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Understanding the behavior of an impurity strongly interacting with a Fermi sea is a long-standing
challenge in many-body physics. When the interactions are short ranged, two vastly different ground states
exist: a polaron quasiparticle and a molecule dressed by the majority atoms. In the single-impurity limit, it
is predicted that at a critical interaction strength, a first-order transition occurs between these two states.
Experiments, however, are always conducted in the finite temperature and impurity density regime. The
fate of the polaron-to-molecule transition under these conditions, where the statistics of quantum impurities
and thermal effects become relevant, is still unknown. Here, we address this question experimentally and
theoretically. Our experiments are performed with a spin-imbalanced ultracold Fermi gas with tunable
interactions. Utilizing a novel Raman spectroscopy combined with a high-sensitivity fluorescence
detection technique, we isolate the quasiparticle contribution and extract the polaron energy, spectral
weight, and the contact parameter. As the interaction strength is increased, we observe a continuous
variation of all observables, in particular a smooth reduction of the quasiparticle weight as it goes to zero
beyond the transition point. Our observation is in good agreement with a theoretical model where polaron
and molecule quasiparticle states are thermally occupied according to their quantum statistics. At the
experimental conditions, polaron states are hence populated even at interactions where the molecule is the
ground state and vice versa. The emerging physical picture is thus that of a smooth transition between
polarons and molecules and a coexistence of both in the region around the expected transition. Our findings
establish Raman spectroscopy as a powerful experimental tool for probing the physics of mobile quantum
impurities and shed new light on the competition between emerging fermionic and bosonic quasiparticles in
non-Fermi-liquid phases.
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I. INTRODUCTION

In order to understand the motion of an electron through
an ionic lattice, Landau suggested treating the electron and
the phonons that accompany its movement as a new
quasiparticle named “polaron” [1]. The concept of the
polaron was later found to be applicable in many other
systems, including semiconductors [2], high-temperature
superconductors [3], alkali halide insulators [4], and
transition metal oxides [5]. In such systems, polarons
appear as weakly or strongly coupled quasiparticles that
are classified as large or small, depending on the size of

the distortion they generate in the underlying crystalline
structure of the material [6]. Understanding the properties
of polarons coupled to a bosonic bath is still an ongoing
effort in areas ranging from solid-state physics [7,8] and
ultracold atoms [9–11] to quantum chemistry [12].
The concept of polarons also becomes a powerful tool

for our understanding of the properties of quantum impu-
rities interacting with a fermionic environment. In this
context, applications range from ions in liquid 3He [13] and
mixtures of cold atomic gases [14] to excitons interacting
with electrons in atomically thin semiconductors [15–17].
Strikingly, in fermionic systems an infinite number of low-
energy excitations leads to the Anderson orthogonality
catastrophe for immobile impurities and a complete loss of
quasiparticle behavior [18]. In contrast, for mobile impu-
rities, the energy cost related to the impurity recoil
stabilizes the formation of Fermi polarons with well-
defined quasiparticle properties [19].
One of the simplest scenarios in which Fermi polarons

naturally emerge is in ultracold gases, where a small
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number of (mobile) spin impurities can be immersed in a
system of free fermions of the opposite spin. Such ultra-
cold, spin-imbalanced systems are ideally suited to explore
polaron physics [14,20,21] owing to their extremely long
spin-relaxation times and tunability of the s-wave scatter-
ing length a between the impurity and the majority atoms
via Feshbach resonances [22].
Initial experiments with spin-imbalanced Fermi gases in

harmonic confinement revealed phase separation into three
regions at unitary interactions (a → ∞). It was observed
that phases arrange according to the varying local density,
with an inner core of a spin-balanced superfluid being
separated from a second shell of a partially polarized
normal gas, and a third shell of a fully polarized gas
[23–25]. It was Chevy who first pointed out [26] that the
radius between the outer and intermediate shells is related
to the solution of the Fermi polaron problem [27]. For weak
attractive interactions (a < 0), the ground state is a long-
lived quasiparticle dressed by the majority particles, form-
ing the attractive polaron. Beyond the Feshbach resonance,
at a > 0, it was found that a metastable polaronic state also
exists energetically far up in the excitation spectrum
[28–35]. This so-called repulsive polaron becomes, how-
ever, progressively unstable toward unitary interactions.
Fermi polarons have well-defined momenta with a

narrow dispersion relation that is described by a renormal-
ized effective mass [29,36]. The attractive polaron persists
as the ground state even as the interactions increase toward
unitarity. However, for still stronger interactions, the
system favors a molecular ground state dressed by the
majority fermions [27,37,38] [see Fig. 3(a)]. It was pre-
dicted that the energies of the polaron and molecular states
cross around ðkFaÞ−1c ≈ 0.9—with kF being the Fermi wave
vector of the majority—leading to a sharp, first-order
transition between the two ground states [27,29,37–40].
Contrasting claims for a smooth crossover were also put
forward [41–44].
The Fermi polaron problem represents the limiting case of

a spin-imbalanced Fermi gas. Therefore, the nature of the
polaron-to-molecule transition has profound theoretical
implications for the phase diagram of the spin-imbalanced
BEC-BCS crossover [38,45–48]. While at zero temperature,
the polaron-to-molecule transition was predicted to be
preempted by phase separation between the superfluid and
the normal phases [49], at finite temperature, increased
thermal fluctuations are expected to suppress the superfluid
and restore the polaron-to-molecule transition. Experi-
mentally, the Fermi polaron was initially studied by radio
frequency (rf) spectroscopy, where the attractive polaronwas
identified by a narrow peak appearing exclusively in the
minority spectrum [50]. The spectral weight of this peak was
interpreted as the quasiparticle residue (or weight) Z, which
quantifies how similar the polaron remains to the non-
interacting impurity particle. Accordingly, it is determined
by the overlap between the polaron wave function and its

noninteracting impurity state. When Z is zero, the quasipar-
ticle description is no longer valid. In the experiment, Z was
observed to continuously decrease andvanish above a certain
interaction strength in contrast to theoretical predictions
based on the Chevy Ansatz wave function [38].
A different approach to measure Z was employed in

Ref. [31]. Here, Z was determined from coherent oscil-
lations between the polaron and a noninteracting impurity
state. In this approach, the coherent oscillations address the
polaronic state even when the attractive polaron is an
excited state above the molecular ground state. This made it
possible to measure the weight Z across the full polaron-to-
molecule transition, and it was found that Z indeed does not
vanish beyond ðkFaÞ−1c . Further properties of attractive and
repulsive Fermi polarons were also determined, including
their effective mass [51,52], energy [31,32,50,52], thermo-
dynamics [53], equation of state [54], and formation
dynamics [55]. However, despite these tremendous efforts,
the fate of the polaron-to-molecule transition at realistic
conditions, namely finite temperature and impurity con-
centration, remains unknown. Importantly, the key question
of whether the first-order polaron-to-molecule transition
prevails at finite impurity density, and separates sharply a
phase of polarons from a gas of dressed molecular
quasiparticles, is still open.
In this work, we address this question both theoretically

and experimentally. Our experiments are performed with a
spin-imbalanced, ultracold Fermi gas in the BEC-BCS
crossover regime [22,46]. To gain detailed insight into the
behavior of the quasiparticles, we employ a novel spectro-
scopic method based on a two-photon Raman transition.
Raman spectroscopy allows us to clearly identify the
coherent response of the polarons, and determine some
of its key properties, including its energy and spectral
weight. We compare our results with a theoretical model
that takes into account the thermal occupation of polarons
and molecules at finite momenta. Both our theoretical
model and the measurements consistently show that a finite
impurity concentration and temperature have a striking
effect on the transition: they smooth it and lead to a regime
where polarons and molecules coexist.
After describing the experimental setup in Sec. II, we

briefly introduce our theoretical model in Sec. III and
present the calculated Raman spectra. Based on this, in
Sec. IV we develop a fitting routine for the experimental
spectra which allows us to extract physical quantities, such
as the polaron energy, the quasiparticle spectral weight, and
the contact parameter. The experimental results are pre-
sented and discussed in Sec. V, while in Sec. VI we give a
detailed theoretical derivation of our model. In particular,
we show how the quantities accessible in the experiment
are computed. Finally, in Sec. VII, we summarize our
results, discuss their implications for the many-body
physics of cold Fermi gases, and outline directions for
future work.
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II. EXPERIMENTS

The experiments are performed with a harmonically
trapped ultracold gas of 40K atoms. The system is initially
prepared in an incoherent mixture of the two lowest
Zeeman states denoted by j1i and j2i (see Fig. 1), with
the majority of atoms being in state j1i. The cooling
sequence is similar to the one described in Ref. [56], here
modified to produce a spin-polarized ensemble of
∼100 000 atoms in the state j1i at a temperature of
T ≈ 0.2TF, where TF is the Fermi temperature. This is
achieved by terminating the evaporation cooling at a
magnetic field of 201.75 G, below the Feshbach resonance

(B0 ≈ 202.14 G [56]), where three-body processes remove
all the atoms in state j2i. The magnetic field is then ramped
adiabatically to the BCS side of the Feshbach resonance
(204.5 G), where the interaction between the states j1i and
j2i, parametrized by the s-wave scattering length a, is
weak. To introduce the impurities, we use a short (few
microseconds) rf pulse that transfers a very small fraction of
the atoms from state j1i to j2i. This is followed by a hold
time of 100 ms during which the two states fully decohere.
Finally, the magnetic field is ramped adiabatically to its
final value where we wait another 3.3 ms before pulsing the
Raman beams for 500 μs.
The minority concentration x can be defined globally by

x ¼ NI=N, with NI (N) being the total number of impurity
(bath) atoms, or alternatively by averaging over its local value
hxi in the harmonic trap (see theAppendixA). Since the local
density nIðrÞ depends on kFa, hxi changes even when x is
kept constant. To ensure there are no systematic deviations in
the experiments due to this effect, we have repeated the
measurements twice: once keeping x at approximately 0.04,
which gives hxi ≈ 0.23 at ðkFaÞ−1 ¼ 0.85, and a second time
maintaining the same value of hxi by varying x. Sincewe did
not observe any significant difference between the two
datasets, in what follows we present their results together.
The main innovation in our experiments is the use of

Raman spectroscopy. In conventional rf spectroscopy, the
photon momentum is negligible, and the atomic momentum
is essentially unchanged in the transition. As a result, the
transition probability depends only weakly on the atom
velocity and the maximal signal is attained for atoms that
are not at rest. In particular, at finite impurity density,
the measured peak depends on temperature [11] (see
Appendix B). In contrast, in a Raman process, the momen-
tum change is significant compared to the atomic momen-
tum, and consequently, the transition rate depends on the
atomic velocity. As we show further below, the Raman
spectrum reflects the projection of the polaron momentum
distribution along the two-photonRamanwavevectorwhich,
due to the symmetry of the resulting spectrum, allows us to
uniquely identify the coherent contribution of the polarons.
As illustrated in Fig. 1, in our setup two Raman beams

couple atoms in the minority state j2i to a third state j3i,
which is initially unoccupied. The beam parameters are the
same as described in Ref. [57]. We denote their frequencies
by ω1 and ω2 and their wave vectors by k1 and k2. The
measurement is performed by recording the number of
atoms transferred to the state j3i versus the two-photon
detuning, ω ¼ ω1 − ω2 − E0=ℏ, where E0 is the bare
transition energy between states j2i and j3i. To achieve
the utmost sensitivity, we measure the atoms using a high-
sensitivity fluorescence detection scheme we recently
developed [56,57].
In Fig. 2 we depict three representative experimental

datasets taken on the BCS side [ðkFaÞ−1 ¼ −0.66, blue
circles], unitarity [ðkFaÞ−1 ¼ −0.06, red squares], and on

(a)

(b)

FIG. 1. Experimental setup. (a) Level diagram of the relevant
states in 40K. The majority of atoms occupy state j1i ¼
jF ¼ 9=2; mF ¼ −9=2i in the 42S1=2 manifold, and their inter-
action with the minority atoms in state j2i ¼ jF ¼ 9=2;
mF ¼ −7=2i can be tuned in the vicinity of the Feshbach
resonance at B ≈ 202.14 G [56]. The counterpropagating Raman
beams (wiggly blue lines) are pulsed for 500 μs and couple atoms
in state j2i to state j3i ¼ jF ¼ 9=2; mF ¼ −5=2i, which is
initially unoccupied. Afterward, we detect the number of atoms
in state j3i [56]. The single-photon Raman detuning is Δ ¼
−2π × 54.78ð8Þ GHz relative to the D2 transition. (b) 3D sketch
of the beam configuration in the experiment. Two Raman beams
with orthogonal polarization (blue lines with arrowheads) overlap
the atomic cloud (yellow), which is being held in an elongated
crossed-beams optical dipole trap (red lines). The optical
trap oscillation frequencies are ωradial ¼ 2π × 238ð3Þ Hz and
ωaxial ¼ 2π × 27ð2Þ Hz, in the radial and axial directions, re-
spectively. The gravitational acceleration direction is −ẑ.
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the BEC side [ðkFaÞ−1 ¼ 0.75, black triangles]. The
spectrum is symmetric on the BCS side, but becomes
asymmetric toward unitarity with a tail at high frequencies
that grows to be the dominant spectral feature on the BEC
side. As we will see below, the symmetric part of the
spectrum is associated with the coherent response of
polarons, while the asymmetric contribution is due to
the polaron incoherent part as well as molecules. The
peaked response of the quasiparticles arises since for the
coherent contribution of the polarons the Raman transition
rate is proportional to the one-dimensional momentum
distribution, which is symmetric at equilibrium (k → −k
invariant, neglecting effective mass variation). Molecules,
on the other hand, are dissociated by the Raman process.
Similar to the incoherent contribution from polarons, this
opens another degree of freedom, namely the relative
motions of the two atoms, which gives rise to the

asymmetric energy tail in the Raman spectra. As can be
seen in the inset of Fig. 2, this tail features a power-law
scaling of ω−3=2 at large ω, as expected from the Tan
contact relations [46,58,59].

III. FERMI POLARON MODEL

In order to analyze the experimentally measured Raman
spectra in terms of the physics of polarons and molecules,
we consider the Hamiltonian H describing a system of
fermionic impurities immersed in a homogeneous fer-
mionic bath,

H ¼
X
p

εpc
†
pcp þ

X
p

εpd
†
pdp þ

U
V

X
p;p0;q

c†pþqcpd
†
p0−qdp0 :

ð1Þ

Here V is the system volume, and the operators c†p and d†p
denote fermionic creation operators of bath (j1i) and
impurity (j2i) particles, respectively (see Fig. 1). Both
species have the same mass m and their free-dispersion
relation is given by εp ¼ p2=2m (unless indicated otherwise,
we work in units of ℏ ¼ kB ¼ 1). The interaction between
impurity and bath particles is modeled by the contact
interaction in the last term of Eq. (1), which is an excellent
approximation for open-channel dominated Feshbach reso-
nances as employed in our experiment [22]. Its strengthU is
related to the s-wave scattering length a by the Lippmann-
Schwinger equation U−1 ¼ m=4πa − V−1 P

k 1=2εk.
Polarons and molecules.—The physics of polarons and

molecules can be qualitatively understood in terms of two
sets of variational wave functions that approximate the
exact eigenstates of the Hamiltonian in Eq. (1). On the one
hand, the formation of polarons is well described by an
Ansatz that systematically expands the many-body wave
function in terms of particle-hole excitations of the Fermi
sea. It was found [27,39,60,61] that accounting only for a
single such excitation in form of the Chevy Ansatz [26,62],

jψp
Pi ¼ αp0d

†
pjFSNi þ

X
k;q

0
αpk;qd

†
pþq−kc

†
kcqjFSNi ð2Þ

already yields a remarkably good approximation for the
attractive polaron at momentum p. Here, αp0 and αpk;q are
variational parameters, and primed sums indicate that the
summation is taken over momenta fulfilling jkj > kF and
jqj < kF. The state jFSNi denotes the zero temperature
Fermi sea ofN majority particles (the Fermi wave vector kF
and energy εF refer to the majority ensemble). Crucially,
the first term describes the so-called coherent part of the
polaron wave function. At low polaron momenta it deter-
mines the quasiparticle weight Zp ¼ jαp0 j2. It results in a
coherent quasiparticle peak in the spectroscopic measure-
ments, while the second term, describing the entanglement

FIG. 2. Raman spectra of an imbalanced Fermi gas in the BEC-
BCS crossover. The Raman transition probes the minority atoms,
which represent around 4% of the whole cloud. The data are fit
with the function given in Eq. (6) (solid lines). The dark shaded
area under the graph is the combined contribution from molecules
and the incoherent part of the polaron wave function,
Pbgðω;Tbg; EbÞ, while the light shaded area is the coherent
polaron contribution, Pcohðω;Tp; ϵ0pol; m

�Þ. We extract the po-

laron energy ϵ0pol from the peak position (dotted vertical lines),
shifted by the recoil energy due to the finite Raman momentum
transfer of q̄ ≈ 1.9kF. The second and third graphs from the
bottom are vertically shifted for clarity by 0.1 and 0.3, respec-
tively. In the inset, we depict the data at ðkFaÞ−1 ¼ 0.75
multiplied by ω3=2 to demonstrate the power-law scaling of
the high-frequency tail. Each point is an average of three
experiments, and the area below each curve is normalized to
unity. Since the measurement is done up to some maximal
frequency, to properly normalize the data we must account for the
missing spectral weight in the unmeasured tail. This is done by
adding to the normalization the integral of ω−3=2 up to an energy
cutoff of ℏ2=mr20, where r0 ≈ 181a0 is the effective range of the
interparticle potential [22].
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of the impurity with bath degrees of freedom, leads to an
incoherent background of asymmetric shape. Importantly,
while the polaron quasiparticle weight Zp is finite for all
interactions, the polaron becomes an excited state beyond a
critical interaction strength. It is thus not occupied and
hence—at the polaron-to-molecule transition—a jump in
the spectral response is expected.
On the other hand, to lowest order, molecular states at

momentum p can be described by an Ansatz with varia-
tional parameters βpk of the form [37,38,62]

jψp
Mi ¼

X
k

0
βpkc

†
−kd

†
kþpjFSN−1i: ð3Þ

Here, a fermion is removed from the Fermi surface and is
paired with the impurity particle. Both expressions in
Eqs. (2) and (3) can be systematically improved in their
accuracy by entangling a larger number of particle-hole
excitations of the Fermi sea with the quantum impurity.
The minimization of the energy functional hψp

P=MjH−
Ejψp

P=Mi with respect to the variational parameters allows
one to determine the renormalized dispersion relations
ϵpolðpÞ and ϵmolðpÞ of the polaron and the molecule,
respectively. The wave functions in Eqs. (2) and (3) predict
that the energies of the polaron and molecule cross at an
interaction strength ðkFaÞ−1c ≈ 1.27 [see Fig. 3(a)]. The

deviation from the state-of-the-art prediction of ðkFaÞ−1c ≈
0.90ð4Þ, obtained from diagrammatic Monte Carlo
(diagMC) calculations [27,39,63], ismostly due to the simple
approximation taken for the molecular Ansatz that neglects
particle-hole dressing of the molecular state [38].
Raman spectroscopy.—For a single impurity, the Raman

transition rate Γðω; iÞ ¼ 2πΩ2
eAðω; iÞ is given by Fermi’s

golden rule as

Aðω; iÞ ¼
X
f

jhfjV̂Rjiij2δ½ω − ðEf − EiÞ�; ð4Þ

where Aðω; iÞ denotes a Raman spectrum and Ωe is the
effective Rabi frequency. Here, the impurity resides in an
initial state jii that is characterized by a conserved
momentum p and may be either polaronic or molecular;
i.e., jii ¼ fjψp

Pi; jψp
Mig [such as, e.g., approximately given

by Eqs. (2) and (3)]. The corresponding energies are
Ei ¼ fϵpolðpÞ; ϵmolðpÞg, respectively.
The operator V̂R ¼ P

pðf†pþq̄dp þ H:c:Þ describes the
transition with relative two-photon momentum q̄ ¼ k2 −
k1 from an interacting impurity state (j2i in the experiment)
at momentum p, to a hyperfine state (created by f†k;
state j3i in the experiment) that is decoupled from the
fermionic environment and governed by the Hamiltonian

(a) (b)

FIG. 3. Theoretical Raman spectra and quasiparticle energies. (a) Quasiparticle energies of different polaron and molecule states. The
solid lines display the energy of the molecule (red) and the attractive (blue) and the repulsive (black) polaron at zero momentum as a
function of the interaction strength, calculated from the variational states in Eqs. (2) and (3). The crossing of the polaron and molecule
energies at ðkFaÞ−1c ≈ 1.27 results in a first-order transition from a polaronic to a molecular ground state. The blue circles show the peak
position of the coherent part of the Raman spectrum. The comparison with the solid blue line makes it evident that the zero-momentum
polaron energy can reliably be extracted using this approach. For the excited polaron and molecular states, the energy minimum does not
always appear at zero momentum. We show the corresponding lowest energies of the attractive polaron and the molecule at finite
momentum as dashed lines. Since the energies are almost degenerate, we indicate the interaction strengths at which the energy minimum
switches to finite momentum by a diamond symbol. The inset shows the difference between the zero-momentum energy and the minimal
energy for both polaron (blue) and molecule (red) branches. (b) Many-body Raman spectra of the imbalanced Fermi gas for three
interaction strengths, calculated from an occupation average for fixed impurity concentration NI ¼ 0.15N and temperature T ¼ 0.2TF.
The blue-, red-, and gray-shaded regions represent the coherent and incoherent polaronic contributions from Eq. (2) as well as the
molecular contributions from Eq. (3), respectively. The coherent part yields an almost symmetric line shape that is peaked at the polaron
energy shifted by the constant Raman two-photon recoil energy (vertical dotted line), while the incoherent and molecular parts lead to an
asymmetric continuum. For clarity, the second and third graphs from the bottom are shifted by 0.04 and 0.1, respectively.
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Hf ¼
P

p εpðc†pcp þ f†pfpÞ. The final states jfi of energy
Ef are thus given by noninteracting continuum states such as

f†pjFSNi or f†pc†kcqjFSNi.
In experiments, the number of impurities NI ¼ nIV is

finite. Treating this case theoretically simplifies at suffi-
ciently low impurity concentration, where one may assume
that impurities occupy polaronic and molecular eigenstates
of the form of Eqs. (2) and (3), respectively. Importantly,
this allows polaron states to be occupied at finite momen-
tum even in the regime where the molecule is the ground
state, and vice versa, for the molecule before the polaron-
to-molecule transition (for a detailed discussion, see
Sec. VI). Each of these occupied states contributes to
the total normalized Raman signal which is thus obtained
by averaging over occupation numbers of polarons and
molecules with associated Fermi and Bose distribution
functions:

ĀðωÞ ¼ 1

NI

X
p

Apolðω;pÞ · nF½ϵpolðpÞ�

þ 1

NI

X
p

Amolðω;pÞ · nB½ϵmolðpÞ�: ð5Þ

Here, Apolðω;pÞ≡Aðω; i ¼ jψp
PiÞ and analogously for

Amolðω;pÞ. Similar to the single-impurity case, the full
many-impurity Raman signal is connected to the Raman
rate by Γ̄ðω; iÞ ¼ 2πΩ2

eNIĀðω; iÞ.
Model prediction.—Theoretical Raman spectra based on

wave functions Eqs. (2) and (3) are shown in Fig. 3(b) for
three interaction strengths before and after the polaron-to-
molecule transition. Overall, the calculated spectra are
qualitatively very similar to the measured ones shown in
Fig. 2. Each spectrum is composed of a polaronic and a
molecular contribution. As can be seen, the polaronic
contribution is separated into a coherent (blue shading)
and an incoherent part (black shading). The former arises
from the coherent part of the polaron wave function
proportional to jαp0 j2, and thus gives access to the quasi-
particle weight Zp of polarons. The incoherent polaron
contribution, in turn, is due to the second term in Eq. (2),
leading to a highly asymmetric line shape. The molecular
contribution features a similar asymmetric line shape as
Raman transitions dissociate molecules into relative
momentum states described by the variational parameters
βpk in Eq. (3). Both the incoherent polaron and molecular
contributions involve superposition states at large momenta
(and thus probing short-distance physics); hence, their
spectra feature the characteristic high-frequency ∼ω−3=2

tails which were experimentally observed.
Our calculations show that Raman spectroscopy pro-

vides a tool for a clear dissection of the polaron state. This
is due to the fact that—in contrast to rf spectroscopy—there
is a qualitative difference between an almost symmetric

response arising from the coherent polaron contribution
[blue shading in Fig. 3(b)] and a combined asymmetric
response stemming from the incoherent part of the polaron
wave function and from molecules (black and red shading,
respectively). It is this clear distinction between the
coherent and incoherent or molecular response that enables
us to experimentally extract polaron quasiparticle proper-
ties with high detail using Raman spectroscopy.

IV. QUANTITATIVE ANALYSIS OF
EXPERIMENTAL RAMAN SPECTRA

In order to quantitatively analyze the experimental data,
we devise a fit model for the line shape of the Raman
transition amplitude. Here we make use of the fact that,
although the theoretical spectra are approximations, they
reveal general characteristics of the response, namely that it
is composed of two main contributions.
(1) Coherent polaron peakPcohðωÞ: a roughly symmetric

peak due to the coherent part of the polaron. It contains
information about quasiparticle properties such as
the polaron energy ϵpol, the spectral weight Z, and
the effective mass m�. In particular, we find that the
coherent part spectrum is proportional to the polaronic
momentumdistribution, and its peak position gives the
polaron energy at zero momentum ϵ0pol [plus the recoil
energy from the two-photon Raman transition, see
Eq. (17) below]. This correspondence emerges from
the finite transferred photonmomentumand thus is not
affected by thermal shifts as observed in rf measure-
ments [11] (see Appendix B). This is evident from the
theoretical analysis in Fig. 3(a), where a comparison
between the calculated polaron energy (solid blue)
and the extracted peak position of the coherent Raman
response (blue circles) is shown.

(2) Background signal PbgðωÞ: an asymmetric line
shape extending to high frequencies that contains
the combined response arising from the incoherent
part of the polaron, as well as from molecules that
are dissociated by the Raman lasers. In a wave
function picture, the former corresponds to contri-
butions as given by the second term in Eq. (2). We
find that up to a rescaling by a factor, the shapes of
the background spectra from polarons and molecules
are similar.

Based on this identification, we are able to develop a fit
model for the transition probability that is largely model
independent and reflects the line shape of the coherent and
background signals:

PðωÞ ¼ Z̄Pcohðω;Tp; ϵ0pol; m
�Þ þ ð1 − Z̄ÞPbgðω;Tbg; EbÞ:

ð6Þ

Here, both contributions Pcoh and Pbg are normalized to
unity. The “many-body polaron weight” Z̄ quantifies the
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weight of the coherent polaron peak for a system with a
finite density of impurities. In the limit T; x → 0, it reduces
to the polaron quasiparticle residue Z for interactions where
the polaron is the ground state. Next, we determine suitable
shape functions for Pcoh and Pbg.
Raman coherent polaron peak.—The Raman spectrum

of a single polaron can be expressed as

Apolðω;kÞ ¼ ZAcohðω;kÞ þ ð1 − ZÞAincðω;kÞ; ð7Þ

where the coherent part can be approximated at low
momenta as

Acohðω;kÞ ¼ δ½ω − ϵkþq̄ þ ϵpolðkÞ�; ð8Þ

Z is approximated as a momentum-independent quasipar-
ticle weight, and the dispersion ϵpolðkÞ ¼ ϵ0pol þ k2=2m� is
parametrized by an effective mass m� and the polaron
energy ϵ0pol. The function Pcoh accounts only for the Raman
response arising from AcohðωÞ with m�, ϵ0pol, and a polaron
temperature Tp being fit parameters. As described below,
the incoherent response arising from Ainc will be attributed
to Pbg.
Within this model it is useful to recognize that the total

number of impurities can be interpreted as a sum of
impurities contributing to the coherent response Ncoh, as
well as impurities in the incoherent polaron part Ninc and
molecules Nmol,

NI ¼ Ncoh þ ðNinc þ NmolÞ: ð9Þ

The left-hand side, NI, is responsible for the full signal
PðωÞ, while Ncoh ¼ Z̄NI yields the contribution Z̄Pcoh in
Eq. (6). The sum ðNinc þ NmolÞ ¼ ð1 − Z̄ÞNI , in turn, gives
ð1 − Z̄ÞPbg. Moreover, the number of polarons is given by
Npol ¼ Ncoh þ Ninc with Ncoh ¼ ZNpol. Thus, within a
model with momentum-independent quasiparticle weight
Z≡ Zk¼0, one has Z̄ ¼ ZNpol=NI .
The coherent part of the polaron Raman spectrumAcoh is

related to the coherent contribution of the full, many-
impurity Raman response Γ̄ðωÞ ¼ Γ̄cohðωÞ þ Γ̄bgðωÞ by
[64,65]

Γ̄cohðωÞ ¼ 2πΩ2
e

X
k

Acohðω;kÞ · nF½ϵpolðkÞ; Tp�; ð10Þ

such that
R
dωΓ̄cohðωÞ ¼ 2πΩ2

eNcoh.
Since the concentration of impurities is finite, polarons

can be found at nonzero momenta [29,66]. As Eq. (8)
shows, a polaron with a momentum k gives a coherent
contribution to the Raman signal if ϵpolðkÞ ¼ εkþq̄ − ω,
which can be solved for kq̄ðωÞ≡ k · ˆ̄q. In particular, if
m� ¼ m, this yields a linear relation between ω and kq̄.
Otherwise, the solution has a weak dependence on

ð1 −m=m�Þ and k2⊥ ≡ k2 − k2q̄. However, this dependence
is only noticeable for kq̄ close to kF, and when the effective
mass is substantially larger than the bare mass (see
Appendix E). Neglecting this small effect, we obtain

kq̄ðωÞ ¼
m
q̄
ðωþ ϵ0polÞ −

q̄
2
; ð11Þ

where q̄≡ jq̄j.
Evaluation of Eq. (10) shows that the coherent polaron

Raman rate is proportional to the one-dimensional momen-
tum distribution of polarons in the direction of q̄,
Γ̄cohðωÞ ¼ 2πmΩ2

eNcohnP½kq̄ðωÞ�=q̄. In the local density
approximation (LDA) this distribution is given by (for
details see Appendix C)

nP½kq̄ðωÞ� ¼ −
6T5=2

p

�
εF − ϵ0pol

�
−3=2

ffiffiffi
π

p
xZ̄kFεFm=m� Li5=2

�
−ζPe−k

2
q̄=2m

�Tp

�
:

ð12Þ

Here x is the global impurity concentration, Li5=2 is the

polylogarithm function, and ζP ¼ e−ðϵ
0
pol−μÞ=Tp is the fugac-

ity of polarons. The chemical potential μ is tuned so that
Eq. (10) is normalized to the number of polarons that
contribute to the coherent part of the response.
As a final step, in order to obtain the probability Pcoh, the

response Γ̄coh has to be normalized to unity. We arrive at

Pcohðω;Tp; ϵ0pol; m
�Þ ¼ m

q̄
nP½kq̄ðωÞ�: ð13Þ

Background Raman signal.—We find that the experi-
mental spectral line shape arising from the incoherent
polaron part and the molecules are fit well by the response
of a thermal gas of molecules (see Appendix E). Indeed,
this model covers well the overall spectral weight of the
background and allows us to incorporate the ∼ω−3=2 tail.
The fit function PbgðωÞ is derived by considering a pair

of atoms bound as a molecule with a binding energy Eb and
a center-of-mass momentum kc:m: The Raman process
dissociates the pair and changes the center-of-mass
momentum to kc:m: þ q̄. In addition, the unbound fermions
acquire a relative momentum krel ≡ jkrelj. Energy conser-
vation yields

k2rel ¼ mω −mEb −
q̄2

4
−
q̄kc:m:;q̄

2
; ð14Þ

where kc:m:;q̄ ≡ kc:m: · ˆ̄q.
The probability FðkrelÞ that a pair will be dissociated

with a relative momentum krel is determined by its relative
envelope wave function, resulting in [67]
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FðkrelÞ ¼
π−2

ffiffiffiffiffiffiffiffiffi
mEb

p�
mEb þ k2rel þ krel;q̄q̄þ q̄2=4

�
2
: ð15Þ

For kc:m: we assume a thermal Boltzmann distribution at

temperature Tbg, Gðkc:m:;TbgÞ¼ð4πmTbgÞ−3=2e−k
2
c:m:=4mTbg ,

which allows us to derive an analytical fit model. The
combined probability to find a pair with an initial kc:m:;q̄ and
final krel is then given by the product of F and G. To obtain
the Raman transition probability as a function of frequency,
we change variables from ðkc:m:;q̄; krelÞ to ðkc:m:;q̄;ωÞ using
Eq. (14). Finally, integration over the angle k̂rel · ˆ̄q and
kc:m:;q̄ yields the normalized Raman transition probability
for the background signal (for details, see Appendix D),

Pbgðω;Tbg;EbÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2Eb

π3Tbg

s Z
2mω̃=q

−∞
dkc:m:;q̄

2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mω̃−kc:m:;q̄q̄

q
e−k

2
c:m:;q̄=4mTbg

4mEbq̄
2þðq̄2þkc:m:;q̄q̄−2mωÞ2 ;

ð16Þ

where ω̃≡ ω − Eb − ðq̄2=4mÞ. This integral does not have
an analytic solution, but it can be readily calculated
numerically.
Note that in this fit model, Tbg and Eb are effective

temperatures and binding energies. SincePbg also describes
the incoherent polaron contribution, Eb can be interpreted
as the molecular binding energy −ϵmol only in the limit of
large ðkFaÞ−1. The effective temperature Tbg compensates
for the absence of Pauli blocking in the molecular model,
and therefore should not be interpreted as the physical
temperature of molecules.

V. EXPERIMENTAL RESULTS

The peak of the coherent polaron spectrum, as given in
Eq. (13), is at kq̄ ¼ 0. According to Eq. (11), this maximum
is attained for

ω0 ¼
q̄2

2m
− ϵ0pol: ð17Þ

For interactions below the transition point, the most
significant contribution to the spectral peak stems from
the coherent part of polarons. Thus, from ω0 we can
determine the polaron energy ϵ0pol. We find the peak
position (dotted vertical lines in Fig. 2) by fitting the
points above the median with a skewed Gaussian [68]. The
resulting polaron energies are plotted in Fig. 4 (blue
circles). We compare the data and find excellent agreement
with the predictions of our theoretical model (dashed line),
which in turn are close to diagMC and T-matrix calcu-
lations [20,27,36,38,39]. Beyond ðkFaÞ−1 ¼ 0.9 the weight

of the coherent peak is small. Thus we restrain the fit in this
regime by using the value for ϵ0pol obtained from the Chevy
Ansatz.
Next, we extract the polaron weight Z̄ by fitting the

measured spectra with Eq. (6). The effective temperature
parameter Tbg controls the sharpness of the background
spectrum onset. We fix Tbg ¼ 2TF, which yields a minimal
systematic error in extracting Z̄ (see Appendix E). The
polaron effective mass m� is strongly coupled to the
polaron temperature. To make the fit robust, we set m�
to the trap-averaged theoretical value at k → 0, calculated
from Eq. (2). We find that the effective mass modifies the
extracted polaron weight and molecular binding energy
only marginally. In fact, settingm� to the bare mass leads to
a maximal deviation of less than 0.4σ. We are left with three
free fitting parameters: Z̄, Eb, and Tp.
Examples of fits are shown in Fig. 2 (solid lines).

Overall, we find excellent agreement between the fits
and the measured spectra throughout the whole interaction
range. The light and dark shaded areas beneath the curves
are the spectral contributions of the coherent part of the
polaron and the background, respectively. The BCS-side
data (blue circles) are dominated by a nearly symmetric
quasiparticle peak with Z̄ ¼ 0.91ð3Þ, while the BEC-side
data (black triangles) are dominated by the asymmetric pair

FIG. 4. Measured polaron and pairs binding energies. The
polaron energies ϵ0pol (blue circles) are obtained using Eq. (17)
from the position of the spectral peak ω0. The theoretical
prediction obtained from the variational Ansatz Eq. (2) is shown
as a dashed blue line. The Eb parameter (red squares) is
determined by fitting the Raman spectra with Eq. (6). For
ðkFaÞ−1 > 0.5, it is in good agreement with the energy obtained
from the simple molecular Ansatz Eq. (3) (solid red line). The
dotted red line shows the result of an improved molecular Ansatz
[38]. Note that the theoretical polaron and molecule energies are
averaged over the harmonic trap (see Appendix A), and as a
result, they cross at a ðkFaÞ−1 slightly lower than the predicted
polaron-to-molecule transition in a homogeneous gas. Inset:
extracted polaron temperatures. The approximate majority tem-
perature is denoted by the dashed line.
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dissociation spectra leading to a small coherent weight
Z̄ ¼ 0.18ð2Þ. The unitary data (red squares) show both the
symmetric peak and an asymmetric tail. The quasiparticle
weight is Z̄ ¼ 0.58ð3Þ, close to the value of 0.47(5) which
was measured for 6Li atoms with rf spectroscopy [50].
The coherent polaron spectral weight Z̄ extracted from

the fits is shown in Fig. 5. It approaches unity on the far
BCS side, as expected. For increasing ðkFaÞ−1, we observe
a smooth decrease of Z̄. We compare the result to the
calculation of our theoretical model in the LDA (solid line)
and find good agreement for ðkFaÞ−1 > 0.4. Indeed, as
shown in Sec. VI, it is essential to account for the
coexistence of polarons and molecules. To demonstrate
the crucial role of the finite impurity density and temper-
ature, we also plot in Fig. 5 the prediction for a single
impurity at zero temperature in the LDA (dotted line). Our
data clearly disagree with this result and, in particular, do
not exhibit a sudden change at the polaron-to-molecule
transition as predicted in the single polaron limit.
The polaron temperature parameter Tp is shown in the

inset of Fig. 4. We find Tp to be around 0.25TF, slightly
higher than the measured majority temperature of approx-
imately 0.2TF (marked by a dashed line). A moderate
systematic decrease of the extracted temperature is visible
as the interaction strength is increased. We attribute this
behavior to the reduction in the quasiparticle population
due to a lower quasiparticle lifetime at high momenta.
We now turn to examine the Eb parameter, which is

extracted from the background signal of the Raman spectra.
The results are presented as red squares in Fig. 4. We also

show the theoretical predictions obtained from the simple
variational Ansatz [Eq. (3)] in the LDA (solid red).
Including particle-hole dressing of the molecular state
[38] leads to a further lowering of the molecule energy
(dotted red line). Since in the far BEC limit, the molecules
dominate the Raman response, the parameter Eb regains its
physical interpretation as the molecular binding energy (up
to a contribution on the order of ϵF arising from the neglect
of the presence of a Fermi surface). In this region, we find
good agreement between the data and the theoretical
predictions.
Finally, we extract the Tan contact C from our exper-

imental data. The contact coefficient is related to the tail of
the momentum distribution of the quasiparticles and
measures the short-distance correlations between bath
and impurity particles [58,69–75]. Moreover, the contact
relates the high-momentum tail to various many-body
quantities, such as the thermodynamic pressure, and
quantifies the spectral weight in the universal ω−3=2 tail
of the Raman spectra [46,59].
Being related to the derivative of the ground state energy,

in the single-impurity limit at T ¼ 0, C is expected to jump
at the polaron-to-molecule transition [38]. In our fitting
model, the tail appears in the spectral contribution of
incoherent polarons and molecules. Thus the contact is
related to the parameters of our model by [72,76]

FIG. 5. Measured quasiparticle weight. The quasiparticle
weight Z̄ is shown for different interaction strengths. Blue circles
mark the weight extracted from the Raman spectra by identifying
the nearly symmetric spectral line shape arising from the coherent
polaron contribution. Z̄ is smoothly decreasing toward the
polaron-molecule transition, in agreement with our theoretical
prediction, averaged over the harmonic trap using the LDA (solid
line). For comparison, we also present the trap-averaged pre-
diction for a single impurity at T ¼ 0 (dotted line) obtained
from Ref. [38].

FIG. 6. Measured Tan contact. The contact coefficient C is
shown for different interaction strengths, obtained using Eq. (18)
with Eb and Z̄ extracted from the Raman spectra. The theory for a
single impurity at zero temperature predicts a discontinuous
change in C at the polaron-to-molecule transition [38]. While this
discontinuity is smoothed when averaged for a harmonically
trapped gas using the LDA (dotted line), an abrupt change is
expected to remain. The data significantly deviate from this
prediction. Instead, they agree well with our calculation taking
into account the finite temperature and coexistence of polarons
and molecules (solid line); see Sec. VI. The two red squares
indicate data measured by the MIT group [11] using rf spec-
troscopy of a unitary, homogeneous 6Li gas at T ¼ 0.17TF (lower
point) and T ¼ 0.29TF (upper point).
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C ¼ 4πð1 − Z̄Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb=2εF

p
: ð18Þ

Here C is given in units of 2NIkF such that the high-
frequency tail of the spectrum approaches PðωÞ →
C

ffiffiffiffiffi
εF

p
=

ffiffiffi
2

p
π2ω3=2 [77].

The results for C are shown as blue circles in Fig. 6. For
comparison, we plot the trap-averaged theoretical predic-
tion for the contact in both the single-impurity limit (dotted
line) and in the many-impurity case (solid line), as
discussed in the following section. The data are in excellent
agreement with the many-body model, and, in particular,
they do not show any sudden change as predicted in the
single-impurity limit. We also indicate the contact mea-
sured by the MIT group with a homogeneous 6Li gas using
rf spectroscopy [11] (red squares), which agrees with our
measurements to within the experimental uncertainty.

VI. THEORETICAL RAMAN SPECTRA

As shown in the previous section, we find no exper-
imental evidence for a discontinuity in the extracted
observables. We now demonstrate that this observation is
consistent with a finite impurity density theory, which
inherently features a first-order transition in the single-
impurity limit. In fact, discontinuities predicted in this limit
are smoothed out by a finite impurity density. This effect
becomes further amplified at finite temperature.
In order to incorporate the finite impurity density and

temperature in the calculation of Raman spectra, we adopt
an effective quasiparticle approach. In this model, quasi-
particle states—obtained in the single-impurity limit—are
occupied thermally according to their quantum statistics.
More precisely, we consider the polaron and molecule
states, given by Eqs. (2) and (3), to be populated according
to the Fermi-Dirac and Bose-Einstein distributions
nF=Bðϵ; TÞ ¼ fexp ½ðϵ − μÞ=T� � 1g−1, respectively. Here,
μ denotes the chemical potential which determines the
impurity density at temperature T via

nIðμ; TÞ ¼
1

V

X
p

fnF½ϵpolðpÞ; T� þ nB½ϵmolðpÞ; T�g: ð19Þ

Note that the impurity temperature and chemical potential μ
are set independently of the bath. Specifically, for all
calculations in this section, μ is tuned to yield an impurity
density of nI ¼ 0.15n at a finite impurity temperature
T ¼ 0.2TF [78].
In Fig. 7, the polaron contribution to the total impurity

density in the initial state is shown as a function of the
interaction strength ðkFaÞ−1. Evidently, in the single-
impurity limit at zero temperature (blue circles) the system
undergoes a sharp transition from a purely polaronic to a
purely molecular state at ðkFaÞ−1 ≈ 1.27.
Still at zero temperature but at finite impurity density

(red squares), the system is purely polaronic up to

ðkFaÞ−1 ≈ 1.1. At this interaction strength the chemical
potential reaches the minimum of the molecular dispersion
and, henceforth, it remains pinned to that value [for an
illustration of this effect, we show in the inset of Fig. 7 the
dispersion relations of polarons (blue line) and molecules
(red line) as well as the impurity chemical potential μ
(black); for a more detailed discussion, see Appendix F].
Accordingly, for 1.1≲ ðkFaÞ−1 ≲ 1.27 molecules begin to
condense in the lowest-lying molecular state while the
polaron Fermi surface shrinks and eventually vanishes at
the polaron-to-molecule transition. In this range of ðkFaÞ−1,
polarons and molecules coexist, even at T ¼ 0. Beyond the
transition, the system forms a molecular condensate within
the bath of the remaining majority atoms.
Finally, at finite temperature (black triangles) polarons

and molecules coexist as a thermal mixture. This blurs the
transition and leads to a smooth interpolation between
polaron and molecule dominated regimes. Note that the
temperatures considered in this work exceed the critical
temperature for Bose-Einstein condensation of molecules,
which thus form a purely thermal gas.

FIG. 7. Calculated polaron contribution. Fraction of impurity
particles propagating as polarons as a function of interaction
strength ðkFaÞ−1. The impurity particles which are not polaronic
are bound to a bath particle, thus forming a molecule. In the
single-impurity limit and T ¼ 0 (blue), there is a sharp transition
between a polaron and a molecule at ðkFaÞ−1c ≈ 1.27. Finite
impurity density (0.15n, red) leads to smoothing of the transition
for ðkFaÞ−1 < ðkFaÞ−1c . When the temperature is increased
(0.2TF, black), the polaronic branch is populated also for
ðkFaÞ−1 > ðkFaÞ−1c and the sharp transition disappears. The inset
shows the polaron (blue line) and molecule (red line) dispersions
for nI ¼ 0.15n and ðkFaÞ−1 ¼ 0.6, along with the chemical
potential at T ¼ 0 (dashed black line) and T ¼ 0.2TF (solid
black line). At T ¼ 0.2TF, polarons and molecules are populated
only by thermal excitations, while at T ¼ 0 the chemical potential
is above the minimum of the polaron dispersion such that a well-
defined polaronic Fermi surface forms.
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In our calculations, we only occupy quasiparticle states
with an infinite lifetime and finite quasiparticle weight.
This ensures that the initial state has an infinite lifetime as
expected for an equilibrium state, and also that the
quasiparticle picture remains valid. As a consequence,
we cut off the quasiparticle populations of the polaronic
and molecular states at momenta where they no longer
feature poles on the real frequency axis.
For the polaron, this momentum cutoff occurs when the

energy becomes positive or jαp0 j2 vanishes. For the mol-
ecule, however, this cutoff occurs when the dispersion
intersects the continuum of states delimited by a parabola
of the form ðjpj − kFÞ2. In fact, this condition causes the
slight dent in the polaron contribution at ðkFaÞ−1 ≈ 0.4
visible in Fig. 7, as beyond that value molecules have a
well-defined dispersion for all momenta and thus do not
have a cutoff. Similarly, for the polaron its cutoff condition
changes at around ðkFaÞ−1 ≳ 0.3. We note that in order to
accurately incorporate states with a finite lifetime or
continuum states, a solution of the full imbalanced problem
would be necessary.
As discussed in Sec. III, we compute the Raman spectra

given by Eq. (5) for finite impurity density and temperature
by summing the single-impurity Raman spectra over all
impurity momenta, weighted by their occupation proba-
bility. The single-impurity Raman spectra are obtained by
computing the matrix elements hfjV̂Rjii in Eq. (4) for the
Ansätze Eqs. (2) and (3). This yields

Aðω;ψp
PÞ

¼ jαp0 j2δ½ω − εpþq̄ þ ϵpolðpÞ�
þ
X
k;q

0jαpk;qj2δ½ω − εpþq̄þq−k − εk þ εq þ ϵpolðpÞ�

ð20Þ
for the polaron, and

Aðω;ψp
MÞ

¼
X
k

0jβpkj2δ½ω − εk − εp−kþq̄ þ ϵmolðpÞ þ εF� ð21Þ

for the molecule. These expressions make explicit the three
contributions that make up the many-body Raman spec-
trum as we have discussed in the previous sections, namely
a coherent and incoherent polaron part as well as a
molecular part. Note that our Raman spectra are normalized
such that they sum to unity once integrated over frequency
ω. As discussed in Sec. III, in Fig. 3, we exemplarily show
many-body Raman spectra for three ðkFaÞ−1 across the
transition. In the following, we describe how such Raman
spectra give access to quasiparticle properties in the regime
of finite impurity concentration.
The polaron Z factor can be obtained from the self-

energy of the impurity via Zp ¼ j1 − ∂ωΣðω;pÞjω¼ωp
j−1,

where ωp is a pole in the retarded Green’s function of
the quasiparticle at momentum p [79]. The momentum-
dependent weight Zp can, alternatively, be obtained from
the overlap of the noninteracting wave function with the
interacting one, Zp ¼ jαp0 j2 [80]. In the molecular state, the
impurity is bound to a bath particle, leading to a vanishing
Z factor in the thermodynamic limit [38].
Similar to the single-impurity quasiparticle residue, Z̄ is

given by the spectral weight of the coherent part of the
Raman spectra (blue shaded area in Fig. 3). It can be
calculated from the single-impurity residues via

Z̄ ¼ 1

NI

X
p

Zp · nF½ϵpolðpÞ; T�: ð22Þ

As evident in Fig. 8(a), in the single-impurity limit Z̄
features a sharp jump at the polaron-to-molecule transition
where it drops to zero as the polaron is not populated
anymore. Importantly, in this limit Z̄ reduces to the zero-
momentum polaron residue, Z̄ ¼ Z0, before the transition.
At finite impurity density and T ¼ 0, this jump is smoothed

(a)

(b)

FIG. 8. Calculated quasiparticle weight and contact. The
quasiparticle weight (a) and contact coefficient (b) are shown
for different interaction strengths. In the single-impurity limit
(blue), the transition between polaron and molecule at ðkFaÞ−1 ≈
1.27 leads to a sharp jump between the polaronic and molecular
residues and contacts. As in Fig. 7, at T ¼ 0 and finite impurity
density (0.15n, red) the transition is smoothed, and eventually
blurred at finite impurity density and temperature (0.2TF, black).
The inset in (b) shows a magnification around the transition point.
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with the many-body weight again dropping to zero at the
transition.
At finite temperature and density, the transition is com-

pletely blurred with Z̄ being lowered on the polaronic side
compared to T ¼ 0 and the single impurity limit. This is due
to the circumstance that, first, some impurity particles are
propagating as molecules with a vanishing residue and,
second, also finite-momentum polarons with a lower residue
Zp < Z0 contribute to the many-body weight Z̄.
As shown in Fig. 5, the predicted smooth behavior of the

many-body weight Z̄ is consistent with the experimental
observation. The overestimation of the theoretical values
for Z̄ in the polaron-dominated interaction regime for
ðkFaÞ−1 ≲ 0.4 can be attributed to several reasons.
Firstly, the single-impurity polaron weight Z will be
reduced when higher-order terms are included in the wave
function Ansatz Eq. (2). Secondly, due to the neglect of
finite-lifetime molecular states, the polaron contribution in
the initial state is overestimated. Thirdly, the disregard of
finite-lifetime polarons leads to an effective population
transfer to low-momenta polaron states which, again,
results in a higher quasiparticle weight.
The large-frequency behavior of the single-impurity and

many-body Raman spectra is governed by a power law
proportional to the Tan contact C (see Sec. V). Based on the
single-impurity coefficients (Appendix G), the many-
impurity contact coefficient of the full many-body spectrum
is determined by

C ¼
X
p

Cpol½p; ϵpolðpÞ� · nF½ϵpolðpÞ; T�

þ
X
p

Cmol½p; ϵmolðpÞ� · nB½ϵmolðpÞ; T�: ð23Þ

The contact C is shown in Fig. 8(b) as a function of
ðkFaÞ−1 at finite impurity density for T > 0 and T ¼ 0,
along with the prediction in the single-impurity limit at
T ¼ 0. As can be seen, these scenarios differ significantly
only around the polaron-to-molecule transition. While the
single-impurity limit features a discontinuity, already the
finite density graph at T ¼ 0 shows a smooth transition
between the polaronic and molecular contacts. At finite
temperature this transition is further blurred. This is in line
with the experimental observation shown in Fig. 5, where
the measured data are compared to the trap-averaged,
theoretical prediction for C (solid black line).

VII. DISCUSSION

In this work, we have investigated the attractive Fermi
polaron problem at finite impurity density and temperature,
employing a novel Raman spectroscopy technique. The
main advantage of this approach compared to rf spectros-
copy is that the momentum transfer imparted by the two-
photon transition is significant relative to the atomic

momentum. As a result, Raman spectroscopy allows us
to directly probe the previously inaccessible momentum
distribution of polarons. In order to maintain a good signal-
to-noise ratio when working at a low impurity density, we
additionally employ a high-sensitivity fluorescence detec-
tion scheme with which we can reliably measure signals of
only a few atoms [56]. This allows us to probe the polaron-
to-molecule transition at finite impurity density in previ-
ously unattainable regimes.
To extract physical quantities from the data, we have

developed a simple fitting model that leverages the sepa-
ration of the Raman spectra into two contributions: the
nearly symmetric coherent polaron response and an asym-
metric background arising from the incoherent response of
polarons and from molecules. From the measured Raman
spectra we obtain the polaron energy, the quasiparticle
spectral weight, and the contact parameter.
In order to gain a better understanding of our measure-

ments, we have devised a theoretical model based on a
variational description of polarons and molecules that takes
into account finite impurity density and temperature. The
physical picture that arises from our experimental and
theoretical observations is intriguing: All measured quan-
tities show a smooth transition with no sudden changes
around the predicted polaron-to-molecule transition. As we
show theoretically, this is explained by the population of
polarons and molecules at finite momenta, resulting from
the finite impurity density and temperature. The excellent
agreement between the theoretical model and the exper-
imental data strongly suggests a coexistence phase of
polarons and molecules around the interaction strength
where the first-order transition in the single-impurity limit
takes place. We stress that this coexistence region and the
smooth transition from polarons to molecules is a general
characteristic of any realistic scenario where many impu-
rities are present.
To interpret our experimental data we have employed a

quasiparticle theory, in which the many-body Hilbert space
of impurity particles is spanned by single-particle states
obtained from variational wave functions. The approximate
nature of this approach is reflected by the fact that polarons
and molecules are effectively created by composite impu-
rity-bath operators that maintain their respective commu-
tation relations only approximately. Correspondingly, both
impurity-induced correlations between majority fermions,
as well as quasiparticle interactions (polaron-polaron,
polaron-molecule, and molecule-molecule), induced by
the Fermi sea, are neglected. The accurate inclusion of
such correlation effects, which could, for instance, describe
an instability of a Fermi polaron gas toward p-wave
superfluidity [81,82], presents a formidable theoretical
challenge. While the finite density of impurities can be
included in quantum field theory approaches, the system-
atic study of polaron-polaron interactions requires the
inclusion of extended sets of vertex functions [48,83,84]
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that are beyond the reach of mean-field approximations.
Similarly, the development of wave-function-based
approaches that systematically include a finite number of
impurities is challenging. Here, a major task is the inclusion
of higher-order particle-hole excitations that become cru-
cial not only in order to account for induced correlations,
but also to ensure that the polaron dressing of each
individual impurity is fully accounted for [85].
While the development of such approaches remains an

outstanding challenge, it holds promise to shed further light
on the nature of the phase diagram of highly imbalanced
quantum gases [47–49]. Our findings suggest that close to
the interaction where the polaron-to-molecule transition
takes place, polarons and molecules coexist when the
temperature is above the critical temperature of molecular
Bose-Einstein condensation. At lower temperatures, the
phase diagram is not yet understood and contrasting
predictions have been made. On the one hand, at zero
temperature, the polaron-to-molecule transition marks the
end point of a fermionic polaron phase, where its finite
Fermi surface volume vanishes and a polarized superfluid
phase consisting of molecules is expected to take over
[38,86]. On the other hand, considering the strong atom-
dimer interactions close to the transition point [87], it has
been predicted that the system might become unstable
toward phase separation between superfluid and normal
phases [49]. The application of Raman spectroscopy in an
imbalanced Fermi gas at lower temperature [88] and
homogeneous traps [89–92] might help to distinguish these
scenarios and allow one to experimentally determine, e.g.,
the transition temperature toward phase separation.
Furthermore, away from the transition point a plethora of

phases has been discussed in the literature, ranging from p-
wave pairing of polarons to the Fulde, Ferrell, Larkin and
Ovchinnikov (FFLO) phase [46,47,93,94]. Interestingly,
our results in the impurity limit already hint at some of
these possibilities. As shown in Fig. 3, we find that excited
molecules in the polaronic regime feature a dispersion
relation with a minimum at finite momentum (see also
Refs. [33,95] and a recent discussion in Ref. [44]). This
effect may be regarded as a precursor of the long-sought-
after FFLO phase in the imbalanced BEC-BCS crossover
[93,94,96–98], which emerges due to the macroscopic
occupation of such molecular states at finite momentum.
Intriguingly, our calculation of the momentum-resolved
spectral function of polarons shows that they as well feature
a rotonlike minimum at finite momentum in their excited
state. This raises the question of whether these finite-
momentum states can be prepared in a controlled way,
which could subsequently lead to the formation of a
metastable, nonequilibrium polaron gas with a nontrivial
Fermi surface topology [99,100].
One possibleway to study these questions is the extension

of Raman spectroscopy to Raman injection spectroscopy.
Similar to rf injection spectroscopy [31,32,101,102], the

system is initially prepared in a weakly interacting state and
driven to a state where impurities strongly interact with their
environment. Thus, with Raman injection one can prepare
polarons at a specific momentum. This enables a direct
measurement of key polaron properties, such as the momen-
tum-dependent effective mass, residue, and lifetime. In
addition, Raman injection could potentially facilitate the
population and observation of the elusive finite-momentum
polaron andmolecular states as precursors of exotic phases in
the BEC-BCS crossover. Moreover, Raman injection may
also provide a promising means to probe unoccupied
excitation branches of the spectral function [65]. Such
experiments could enable the controlled study of the
momentum relaxation rate of polarons, which is currently
investigated as a pathway for the realization of polaron-
polariton-induced optical gain in two-dimensional semi-
conductor heterostructures [103].
Finally, in cold atom experiments, both fermionic and

bosonic impurities can be implemented. This opens the
exciting perspective of studying the fate of the polaron-to-
molecule transition in highly imbalanced Bose-Fermi
mixtures. This question has recently become the focus
of experimental and theoretical studies of interacting
exciton-electron gases in two-dimensional transition-metal
dichalcogenides [104], where the coexistence between
molecular exciton-electron bound trion states and Fermi
polarons may lead to novel electronic and optical properties
[15–17,105–107].
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APPENDIX A: LOCAL DENSITY
APPROXIMATION FOR
SPIN-IMBALANCED GAS

To account for the nonuniform atomic density, we
compare measurements to average quantities calculated
in the LDA. To this end, we assume that the distribution of
the majority atoms is not affected by the presence of the
minority atoms; hence it can be calculated as for non-
interacting fermions. The minority density distribution
nIðrÞ is calculated by taking into account the interactions
with the majority atoms through a renormalization of the
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confining potential: V2ðrÞ ¼ V1ðrÞð1 − ϵ0pol=εFÞ, where
V1ðrÞ is the potential felt by the majority atoms [108].
We neglect the weak interactions between polarons [109].
The expected value of any observable A is then given
by the minority-weighted local density average: hAi ¼
½R d3rAðrÞnIðrÞ=

R
d3rnIðrÞ�. Note that when we compare

experimental results to theory as a function of ðkFaÞ−1, the
Fermi wave vector kF is that of the trap, namely the local kF
at the center of the trap.

APPENDIX B: DEPENDENCE OF THE
COHERENT SPECTRUM PEAK ON THE
TRANSFERRED PHOTON MOMENTUM

In this Appendix, we examine the correlation between
the peak position of the coherent polaronic spectrum and
the energy of the zero-momentum attractive polaron. As
experimentally observed in Ref. [11], at finite impurity
density there is a temperature-dependent shift of the rf
spectrum peak position relative to the zero-momentum
polaron energy. Our theoretical model captures correctly
this phenomenon and shows that it is absent in Raman
spectroscopy.
In order to calculate this shift, we compute the peak

position of the coherent polaron contribution [first term of
Eq. (20) within Eq. (5)] as a function of the photon transfer
momentum. The results at unitarity, shifted by the recoil
energy, are shown in Fig. 9 for three relevant temperatures.

In rf spectroscopy (q̄ → 0), we find that the peak is shifted
to energies lower than the zero-momentum polaron energy
(ϵpol, dashed line). As the photon transfer momentum
increases, however, this shift rapidly vanishes. Already
for q̄≳ 0.1kF, a value easily reached in Raman spectros-
copy experiments even with a small angle between the
Raman beams, the shift is negligible. This establishes a
major advantage of Raman spectroscopy over conventional
rf spectroscopy.
In the inset of Fig. 9, we calculate the shift in the rf

spectroscopy peak at unitarity as a function of temperature, at
finite impurity density. The calculated rf shift initially
decreases and then increases with temperature. This non-
monotonic dependence follows the trend of the initial-to-
final state energy gap at themaximally populatedmomentum
value. Interestingly, even without considering a finite-
temperature reservoir, we find that for Tp ≳ 0.1TF, the shift
increases with temperature, as observed in Ref. [11] and
discussed in Refs. [43,110–112].

APPENDIX C: RAMAN TRANSITION RATE
OF THE COHERENT POLARON
CONTRIBUTION IN THE LDA

In this Appendix, we provide more detail on the
derivation of the Raman rate for the coherent polaron
contribution under the LDA.
Equation (10) gives the rate for a homogeneous system.

Here, we treat the case of a harmonically trapped gas. The
occupation averaged coherent response is given by

Γ̄cohðωÞ¼
2πΩ2

e

V

Z
d3r

X
k

Acohðω;kÞ

×nF

�
ϵpolðkÞ−μþm

2
ω2
ho

�
1−

ϵ0pol
εF

�
r2;Tp

�
; ðC1Þ

where Acohðω;kÞ is given in Eq. (8), and ωho ¼
ϵF=ð6NÞ1=3 denotes the geometrically averaged harmonic
trapping frequency. In cylindrical coordinates the integral
over k within Eq. (C1) decomposes into a two-dimensional
integral of k⊥ over directions perpendicular to q̄ and an
integral over kq̄ along the direction of q̄. The condition
imposed by the δ function within Acoh is then given by

k2q̄ þ k2⊥
2

�
1

m
−

1

m�

�
þ kq̄q̄

m
− ω − ϵ0pol þ

q̄2

2m
¼ 0; ðC2Þ

and can be solved for kq̄.
At low temperatures and for most interaction strengths,

we find that kð1 −m=m�Þ ≪ q̄ for momenta which are not
suppressed by the Fermi distribution. We thus neglect the
first term proportional to ð1 −m=m�Þ in Eq. (C2) when
evaluating the δ function in Eq. (C1). Carrying out the
integrations in Eq. (C1) we then obtain that

FIG. 9. Coherent spectral peak position at unitarity. Using the
full many-body model for the Raman spectra [first term of
Eq. (20)], we plot the coherent peak position versus transferred
photon momentum for polaron temperatures Tp ¼ 0.1TF (blue
circles), 0.15TF (red squares), and 0.2TF (black triangles) at
ðkFaÞ−1 ¼ 0 with nI ¼ 0.15n. We observe convergence to the
zero-temperature value ϵpol ¼ −0.6066εF (dashed line) for pho-
ton momentum transfer larger than 0.1kF. Specifically, with
Raman spectroscopy in our experiment (q̄ ¼ 1.9kF), no shift is
expected. Inset: temperature dependence of the spectral peak
position with conventional rf spectroscopy (q̄ ¼ 0).
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Γ̄cohðωÞ ¼ 2πmΩ2
eNcohnP½kq̄ðωÞ�=q̄; ðC3Þ

where nP½k� is given in Eq. (12) and kq̄ðωÞ is given in

Eq. (11). Correspondingly, the fugacity ζP ¼ e−ðϵ
0
pol−μÞ=Tp

within Eq. (12) is set by the normalization
R
dωΓ̄cohðωÞ ¼

2πΩ2
eNcoh, which gives

Li3ð−ζ2Þ ¼ −
xZ̄
6

�
εFðεF − ϵ0polÞ

m�
m T2

p

�3=2
: ðC4Þ

APPENDIX D: RAMAN TRANSITION RATE OF
THE INCOHERENT POLARONIC AND

MOLECULAR CONTRIBUTIONS

Here we derive the response of a thermal ensemble of
molecules, each of which is made of a single impurity and a
single bath particle and considered to be in vacuum. As a
wave function Ansatz for the molecule, we use

jψkc:m:i ¼
X
l

γkc:m:
l c†−ld

†
lþkc:m:

j0i: ðD1Þ

Note that the only difference from Eq. (3) is that, here, we
do not consider the Fermi sea of background particles. This
simplification is made in order to obtain a closed-form
expression for the fitting function which is feasible to
calculate numerically. Using Eq. (D1) as the initial state jii
for Eq. (4), one obtains

Aðω;ψkc:m:Þ

¼
X
l

jγkc:m:
l j2δ

�
ω−εl−εkc:m:−lþq̄þEbþ

k2c:m:

4m

�
: ðD2Þ

The variational parameter γkc:m:
l has to be obtained by the

minimization of hψkc:m: jH − Ejψkc:m:i. Within this calcula-
tion the relative momentum after the Raman dissociation is
given by krel ¼ lþ ðkc:m: þ q̄Þ=2. After changing varia-
bles l to krel, evaluating the δ function implements the
energy conservation of Eq. (14). The probability FðkrelÞ of
Eq. (15) is then given directly by the matrix element
jγkc:m:

krel−ðkc:m:þq̄Þ=2j2. Averaging the Raman spectral function

over all momenta kc:m: weighted by a thermal Boltzmann
distribution yields

ĀðωÞ ¼
Z

d3kc:m:Aðω;ψkc:m:Þ · Gðkc:m:; TbgÞ: ðD3Þ

The final expression in Eq. (16) is obtained by subsequent
integration of kc:m: over directions perpendicular to q̄.

APPENDIX E: VALIDATION OF THE FITTING
MODEL

In this Appendix, we discuss the applicability of our
fitting model, i.e., Eqs. (13) and (16), to the Raman spectra
of the impurity problem. To this end, we compare the two
parts of the fitting function to theoretical calculations.
Coherent polaron response.—In Fig. 10 we present a

comparison between the first part of the fitting model,
namely Pcoh (dashed lines), and the full solution of our
theoretical model introduced in Sec. III (solid lines). As can
be seen, the approximation is excellent at unitarity and at
ðkFaÞ−1 ¼ 0.3. Closer to the predicted transition, minor
differences develop at kq ≈ kF. There are two causes to this
behavior. First, the increase of m� leads to a small
asymmetry. Second, the polarons do not populate high-
momentum states since the width of the excitation branch
increases dramatically as the momentum increases, leading
to a narrowing of the theoretical Raman spectrum.
Importantly, the center peak position coincides for both
spectra, which allows us to use Eq. (17) for the extraction
of ϵ0pol.
Background signal.—Here, we analyze the applicability

of the second part of our fitting function, Pbg, to fit the
background spectrum that combines the incoherent and
molecular contributions. In Fig. 11, we compare the best fit
of Pbg to the background signal, as calculated by the full
many-body model. Overall they match well, especially at
high frequencies. The difference at low frequencies stems
from the neglect of the majority specie’s Fermi surface in
the fitting model.

FIG. 10. Comparison of coherent part Raman spectra. Using the
full many-body model for the Raman spectra [first term of
Eq. (20), solid lines] and the approximation due to Eq. (13)
(dashed lines), the coherent Raman rate is shown for three
interaction strengths. In these calculations we use the effective
mass and polaron energy obtained from the polaron Ansatz. For
clarity, the second and third graphs from the bottom are shifted by
0.1 and 0.2, respectively.

OBSERVATION OF A SMOOTH POLARON-MOLECULE … PHYS. REV. X 10, 041019 (2020)

041019-15



We should consider systematic errors in extracted
observables that may arise due to this approximation.
Tbg affects almost solely the low-frequency part of the
spectrum. Therefore, it should be chosen to compensate for
the absence of Pauli blocking in our fitting model and
minimize errors in the extracted Z̄. The effective binding
energy Eb, on the other hand, affects mainly the high-

frequency part of the spectrum, where the fit and numerical
data are in excellent agreement.
We find the optimal value for Tbg by fitting theoretical

Raman spectra of the background signal (incoherent
polaron and molecule) due to Eq. (5) at eight interaction
strengths. In Fig. 12, we plot the fit results for the
quasiparticle residue, obtained with four exemplifying
values of Tbg. The effect of varying Tbg is a systematic
shift of the residue. The inset of Fig. 12 presents the root-
mean-square difference between the simulated and the
fitted quasiparticle residue as a function of the fixed value
for the effective temperature. We observe a minimal
discrepancy at Tbg ≈ 2TF. Figure 12 clearly shows that
even at suboptimal values of Tbg, the qualitative behavior of
Z̄ does not change. The reason for this is that Z̄ measures
the spectral weight of the roughly symmetric peak, and
therefore it is rather insensitive to variations in the fitting
procedure.

APPENDIX F: SETTING THE CHEMICAL
POTENTIAL

In this Appendix, we elaborate on the behavior of the
chemical potential with respect to the polaron and molecule
dispersions, intending to highlight the mechanism by which
the bands are populated. Throughout this paper, we tune the
chemical potentials such that under application of Eq. (19)
the respective densities are reproduced, which means that
the polaron and the molecule are populated according to
fermionic and bosonic statistics, respectively.
Tuning the chemical potential μ → −∞ yields a vanish-

ing density. As the chemical potential is increased, the two
bands begin to be populated accordingly such that a small
impurity density begins to form. Tuning the chemical
potential further, eventually it will reach the minimum of
the lower-lying dispersion. If the polaron dispersion is
lower lying, it may surpass the minimum, effectively
forming a Fermi surface. Tuning even further, the chemical
potential will reach the minimum of the molecule
dispersion. As we populate according to bosonic statistics,
at sufficiently low temperature, the molecules will thus
begin to condense in the corresponding state and a
molecular BEC will form within the fermionic bath. The
chemical potential may therefore not surpass this minimum
and will remain pinned to it even for larger impurity
densities.
In Fig. 13 the energy gap between the chemical potential

and the lowest-lying polaronic (triangles, dashed lines) and
molecular (circles, solid lines) states is shown for different
interaction strengths. We show this gap for the case of a
single impurity (blue), at finite density (nI ¼ 0.15n) and
T ¼ 0 (red), as well as at finite density and finite temper-
ature (T ¼ 0.2TF, nI ¼ 0.15n, black). In the single-impu-
rity limit, the chemical potential is tuned to the minimum of
ϵpolðpÞ below the transition and to the minimum of ϵmolðpÞ

FIG. 11. Comparison of background Raman spectra. Using the
full many-body model for the Raman spectra [incoherent and
molecular terms in Eq. (5), solid lines] and the approximation
obtained by fitting the simplified model Eq. (13) to the theoretical
spectra (dashed lines), Raman spectra are shown for three
interaction strengths. For clarity, the second and third graphs
from the bottom are shifted by 0.02 and 0.04, respectively.

FIG. 12. Fitting simulated background Raman spectra with
fixed effective temperature Tbg. The black line denotes the
homogeneous many-body quasiparticle weight computed for
T ¼ 0.2TF, x ¼ 0.15. Error bars mark the fitted residue using
an effective temperature of 0.2TF (yellow diamonds), TF (blue
circles), 2TF (black triangles), and 4TF (red squares). Inset: root-
mean-square deviation of the extracted residue from the com-
puted one, exhibiting a minimal deviation at approximately 2TF,
the value we use for fitting the experimental data.

GAL NESS et al. PHYS. REV. X 10, 041019 (2020)

041019-16



above. Thus, below the transition the gap of the molecular
dispersion marks the energy gap between the polaronic
ground state and the excited molecular state, and vice versa
above the transition.
At finite density and zero temperature, below the

transition a Fermi surface of polarons forms. When the
chemical potential approaches the lowest-lying molecular
state (solid line, red) at around ðkFaÞ−1 ≈ 1.1 molecules
begin to condense. Beyond the transition, the polaronic
Fermi surface vanishes (positive energy gap) and all
impurities condense in the molecular ground state. At
finite temperature, a polaronic Fermi surface forms initially
[ðkFaÞ−1 ≲ 0.2], but eventually the polaron and the mol-
ecule are both populated thermally, as visible from their
positive energy gaps. Note that the lowest point of the
dispersion relations does not necessarily lie at p ¼ 0.

APPENDIX G: SINGLE-IMPURITY CONTACT
COEFFICIENTS

Here we provide generalized expressions for the single-
impurity contact at finite momentum, as derived for p ¼ 0
in Refs. [38,113]. They read

Cpol½p; ϵpolðpÞ�

¼ 1

V

X
q
0 m2jαp0 j2
j 1U − 1

V

P0
k

1
ϵpolðpÞ−εk−εq−kþpþεq

j2 ðG1Þ

for the polaron, and

Cmol½p; ϵmolðpÞ�

¼ m2

�
1

V

X
k

0
				 1

ϵmolðpÞ þ εF − εk − εpþk

				2
�
−1

ðG2Þ

for the molecule. From this, the full many-body contact
coefficient C can be calculated via Eq. (23).
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