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The ability to control and measure the temperature of propagating microwave modes down to very low
temperatures is indispensable for quantum information processing and may open opportunities for studies
of heat transport at the nanoscale, also in the quantum regime. Here, we propose and experimentally
demonstrate primary thermometry of propagating microwaves using a transmon-type superconducting
circuit. Our device operates continuously, with a sensitivity down to 4 × 10−4 photons=

ffiffiffiffiffiffi
Hz

p
and a

bandwidth of 40 MHz. We measure the thermal occupation of the modes of a highly attenuated coaxial
cable in a range of 0.001 to 0.4 thermal photons, corresponding to a temperature range from 35 mK to
210 mK at a frequency around 5 GHz. To increase the radiation temperature in a controlled fashion, we
either inject calibrated, wideband digital noise, or heat the device and its environment. This thermometry
scheme can find applications in benchmarking and characterization of cryogenic microwave setups,
temperature measurements in hybrid quantum systems, and quantum thermodynamics.
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I. INTRODUCTION

Propagating modes of microwave waveguides play
a key role in quantum information processing with super-
conducting circuits, connecting the quantum processor with
the classical electronics controlling it [1]. Thermalization
of these modes to the lowest achievable temperature is
essential to limit unwanted decoherence of the quantum
bits (qubits). At the same time, superconducting circuits
are considered as a viable platform for thermodynamics
experiments in the quantum regime [2–8]. In a prototypi-
cal such experiment, a quantum working medium,
consisting, for example, of a small ensemble of super-
conducting artificial atoms, exchanges energy with one or
more thermal reservoirs, or heat baths. These baths are
often taken to be macroscopic (in the sense of fast-
decaying correlations) and at thermal equilibrium, and
are usually invoked to describe the operation of quantum
heat engines and refrigerators. In this thermodynamic
context, microwave waveguides, hosting a continuum of

modes with an Ohmic spectral density and smoothly
interfacing with superconducting circuits, are natural
candidates for realizing heat baths. Indeed, their use as
(ideally) zero-temperature reservoirs has been pioneered
in quantum state preparation and stabilization protocols
based on dissipation engineering [9,10].
For these and other applications, a fast and accurate

estimation of the thermal occupation of propagating micro-
wave modes is highly desirable. An established method to
obtain this estimate at steady state [11–18] relies on
Ramsey measurements of the dephasing time of a qubit
coupled to a cavity in the dispersive limit of circuit
quantum electrodynamics. In this setting, the qubit dephas-
ing rate Γϕ depends linearly on the average thermal
occupation of the cavity, due to the statistics of thermal
photon shot noise in the quantum regime [15,19]. Based on
an averaged measurement of a pulse sequence with a
repetition time of the order of 1=Γϕ (3 μs in Ref. [18]),
this method is not compatible with continuous operation
nor with single-shot readout of the thermal occupation. But
the ability to track temperature changes in real time, with ns
temporal resolution, is required to explore thermal dynam-
ics under nonequilibrium conditions and to access thermo-
dynamic quantities such as thermal relaxation rates, heat
capacity, and temperature fluctuations in small systems
[20,21]. In the context of thermodynamics, quantum-
limited radiative heating and cooling mediated by micro-
wave photons have been demonstrated [18,22–24]. In a
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series of recent experiments [4,6,25], the thermal photon
occupation of microwave resonators was controlled
and measured with the help of embedded mesoscopic
metallic resistors acting as heat reservoirs for the confined
microwave modes. Finally, efficient detectors of single
propagating microwave photons have recently been dem-
onstrated [26–30], which could, in principle, be used to
determine the thermal photon occupation, albeit with a
limited bandwidth and gated operation.
Here, we present the concept and experimental realiza-

tion of a radiation-field thermometer for propagating fields,
based on the coherent scattering of an artificial atom, which
we refer to as a “quantum emitter,” strongly coupled to the
end of a waveguide [31]. At vanishingly small power, zero
temperature, and in the absence of additional dephasing
channels, the scattering of a coherent tone at the emitter
frequency is fully coherent. Thermal photons in the wave-
guide reduce the coherence of the process, leading to
incoherent scattering and a detectable drop in reflectance.
This drop is converted into thermal occupation by a simple
algebraic expression involving device parameters that can
be independently measured. This thermometry scheme is
therefore primary, in the sense that it does not need to be
calibrated against another thermometer [32].
We demonstrate this concept, which is otherwise general,

using a transmon-type superconducting circuit [33] as the
emitter. By realizing a large coupling between the transmon
and the microwave waveguide to be measured, we mini-
mize the relative impact of intrinsic decoherence mecha-
nisms on the temperature readout. At the same time, we
ensure that the transmon is in thermal equilibrium with the
modes of the waveguide, as opposed to the uncontrolled
environment that limits its intrinsic coherence time and
would otherwise determine its steady-state thermal occu-
pation [34,35]. We probe the response of the thermometer
while increasing the radiation temperature in a controlled
fashion. To do so, we first inject calibrated, wideband
digital noise into the waveguide, a procedure that selec-
tively targets the modes whose temperature is measured.
Alternatively, we increase the temperature of the base plate
of our refrigerator, which heats the waveguide modes but
also the thermometer itself and its environment.

II. RESULTS

A. Concept, sample, and characterization

We implement the radiation-field thermometer as a
superconducting, frequency-tunable, transmon-type artifi-
cial atom [33,36] coupled to the end of a coplanar micro-
wave waveguide [scheme in Fig. 1(a) and micrograph in
Fig. 1(b)]. The frequency of the transmon is tuned by the
magnetic flux threading its superconducting quantum
interference device (SQUID) loop, which we control by
applying a dc current to an on-chip flux line. We operate
the transmon at its highest fundamental frequency

ωge=2π¼5.332GHz, commonly referred to as a “sweet
spot,” to minimize flux-noise-induced dephasing. From
single-tone spectroscopy (see below), we estimate the
anharmonicity, α=2π¼−217MHz, and linewidth, Γ=2π ¼
38 MHz, the latter dominated by the coupling to the
waveguide. We measure the coherent scattering coefficient
at the waveguide input with a vector network analyzer
(VNA) in a configuration comprising a highly attenuated
input line, an Eccosorb filter, a circulator, a chain of
isolators, and a cryogenic high-mobility electron transistor
(HEMT) amplifier [Fig. 1(c); see Appendix A for a full
wiring diagram].
To increase the radiation-field temperature, we synthesize

noise in the frequency band of interest [37]. All measure-
ments are performed in a dilution refrigerator with a base
temperature below 9 mK. To control the base temperature,
we apply a current to heat a resistor anchored to the base
plate.We characterize our sample by reflection spectroscopy
at varying input powers Pin. To set the response of the
transmon apart from the frequency-dependent transfer
function of the input and output lines, all spectroscopy
traces are referenced to a configuration in which the
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FIG. 1. Primary thermometry of propagating microwaves.
(a) Concept: A ladder-type emitter is strongly coupled (with rate
Γ) to the end of a waveguide. We monitor the scattering of a weak
coherent tone, βin (green straight arrow), resonant with the
ground-to-first-excited-state transition of the emitter. Thermal
photons in the waveguide at temperature Tr (wavy red lines)
disturb the coherent oscillations of the emitter, leading to a
decrease in the amplitude of the coherently scattered signal, βout
(green dashed arrow). (b) False-color micrograph of the super-
conducting circuit realizing the setting in panel (a): A transmon
consisting of a superconducting island (blue) shunted by a
superconducting quantum interference device (SQUID) is capac-
itively coupled to a coplanar waveguide (orange) and inductively
coupled to a flux line (purple). The inset shows a close-up of the
SQUID and the flux line. (c) Simplified scheme of the exper-
imental setup (see text for details and Appendix A for the full
wiring diagram).
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transmon transitions are detuned at least 1 GHz below the
frequency band of interest.We have also tested a high-power
trace that fully saturates the transmon as a reference. These
two procedures give equivalent results for input powers
Pin ≥ 0 dBm, implying, in particular, that our amplification
chain is negligibly compressed at this power level. The high-
power subtraction scheme can be conveniently used if a
fixed-frequency transmon is used as the thermometer. With
this calibration in place, we expect the most important
source of inaccuracy to be related to imperfections in the
circulator used to route the signals between the sample and
our input and output lines. This issue is discussed in more
detail in Appendix F.
At low values ofPin, the transmon is only weakly excited.

Then, coherent scattering dominates, and the measured
response is similar to that of a harmonic oscillator over-
coupled to a transmission line. When sweeping the drive
frequency across the resonance, the reflection coefficient
shows a weak response in the amplitude [Fig. 2(a), bottom
traces] and a full (180-degree) phase shift [Fig. 2(b)].
IncreasingPin increases the fraction of incoherent scattering
from the transmon, resulting in a dip in the amplitude.
As soon as incoherent scattering dominates over coherent
scattering, the phase swing also starts to decrease.
Eventually, the reflection coefficient at the fundamental
resonance approaches unity as the emitter becomes satu-
rated. In this high-power regime, however, higher-order
transitions become observable as additional amplitude dips
appearing at red-detuned frequencies. In particular, we
clearly resolve the two-photon transition between the
ground and second excited state, ωgf=2, and the three-
photon transition between the ground and the third excited
state, ωgh=3, detuned by α=2 and α from the fundamental
transition, respectively. We note that the visibility of these
higher-order transitions is enhanced by the larger ratio
between linewidth and anharmonicity, Γ=jαj ¼ 0.18, com-
pared to previous work [31].
We model the response of the system by a master

equation and input-output theory, taking up to four levels
of the transmon into account (for more details on the
simplifying assumptions, we refer to Appendix D). A
global fit of our model to the spectroscopy data [Figs. 2(a)
and 2(b), solid lines] presents an excellent agreement across
a power range of 4 orders of magnitude. The inclusion of
the fourth level is necessary to describe the third-order
transition ωgh=3, the agreement otherwise being excellent
also for a three-level model. From the global fit, we extract
the values of ωge, Γ, α, as well as the thermal occupation nr
(see below), and the total line attenuation A from room
temperature to the sample. Using the latter quantity, we can
convert the input power Pin into a drive rate Ω via the
relation

Ω ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΓPin=ℏωge

q
: ð1Þ

B. Thermometry concept

We now focus our attention on the power dependence of
the magnitude of the reflection coefficient at resonance,
jrð0Þj [Fig. 2(c)]. The observed V-shaped curve arises from
the coherent interference between the radiation scattered by
the emitter and that reflected by the open end of the
waveguide, which carry opposite phase [38,39]. Note that a
dip in the magnitude is not associated with a decrease in the
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FIG. 2. Single-tone power spectroscopy. (a) Amplitude and
(b) phase of the reflection coefficient versus drive detuning at
selected input powers Pin in the range −39 to −9 dBm (colored
dots). The traces are vertically offset by 0.4 (450 degrees) for the
amplitude (phase). Solid lines show a global fit of a model to all
traces (see text for details), from which sample parameters and
total line attenuation are extracted. The shaded regions indicate
deviations of the reflection coefficients from unit amplitude and
zero phase. (c) Reflectance at resonance, jrð0Þj, versus input
power: measured values (dots) and theory (solid line). Inset:
close-up of the shaded region in the main panel.
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total reflected power but only with the coherent part of it; in
our case, we estimate (based on the coupling rates given
below) that over 99.99% of the power is always reflected.
The measured jrð0Þj reaches a minimum of approximately
0.1 when the ratio of the drive rate over the linewidth is
about Ω=Γ ≈ 1=

ffiffiffi
2

p
. For a pure two-level system, the

coherent reflection at resonance would vanish at this drive
rate. For a transmon, complete destructive interference
(cancellation) can still be attained, but the drive parameters
at which this happens are affected by the presence of the
third level. In particular, full cancellation is expected at a
frequency detuned by Γ2=2α ≈ −3 MHz (to first order in
the ratio Γ=jαj), which explains why the cancellation
exhibited by the dip in Fig. 2(c) is only partial.
In the low-power limit Ω ≪ Γ, jrð0Þj approaches the

asymptotic value 0.988, deviating from unity by 0.012
[Fig. 2(c), inset]. To explain this drop in reflectance,
we consider three possible mechanisms: (i) decay to
modes other than the waveguide, at the (nonradiative) rate
Γnr, (ii) pure dephasing, at rate Γϕ, and (iii) thermal
occupation in the waveguide, nr. We calculate the first-
order contributions of these mechanisms to the reflection
coefficient to be

rð0Þ¼−1þ 12

1þ3iΓ=2jαjnrþ4
Γϕ

Γ
þ2

Γnr

Γ
þ 4ðΩ=ΓÞ2
1þ iΓ=jαj :

ð2Þ

From Eq. (2), we notice that the impact of decoherence
mechanisms is largely mitigated by our design choice of a
large coupling to the waveguide. At the same time, the
finite Γ=jαj ratio renormalizes the conversion factor linking
reflection coefficient to thermal occupation. In the limit
Γ=jαj → 0, the thermal occupation is related to the mea-
sured quantity r by an algebraic expression involving
only numerical constants. Equation (2) also gives the first
correction to the reflection coefficient due to finite input
power (saturation), which is of second order in the
ratio Ω=Γ.
Based on the estimates given in Sec. II E, we argue that

the observed drop is most likely due to thermal occupation
in the waveguide, nr ¼ ð1.0� 0.3Þ × 10−3, corresponding
to an effective photon temperature Tr ¼ 37 mK. To gain
more confidence in the validity of this analysis, we have
performed the measurements with added noise, reported
below. For comparison, we estimate the expected temper-
ature of the waveguide in the ideal case based on the
attenuation configuration of the line [1], assuming
perfect thermalization of the components at their stages
(Appendix A), and find Test

r ¼ 27 mK (corresponding to
nestr ¼ 8 × 10−5). The measured radiation temperature is
thus higher than what would be expected for an ideal chain
of attenuators. This amount of excess thermal radiation is
comparable to what is reported in other studies, including

some in which active steps have been taken to improve the
thermal anchoring of attenuators to the mixing chamber
plate [16,17,40].

C. Thermometry with added noise

To confirm our ability to measure the temperature of the
radiation field in the waveguide, we increase it in a
controlled fashion by applying white noise of adjustable
root-mean-square amplitude over a 400-MHz bandwidth
comprising the first two transitions of the transmon
[Fig. 3(a)]. We take into account the finite noise bandwidth,
introducing a windowing coefficient wwin ¼ 0.89, deter-
mined by the overlap between the noise spectral density
and the linewidths of the g-e and e-f transitions of the
transmon, with a relative weight given by the participation
of these transitions to the expected response in reflection
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FIG. 3. Radiation-field thermometry with artificial white noise.
(a) Sketch of the power spectral density of the applied noise (solid
red line), with the relevant transmon transitions indicated on the
frequency axis. The noise is white over a frequency band of
400 MHz and has a calibrated spectral density δnr. Blue and
green shades indicate the spectral densities of the transmon
transitions, with a relative scaling reflecting their participation in
the thermometry signal. (b) Measured real part of the reflection
coefficient at resonance, −Re½rð0Þ�, at two selected drive
strengths, Ω=Γ ¼ 0.07 and 0.33, versus calibrated noise power
expressed in added thermal photons, δnr. The data (symbols) are
directly compared to increasingly refined models, without free
parameters: two-level theory (short dashes), three-level theory
assuming a small linewidth-to-anharmonicity ratio, Γ=jαj → 0
(long dashes), and three-level theory taking the measured ratio
Γ=jαj ¼ 0.18 into account (solid line).

MARCO SCIGLIUZZO et al. PHYS. REV. X 10, 041054 (2020)

041054-4



[see Appendixes D and E]. Using the calibrated attenuation
of the line from the spectroscopy data, as well as a room-
temperature calibration of the noise power compared to the
power of the coherent tone use for the spectroscopy, we
determine the added thermal noise in photons, δnr, as a
linear function of the noise power.
We study the response of the real part of the reflection

coefficient at resonance, Re½rð0Þ�, to the added thermal
noise at low (Ω=Γ ¼ 0.07) and intermediate (Ω=Γ ¼ 0.33)
drive powers [Fig. 3(b)]. For both drive powers, an increase
in δnr produces a drop in −Re½rð0Þ�. The slope of the curve,∂Re½rð0Þ�=∂δnr, gives the responsivity of the thermometer
as a function of the photon occupation and is larger for the
low-power trace. We discuss the trade-off between power
and responsivity in Sec. II F (see also Fig. 5).
Our model for the drop in −Re½rð0Þ�, based on the

parameters extracted from spectroscopy, agrees well with
the data at both powers [Fig. 3(b), solid lines]. In particular,
a best fit of the linear slope of the low-power trace for
δnr ≪ 1 agrees with the predicted one within 1%. This
agreement confirms the validity of the calibration scheme
that we used, based on acquiring a reference trace with the
transmon detuned: A systematic error in the calibration
would produce a different slope. Conversely, if this scheme
is not available or cannot be trusted, data sets such as the
ones in Fig. 3 can themselves serve as a calibration.
For comparison, we also show the model for a two-level

system (short dashes), and for a three-level transmon in the
limit Γ=jαj → 0 (long dashes). The comparison against a
two-level system highlights the fact that the second excited
state jfi contributes to the response even at the smallest
measured photon numbers, for which we expect its steady-
state population to be negligibly small, Pf ≈ 10−5. Indeed,
noise spectroscopy measurements (see Appendix B) con-
firm that the thermometer responds to thermal photons at
both the fundamental and the first-to-second-excited-state
transition, in agreement with the model. Finally, our
comparison highlights the necessity to consider the finite
value of the Γ=jαj ratio to reproduce the observed response.
Since the Γ=jαj ratio can be accurately determined from
spectroscopy, however, this fact does not compromise the
primary nature of the thermometer.

D. Thermometry at different system temperatures

We vary the temperature of the radiation field in another,
independent way by heating the base plate of the dilution
cryostat. Differently from the noise injection experiment, in
this case, the full system is warmed up, including the modes
of the waveguide, which we expect to thermalize via the
attenuators anchored to the base plate, but also the
environment in which the thermometer resides, and, in
particular, any spurious baths to which the transmon may
be coupled.
We adjust the heating power to the base plate of the

cryostat in time steps of 3 hours, and monitor the response

of −Re½rð0Þ� [Fig. 4(a)]. Consistently with the previous
experiment, we observe that an increase in temperature
results in a reduction of −Re½rð0Þ�. Compared to Fig. 3,
here we study a larger variation in temperature and measure
a correspondingly larger variation in −Re½rð0Þ�, in the
range of 0.99 to −0.6. Notice that the relation between
−Re½rð0Þ� and temperature is monotonic (and, therefore,
single valued), even when the sign of −Re½rð0Þ� changes
from positive to negative.
Using the full theoretical expression for the reflection

coefficient (Appendix D), we extract the thermal occupa-
tion, convert it into radiation temperature Tr, and compare it
to the temperature of the base (mixing chamber) plate, TMX,
measured independently by a calibrated Ruthenium oxide
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FIG. 4. Radiation-field thermometry while varying the temper-
ature of the base plate. (a) Temporal profile of the heating power,
PH (right axis, red) used to vary the base-plate temperature TMX,
and corresponding temporal variation of the real part of the
reflection coefficient (left axis, purple). (b) Corresponding base-
plate temperature TMX (yellow) and radiation-field temperature
Tr (purple) versus time. (c) Thermal relaxation constants τMX
(squares) and τr (circles) for TMX and Tr , respectively, extracted
from the data in panel (b) and plotted versus the steady-state TMX.
The solid lines are guides for the eye. (d) Steady-state values of Tr
versus TMX (circles); the solid line indicates Tr ¼ TMX.
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thermometer [Fig. 4(b)]. The measured Tr is insensitive to
changes in TMX as long as TMX is below the saturated value
of Tr. This insensitivity should not be interpreted as a
limitation of the thermometer, whose ability to respond to
small changes in noise photon number was demonstrated in
Fig. 3. Instead, it can be explained by considering the
exponential temperature dependence of the photonic occu-
pation, according to the Bose-Einstein distribution. During
the first temperature increments in TMX, from 9 mK to
30 mK, the corresponding increase in thermal occupation is
of the order of 2 × 10−4, smaller than the residual thermal
occupation measured at the base temperature. It is only
after this temperature step that the increase in thermal
occupation becomes significant, and Tr starts to follow
TMX. After a change in heating power, the adjustment of
TMX to its new steady-state value has an exponential tail
with a time constant τMX between 4 and 5 minutes, which
does not depend on temperature in the range considered
[except for the first temperature step, for which
τMX ¼ 14 min; Fig. 4(c)]. This timescale is related to
the thermalization dynamics of the base plate as a whole.
As temperature is increased, the linear increase in the heat
capacity of the plate is compensated by a quadratic increase
in the cooling power of the mixing chamber, resulting in a
temperature-independent thermalization time.
By contrast, the adjustment of the radiation temperature

Tr follows a much longer time constant τr, which is of the
order of 2 hours at the lowest temperature and decreases
by an order of magnitude as temperature is increased
[Fig. 4(c)]. We ascribe this long timescale to a slow
thermalization of the resistive section of the base-plate
attenuators, whose voltage fluctuations set the temperature
of the radiation field. At temperatures below 100 mK, the
thermalization of these components generally proceeds
via a cascade process, which involves electronic, phononic,
and photonic channels [16,17,32,40]. The measured tem-
perature dependence of τr may indicate a crossover
between electron-dominated thermalization, with a thermal
conductance proportional to temperature according to the
Wiedemann-Franz law, and phonon-dominated thermal-
ization, with a thermal conductance proportional to the
fourth power of temperature for metals such as gold and
copper [32].
We extrapolate the steady-state temperature at each step

of the thermal sweep by fitting a decaying exponential to
the tail of the relaxation data, and we plot the asymptotic
value as a function of the steady-state temperature of the
base plate [Fig. 4(d)]. The two values essentially agree over
more than 2 orders of magnitude in thermal occupation
number, from nr ¼ 0.001 to 0.4 (corresponding to a
temperature range of 35 to 210 mK). This agreement
indicates that a possible change in pure dephasing or
other parameters, when varying the system temperature,
does not affect the photon occupation number extracted
from the scattering coefficient and thereby confirms the

validity of the thermometry scheme in the temperature
range considered.

E. Impact of intrinsic decoherence channels

Based on measurements of transmon qubits fabricated on
the same wafer [41], similar to those reported in Ref. [42],
with identical geometry but no direct coupling to a wave-
guide, we estimate the intrinsic decay rate of the transmon
Γnr=2π < 4 kHz (T1 > 40 μs) and its pure dephasing rate
Γϕ=2π < 2 kHz (T�

2 > 60 μs). These estimated rates are
104 times smaller than the decay rate into the waveguide;
therefore, their direct measurement [43] is challenging.
According to Eq. (2), we thus expect the combined pure
dephasing and intrinsic decay mechanisms to cause a drop
δjrð0Þj < 0.0004, much smaller than what we observed
even at the base temperature and in the absence of applied
noise [Fig. 2(c)]. A change in either the radiation temper-
ature of the waveguide (Sec. II C) or the temperature of the
base plate (Sec. II D) could potentially increase these rates.
However, in the temperature range considered, we expect
their increase not to exceed the corresponding increase of
the dephasing rate due to direct coupling to the waveguide.
The latter will thus remain the dominant dephasing mecha-
nism, as confirmed by the data in Fig. 4. Indeed, transmons
typically show a very weak temperature dependence in T1

up to around 150 mK, while the observed temperature
dependence of the pure dephasing rate is usually due to
photon shot noise in the readout resonator [17].

F. Sensitivity

We finally consider the sensitivity of this thermometry
scheme. This figure is typically expressed as a noise equiv-
alent temperature (NET), in units ofK=

ffiffiffiffiffiffi
Hz

p
. However, given

that the response of our detector is directly proportional to the
thermal occupationnr, and that the relation betweennr andTr
is strongly nonlinear in the deep quantum regime, nr ≪ 1, we
prefer to provide this figure in noise equivalent thermal
photons (NETP), which we calculate as

NETP ¼ jRj−1 δβout
βin

; ð3Þ

where R ¼ ð∂r=∂nrÞ is the responsivity of the reflection
coefficient to changes in the thermal photon number, βin
is the incident coherent photon flux, and δβout is the noise
in the detection chain. The latter can be expressed as
δβout ¼ 1=

ffiffiffiffiffi
2η

p
, where the factor 1=

ffiffiffi
2

p
is due to quantum

vacuum fluctuations and η is the quantum efficiency of the
amplification chain [44]. As captured byEq. (3), the optimum
sensitivity is obtained as a trade-off between higher respon-
sivity, obtained at lower drive powers, and a higher signal-to-
noise ratio, obtained at higher drive powers (Fig. 5). In the
limit nr → 0, the optimum drive rate is found to be
Ω=Γ ≈ 0.42. The price to pay for an increased sensitivity
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is that the responsivity depends on the normalized Rabi rate
Ω=Γ. However, since the latter can be easily calibrated (see
Fig. 2), this is not a major limitation. A large radiative
linewidth Γ is generally beneficial for the sensitivity because
it increases the photon flux that can be scattered by the
transmon while keeping the ratioΩ=Γ constant and therefore
improves the signal-to-noise ratio.
In our experiment, we evaluate the sensitivity by

measuring the standard deviation of repeated measurements
at various drive rates and measurement bandwidths,
extract the signal-to-noise ratio, and multiply it by the
theoretical responsivity. Alternatively, we first measure the
quantum efficiency of our amplification chain by compar-
ing the power spectrum of the resonantly driven transmon
at saturation with the noise level, and then use the
theoretical expression. We measure sensitivities of the
order of 1 × 10−3 photons=

ffiffiffiffiffiffi
Hz

p
at low drive rates and

4 × 10−4 photons=
ffiffiffiffiffiffi
Hz

p
close to the optimum drive rate

(Fig. 5, large dots). The best sensitivity we measured is
limited by our amplification chain, with an added noise of
35 photons and corresponding quantum efficiency
η ¼ 0.014. For an amplification chain working close to
the standard quantum limit η ¼ 0.5, which has been
reached and even surpassed using phase-sensitive
Josephson parametric amplifiers [45,46], this number could
be further improved by 1 order of magnitude (dashed line in
Fig. 5). Finally, we notice that the presented device can also
be operated as a narrow-band bolometer. In the current
measurement setup, the corresponding noise-equivalent
power (NEP) is of the order of

NEP ≈ ℏωgeΓ × NETP ≈ 400 zW=
ffiffiffiffiffiffi
Hz

p
: ð4Þ

For comparison, NEPs in the range of a few hundred down
to a few zW=

ffiffiffiffiffiffi
Hz

p
have been reported for nanobolometers

based on metallic absorbers operating in the microwave
frequency range [47,48].

III. DISCUSSION

In summary, we have demonstrated that a single quantum
emitter strongly coupled to the end of a waveguide can be
used for sensitive measurement of the thermal occupation of
the waveguide, using simple continuous-wave, single-tone
spectroscopy. By applying synthesized noise of controlled
spectral content, we explored the response of the thermom-
eter to a frequency-dependent thermal occupation. Thanks
to a large coupling rate of the transmon to thewaveguide, we
minimized the effect of the intrinsic decoherence mecha-
nisms of the emitter on the temperature readout (for the
numbers given in the text, their contribution to the measured
thermal occupation is of the order of 1 × 10−4, 1 order of
magnitude smaller than the lowest measured value).
The presented device can probe the thermal occupation

of attenuated waveguides used to control quantum infor-
mation processors, in a range relevant for state-of-the-art
applications. In conjunction with a cryogenic single-pole,
multiple-throw microwave switch [49], it can be used to
directly benchmark the performance of filtering, attenu-
ation, and thermalization layouts. At the same time, it holds
unique features that may enable a novel range of experi-
ments in mesoscopic calorimetry and heat transport, as well
as stochastic and quantum thermodynamics. First, it com-
bines continuous operation, fast response in time (<10 ns),
and high sensitivity. It is also a primary thermometer, which
provides accuracy without reliance on external calibrations.
Finally, its detection frequency is tunable, so it can be
operated as an on-chip “spectrum analyzer” scanning a
GHz-wide frequency band. Thanks to these features, it can
be utilized to monitor, in real time, the temperature of a
radiating body such as a mesoscopic electron reservoir, to
which it can be coupled via amatching circuit. This reservoir
could, in turn, be the absorber of a nanocalorimeter or
nanobolometer operated as a single-photon detector in a
higher frequency band. In the context of quantum thermo-
dynamics, it will make it possible to investigate steady-state
properties and dynamics of quantum heat engines and
refrigerators, including instantaneous heat flows and
time-resolved photon-photon correlations.
In future realizations, the transmon qubit may be replaced

by Josephson-based artificial atoms with larger anharmo-
nicities [14] and/or different level structures, possibly also in
the ultrastrong coupling regime [50]. Nonsuperconducting
emitters could also be considered, such as semiconductor
quantum dots [51].
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APPENDIX A: EXPERIMENTAL DETAILS

1. Setup

The radiation-field thermometer is mounted at the
mixing chamber stage of a dilution refrigerator (see
Fig. 6) and is enclosed in a nonmagnetic environment,
shielded by a μ-metal shield and an absorber shield. At
room temperature, digital noise is synthesized by an
arbitrary-waveform generator (AWG), mixed with a local
oscillator using an in-phase-quadrature mixer, combined
with a coherent probe tone from the VNA, and fed to a
highly attenuated input line that includes a low-pass filter
and an Eccosorb filter at the base temperature. A cryogenic
circulator is used to route the signal reflected from the
sample to the output line, which has a cryogenic high-
mobility electron-transistor (HEMT) amplifier mounted at
the 3-K stage. A high-pass filter, a low-pass filter, and four
isolators are used to isolate the sample from radiation
emitted by the HEMT. A dc current is fed to the flux line of
the thermometer via a twisted pair of low-ohmic cables,
interrupted at the 3-K stage by a low-pass filter.
To increase the temperature of the base plate of the

dilution cryostat and obtain the results reported in Fig. 4,
we apply a current to heat a resistor anchored to the base
plate. Based on finite-element simulations taking into
account the relative positioning of the different elements
on the base plate (Fig. 7), we observe that (i) the steady-
state temperature difference across the base plate is well
below 1 mK for all experimental points in Fig. 4, and
(ii) upon a sudden change in heating power, different parts
of the base plate follow the same temporal evolution within
the same accuracy. We thus conclude that the exact
positioning of the different elements on the base plate
does not significantly affect the quantities plotted in Fig. 4.

2. Noise generation

To generate noise with arbitrary spectral properties,
we start from a string of random real numbers sampled
from a normal distribution with zero mean and unit
variance (white noise). We (unessentially) take the discrete

Fourier transform of this signal and apply a filter centered at
the intermediate frequency ωIF=2π ¼ 220 MHz, with unit
amplitude and the desired spectral profile. The filter only
has support at positive frequencies. We then invert the
Fourier transform and send the real and imaginary parts of
the complex signal to the in-phase and quadrature ports of
the up-conversion (UC) mixer. With this procedure, the
noise is up-converted to a single sideband [37].
To compensate for frequency-dependent conversion loss

in the mixer, we generate white noise across the frequency
band of interest, measure its spectral density at room
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FIG. 6. Full wiring diagram for the experiment. MW is for
microwave, LP for low pass, and HP for high pass.

(b)(a)

FIG. 7. Schematic representation of the base plate of the
dilution refrigerator [(a) top view and (b) side view], indicating
the positioning of the mixing chamber (MX), the ruthenium-
oxide thermometer (ROx), the thermal anchoring point of the
attenuator, and the sample.
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temperature with a spectrum analyzer, and use the result to
calculate a frequency-dependent transfer function for
the mixer. In subsequent experiments, we apply the trans-
fer function to the digital filter that determines the noise
properties so that the spectral density of the up-converted
noise, measured at room temperature, matches the
intended one.

APPENDIX B: NOISE SPECTROSCOPY

To determine the relative participation of noise applied at
different frequencies to the dip in reflection, we apply
Lorentzian noise with varying center frequency and a
linewidth of 10 MHz (Fig. 8). As expected, we obtain
the strongest response when the applied noise is resonant
with the g-e transition. However, we also observe a sizable
dip at the e-f resonance. Indeed, a careful theoretical
analysis assigning different thermal occupations to the
radiation field at the two transitions (see Appendix D 2)
reveals that both transitions participate in dephasing, with a
relative strength of 2∶1 (in the linear-response limit,
nr ≪ 1). This ratio has a simple physical explanation,
namely, that thermal photons at the g-e transition induce
both population change and dephasing, while those at the
e-f induce only dephasing on the g-e transition (the state jei
is virtually unpopulated when both nr and Ω=Γ are small).

APPENDIX C: RESPONSE TO A FAST CHANGE
IN TEMPERATURE

To investigate the temporal response of the thermometer
to a fast change in temperature, we modify the room-
temperature part of the experimental setup (Fig. 9).

The arbitrary waveform generator (1 GSa=s sample rate)
synthesizes both a digital noise pulse and a coherent pulse,
which are separately up-converted and then combined and
fed to the input line of the cryostat. The signal from the
output line is down-converted and recorded by a digitizer
(500 MSa/s sample rate).

(a)

(b)

FIG. 8. Noise spectroscopy with Lorentzian noise. (a) Power
spectral density of the applied noise, a 10-MHz Lorentzian with
fixed amplitude, and varying center frequency ωc=2π. (b) Real
part of the reflection coefficient at resonance, −Re½rð0Þ�, versus
noise detuning from the fundamental transition (dots), and
corresponding theory prediction (solid line) based on the same
parameters as in Fig. 3.

-2
0

-2
0

FIG. 9. Room-temperature setup for the measurements in
Appendix C. DIG is for digitizer. Circuit symbols are defined
in Fig. 6.

(d)

(a)

(b)

(c)

FIG. 10. Temporal response of the thermometer. (a) Photon
occupation number of the applied noise pulse, δnr, vs time,
calibrated and averaged over noise realizations. (b) Measured real
part of the reflection coefficient at resonance, −Re½rð0Þ�, vs time.
Green vertical lines denote the start and end times of the noise
pulse (t↑ and t↓, respectively). (c,d) Close-up of the shaded
regions in panel (b) at the leading and trailing edges of the
thermometer response (dots). The solid red lines are fits of a
single exponential function to the data, giving a ring-up time
τ↑ ¼ 5.2 ns and a ring-down time τ↑ ¼ 7.5 ns.
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We drive the thermometer with a 8-μs-long coherent
pulse at the Rabi rate Ω=Γ ≈ 0.35. Two microseconds after
the beginning of the coherent pulse, we inject a noise pulse
with a spectral content centered between the emitter’s first
and second transition frequencies, with a frequency span of
400 MHz, a duration of 2 μs, and a calibrated photon
number of n ≈ 0.06 [Fig. 10(a)]. The recorded real part of
the reflected signal responds to the applied noise pulse
[Fig. 10(b)]. By fitting single exponentials to the leading
and trailing edges of the response, we find the settling times
τ↑ ¼ 5.2 ns for the leading edge and τ↑ ¼ 7.5 ns for the
trailing edge, respectively [Figs. 10(c) and 10(d)]. For
comparison, similar fits to the numerically simulated
response of the thermometer, based on the estimated
parameters, give τ↑ ¼ 6.9 ns and τ↑ ¼ 8.2 ns. We under-
stand these settling times as determined by the dephasing
rate of the g-e transition of the qubit, which is probed by the
coherent tone. According to this reasoning, a simple
estimate for the temporal resolution of the thermometer
is the inverse of the dephasing rate, Γ̃ϕ ¼ ð1þ 2nrÞΓ=2.
The dependence on nr explains why the thermometer
responds faster when settling to a higher photon temper-
ature. In addition, a finite drive rate contributes to the
dephasing and hence makes the response faster. Further
theoretical insight into this dynamics is provided in
Appendix D 5.

APPENDIX D: RADIATION-FIELD
THERMOMETER MODEL

1. Master equation and steady-state solution

In a frame rotating at the drive frequency ωd and using a
rotating-wave approximation, we describe the driven trans-
mon by the Hamiltonian

Ĥ ¼ −δb̂†b̂þ α

2
b̂†b̂†b̂ b̂þi

Ω
2
ðb̂ − b̂†Þ; ðD1Þ

where b̂ is an annihilation operator, δ ¼ ωd − ωge is the
drive detuning from the fundamental resonance, α is the
transmon anharmonicity (α < 0), and Ω is the drive
strength [33].
The coupling to thewaveguide induces transitions between

adjacent energy eigenstates of the transmon, described by
lowering and raising operators σj− ¼ jjihjþ 1j and σjþ ¼
jjþ 1ihjj for the jth transition, respectively (jji denotes the
jth state). We consider frequency-dependent coupling
strengths and thermal occupations, so the waveguide modes
around the jth transition are coupled to the transmon with
relative strength ξj and are characterized by a thermal

occupation nðjÞth . For our experiment, we assumed a constant
density of states in the waveguide, so ξj ¼

ffiffi
j

p
due to the

dipole matrix elements of the transmon [33].We thus derive a
master equation in a “local” Born-Markov approximation
(around the frequency of each transition) [52]. The dissipative

interaction between the transmon and the waveguide is
described by a Liouvillian superoperator LΓ, acting on the
density matrix ρ in a Hilbert space truncated to the first N
states:

LΓρ¼Γ
XN
l;m¼1

ξlξm½ð1þnðmÞ
th ÞD−

l;m½ρ�þnðmÞ
th Dþ

l;m½ρ��; ðD2Þ

where Γ is the decay rate of the fundamental transition. We
have introduced generalized dissipators

D�
l;m½ρ�¼−

1

2
ðρσm∓σl�þσl∓σm�ρ−σl�ρσ

m∓−σm�ρσ
l∓Þ; ðD3Þ

which describe excitation (decay) of the lth transition of the
transmon, accompanied by absorption from (emission into)
the waveguide of a photon with the energy of the mth
transition. Termswith l ≠ m rotate at the frequency difference
between the two transitions in the interaction picture. If the
linewidths of the transitions are much smaller than the
difference between their frequencies, then these terms can
be neglected by invoking a rotating-wave approximation [39].
Here, however, because of the finite Γ=jαj ratio, these cross-
terms introduce a correction, which we take into account.
When termswithm ≠ n are neglected inEq. (D2),we recover
the more familiar expression

LΓρ̂ðtÞ ¼ Γ
XN
j¼1

ξ2j ½ð1þ nðjÞth ÞD½σj−; ρ̂ðtÞ� þ nðjÞth D½σjþ; ρ̂ðtÞ��;

ðD4Þ

with the dissipator

D½A;B� ¼ ABA† −
1

2
ðA†AB − BA†AÞ: ðD5Þ

Wemodel pure dephasing at a rateΓϕ by adding the following
Liouvillian to the master equation:

LΓϕ
ρ̂ðtÞ ¼ Γϕ

XN
j¼1

D½ðjjihjj; ρ̂ðtÞ�: ðD6Þ

Finally, we model nonradiative decay to an additional bath
(taken at zero temperature for simplicity) at rate Γnr, by a
Liouvillian LΓnr

, which we obtain from Eq. (D2) with the

replacements Γ → Γnr and n
ðmÞ
th → 0. Putting things together,

the master equation reads

_ρðtÞ¼−
i
ℏ
½H;ρðtÞ�þLΓρðtÞþLΓϕ

ρðtÞþLΓnr
ρðtÞ: ðD7Þ

We obtain the steady-state density matrix by an analytical
solution of the algebraic equation _ρðtÞ ¼ 0. From that
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solution and using input-output theory, the reflection coef-
ficient can be written as

r ¼ 1þ 2Γ
Ω

X
j

ξjρj;jþ1: ðD8Þ

2. Reflection coefficient in the small excitation limit

We take N ¼ 3, which is fully appropriate to describe
scattering when Ω≲ Γ. We consider resonant scattering
(δ ¼ 0) and make a first-order expansion in the small
quantities nger , nefr , Γϕ=Γ, and Γnr=Γ, and a second-order
expansion in the ratio Ω=Γ. We arrive at the following
expression:

rð0Þ ¼ −1þ 8nger þ 4nefr
1þ 3iΓ=2jαj þ 4

Γϕ

Γ
þ 2

Γnr

Γ
þ 4ðΩ=ΓÞ2
1þ iΓ=jαj :

ðD9Þ

Taking nr ¼ nger ¼ nefr gives Eq. (2) in the main text.

3. Reflection coefficient for a two-level system

Solving the master equation for a two-level system
results in the following expression for the reflection
coefficient:

rð0ÞTLS ¼ −1þ 4
2nr þ 2n2r þ ðΩ=ΓÞ2

1þ 4nr þ 4n2r þ 2ðΩ=ΓÞ2 : ðD10Þ

Notice that a two-level system is not equivalent to a three-
level system in the limit Γ=jαj → 0 because of the effect of
thermal photons at the first-to-second-excited-state transi-
tion. Equation (D10) is plotted as a dotted line in Fig. 3(b).

4. Sensitivity and responsivity

Taking the derivative of the reflection coefficient at
resonance in the limits Γ=jαj → 0 and nr ≪ 1 with respect
to nr gives the following expression for the responsivity:

R ¼ 2ð6þΩ2
rÞ

ð1þ 2Ω2
rÞ2

; ðD11Þ

where Ωr ¼ Ω=Γ. By inserting Eq. (D11) into Eq. (3), we
obtain the sensitivity

NETP ¼ ð1þ 2Ω2
rÞ2ffiffiffiffiffiffiffiffi

2Γη
p

Ωrð6þ Ω2
rÞ
: ðD12Þ

These expressions are plotted as dashed lines in Fig. 5.

5. Dynamics

To estimate the response of the thermometer in time,
we solve its dynamics upon a sudden change in thermal

occupation nr from an initial value n0 to a different
value n1. To do so, we solve the master equation (D7)
with nr ¼ n1, taking as the initial density matrix the steady-
state solution of the same equation with nr ¼ n0. We then
calculate the time-dependent reflection coefficient accord-
ing to Eq. (D8).
To gain analytical insight,we consider a resonantly driven,

two-level system in the limits of small drive (Ω=Γ ≪ 1) and
thermal occupation (n0, n1 ≪ 1). (We also neglect non-
radiative decay and pure dephasing.) The reflection coef-
ficient is well approximated by the expression

rðτÞ ¼ r̄1 þ ðr̄0 − r̄1Þe−Γ̃ϕτð3 − e−Γ̃ϕτÞ=2; ðD13Þ

where r̄0 (r̄1) is the steady-state reflection coefficient at
thermal occupation n0 (n1), and Γ̃ϕ ¼ ð1þ 2n1ÞΓ=2 is the
dephasing rate of the qubit. From Eq. (D13), we thus see that
the thermometer responds to changes in thermal occupation
of the waveguide with a time constant equal to its dephasing
time, which is to be expected given that thermal dephasing is
the enabling mechanism for thermometry.
Numerical simulations (not shown) indicate that the

same time constant also limits the response when the third
level of the transmon is included in the calculation. We
explain this fact by considering that the dephasing rate at
the e-f transition is twice as large as for the g-e transition,
so thermal relaxation is still limited by the latter.

APPENDIX E: DATA ANALYSIS

1. Noise windowing

We introduce a weight function

wðωÞ ¼ 8

12
fLðω − ωge;ΓÞ þ

4

12
fLðω − ωef; 2ΓÞ; ðE1Þ

where fLðω;ΓÞ is a normalized Lorentzian of linewidth Γ.
For a frequency-dependent noise profile SðωÞ, we calculate
an effective added photon number as

δneffr ¼
Z

dωwðωÞSðωÞ: ðE2Þ

For a 400-MHz white noise of amplitude δnr (Fig. 3), we
find δneffr ¼ δnrwwin, with wwin ¼ 0.89.

2. Conversion between thermal occupation
and temperature

If the waveguide is thermalized at a temperature Tr, the
thermal occupation at a given frequency is given by the
Bose distribution

nðω; TrÞ ¼
1

expðℏω=kBTrÞ − 1
: ðE3Þ
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The effective thermal occupation sensed by the thermom-
eter as it appears in Eq. (2), taking into account Eq. (D9), is
given by

nrðTrÞ ¼
2

3
nðωge; TrÞ þ

1

3
nðωef; TrÞ: ðE4Þ

To convert thermal occupation into temperature, we numeri-
cally invert Eq. (E4), which is a monotonic function of Tr.

3. Estimate of thermal occupation based
on nominal attenuation

To estimate the thermal occupation of the waveguide, we
model each attenuator as a beam-splitter combining the
incoming signal with a thermal state with occupation
nðω; Ti;attÞ, corresponding to the temperature Ti;att of the
stage at which the attenuator resides. The thermal occu-
pation niðωÞ after the ith thermalization stage with attenu-
ation Ai is thus given by [1]

niðωÞ ¼
ni−1ðωÞ

Ai
þ Ai − 1

Ai
nðω; Ti;attÞ: ðE5Þ

APPENDIX F: INFLUENCE OF AN IMPERFECT
CIRCULATOR IN THE REFERENCED

REFLECTION MEASUREMENT

As explained in the main text, we take advantage of the
fact that we can “switch off” our emitter in situ, either by
detuning its frequency outside of the band of interest or by
saturating it with a strong coherent tone to obtain a
calibration trace for our measurement chain. Using this
trace as a reference in our reflection measurements, we
effectively cancel out the frequency-dependent transfer
function of the chain. However, this procedure does not
account for interference effects that can be introduced by
imperfections in the circulator used to route the signals from
the input line to the device under test (DUT) and from the
DUT to the output line. In this section, we model our
measurement in the presence of an imperfect circulator and
provide an estimate for the systematic error that an imperfect
circulator introduces in our temperature measurements.
Because of the finite isolation of the circulator, part of

the probe signal will leak directly from the input port (port
1 in the following) to the output port (port 3) and interfere
with the signal that has followed the intended path towards
the DUT (port 2), then to the DUT and back, and finally to
the output port. We are interested in the relation between
the reflection coefficient of the DUT, ΓDUT, and the
transmission coefficient t̄ measured across the network.
Our configuration can be described as a three-port network
with scattering parameters sij (the circulator), with one port
connected to a load with reflection coefficient ΓL, and the
other two ports matched. A simple analysis of the asso-
ciated signal flow diagram [53] gives

t̄ ¼ AG

�
s31 þ

s21ΓLs32
1 − s22ΓL

�
; ðF1Þ

where A and G stand for attenuation and gain before and
after the circulator, respectively. We write the scattering
matrix of a lossless, symmetric, imperfect circulation with
isolation γ as

sij ¼

0
B@

−γ γ 1 − γ2

1 − γ2 −γ γ

γ 1 − γ2 −γ

1
CA

ij

: ðF2Þ

In modeling the reflection coefficient of the load, we take
into account electrical delay τ and a phase shift ϕ so that

ΓLðωÞ ¼ ΓDUTðωÞ expðiωτ þ iϕÞ: ðF3Þ
We note in passing that the effect of cable attenuation
between the circulator and the sample, which we neglect in
the following, can be modeled by adding a small imaginary
part to the phase ϕ. Finally, to model the referenced
reflection coefficient rrefd, we take the ratio between the
expected transmission when ΓDUT ¼ rideal (rideal being the
theory prediction) and ΓDUT ¼ 1:

rrefd ¼
t̄ðΓDUT ¼ ridealÞ
t̄ðΓDUT ¼ 1Þ : ðF4Þ

We now focus on the case of resonant reflection and
small thermal occupation, for which rideal ≈ −1þ δr and
δr ≈ 12nr ≪ 1. A series expansion in the small parameters
γ and δr thus gives, for the real part, imaginary part, and
absolute value of rmeas,

Re½rrefd� ¼ ridealþ8γ2 sin2ðωτþϕÞþ2γδr cosðωτþϕÞ;
ðF5Þ

Im½rrefd� ¼ −4γ sinðωτ þ ϕÞ þ 4γδr sinðωτ þ ϕÞ; ðF6Þ

jrrefdj ¼ jridealj − 2γδr cosðωτ þ ϕÞ: ðF7Þ

Notice that the first correction is of first order in the small
quantities for the imaginary part but only of second order
for the real part and the absolute value. By realistically
choosing γ ¼ 0.08 (corresponding to 22-dB isolation) and
δr ¼ 0.06 (or nr ¼ 5 × 10−3), the maximum error on the
real part due to interference effects is 0.05 (or 4 × 10−3 in
thermal occupation), while the maximum error on the
absolute value is 0.01 (or 9 × 10−4 in thermal occupation).
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