweet spot) and E. (E,z) is the charging (Josephson)

energy of the qubit. g is the coupling of qubit to the corresponding edge state. The readout resonator at frequency fro is coupled to the
qubit with coupling strength gro. Ty (73) is the lifetime (Ramsey coherence time) of a qubit measured at the sweet spot.

Qubit  fuux (GHz)  Ec/h MHz)  E;s/h (GHz)  gp/2z (MHz)  fro (GHz)  gro/27 (MHz) T (us) T3 (us)
oy 8.23 294 30.89 58.1 5.30 43.5 4.73 4.04
Or 7.99 296 28.98 57.3 5.39 43.4 13.9 8.3

6.829 (6.835) GHz measured to be 7| = 6.435 (5.803) us
and 775 = 344 (539) ns, respectively.

2. Metamaterial waveguide and coupling to qubits

The resonators in the metamaterial waveguide and their
coupling to qubits are designed to be nominally identical to
those in device I. The last resonators of the array are
terminated with a wing-shape patterned ground plane
region in order to maintain the bare self-capacitance
identical to other resonators.

3. Edge modes

The coherence of the edge modes is characterized by
using qubits to control and measure the excitation with
single-photon precision. Taking E; as an example, we
define the iISWAP gate as a half-cycle of the vacuum Rabi
oscillation in Fig. 4(d) of the main text. For measurement of
the lifetime of the edge state E;, the qubit Q; is initially
prepared in its excited state with a microwave z pulse, and
an iISWAP gate is applied to transfer the population from
Q; to E; . After waiting for a variable delay, we perform the
second iISWAP to retrieve the population from E; back to

0, followed by the readout of Q; . In order to measure the
Ramsey coherence time, the qubit Q; is instead prepared in
an equal superposition of ground and excited states with a
microwave z/2 pulse, followed by an iSWAP gate. After a
variable delay, we perform the second iISWAP and another
/2 pulse on Q;, followed by the readout of Q;. An
equivalent pulse sequence for Qp is used to characterize the
coherence of Ey. The lifetime and Ramsey coherence time
of E; (Eg) are extracted to be 7| = 3.68(2.96) us and
T; = 4.08(2.91) us, respectively, when Q; (Qg) is parked
at 6.829 (6.835) GHz. Because of the considerable amount
of coupling gr between the qubit and the edge mode
compared to the detuning at park frequency, the edge
modes are hybridized with the qubits during the delay time
in the abovementioned pulse sequences. As a result, the
measured coherence time of the edge modes is likely
limited here by the dephasing of the qubits.

4. Experimental setup

The measurement setup inside the dilution refrigerator
is illustrated in Fig. 17. The excitation of the two qubits
is controlled by capacitively coupled individual XY

HEMT amplifier

o9 RO DC block
waveguide Z control - Z control XY drive waveguide 4k
input dc f " output — Attenuator
T T + 300 K .
52 Klplate C Thin-film attenuator
4Kplate ‘ Low-pass filter
20d8B [J IE'A:'Z §| 20d8 [J 20dB [J HEMT f} i
| crl\lé:g er " Bandpass filter
40dB 40 dBE] 40dB plate .
4GH8 Eéﬁ ias tee
Y4
500 .
o e
| | O i Circulator
0
Q [> TWPA
W

50 Q termination

FIG. 17.

Schematic of the measurement setup inside the dilution refrigerator for device II. The meaning of each symbol in the

schematic on the left is enumerated on the right. The level of attenuation of each attenuator is indicated with number next to the symbol.
The cutoff frequencies of each filter are specified with numbers inside the symbol. Small squares attached to circulator symbols indicate
port termination with Z; = 50 Q, allowing us to use the three-port circulator as a two-port isolator. The pump line for the TWPA is not
shown in the diagram for simplicity.
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microwave drive lines. The frequency of qubits is con-
trolled by individual dc bias (Z control dc) and rf signals
(Z control rf), which are combined using a bias tee at the
mixing chamber plate. The readout (RO) signals are sent
into RO waveguide input, passing through a series of
attenuators including a 20 dB thin-film attenuator devel-
oped by Palmer and co-workers [77]. The output signals go
through an optional TWPA, a series of circulators and a
bandpass filter, which are then amplified by a HEMT
amplifier (RO waveguide output).

5. Details on the population transfer process

In step (i) of the double-modulation scheme described
in the main text, the frequency modulation pulse on Qg
(control modulation) is set to be 2 ns longer than that
on Q; (transfer modulation). The interaction strength
induced by the control modulation is 21.1 MHz, smaller
than that induced by the transfer modulation in order to
decrease the population leakage between the two edge
states. For step (iii), the interaction strength induced by
the control modulation on Q; is 22.4 MHz, much closer
to interaction strength for the transfer than expected (this
was due to a poor calibration of the modulation efficiency
of qubit sideband). The interaction strengths being too
close between Q; <> E; and Qp <> Ep gives rise to
unwanted leakage and decreases the required interaction
time in step (ii). We expect that a careful optimization on
the frequency modulation pulses would have better
addressed this leakage problem and increased the transfer
fidelity (see below).

The fit to the curves in Fig. 4(e) of the main text are
based on numerical simulation with QuTiP [84,85], assum-
ing the values of lifetime (7'} ) and coherence time (7’;) from
the characterization measurements. The free parameters in
the simulation are the coupling strengths g;, gz between
qubits and edge states, whose values are extracted from the
best fit of the experimental data.

The detailed contributions to the infidelity of the as-
implemented population transfer protocol are also analyzed
by utilizing QuTiP. The initial left-side qubit population
probability is measured to be only 98.4%, corresponding to
an infidelity of 1.6% in the z-pulse qubit excitation in this
transfer experiment (compared to a previously calibrated
“optimized” pulse). In the following steps, we remove the
leakage between edge modes and the decoherence process
sequentially to see their individual contributions to infi-
delity. First, we set the coupling strength between the
two edge modes to zero during the two iISWAP gates while
keeping the abovementioned initial population probability,
coupling strengths, lifetimes, and coherence times. The
elimination of unintended leakage during the left- and
right-side iSWAP steps between the edge modes gives
the final transferred population probability of 91.9%,
suggesting 91.9%—-87% = 4.9% of the infidelity comes
from the unintended leakage between edge modes. Also, as

expected, setting the population decay and decoherence of
the qubits and the edge modes to zero, the final population
is found to be identical to the initial value, indicating that
98.4%—-91.9% = 6.5% of loss arises from the decoherence
processes.
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