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Many applications of quantum simulation require one to prepare and then characterize quantum states by
efficiently estimating k-body reduced density matrices (k-RDMs), from which observables of interest may
be obtained. For instance, the fermionic 2-RDM contains the energy, charge density, and energy gradients
of an electronic system, while the qubit 2-RDM contains the spatial correlation functions of magnetic
systems. Naive estimation of such RDMs requires repeated state preparations for each matrix element,
which makes for prohibitively large computation times. However, commuting matrix elements may be
measured simultaneously, allowing for a significant cost reduction. In this work, we design schemes for
such a parallelization with near-optimal complexity in the system size N. We first describe a scheme to
sample all elements of a qubit k-RDM using only Oð3k logk−1 NÞ unique measurement circuits, an
exponential improvement over prior art. We then describe a scheme for sampling all elements of the
fermionic 2-RDM using only OðN2Þ unique measurement circuits, each of which requires only a local
OðNÞ-depth measurement circuit. We prove a lower bound of Ωðϵ−2NkÞ on the number of state
preparations, Clifford circuits, and measurement in the computational basis required to estimate all
elements of a fermionic k-RDM, making our scheme for sampling the fermionic 2-RDM asymptotically
optimal. We finally construct circuits to sample the expectation value of a linear combination of ω
anticommuting two-body fermionic operators with onlyOðωÞ gates on a linear array. These circuits allows
for sampling any linear combination of fermionic 2-RDM elements in OðN4=ωÞ time, with a significantly
lower measurement circuit complexity than prior art. Our results improve the viability of near-term
quantum simulation of molecules and strongly correlated material systems.
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I. INTRODUCTION

The advent of variational methods, most notably the
variational quantum eigensolver [1,2], inspires hope that
useful contributions to our understanding of strongly corre-
lated physical and chemical systems might be achievable in
pre-error-corrected quantum devices [3]. Following this
initial work, much progress has gone into lowering
the coherence requirements of variational methods [4],
calculating system properties beyond ground state energies
[5–7], and experimental implementation [8–11]. However,
extracting data from an exponentially complex quantum
state is a critical bottleneck for such applications. Initial
estimates for the number of measurements required to
accurately approximate the energy of a variationally gen-
erated quantumstatewere astronomically large,with bounds

for quantum chemistry applications as high as 1013 for a
system of 112 spin orbitals in minimal basis [12]. Although
improving these results is critical for the scalability of
variational approaches, until recently, little effort has been
devoted to lowering the number of measurements needed.
A common way to estimate the energy of a quantum state

during a variational quantum algorithm is to perform partial
tomography [2] on a set of observables which comprise
a k-body reduced density matrix (k-RDM) [13] [14]. For
instance, the fermionic 2-RDM allows one to calculate such
properties as energy [14], energy gradients [7,15], and
multipole moments [16] of electronic systems in quantum
chemistry and condensed matter problems, and further
enables techniques for relaxing orbitals to reduce basis
error [5,17]. By contrast, the qubit 2-RDM plays a vital role
in spin systems, as it contains static spin correlation
functions that can be used to predict phases and phase
transitions [18], and separately contains information to
characterize the entanglement generated on a quantum
device [19]. Reduced density matrices thus offer a useful
and tractable description of an otherwise complex quan-
tum state.
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Partial tomography to estimate a reduced density matrix
may be performed by separating the observables to be
tomographed into sets of mutually commuting operators.
By virtue of their commutation, a unique measurement
scheme may be found to measure all operators in a single
set simultaneously. Subsequent measurement of noncom-
muting operators requires repreparation of the quantum
state, so the time required to estimate a target RDM is
proportional to the number of unique measurement circuits.
Minimizing this number is crucial for the scalability of
variational algorithms, as a naive approach requires OðN4Þ
unique measurement circuits, which is impractical. Recent
work has focused on mapping this problem to that of clique
finding or coloring of a graph [20], and applying approxi-
mate algorithms to these known NP-hard problems [21].
These schemes achieves constant or empirically determined
linear scaling improvements over an approach that mea-
sures each term individually [20,22–25]. However, the
commutation relations between local qubit or local fer-
mionic operators has significant regularity not utilized in
naive graph-theoretic algorithms. Leveraging this regularity
is critical to optimizing and proving bounds on the
difficulty of tomography of quantum states.
In this work, we provide schemes for the estimation

of fermionic and qubit k-RDMs that minimize the number
of unique measurement circuits required, significantly

decreasing the time required for partial state tomography
over prior art. We demonstrate a scheme to estimate qubit
k-RDMs in an N-qubit system in timeOð3k logk−1 NÞ [26],
achieving an exponential increase over prior art. We then
prove a lower bound of ΩðNkÞ on the number of state
preparations required to estimate fermionic k-RDMs (such
as those of interest in the electronic structure problem)
using Clifford circuits (including the addition of ancilla
qubits prepared in the j0i state) and measurement in the
computational basis. We describe protocols to achieve this
bound for k ≤ 2. We detail measurement circuits for these
protocols with circuit depths of OðNÞ and gate counts of
OðN2Þ (requiring only linear connectivity) that additionally
allow for error mitigation by symmetry verification [27,28].
Finally, we detail an alternative scheme to measure arbi-
trary linear combinations of fermionic k-RDM elements
based on finding large sets of anticommuting operators.
This scheme requires OðN4=ωÞ measurements but has a
measurement circuit gate count of only OðωÞ on a linear
array for a free parameter ω < N.
In Table I, we provide a history of previous work in

optimizing measurement schemes for the electronic struc-
ture problem and include the new results found in this
work. We further include the lower bounds for the number
of partitions required for the anticommuting and commut-
ing clique cover approaches that are presented in this work.

TABLE I. A history of ideas reducing the measurements required for estimating the energy of arbitrary basis chemistry Hamiltonians
with the variational quantum eigensolver. Here, N represents the number of spin orbitals in the basis, and ω is defined in the text. We use
the shorthand “comm.” and “acomm.” for commuting and anticommuting, respectively. The “partitions” column counts the number of
unique circuits required to generate at least one sample of each term in the Hamiltonian. Gate counts and depths are given in terms of
arbitrary one- or two-qubit gates restricted to the geometry of two-qubit gates specified in the connectivity column. The “classical cost”
column reports the overhead to determine the partitions for a given Hamiltonian. In the “RDM” column we report whether the technique
is able to measure the entire fermionic 2-RDM with the stated scaling, or just a single expectation value (e.g., of the Hamiltonian). In the
“sym.” column we report whether any symmetries of the system commute with all measurements made. Here, “Num.” refers to the
number operator, and “Par.” the global fermion parity. When these operators commute with the given measurements they may be
simultaneously measured, enabling strategies for error mitigation by postselection at zero additional cost.

Ref. Partitioning method Circuits based on Partitions Gate count Depth Classical cost Connect. RDM Sym.

[2] Comm. Pauli heuristic � � � OðN4Þ � � � � � � Oð1Þ � � � � � � � � �
[8] Compatible Pauli heuristic Single rotations OðN4Þ N 1 Oð1Þ Linear Yes No
[14] n-representability constraints Single rotations OðN4Þ N 1 Oð1Þ Linear No No
[29] Mean-field partitioning Fast feed-forward OðN4Þ OðNÞ OðNÞ OðN3Þ Full No No
[20] Compatible Pauli clique cover Single rotations OðN4Þ N 1 OðN8 − N12Þ Linear Yes No
[22] Comm. Pauli graph coloring Stabilizer formalism OðN3Þ � � � � � � � � � Full No No
[25] Acomm. Pauli clique cover Pauli evolutions OðN3Þ OðN2 logNÞ � � � OðN8 − N12Þ Full No No
[23] Comm. Pauli clique cover Symplectic subspaces OðN3Þ OðN2=logNÞ � � � OðN8 − N12Þ Full No No
[30] Basis rotation grouping Givens rotations OðNÞ N2=4 N=2 O(N4 logðNÞ) Linear No Num.
[24] Comm. Pauli clique cover Stabilizer formalism OðN3Þ OðN2Þ � � � OðN8 − N12Þ Full Yes No
[31] Comm. Pauli clique cover Stabilizer formalism OðN3Þ OðN2Þ � � � OðN8 − N12Þ Full Yes No
[32] Acomm. Pauli clique cover Pauli evolutions OðN3Þ OðN3=2 logNÞ � � � OðN8 − N12Þ Full No No
Here Comm. Majorana pairs Majorana swaps OðN2Þ N2=2 N OðN2Þ Linear Yes Par.
Here Acomm. Majoranas Majorana rotations OðN4=ωÞ ω ω=2 OðN4=ωÞ Linear No Par.
Here 2-RDM partition bound � � � ΩðN2Þ � � � � � � � � � � � � � � � � � �
Here Acomm. clique bound � � � ΩðN3Þ � � � � � � � � � � � � � � � � � �

BONET-MONROIG, BABBUSH, and O’BRIEN PHYS. REV. X 10, 031064 (2020)

031064-2



II. BACKGROUND

Physical systems are characterized by local observables.
However, the notion of locality depends on the exchange
statistics of the system in question. In an N-qubit system,
data about all k-local operators within a state ρ are given by
the (qubit) k-reduced density matrices, or k-RDMs [14]

kρi1;…;ik ¼ Trj≠i1;…;ik ½ρ�: ð1Þ
Here, the trace is over all other qubits in the system.
To estimate kρ, we need to estimate expectation values
of all tensor products of k single-qubit Pauli operators
Pi ∈ fX; Y; Zg; we call such tensor products “k-qubit”
operators. In an N-fermion system, data about all k-body
operators are contained in the (fermionic) k-body reduced
density matrices, which are obtained from ρ by integrating
out all but the first k particles [14]

kD ¼ Trkþ1;…;N ½ρ�: ð2Þ
Estimating kD requires estimating the expectation values
of all products of k fermionic creation operators c†j with k
fermionic annihilation operators cj. For instance, the 2-
RDM catalogs all four-index expectation values of the
form hc†pc†qcrcsi. One can equivalently describe fermionic
systems in the Majorana basis,

γ2j ¼ cj þ c†j ; γ2jþ1 ¼ iðc†j − cjÞ; ð3Þ
in which case the fermionic k-RDMmay be computed from
the expectation values of 2k-Majorana terms γj (e.g., the
2-RDM is computed from expectation of Majorana
operators of the form hγiγjγkγli). We call such products
2k-Majorana operators for short.
The expectation values of the above operators may be

estimated with standard error ϵ by Oðϵ−ϵÞ repeated prepa-
ration of ρ and direct measurement of the operator. This
estimation may be performed in parallel for any number of
k-qubit operators P̂i or 2k-Majorana operators Ĝi, as long
as all operators to be measured in parallel commute. This
suggests that the speed of a “partial state tomography”
protocol that estimates expectation values of all k-qubit or
2k-Majorana operators by splitting them into a set of
“commuting cliques” (sets where all elements commute)
is proportional to the number of cliques required. In this
work, we focus on optimizing partial state tomography
schemes by minimizing this number. Necessarily, our
approach is different for qubit systems (where two spatially
separated operators always commute) compared to fer-
mionic systems (where this is often not the case).

III. NEAR-OPTIMAL MEASUREMENT SCHEMES
FOR LOCAL QUBIT AND FERMION OPERATORS

Partial state tomography of qubit k-RDMs can be
efficiently performed by rotating individual qubits into the

X, Y, or Z basis and reading them out. These rotations
define a “Pauli word” W ∈ fX; Y; ZgN , where Wi is the
choice of basis for the ith qubit. Repeated sampling of W
allows for the estimation of expectation values of any Pauli
operator P that is a tensor product of some of the Wi—
we say these operators are contained within the word.
(The set of all such P’s is the clique corresponding to W
with the property that each P is qubitwise commuting
with the rest of operators in the word W.) To estimate
the k-qubit RDM in this manner, we need to construct a set
of words that contain all k-local operators. For k ¼ 2, it is
sufficient to find a set of words W ∈ fA0; A1gN such that
each pair of qubits differ in their choice of letter in at least
one word. Then, permuting over A0 ¼ X, Y, Z, and
separately A1 ¼ X, Y, Z extends the set to contain all
two-qubit operators. Such a set can be found via a binary
partitioning scheme for a total of 6dlogNe þ 3 cliques
(see the Appendix A for details). This scheme may be
further extended to arbitrary k > 2 with a complexity
O(3klogk−1ðNÞ). The (classical) computational complexity
to generate each word is at most O( logðNÞ), and OðNÞ to
assign each qubit, making the classical computational cost
to generate the set of measurements OðekN logk NÞ, which
is acceptably small for even tens of thousands of qubits. We
add code to generate the full measurement protocol to the
OpenFermion software package [33].
Fermionic k-RDMs require significantly more measure-

ments to tomograph than their qubit counterparts, as many
more operators anticommute. In an N-fermion system, the
total number of 2k-Majorana operators is ð2N

2kÞ, while the
size of a commuting clique of 2k-Majorana operators
may be upper-bounded by ðNkÞ in the N ≫ k limit (see
Appendix B). As fermionic k-RDMs contain expectation
values of 2k-Majorana operators, the number of cliques
required to estimate all elements in the fermionic k-RDM
scales as

�
2N
2k

���
N
k

�
∼ Nk: ð4Þ

In terms of the resources requirement to estimate a
fermionic k-RDM, this bound directly implies
Theorem 1. The number of preparations of an arbi-

trary N-fermion quantum state ρ required to estimate all
terms in the fermionic k-RDM to within an error ϵ via
Clifford operations (including addition of ancilla qubits
prepared in the j0i state) and measurement in the
computational basis is bounded below in the worst case
as Ωðϵ−2NkÞ.
Proof details may be found in Appendix H. In particular,

estimating the fermionic 1-RDM requires repeated prepa-
ration of ρ and measurement over at least 2N − 1 unique
commuting cliques, and estimating the fermionic 2-RDM
requires repeat preparation and measurement over a
number of cliques at least
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4

3
N2 −

8

3
N þ 1: ð5Þ

Maximally sized cliques of commuting 2k-Majorana
operators may be achieved via a pairing scheme. If we
pair the 2N individual 1-Majorana operators into N pairs
fγiγjg, the corresponding set of operators iγiγj forms a
commuting set. Any product of k of these pairs will also
commute, so the set of all combinations of k pairs is a
commuting clique of exactly ðNkÞ 2kMajoranas. We say that
the 2k-Majorana operators are contained within the pairing.
Curiously, each pairing saturates the bounds found in
Appendix B for the number of mutually commuting
2k-Majorana operators in an N-fermion system, and thus,
this scheme is optimal in the number of 2k-Majorana
operators targeted per measurement circuit. However, as
one 2k-Majorana operator may be contained in multiple
pairings, it remains to find a scheme to contain all
2k-Majorana operators in the minimum number of pairings.
For the 1-RDM, it is possible to reach the lower bound of
2N − 1 cliques by a binary partition scheme, which we
detail in Appendix C. In the 2-RDM case, we are able to
achieve 10

3
N2 cliques (also detailed in Appendix C) by a

divide-and-conquer approach. It remains an open question
whether the factor 5=2 between our scheme and the lower
bound [Eq. (5)] can be improved, either by better bounding
or a different scheme.
Simultaneous estimation of the expectation value of each

observable may be achieved by repeatedly preparing and
measuring states in the iγiγj basis for all paired γi, γj in the
clique. Measuring the system in this basis is nontrivial and
depends on the encoding of the fermionic Hamiltonian onto
the quantum device. However, this measurement requires
simply permuting the Majorana labels, which for most
common encodings may be achieved by a single-particle
basis rotation using Clifford gates (see Appendix F). This
implies that the circuit depth should be no worse thatOðNÞ,
and will not require T gates in a fault-tolerant setting.
Furthermore, in many cases the measurement circuit should
be able to be compiled into the state-preparation circuit,
reducing its cost further.
Symmetry constraints on a system (i.e., unitary or

antiunitary operators S that commute with the
Hamiltonian H) force certain RDM terms to be 0 for
any eigenstate of the system. For example, when a real
Hamiltonian is written in terms of Majorana operators
[using Eq. (3)], it must contain an even number of odd-
index 1-Majorana operators, and expectation values of
terms not satisfying this constraint on eigenstates will be
set to 0. More generally, if a symmetry is a Pauli word
Wsymmetry such thatW2

symmetry ¼ 1, then it will divide the set
of all Majorana terms into those which commute with
Wsymmetry and those which anticommute; products of odd
numbers of anticommuting terms will have zero expect-
ation value on eigenstates of the system. Given n such

independent symmetries, each of which commute with half
of all 1-Majorana operators (which is typical), we are able
to contain all elements of the fermionic 2-RDM in a number
of cliques scaling to first order as

N2

�
10

3
4−Nsym þ 21−Nsym

�
: ð6Þ

(See Appendix D for details.) In Fig. 1, we show the result
of an implementation of our scheme for different numbers
of symmetries at small N and see quick convergence to this
leading-order approximation for up to four symmetries
(typical numbers for quantum chemistry problems). Code
to generate this measurement scheme is added to the
OpenFermion package [33].

IV. MEASURING ANTICOMMUTING
LINEAR COMBINATIONS OF LOCAL

FERMIONIC OPERATORS

Products of Majorana and Pauli operators have the
special property that any two either strictly commute or
strictly anticommute. This raises the question of whether
there is any use in finding cliques of mutually anticommut-
ing Pauli operators. Such cliques may be found in abun-
dance when working with Majoranas; e.g., for fixed
0 ≤ j; k; l ≤ 2N, the set Aj;k;l ¼ fγiγjγkγlg is a clique of
2N − 3 mutually anticommuting operators. Curiously, it
turns out that asymptotically larger anticommuting cliques
are not possible; the largest set of mutually anticommuting
Pauli or Majorana operators contains at most 2N þ 1 terms
(see Appendix G for a proof). The number of anticommut-
ing cliques required to contain all 4-Majorana operators is
thus bounded below by ΩðN3Þ, matching the numerical
observations of Ref. [25].
Although sampling each term in an anticommuting clique

A of size L requiresOðLÞ state preparations, it is possible to
measure a (real) linear combination O ¼ P

L
i¼1 ciPi of

FIG. 1. Scaling of our Majorana partitioning scheme in the
presence of between 0 and 4 symmetry constraints on the system.
Dashed lines are from Eq. (6).
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clique elements in a single shot. Since all elements of Aj;k;l

share three of the same four indices, here we can associate
each Pi in the sum over the elements of Aj;k;l with the
Majorana Pi ¼ γiγjγkγl. Given that Õ ¼ ðPL

i¼1 c
2
i Þ−1=2O

looks like a Pauli operator (Õ† ¼ Õ, Tr½Õ� ¼ 0), and smells
like a Pauli operator (Õ2 ¼ 1), it can be unitarily trans-
formed to a Pauli operator of our choosing. In Appendix F,
we show that for systems encoded via the Jordan-Wigner
transformation, this unitary transformation may be achieved
with a circuit depth of onlyN − 2þOð1Þ two-qubit gates. It
is possible to reduce the depth further by removing
Majoranas from the set. If we restrict ourselves to subsets
of ω elements of Aj;k;l, the measurement circuit will have ω
gates and be depthω, butOðN4=ωÞ such sets will be needed
to estimate arbitrary linear combinations of 4-Majorana
operators. This flexibility makes this scheme very attractive
in the near term, where complicated measurement circuits
may be prohibited by low coherence times in near-term
devices.

V. CONCLUSION

Experimental quantum devices are already reaching the
stage where the time required for partial state tomography
is prohibitive without optimized scheduling of measure-
ments. This makes work developing new and more-optimal
schemes for partial tomography of quantum states exceed-
ingly timely. In this work, we show that a binary partition
strategy allows one to sample all k-local qubit operators in
an N-qubit system in poly-logðNÞ time, reaching an
exponential improvement over previous work. By contrast,
in fermionic systems we find a lower bound on the number
of unique measurement circuits required to directly sample
all k-local operators of ΩðNdk=2eÞ, an exponential separa-
tion. We develop schemes to achieve this lower bound
for k ¼ 2 and k ¼ 4, allowing estimation of the entire
fermionic 2-RDM to constant error in OðN2Þ time.
Additionally, we demonstrate that one can leverage the
anticommuting structure of fermionic systems by construct-
ing such sets of size 1 ≤ ω ≤ N to measure all 4-Majorana
operators in OðN4=ωÞ time with a gate count and circuit
depth of only ω, allowing one to trade off a decrease in
coherence time requirements for an increase in the number
of measurements required. We note that during the final
stages of preparing this manuscript, a preprint was posted to
arXiv which independently develops a similar scheme for
measuring k-qubit RDMs [19]. This scheme seems to be
identical to ours for k ¼ 2 but uses insights about hash
functions to generalize the scheme to higher k with scaling
of eOðkÞ logN, which improves over our bound of
Oð3k logk−1NÞ by polylogarithmic factors in N.
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APPENDIX A: SCHEMES FOR PARTIAL STATE
TOMOGRAPHY OF QUBIT k-RDMs

In this section, we develop methods to minimize the
measurement cost for partial state tomography of qubit k-
RDMs by minimizing the number of commuting cliques
needed to contain all k-qubit operators. To do so, we
associate a Pauli word W ∈ fX; Y; ZgN with each clique:
By measuring the ith qubit in the Wi basis, we measure
every tensor product of the individual Pauli operators Wi.
Thus, the clique associated with W contains all k-qubit
operators that are tensor products of the Wi—we say these
operators are “contained” within the word. We then wish
to find the smallest possible set of words such that every
k-qubit operator is contained within at least one word.
We construct such a set through a k-ary partition-

ing scheme, which we first demonstrate for k ¼ 2. As
motivation, consider that the set of nine words (with
A;B ¼ X, Y, Z),

WðA;BÞ
i ¼

�
A if i < N=2;

B if i ≥ N=2
ðA1Þ

contains all two-qubit operators that act on qubits j < N=2
and k ≥ N=2. We may generalize this scheme to obtain all
other two-qubit operators by finding a set of binary
partitions Sn;0 ∪ Sn;1 ¼ f1;…; Ng such that for any pair
0 ≤ i ≠ j ≤ N there exists n, a such that i ∈ Sn;a,
j ∈ Sn;1−a. Let us define L ¼ dlogNe, and write
each qubit index i in a binary representation, i ¼
½i�L−1½i�L−2;…; ½i�1½i�0. Then, for n ¼ 0;…; L − 1 we
define

i ∈ Sn;a if ½i�n ¼ a: ðA2Þ

All 0 ≤ i ≠ j ≤ N differ by at least one of their first L
binary digits [as shown in Fig. 2(a)], so the set of words

WðA;BÞ
n constructed as

½WðA;BÞ
n �; i ¼

�
A if i ∈ Sn;a;

B if i ∈ Sn;1−a
ðA3Þ

defines a set of cliques that contain all two-qubit operators.

As WðA;AÞ
n;i is the same word for every n, we need choose

only this word once, and so the number of cliques may be
reduced to 6Lþ 3.
To see how the above may be extended to k > 2, let us

consider k ¼ 3. We wish to find 3-ary partitions ∪3
a¼1

Sn;a ¼ f1;…; Ng that, given any set i1, i2, i3, we can find
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some index n for which ia ∈ Sn;a (allowing for permutation
of the ia). Then, by running over all combinations of X, Y,
Z on the three parts of each partition, we obtain a set of
words that contain all three-qubit operators. We illustrate a
scheme that achieves this in Fig. 2(b). We iterate first over
n ¼ 1;…; L, and find the largest n such that i1, i2, and i3
are split into two subsets by a binary partition (i.e., where
Sn;a ∩ fi1; i2; i3g is nonempty for a ¼ 0 and a ¼ 1). At this
point, two of the indices lie in one part, and one in the other.
Without loss of generality, let us assume i1 ∈ Sn;1 and
i2; i3 ∈ Sn;0 (following Fig. 2). It now suffices to find a set
of partitions for Sn;0 so that we guarantee i2 and i3 are split
in one such partition. We could imagine repeating the
binary partition scheme over all Sn;0, i.e., generating the
logN sets Sn;0 ∩ Sn0;a; however, we can do better than this.
As i1, i2, and i3 are not split in any binary partition
Sn0;0; Sn0;1 with n0 > n, i2, and i3 must be in a contiguous
block of length 1=2n within Sn;0. This means that we need
iterate only over n0 ¼ 0;…; n − 1. We must also iterate
over the same number of partitions of Sn;1, and so the total
number of partitions we require is

2
XL−1
n¼0

n ¼ ðL − 1ÞðL − 2Þ: ðA4Þ

The above generalizes relatively easily to k > 2. Given a
set I ¼ fi1;…; ikg, we find the binary partition Sn;0; Sn;1
with the largest n that splits I into nonempty sets I0 ¼ I ∩
Sn;0 and I1 ¼ I ∩ Sn;1. Then, we iterate over jI0j-ary
partitions of the contiguous blocks of Sn;0 and the jI1j-
ary blocks of Sn;1. In total, there are k − 1 possible ways
of dividing I (up to permutations of the elements). This
implies that at each n, we have to iterate over k − 1 different
subpartitioning possibilities, making the leading-order
contribution to the number of cliques

ðk − 1Þ
XL−1
n¼0

nk−2 ∼ Lðk−1Þ; ðA5Þ

and the total number of cliques Oð3k logk−1NÞ.

APPENDIX B: UPPER BOUNDS ON THE SIZE
OF COMMUTING CLIQUES OF

MAJORANA OPERATORS

In this Appendix, we detail the bounds on the size of
commuting cliques of Majorana operators. Let us call the
largest number of mutually commuting k-Majoranas that
are a product of l unique terms (i.e., l unique 1-Majoranas)
Mk

l . (For an N-fermion system, we will eventually be
interested in the case where l ¼ 2N.) We wish to bound this
number Mk

l by induction. All 1-Majorana operators anti-
commute, so Mk

l ¼ 1. Then, let us consider the situation
where k is even and when k is odd separately. Suppose we
have a clique of Mk

l k-Majorana operators with k even. As
there are only l unique terms, and these k-Majoranas
contain kMk

l individual terms each, there must be a clique
of dkMk

l =le of these operators that share a single term γ0.
We may write each such operator in the form �γ0Γi, where
Γi. As ½γ0Γi; γ0Γj� ¼ 0 if and only if ½Γi;Γj� ¼ 0, this gives
a clique of kMk

l =l commuting (k − 1)-Majorana operators
on l − 1 unique terms, so we must have

�
kMk

l

l

�
≤ Mk−1

l−1 ; k even: ðB1Þ

Now, consider the case where k is odd, let us again assume
we have a clique of MðkÞ commuting k-Majoranas. Two
products of Majorana operators anticommute unless they
share at least one term in common, so let us choose one
k-Majorana Γ in our set; each k-Majorana must have at least
one of the k terms in Γ, so at least one such term is shared
between dMðkÞ=ke-Majoranas in our set. Removing this
term gives a clique of dMðkÞ=ke (k − 1)-Majorana operators
on l − 1 unique terms, and so we have

�
Mk

k

�
≤ Mk−1

l−1 ; k odd: ðB2Þ

These equations may be solved inductively to lowest order
in k to obtain

Mk
l ∼ lbk=2c: ðB3Þ

This bound can be strengthened in the l ≫ k limit, as
here the largest commuting cliques of odd-k-Majoranas
must share a single term γ0. This can be seen as when k is
odd, large sets of commuting (k − 1)-Majoranas contain
many operators that do not share any terms—a set of k − 1
commuting operators that share a single term can be no

(a)

(b)

FIG. 2. Schematics of the binary partition strategy described in
the main text. (a) Scheme to construct OðlogNÞ cliques that
contain all two-qubit operators. (b) Extension of the top scheme
to a set ofOðlog2 NÞ cliques that contain all three-qubit operators.
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larger than approximately lðk−3Þ=2. Formally, let us consider
a set C of commuting k-Majoranas, choose Γ ∈ C, and
write Γ ¼ γ1;…; γk. Then, we may write C ¼∪iCi, where
Ci is the subset of operators in C that contain γi as a term. If
there exists Γ0 ∈ C=Ci, (i.e., Γ0 commutes with all operators
in Ci but does not itself contain γi), we may divide Ci into k
subsets of Majoranas that share the individual terms in Γ0,
and so jCij ≤ klðk−3Þ=2. If this is true for all such Ci, we
have then jCj ≤ P

i jCij ≤ k2lðk−3Þ=2. As this scales sub-
optimally in the large-l limit, [34] we must have that C=Ci
is empty for some Ci. Then, Ci ¼ C, and we can bound

Mk
l ≤ Mk−1

l−1 ; k odd: ðB4Þ

This leads to the tighter bound (assuming l even)

Mk
l ≤

l!!
ðl − kÞ!!k!! ; ðB5Þ

where the double factorial implies we multiple only the
even integers ≤k. Then, when l ¼ 2N, for even k ¼ 2n
we see

M2n
2N ≤

2N!!

ð2N − 2nÞ!!2n!!

¼ 2NN!

2N−nðN − nÞ!2nn! ¼
N
n

��
ðB6Þ

This is precisely the size of the cliques obtained by pairing,
proving this scheme is optimal in the large-N limit.
In practice, we observe that Eq. (B4) is true for

k ¼ 3 whenever l ≥ lcrit;315 (i.e., for greater that eight-
fermion systems). This is because the largest set of
commuting 3-Majoranas that do not share a single
common element can be found to be (up to relabeling)
fγ0γ1γ2; γ0γ3γ4; γ0γ5γ6; γ1γ3γ5; γ1γ4γ6; γ2γ3γ6; γ2γ4γ5g,
which contains seven terms. The above argument implies
that lcrit;k scales at worst as k2; however, the bounds
obtained here are rather loose, and we expect it to do far
better.

APPENDIX C: DETAILS OF MEASUREMENT
SCHEMES FOR FERMIONIC SYSTEMS

We now construct asymptotically minimal sets of cliques
that contain all 2-Majorana and 4-Majorana operators.
2-Majorana operators that share any term do not commute,
so our commuting cliques of 2-Majorana operators must
contain only nonoverlapping pairs of Majorana terms.
Equivalently, we need to find a set of pairings of
f0;…; 2Ng such that each pair ði; jÞ appears in at least
one pairing. This may be achieved optimally for N a power
of 2 via the partitioning scheme outlined in Fig. 3(a). We
first split f1;…; 2Ng into a set of N2−n contiguous blocks
for n ¼ 0;…; logð2NÞ,

Bn
m ¼ fm × 2n ≤ i < ðmþ 1Þ × 2ng: ðC1Þ

Then, our cliques may be constructed by pairing the ith
element of Bn

2m with the (iþ a)th element of Bn
2mþ1

(modulo 2n), as n runs over 0;…; logðNÞ and a runs over
0;…; 2n − 1. Formally, this gives the set of cliques

Ca;n ≔ fγαγβ; α ¼ ðm2nþ1 þ iÞ;
β ¼ (ð2mþ 1Þ2n þ ½ðiþ aÞ mod 2n�);
m ¼ ð0;…; N2−n − 1Þ; i ¼ ð0;…; 2n − 1Þg; ðC2Þ

with a total number

XlogN
n¼0

2n ¼ 2N − 1 ðC3Þ

matching exactly the lower bound calculated in the main
text. The above technique needs slight modification
when N is not a power of 2 to make sure that when
jBn

2mj ≠ jBn
2mþ1j, unpaired elements are properly accounted

for, but the above optimal scaling may be retained. Code to
generate an appropriate set of pairings is added to the
OpenFermion package [33].
As all operators in one of the above cliques Ca;n

commute, their products commute, and the set

fγiγjγkγl; γiγj; γkγl ∈ Ca;ng ðC4Þ

(a)

(b)

FIG. 3. Schematic of the fermionic partition strategy for
generating cliques that contain all local fermionic operators.
(a) A scheme to pair all indices in f1;…; Ng in OðNÞ time steps.
(b) The two cases to consider in our strategy to contain all
4-Majorana operators in only OðN2Þ cliques.
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is clearly a clique of commuting 4-Majorana operators.
However, each 2-Majorana operator is guaranteed to be in
only one of the cliques Ca;n, so this set of cliques will not
yet contain all 4-Majorana operators. To fix this problem,
we aim to construct a larger set fCαg of cliques of
commuting 2-Majorana operators, such that for every set
γi1 ; γi2 ; γi3 ; γi4 there exists one Cα containing both γiaγib and
γicγid (for some permutation of a, b, c, d ¼ 1, 2, 3, 4). This
set may be constructed by the strategy illustrated in
Fig. 3(b). For each I ¼ i1; i2; i3; i4, choose the smallest n
such that I ⊂ Bn

m for some m. This implies that the fBn
mg

split I into two parts: Ia ¼ I ∩ Bn−1
2mþa, for a ¼ 0, 1, and

jI0j ¼ 1, 2, or 3. Suppose first jI0j ¼ 2, [case 1 in
Fig. 3(b)]. In this case, by iterating over all pairs of
elements in Bn−1

2m and subsequently all pairs of elements
in Bn−1

2mþ1, we at some point simultaneously pair the
elements of I0 and the elements of I1, as required. This
iteration may be performed in parallel for each m, making
the total number of cliques generated at each
n jBn−1

2m j2 ¼ 4n−1. Now, suppose jI0j ¼ 3 (case 2 in Fig. 3),
or jI0j ¼ 1 as the two situations are equivalent. Let n0 < n
be the smallest number such that I0 ⊂ Bn0

m0 for somem0, and
we may split I0 into two sets I0;a ¼ I0 ∩ Bn0−1

2m0þa for a ¼ 0,
1. Of the three elements in I0, two of them must either lie in
I0;0 or I0;1—suppose without loss of generality that
jI0;0j ¼ 2. Then, by iterating over all pairs within Bn0−1

2m0 ,
and all pairs between elements of Bn0−1

2m0þ1
and Bn−1

2mþ1, we at
some point pair both elements in I0;0 and both elements
in I0;1 ∪ I1.
This pairing needs to occur for all n > n0, which implies

we need to iterate over all combinations of pairs between
elements of Bn0−1

2m0þ1
and f1;…; 2Ng=Bn0−1

2m0 (while iterating
over pairs within Bn0−1

2m0 ). This iteration may be performed in
parallel for eachm0 at each n0. First, iterate over all possible
pairings of Bn0

m0
and Bn0

m1
[which requires OðN2−n

0 Þ iter-
ations]. Then, iterate over all pairs between Bn0−1

2m0þa0
and

Bn0−1
2m1þa1

for all combinations of a0; a1 ¼ 0, 1 (requiring

4 × 2n
0−1 iterations). Simultaneously, iterate over all pairs

within Bn0−1
2m0þ1−a0 and Bn0−1

2m1þ1−a1 (requiring again 2n
0−1

iterations). This generates 4 × 4n
0−1 cliques at each n0.

The total number of cliques we then require to contain all
4-Majorana operators using this scheme is

XdlogNe

n0¼1

N2n
0 þ

XdlogNeþ1

n¼1

4n−1 ∼
10

3
N2: ðC5Þ

APPENDIX D: REDUCING OPERATOR
ESTIMATION OVER SYMMETRIES

Given a set fSig ⊂ PN of Nsym mutually commuting
Pauli operators that are symmetries (½Si; H� ¼ 0), we can
simultaneously diagonalize both the Hamiltonian and the
symmetries, implying that we can find a ground state ρ such

that Tr½ρP� ¼ 0 for each P that does not commute with Si.
In the case of a degenerate ground state eigenspace, not all
states will necessarily have this property (as symmetries
may be spontaneously broken). However, any such P will
not appear in the Pauli decomposition of the Hamiltonian,
and so estimation of this RDM term is not necessary to
calculate the energy of the state. The commutation of a
k-Majorana operator Γ with a Pauli operator symmetry Si
may be seen immediately by counting how many of the k
individual terms anticommute with Si; if this number is
even, then ½Γ; Si� ¼ 0. This fact implies that we can
separate individual 1-Majorana operators into bins Bs⃗ with
s⃗ ∈ f0; 1gNsym a commutation label:

γj ∈ Bs⃗ →

�
γjSi ¼ Siγj iff si ¼ 0;

γjSi ¼ −Siγj iff si ¼ 1:
ðD1Þ

Let s⃗ðγjÞ denote the label of the bin γj may be found in,
and we may generalize to all k-Majorana operators
Γ ¼ Q

k
l¼1 γjl :

si

�Yk
l¼1

γjl

�
¼

X
l

siðγjlÞ mod 2: ðD2Þ

To estimate the symmetry-conserved sector of the 2-RDM,
we are then interested in constructing a set of cliques of
4-Majorana operators in B

0⃗
. These operators take the

form γj1γj2γj3γj4 where s⃗ðγj1Þ ¼ s⃗, s⃗ðγj2Þ ¼ s⃗þ δ⃗,

s⃗ðγj3Þ ¼ s⃗þ α⃗, and s⃗ðγj4Þ ¼ s⃗þ α⃗þ δ⃗. (Recall here that

in binary vector arithmetic, a⃗þ a⃗ mod 2 ¼ 0⃗.) We con-
struct cliques for the above in two steps. First, we iterate
over all quadruples within each bin Bs⃗ (using the methods
in Appendix C). This covers all of the above operators
where δ⃗ ¼ α⃗ ¼ 0, and may be done simultaneously with
cost 10

3
B2, where B is the size of the largest bin. Then, we

iterate between bins Bs⃗ and Bs⃗þβ⃗ for all β ∈ f0; 1gNsym with
β0 ¼ 0. Such an iteration achieves all pairs above—either
α0 ¼ 0 (and we pair bins Bs⃗ with Bs⃗þα⃗ when we pair Bs⃗þδ⃗

with Bs⃗þδ⃗þα⃗), or δ0 ¼ 0 (and we pair bins Bs⃗ with Bs⃗þδ⃗

when we pair Bs⃗þα⃗ with Bs⃗þδ⃗þα⃗), or ðδ⃗þ α⃗Þ0 ¼ 0 (and we
pair Bs⃗ with Bs⃗þδ⃗þα⃗ when we pair Bs⃗þα⃗ with Bs⃗þδ⃗). We
must perform this pairing in parallel, i.e., construct a set of
2Nsym−1-tuples by drawing one element from each Bs⃗ ×
Bs⃗þδ such that every two elements appear in at least one
tuple. In Appendix E, we describe how this iteration may be
achieved. The total cost of the above is then
2Nsym−1½B2 þ 2B lnðBÞ þ lnðBÞ2�. It is common for most
symmetries to divide the set of Majoranas in two, in which
case B ¼ 2N × 2−Nsym , and our clique cover size is

N2

�
10

3
4−Nsym þ 21−Nsym

�
þO(N lnðNÞ): ðD3Þ
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We summarize our method in Algorithm 1 [where we use
hðs⃗Þ as the Hamming weight of a binary vector s⃗].

APPENDIX E: PARALLEL ITERATION
OVER PAIRINGS

If we wish to iterate over all pairs of two lists of L
elements each, clearly we must perform at least L2 total
iterations, and the optimal strategy is trivial (two loops).
However, if we wish to iterate over all pairs between K ¼ 3
or more lists of L elements (i.e., generate a set of K-tuples
such that each pair appears as a subset of one tuple), such an
optimal strategy is not so obvious. When K is less than the
smallest factor of L, a simple algorithm works as described
in Algorithm 2. We can see that this algorithm works, for
suppose jk1 þ l ¼ a mod L and jk2þl¼bmodL for two
separate values of j, l, i.e., j1k1 þ l1 ¼ j2k1 þ l2 mod L
and j1k2 þ l1 ¼ j2k2 þ l2 mod L. Then, we have
j1ðk1 − k2Þ ¼ j2ðk1 − k2Þ mod L, and as k1, k2 are smaller
than the lowest factor of L, gcdðk1 − k2; LÞ ¼ 1, imply-
ing j1 ¼ j2. This scheme achieves the optimal L2 total
iterations, although the reliance on K being smaller
than the lowest factor of L is somewhat unsavory.
We hypothesize that the asymptotic L2 is indeed
achievable for all K ≤ L, but we have been unsuccessful
in our search for a construction. Instead, for composite
L, we suggest padding each list to have length L0,
being the first number above L that achieves this
requirement. The prime number theorem implies that
L0 − L ∼ logðLÞ if K ≤ L (as then we require at worst to
find the next prime number). This gives the scheme
runtime L2 þ 2L logðLÞ þ logðLÞ2, which is a relatively
small subleading correction.

APPENDIX F: MEASUREMENT CIRCUITRY
FOR FERMIONIC RDMS

Direct measurement of products of Majorana operators is
amore complicatedmatter thanmeasurement of Pauli words
(which require only single-qubit rotations). However, when
the fermionic system is encoded on a quantum device via the
Jordan-Wigner transformation [35], a relatively easymeasu-
rement scheme exists. Within this encoding, we have

iγ2nγ2nþ1 ¼ Zn; ðF1Þ

so if we can permute all Majorana operators such that each
pair ðγi; γjÞ of Majoranas within a given clique is mapped to
the form ðγ2n; γ2nþ1Þ, theymay be easily read off. To achieve
such a permutation, we note that the Majorana swap gate
Ui;j ¼ eðπ=4Þγiγj satisfies

U†
i;jγkUi;j ¼

8><
>:

γk if i; j ≠ k;

γj if k ¼ i;

−γi if k ¼ j:

ðF2Þ

And so repeated iteration of these unitary rotations may be
used to “sort” the Majorana operators into the desired
pattern. This may be performed in an odd-even search
format [36]. At each step t ¼ 1;…; N, we decide for each
n ¼ 1;…; Nwhether to swapMajoranas 2n and 2nþ 1, and
then whether to swap Majoranas 2n and 2n − 1. Within the
Jordan-Wigner transformation these gates are local,

U2n;2nþ1 ¼ e−iðπ=4ÞZn ; U2n−1;2n ¼ e−iðπ=4ÞYn−1Yn ; ðF3Þ

and so each time step is depth 3, for a total maximum circuit
depth of 3N and total maximum gate depth 3N2. (To see that
onlyN time steps are necessary, note that eachMajorana can
travel up to two positions per time step.) Following the
Majorana swap circuit, all pairs of Majoranas that we desire
to measure will be rotated to neighboring positions and may
then be locally read out. As each Majorana swap gate
commutes with the global parity

Q
2N
i¼1 γi, these operators

will be measurable alongside the clique as the total qubit
parity

Q
N
i¼1 Zi, allowing for error mitigation by symmetry

Algorithm 1. Iterate over symmetry-conserved 2-RDM
elements. Here, iterQuad and pairBetween are described in
Appendix C, and parallelIterate in Algorithm 2.

Construct bins Bs⃗.
quadIter ¼ fg
for s⃗ in f0; 1gNsym do

quadIter½s⃗� ¼ iterQuadðBs⃗Þ
end for
while any iterator in quadIter is not stopped do yield [next
(iterator) for iterator in quadIter if iterator is not stopped]

end while
seriesIterate(quadIter)
for β⃗ in f0; 1gNsym−1, β ≠ 0⃗ do

Left-append 0 to beta [i.e., β ¼ ð0; Þ þ β]
quadIter ¼ fg
for s⃗ in f0; 1gNsym , hðs⃗þ β⃗Þ ≥ hðs⃗Þ do

quadIter½s⃗� ¼ pairBetweenðBs⃗:; Bs⃗þβ⃗Þ.
end for
parallelIterate(quadIter)

end for

Algorithm 2. parallelIterate: Iterate overK lists dataArray½0�;…;
dataArray½K−1� of L elements, generating all pairs between
elements in separate lists. Assumes K is less than the smallest
factor of L.

for j ¼ 0 to L − 1 do
for k ¼ 0 to L − 1 do

thisTuple¼ ½dataArray½k�½jkþ lmod L� for k¼ 0 toK−1�
yield thisTuple

end for
end for
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verification [27,28]. As the above circuit corresponds just to
a basis change, for many variational quantum eigensolvers it
may be precompiled into the preparation itself, negating the
additional circuit depth entirely.
As an alternative to the above ideas, it is possible to

extend the paritioning scheme for measuring all k-qubit
operators to a scheme to sample all fermionic 2-RDM
elements via the Bravyi-Kitaev transformation [37,38].
This transformation maps local fermion operators to
k ¼ OðlogNÞ qubit operators, and so using our approach
the resulting scheme would require Oð3k logk−1 NÞ ¼
ð3 logNÞOðlogNÞ unique measurement. Although this is
superpolynomial, it is a slowly growing function for small
N and also has the advantage that the measurement circuits
themselves are just single-qubit rotations. Furthermore, as
the set of fermion operators is very sparse in the sense that it
has only OðN4Þ terms rather than NOðlogNÞ terms, the
scheme may be able to be further sparsified.
The measurement scheme to transform a sum of anti-

commuting Majorana operators to a single Majorana
operator follows a similar scheme to the Majorana swap
network, but with the swap gates replaced by partial swap
rotations. Let A be a set of anticommuting Majorana (or
Pauli) operators, and then for Pi; Pj ∈ A the (anti-
Hermitian) product PiPj commutes with every element
in A but Pi and Pj itself. This implies that the unitary
rotation eθPiPj may be used to rotate between Pi and Pj

without affecting the rest of A:

e−θPiPjPkeθPiPj ¼

8>><
>>:

Pk if k ≠ i; j;

cosðθÞPi þ sinðθÞPj if k ¼ i;

cosðθÞPj − sinðθÞPj if k ¼ j:

ðF4Þ

This rotation may be applied to remove the support ofO on
individual Pi. For example, if θ1 ¼ tan−1ðc1=c2Þ,

e−θ1P1P2Oeθ1P1P2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ c22

q
P2 þ

XL
i¼3

ciPi: ðF5Þ

We extend this to remove support ofO on each Pi in turn by

choosing θi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j<i c
2
i

q
=ciþ1, and then

�YL−1
i¼1

e−θiPiPiþ1

�
O

�YL−1
i¼1

eθiPiPiþ1

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiX
i

c2i
r

PL: ðF6Þ

Following this measurement circuit,Omay be measured by
reading all qubits in the basis of the final Pauli PL.
Intriguingly, for Pi; Piþ1 ∈ Aj;k;l, we have that PiPiþ1 ¼
γiγiþ1, which maps to a two-qubit operator under the
Jordan-Wigner transformation (as noted previously). This

implies a measurement circuit for these sets may be
achieved with only linear gate count and depth, linear
connectivity, and no additional ancillas. We can slightly
reduce the depth by simultaneously removing the Pi from
the “top” and “bottom”; i.e., we remove P2N−3 by rotating
with P2N−4 at the same time as removing P1 by rotating
with P2, until after exactly N − 2 layers, we have only the
term PN remaining. All generators in this unitary trans-
formation commute with the parity

Q
2N
i¼1 γi, implying that it

remains invariant under the transformation and may be read
out alongside PN . [This circuit may require an additional
Oð1Þ gates if PN is not mapped to products of Zi via the
Jordan-Wigner transformation.]

APPENDIX G: PROOF THAT THE MAXIMUM
SIZE OF AN ANTICOMMUTING CLIQUE OF
PAULI OR MAJORANA OPERATORS IS 2N + 1

We prove this set result in general for the Pauli groupPN ,
and note that as the Jordan-Wigner transformation maps
Majorana operators to single elements of PN , the same is
true for this. We first note that elements within an
anticommuting clique S ⊂ PN may not generate each other;
let

Q
n
i¼1 Pi ¼ Pj ∈ S, and if n is odd ½Pi; Pj� ¼ 0 for any

Pi in the product, while if n is even ½Pk; Pj� ¼ 0 for any Pk

not in the product. (The one exception to this rule is if one
cannot find any such Pk, i.e., when Pj ¼

Q
i≠j;Pi∈S Pi.)

Then, note that each element P ∈ PN commutes with
precisely half of PN and anticommutes with the other half.
This can be seen because a Clifford operation C exists such
that C†PC ¼ Z1, which commutes with all operators of the
form I1P0 and Z1P0 and anticommutes with all operators of
the form X1P0 and Y1P0, and these operators will be
mapped to other Pauli operators when the transformation
is undone.
We may extend this result: A set S ¼ fP1;…; Png of n

nongenerating anticommuting elements in PN splits PN

into 2n subsetsPb⃗ (with b⃗ ∈ Zn
2), whereQ ∈ Pb⃗ commutes

with Pi if bi ¼ 0 (and anticommutes if bi ¼ 1). To see that
all Pb⃗ must be the same, note that given an operator
Q ∈ Pb⃗, PiPjQ ∈ Pb⃗⊕δ⃗i⊕δ⃗j

(as PiPj anticommutes with Pi

and Pj but commutes with all other elements in S), so jPb⃗j
and Pb⃗⊕δ⃗i⊕δ⃗j

are the same size. Similarly, if Q ∈ Pb⃗,

PiQ ∈ Pb⃗⊕1⃗⊕δ⃗i
. If n is even, this is sufficient to connect

each element in Pb⃗ to an element in Pb⃗0 , forcing all to be
the same size. However, if n is odd the above will not
connect Pb⃗ and Pb⃗0 unless jb⃗j ¼ jb⃗0j mod 2. We note that
⋃b⃗;jb⃗j mod 2¼0

Pb⃗ is the set of elements that commute withQ
Pi∈S Pi, and thus must be precisely half of PN . This

proves that the set of operators in PN that anticommute with
all elements in S is of size 4N=2jSj. This must be an integer,
so n ≤ 2N. Then, when n ¼ 2N there is precisely one
element that anticommutes with all operators in S:
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Q
Pi∈S Pi, and we may add this to S to get the largest

possible set of operators. Such a set is unitarily equivalent
to the set of 2N Majorana operators γi and the global
parity

Q
2N
i¼1 γi.

APPENDIX H: PROOF OF THEOREM 1

To bound the number of preparations of a state ρ required
to estimate a fermionic k-RDM, we first establish a
correspondence between the allowed measurement proto-
cols and measurement of a set of commuting Pauli
operators on the original state ρ. As 2k-Majorana operators
are Pauli operators, this implies that an estimate of the
expectation value hΓii of each 2k-Majorana operator Γi
converges with variance

VarðhΓiiÞ ≤
ð1 − hΓiiÞð1þ hΓiiÞ

4Mi
; ðH1Þ

where Mi is the number of preparations and measurements
of ρ in a basis containing Γi. We then show the existence of
a worst-case state for which this upper bound is tight, which
implies that to estimate hΓii with error ϵ we require
Mi ∼ ϵ−2 preparations and measurements of ρ in a basis
containing Γi. To estimate expectation values of all ð2N

2kÞ
2k-Majorana operators to error ϵ, we need for each operator
Mi measurements in a basis containing this operator. As we
establish that our measurement scheme allows only such
measurements in parallel if the operators commute, the
bound derived in Appendix B directly bounds the number
of operators that may be estimated per preparation of ρ to
ðNkÞ, and the result follows by Eq. (4).
We now show that our measurement protocol allows

only for estimation of commuting Pauli operators. By
definition, Clifford operators map Pauli operators to
Pauli operators, so any measurement of a state ρ that
consists of a Clifford circuit UCl and subsequent readout in
the computational basis is equivalent to a measurement
of the commuting Pauli operators fU†

ClZjUClg. (The
same is true of any tensor product fU†

Cl ⊗j ZjUClg ¼
fQj U

†
ClZjUClg on ρ, where the⊗j is taken over any set of

qubits, and the following arguments remain true if Zj is
replaced by ⊗j Zj.) It remains to show that the number of
preparations is unaffected by the addition of Na ancilla
qubits in the j0i state. Under such an addition, we may still
invert the measurement U†

ClZjUCl ¼ Pj;ρ ⊗ Pj;a, where
Pj;rho and Pj;a are Pauli operators on the system and the
ancilla qubits, respectively. By construction, the state is
separable across the bipartition into system and ancilla
qubits, so hPj;ρ ⊗ Pj;ai ¼ hPj;ρihPj;ai. Then, as we require
our ancilla qubits to be prepared in the j0i state, hPj;ai ¼ 0

unless Pj;a is a tensor product of I and Z, in which case
hPj;ai ¼ 1. If hPj;ai ¼ 0, a measurement of Zj does not
yield any information about hPj;ρi, while if hPj;ai ¼ 1,

a measurement of Zj yields exactly the same information as
a direct measurement of Pj;ρ. Then, consider two operators

U†
ClZjUCl ¼ Pj;a ⊗ Pj;ρ and U

†
ClZkUCl ¼ Pk;a ⊗ Pk;ρ. We

have that ½Pj;a ⊗ Pj;ρ; Pk;a ⊗ Pk;ρ� commute, and if
hPj;ai ¼ 1 and hPk;ai ¼ 1, Pj;a and Pk;a commute on a
termwise basis (as they are tensor products if I and Z),
which implies ½Pj;ρ; Pk;ρ� ¼ 0. This shows that the addition
of ancilla qubits in the j0i state cannot be used to
simultaneously measure noncommuting Pauli operators
via Clifford circuits, and our allowed measurements cor-
respond to simultaneous measurement of a set of commut-
ing Pauli operators on ρ, as required.
Finally, we argue for the existence of a state for which

Eq. (H1) is tight. Equation (H1) will not be tight for every
state: by constraining a fermionic k-RDM to the positive
cone of N-representable states, Pauli operators with expect-
ation values close to �1 (and thus, small variance) con-
strain the expectation values of anticommuting operators
near 0 below this limit. This beneficial covariance is of
particular importance when taking linear combinations of
RDM elements, e.g., to calculate energies [30]; however, it
requires a state to have highly nonregular structure, which
in general will not be the case (or known a priori). The
simplest example of an unstructured state is the maximally
mixed state on N fermions; by definition, all measurements
of this state are uncorrelated, and the variance on estimation
of all terms is VarðhΓiiÞ ¼ ð1=4MiÞ, which achieves the
upper bound in Eq. (H1).
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