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The classification and lattice model construction of symmetry-protected topological (SPT) phases in
interacting fermion systems are very interesting but challenging. In this paper, we give a systematic fixed-
point wave function construction of fermionic SPT (FSPT) states for generic fermionic symmetry group

Gf ¼ Zf
2 ×ω2

Gb which is a central extension of bosonic symmetry group Gb (may contain time-reversal

symmetry) by the fermion parity symmetry group Zf
2 ¼ f1; Pfg. Our construction is based on the concept

of an equivalence class of finite-depth fermionic symmetric local unitary transformations and decorating
symmetry domain wall picture, subjected to certain obstructions. We also discuss the systematical
construction and classification of boundary anomalous SPT states which leads to a trivialization of the
corresponding bulk FSPT states. Thus, we conjecture that the obstruction-free and trivialization-free
constructions naturally lead to a classification of FSPT phases. Each fixed-point wave function admits an
exactly solvable commuting-projector Hamiltonian. We believe that our classification scheme can be
generalized to point and space group symmetry as well as continuum Lie group symmetry.
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I. INTRODUCTION

A. The goal of this paper

Topological phases of quantum matter have become a
fascinating subject in the past three decades. The concept
of long-range entanglement and an equivalence class of
finite-depth local unitary (LU) transformation [1] provides
us a paradigm toward classifying and systematically
constructing these intriguing quantum states. It was
realized that the patterns of long-range entanglement
are the essential data to characterize various topological
phases of quantum matter.
In recent years, the research on the interplay between

topology and symmetry also has achieved a lot of fruitful
results. The concept of an equivalence class of finite-depth
symmetric LU (SLU) transformations suggests that, in the
presence of global symmetry, even short-range entangled
(SRE) states still can belong to many different phases if
they do not break any symmetry of the system. (It is well
known that the traditional Landau symmetry-breaking
states are characterized by different broken symmetries.)
Thus, these new SRE states of quantum matter are named

as symmetry-protected topological (SPT) phases [2–4].
Topological insulators [5,6] are the simplest examples of
SPT phases, which are protected by time-reversal and
charge-conservation symmetries.
By definition, all SPT phases can be adiabatically con-

nected to a trivial disorder phase (e.g., a product state or an
atomic insulator) in the absence of global symmetry. In
Ref. [2], it is first pointed out that the well-known spin-1
Haldane chain [7] is actually an SPT phase which can be
adiabatically connected to a trivial disorder phase in the
absence of any symmetry. Thus, SPT phases can always be
constructed by applying LU transformations onto a trivial
product state. Such a special property makes it possible to
systematically construct and classify SPT phases for inter-
acting systems. For example, Refs. [3,4] introduce a sys-
tematic way of constructing fixed-point partition functions
and exactly solvable lattice models for interacting bosonic
systems using group cohomology theory, and it has been
believed that such a construction is fairly complete for
bosonic SPT (BSPT) phases protected by unitary symmetry
up to 3D. Physically, the corresponding fixed-point ground-
state wave functions of such a construction can be regarded
as a superposition of fluctuation symmetry domain walls.
Later, it was pointed out that, by further decorating the E8

state onto the symmetry domain wall [8], the fluctuation
symmetry domain wall picture can actually describe all
BSPT phases, which are believed to be classified by
cobordism theory [9,10]. In Sec. II, we review how to
use the equivalence class of finite-depth SLU transformation
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approach and fluctuation symmetry domain wall picture to
classify and construct all BSPT phases with unitary sym-
metries up to 3D.
Although the SRE SPT phases seem to be not as

interesting as long-range entangled topological phases
due to the absence of bulk fractionalized excitations, the
concept of “gauging” the global symmetry of SPT phases
establishes a direct mapping from SPT phases to intrinsic
topological phases. In fact, it has been shown that different
BSPT phases protected by a unitary symmetry groupG can
be characterized by different types of braiding statistics of
G flux in 2D and different types of the so-called three-loop
braiding statistics of flux lines in 3D [11–22]. Very recently,
it has been further conjectured that all topological phases in
3D interacting systems can actually be realized by “gaug-
ing” certain SPT phases [23,24].
Moreover, the classification of SPT phases in interacting

systems turns out to be a one-to-one correspondence with
the classification of global anomalies on the boundary [25].
For example, anomalous surface topological order is
proposed as another very powerful way to identify and
characterize different 3D SPT phases in interacting systems
[26–37]. In high-energy physics, it is well known that
global anomalies can be characterized and classified by
cobordism (spin cobordism) for interacting boson (fer-
mion) systems; thus, it is not a surprise that the classi-
fication of SPT phases is closely related to cobordism (spin
cobordism) theory [10,20,21].
Despite the fact that great success has been made on the

construction and classification of SPT phases in interacting
boson systems and free-fermion systems, understanding of
SPT phases in interacting fermion systems is still very
limited, especially on the construction of microscopic
models. Previously, a lot of effort has been made on the
reduction of the free-fermion classifications [38–41] under
the effect of interactions [42–49]. On the other hand,
stacking BSPT states onto free-fermion SPT states is
another obvious way to generate some new SPT phases
[34,50]. Apparently, these two approaches miss those
fermionic SPT (FSPT) phases that can be realized neither
in free-fermion systems nor in interacting bosonic systems
[13,51]. Moreover, it has been further shown that certain
BSPT phases become “trivial” (adiabatically connected to a
product state) [34,52] when embedded into interacting
fermion systems. Therefore, a systematical understanding
for the classification and construction of SPT phases in
interacting fermion systems is very desired.
Very recently, based on the concept of an equivalence

class of finite-depth fermionic SLU (FSLU) transformation
and decorated symmetry domain wall picture, a break-
through has been made on the full construction and
classification of FSPT states with a total symmetry Gf ¼
Gb × Zf

2 (where Gb is the bosonic unitary symmetry and
Zf

2 is the fermion parity conservation symmetry) [53].
The fixed-point wave functions generated by FSLU

transformations can be realized by exactly solvable lattice
models, and the resulting classification results all agree
with previous studies in 1D and 2D using other methods
[43,52,54–57]. Most surprisingly, such a completely differ-
ent physical approach precisely matches the potential
global anomaly for interacting fermion systems classified
by spin cobordism theory [10,58–64].
It turns out that the mathematical objects that classify 1D

FSPT phases with a total symmetry Gf ¼ Gb × Zf
2 can be

summarized as two cohomology groups of the symmetry
group Gb: H1ðGb;Z2Þ and H2½Gb;Uð1Þ�, which corre-
spond to the complex fermion decoration on Gb symmetry
domain walls and classification of 1D BSPT phases.
The mathematical objects that classify 2D FSPT phases

with a total symmetry Gf ¼ Gb × Zf
2 are slightly compli-

cated and can be summarized as three cohomology groups of
the symmetry groupGb [55,59]:H1ðGb;Z2Þ, BH2ðGb;Z2Þ,
andH3½Gb;Uð1Þ�.H1ðGb;Z2Þ corresponds to theMajorana
chain decoration on Gb symmetry domain walls. Naively,
one may expect that the complex fermion decorations on the
intersection point of Gb symmetry domain walls should be
described by the data H2ðGb;Z2Þ. However, it turns out
that such a decoration scheme suffers from obstructions, and
only the subgroup BH2ðGb;Z2Þ classifies valid and inequi-
valent 2D FSPT phases. More precisely, BH2ðGb;Z2Þ is
defined by n2 ∈ H2ðGb;Z2Þ that satisfy Sq2ðn2Þ ¼ 0

in H4½Gb;Uð1Þ�, where Sq2 is the Steenrod square oper-
ation, Sq2∶HdðGb;Z2Þ → Hdþ2ðGb;Z2Þ [65]. Finally,
H3½Gb;Uð1Þ� is the well-known classification of BSPT
phases.
Similarly, the mathematical objects that classify 3D

FSPT phases with a total symmetry Gf ¼ Gb × Zf
2 can

also be summarized as three cohomology groups of the
symmetry group Gb [53,62]: B̃H2ðGb;Z2Þ, BH3ðGb;Z2Þ,
and H4

rigid½Gb;Uð1Þ�. As a subgroup of H2ðGb;Z2Þ,
B̃H2ðGb;Z2Þ corresponds to the Majorana chain decora-
tion on the intersection lines of Gb symmetry domain walls
subject to much more subtle and complicated objections
related to discrete spin structure. Again, as a subgroup of
H3ðGb;Z2Þ, BH3ðGb;Z2Þ corresponds to the complex
fermion decoration on the intersection points of Gb

symmetry domain walls. And it is formed by elements n3 ∈
H3ðGb;Z2Þ that satisfy Sq2ðn3Þ ¼ 0 in H4½Gb;Uð1Þ�.
Finally, H4

rigid½Gb;Uð1Þ�≡H4½Gb;Uð1Þ�=Γ4 corresponds
to stable BSPT phases when embedded into interacting
fermion systems. We note that Γ4 is a normal subgroup of
H4½Gb;Uð1Þ� generated by ð−ÞSq2ðn2Þ, where n2 ∈
H2ðGb;Z2Þ and ð−ÞSq2ðn2Þ are viewed as elements of
H4½Gb;Uð1Þ�. Physically, Γ4 corresponds to those trivial-
ized BSPT phases when embedded into interacting fermion
systems.
In this paper, we aim to generalize the above construc-

tions and classifications of FSPT phases to generic
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fermionic symmetry group Gf ¼ Zf
2 ×ω2

Gb, which is a
central extension of bosonic symmetry group Gb (may
contain time-reversal symmetry) by the fermion parity
symmetry group Zf

2 ¼ f1; Pfg. We show that the equiv-
alence class of finite-depth FSLU transformation and
decorated symmetry domain wall picture still applies for
generic cases, subjected to much more complicated
obstruction conditions. Moreover, we also clarify the
physical meaning of obstruction by introducing the notion
of anomalous SPT (ASPT) states [66], that is, a new kind of
SPT state that can be realized only on the boundary of
certain SPT states in one dimension higher. Meanwhile,
this notion also implies that the corresponding bulk
SPT states are actually trivialized. Finally, we show that,
if Gb is time-reversal symmetry, an additional layer of
pþ ip topological superconducting state decoration on
the symmetry domain wall leads to new FSPT states,
which is the analogy of decorating the E8 state onto the
symmetry domain wall for BSPT phases with time-reversal
symmetry [8].

B. Some generalities of fermionic symmetry groups

For a fermionic system with total symmetry group Gf,
there is always a subgroup: the fermion parity symmetry
group Zf

2 ¼ f1; Pf ¼ ð−1ÞFg, where F is the total

fermion number operator. The subgroup Zf
2 is in the center

of Gf, because all physical symmetries should not change
the fermion parity of the state, i.e., commute with Pf.

Therefore, we can construct a quotient group Gb ¼ Gf=Z
f
2 ,

which we call the bosonic symmetry group.
Conversely, for a given bosonic symmetry group Gb,

there are many different fermionic symmetry groups Gf,

which is the central extension of Gb by Zf
2. We have the

following short exact sequence:

1 → Zf
2 → Gf → Gb → 1: ð1Þ

Different extensions Gf are specified by 2-cocycles
ω2 ∈ H2ðGb;Z2 ¼ f0; 1gÞ. This result is the reason why
we denote Gf as Zf

2 ×ω2
Gb. The group element gf of Gf

has the form gf ¼ ðPnðgÞ
f ; gbÞ ∈ Zf

2 ×Gb, with nðgÞ ¼ 0, 1.

We may also simply denote it as gf ¼ PnðgÞ
f gb. And the

multiplication rule in Gf is given by

gf · hf ¼ ðPnðgÞ
f ; gbÞ · ðPnðhÞ

f ; hbÞ
≔ ðPnðgÞþnðhÞþω2ðgb;hbÞ

f ; gbhbÞ; ð2Þ

where we have PnðgÞþnðhÞþω2ðgb;hbÞ
f ∈ Zf

2 and gbhb ∈ Gb.
The associativity condition of g · h · k (g; h; k ∈ Gb) gives
rise to the cocycle equation for ω2:

ðdω2Þðg; h; kÞ ≔ ω2ðh; kÞ þ ω2ðgh; kÞ þ ω2ðg; hkÞ
þ ω2ðg; hÞ ¼ 0 ðmod 2Þ: ð3Þ

We omit the subscript of gb and use merely g to denote the
group element of Gb henceforth. One can also show that
adding coboundaries to ω2 gives rise to isomorphic Gf.
Therefore, ω2 is an element in H2ðGb;Z2Þ and classifies
the central extension ofGb byZ

f
2. Note that there is another

constraint for ω2 as ω2ðe; gÞ ¼ ω2ðg; eÞ ¼ 0 (e is the
identity element of Gb).
Another ingredient of the symmetry group is associated

with time-reversal symmetry which is antiunitary. We can
use a function s1 with

s1ðgÞ ¼
�
0; g is unitary;

1; g is antiunitary
ð4Þ

to indicate whether g ∈ Gb is antiunitary or not. The
function s1 is a group homomorphism from Gb to Z2

because of the property

ðds1Þðg;hÞ≔ s1ðhÞþ s1ðghÞþ s1ðgÞ¼ 0 ðmod 2Þ: ð5Þ

So s1 can also be viewed as a 1-cocycle in H1ðGb;Z2Þ.
Let us consider some examples. The superconductor

with time-reversal symmetry T2 ¼ Pf (T2 ¼ −1 when
acting on single-fermion states) has bosonic symmetry
group Gb ¼ ZT

2 ¼ fe; Tg and fermionic symmetry group
Gf ¼ ZTf

4 ¼ Zf
2 ×ω2

ZT
2 . In terms of our language, the

2-cocycle ω2 and 1-cocycle s1 have nonzero values
ω2ðT; TÞ ¼ 1 and s1ðTÞ ¼ 1, respectively. They are non-
trivial cocycles in H2ðZT

2 ;Z2Þ¼Z2 and H1ðZT
2 ;Z2Þ ¼ Z2,

respectively. By choosing different ω2 and s1, we have
three other fermionic symmetry groups Gf: Zf

2 × Z2

(trivial ω2 and trivial s1), Z
f
4 ¼ Zf

2 ×ω2
Z2 (nontrivial ω2

and trivial s1), and Zf
2 × ZT

2 (trivial ω2 and nontrivial s1).
We calculate the classifications of FSPT phases with these
four fermionic symmetry groups in Appendix E 2.

C. Summary of main results

1. Summary of data and equations

As discussed above, to specify the total symmetry
group Gf of a fermionic system, we have a 1-cocycle
s1 ∈ H1ðGb;Z2Þ which is related to time-reversal sym-
metry and a 2-cocycle ω2 ∈ H2ðGb;Z2Þwhich tells us how
Gb is extended by Zf

2. They satisfy the (mod 2) cocycle
equations:

ds1 ¼ 0; ð6Þ

dω2 ¼ 0: ð7Þ
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Given the input information of the total symmetry group
Gf (i.e., Gb with s1 and ω2), we summarize the classi-
fication data, symmetry conditions, consistency equations,
and extra coboundary (states trivialized by ASPT state in
one lower dimensions) for FSPT states in different physical
dimensions in Eqs. (8)–(19) (see also Table I for the
classification data and Table II for the physical meanings
of the consistency equations).
We note that the cochains nd ∈ CdðGb;Z2Þ, nd−1 ∈

Cd−1ðGb;Z2Þ, and nd−2 ∈ Cd−2ðGb;ZTÞ describe the dec-
orations of 0D complex fermions, 1D Kitaev chains, and
2D pþ ip superconductors (SCs) in the d-spatial dimen-
sion model, respectively. In 1D, it is possible only to
decorate a complex fermion onto the Gb symmetry domain
wall, and the constraint dn1 ¼ 0 is nothing but the fermion
parity conservation requirement for a valid FSLU trans-
formation. In 2D, it is possible to decorate both a Majorana
chain onto the Gb symmetry domain wall and a complex
fermion onto the intersection point ofGb symmetry domain
walls. In order to construct FSPT states, we must decorate a
closed Majorana chain onto the Gb symmetry domain wall,
and this constraint implies dn1 ¼ 0. Again, fermion parity
conservation of FSLU transformation requires that
dn2 ¼ ðω2 þ s1⌣n1Þ⌣n1. In 3D, it is even possible to
decorate a 2D pþ ip SC state onto the Gb symmetry
domain wall ifGb contains antiunitary symmetry. However,
in order to construct such FSPT states, we must require
that there is no chiral Majorana mode on the intersection
lines of Gb symmetry domain walls. Furthermore, dn2 ¼
ðω2 þ s1⌣n1Þ⌣n1 corresponds to the absence of a free

Majorana fermion on the intersection points of Gb sym-
metry domain walls, and dn3 ¼ ðω2 þ n2Þ⌣n2 þ s1⌣
ðn2⌣1n2Þ again corresponds to fermion parity conserva-
tion of FSLU transformation. Finally, the bosonic Uð1Þ-
valued phase factor νdþ1 ∈ Cdþ1½Gb;Uð1ÞT � must satisfy
the so-called twisted cocycle condition dνi ¼ Oiþ1, which
is generated by fixed-point conditions of FSPT wave
functions. We note that the bosonic layer data νdþ1 without
a superscript always mean the inhomogeneous cochain in
the twisted cocycle equation. The homogeneous cochain is
obtained by a symmetry action and may have additional
sign factors. There is also a symmetry action on the first
term of the coboundary definition in dνdþ1. Because time-
reversal symmetry has nontrivial actions on both ZT and
Uð1ÞT , there is an exponent 1 − 2s1ðg0Þ ¼ �1 for the first
term of dνdþ1.
Based on the above decoration construction, we can

obtain the FSPT classifications by solving the consistency
equations layer by layer as shown in Table II. The solutions
of these equations can be used to construct FSPT states.
And the final classifications are obtained from these data by
quotient some subgroups. We note that Bi are the coboun-
dary subgroups defined for the corresponding cochain
groups Ci in the usual sense. The trivialization subgroups
Γi of the classification data correspond to the states that are
trivialized by boundary ASPT states. In d spatial dimen-
sions, the Uð1Þ factor νdþ1 in Γdþ1 corresponds to a BSPT
state trivialized by fermions [52]. The complex fermion
decoration data nd in the next layer Γd are trivialized by
boundary ASPT states with Kitaev chains [66]. And the

TABLE I. Layers of classification data. The cochains nd ∈ CdðGb;Z2Þ, nd−1 ∈ Cd−1ðGb;Z2Þ, and nd−2 ∈
Cd−2ðGb;ZTÞ describe the decorations of 0D complex fermions, 1D Kitaev chains, and 2D pþ ip superconductors
(SCs) in the d-spatial dimension model, respectively. And νdþ1 ∈ Cdþ1½Gb;Uð1ÞT � is the bosonicUð1Þ phase factor
in the wave function, which is related to the group cohomology classification of BSPT phases in d-spatial
dimension. There is also n0 data in each dimension, if we want to classify fermionic invertible topological orders.
We omit these n0 states in this paper, for they do not need anyGb symmetry protection. But they are important in the
trivialization group which will be discussed below.

Data\dim 1D 2D 3D

C1ðGb; ·Þ n1 Complex fermion n1 Kitaev chain n1 pþ ip superconductor
C2ðGb; ·Þ ν2 Phase factor n2 Complex fermion n2 Kitaev chain
C3ðGb; ·Þ � � � � � � ν3 Phase factor n3 Complex fermion
C4ðGb; ·Þ � � � � � � � � � � � � ν4 Phase factor

TABLE II. Consistency equations and their physical meanings for each layers. The physical meanings of the twisted equations (of the
form dni ¼ Oiþ1 or dνi ¼ Oiþ1) are given in the last column of the table. The explicit expressions of O4½n2� and O5½n3� are given in
Eqs. (136) and (220), respectively.

Layers\dim 1D 2D 3D Physical meanings

pþ ip SC � � � � � � dn1 ¼ 0 No chiral Majorana mode
Kitaev chain � � � dn1 ¼ 0 dn2 ¼ ðω2 þ s1⌣n1Þ⌣n1 No free Majorana fermion
Complex fermion dn1 ¼ 0 dn2 ¼ ðω2 þ s1⌣n1Þ⌣n1 dn3 ¼ ðω2 þ n2Þ⌣n2 þ s1⌣ðn2⌣1n2Þ Fermion parity conservation
Phase factor dν2 ¼ ð−Þω2⌣n1 dν3 ¼ O4½n2� dν4 ¼ O5½n3� Twisted cocycle equation
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Kitaev chain decoration data nd−1 in Γd−1 are trivialized
by boundary ASPT states with 2D pþ ip chiral
superconductors.
A subtle trivialization subgroup is Γ4, which trivializes

some 3D BSPT states in H4½Gb;Uð1ÞT � [see Eq. (19)].
Depending on whether the corresponding 2D ASPT state
has pþ ip superconductor components or not, Γ4 can be
divided into two parts: Γ4 ¼ Γ4

n0¼0 ∪ Γ4
n0≠0. The first one

Γ4
n0¼0 is related to the ASPT state with boundary Majorana

chain n1 and complex fermion n2 decorations [see the last
line of Eq. (19) for the expression]. In this subgroup, the 2D
ASPT state satisfies dn2 ¼ O3½n1� in Eq. (14), and the 3D
BSPTwith 4-cocycle O4½n2� in Eq. (136) becomes a trivial
3D FSPT state. The second part Γ4

n0≠0 is related to n0 ≠ 0

layers of pþ ip superconductors as 2D ASPT states. By
gauging fermion parity, one can derive a complicated
expression for Γ4

n0≠0 [67]. To the best of our knowledge,
so far there is no known example of Gf corresponding to a
nontrivial solution of Γ4

n0≠0. Therefore, it is possible that
Γ4
n0≠0 is always trivial for realistic physical systems, and we

study the full derivation of Γ4
n0≠0 elsewhere.

Our FSPT classification results in different spatial
dimensions are summarized below.

1D: ðn1; ν2Þ.—

n1 ∈ H1ðGb;Z2Þ;
ν2 ∈ C2½Gb;Uð1ÞT �=B2½Gb;Uð1ÞT �=Γ2: ð8Þ

n1ðgg0; gg1Þ ¼ n1ðg0; g1Þ ¼ n1ðg−10 g1Þ;
ν2ðg; ga; gabÞ ¼ gν2ða; bÞ

¼ ν2ða; bÞ1−2s1ðgÞ · ð−1Þðω2⌣n1Þðg;a;bÞ:

ð9Þ

dn1 ¼ 0;

dν2 ¼ ð−1Þω2⌣n1 : ð10Þ

Γ2 ¼ fð−1Þω2 ∈ H2½Gb;Uð1ÞT �g: ð11Þ

2D: ðn1; n2; ν3Þ.—

n1 ∈ H1ðGb;Z2Þ;
n2 ∈ C2ðGb;Z2Þ=B2ðGb;Z2Þ=Γ2;

ν3 ∈ C3½Gb;Uð1ÞT �=B3½Gb;Uð1ÞT �=Γ3: ð12Þ

n1ðgg0; gg1Þ ¼ n1ðg0; g1Þ ¼ n1ðg−10 g1Þ;
n2ðgg0; gg1; gg2Þ ¼ n2ðg0; g1; g2Þ ¼ n2ðg−10 g1; g−11 g2Þ;

ν3ðg; ga; gab; gabcÞ ¼ gν3ða; b; cÞ ¼ ν3ða; b; cÞ1−2s1ðgÞ ·Osymm
4 ðg; ga; gab; gabcÞ ½see Eq:ð129Þ�: ð13Þ

dn1 ¼ 0;

dn2 ¼ ω2⌣n1 þ s1⌣n1⌣n1;

dν3 ¼ O4½n2� ½see Eq:ð137Þ�: ð14Þ

Γ2 ¼ fω2 ∈ H2ðGb;Z2Þg;
Γ3 ¼ fð−1Þω2⌣n1 ∈ H3½Gb;Uð1ÞT �jn1 ∈ H1ðGb;Z2Þg: ð15Þ

3D: ðn1; n2; n3; ν4Þ.—
n1 ∈ H1ðGb;ZTÞ;
n2 ∈ C2ðGb;Z2Þ=B2ðGb;Z2Þ=Γ2;

n3 ∈ C3ðGb;Z2Þ=B3ðGb;Z2Þ=Γ3;

ν4 ∈ C4½Gb;Uð1ÞT �=B4½Gb;Uð1ÞT �=Γ4: ð16Þ

n1ðg; gaÞ ¼ gn1ðe; aÞ ¼ gn1ðaÞ ¼ ð−1Þs1ðgÞn1ðaÞ;
n2ðgg0; gg1; gg2Þ ¼ n2ðg0; g1; g2Þ ¼ n2ðg−10 g1; g−11 g2Þ;

n3ðgg0; gg1; gg2; gg3Þ ¼ n3ðg0; g1; g2; g3Þ ¼ n3ðg−10 g1; g−11 g2; g−12 g3Þ;
ν4ðg; ga; gab; gabc; gabcdÞ ¼ gν4ða; b; c; dÞ ¼ ν4ða; b; c; dÞ1−2s1ðgÞ ·Osymm

5 ðg; ga; gab; gabc; gabcdÞ ½see Eq:ð212Þ�:
ð17Þ
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dn1 ¼ 0;

dn2 ¼ ω2⌣n1 þ s1⌣n1⌣n1;

dn3 ¼ ω2⌣n2 þ n2⌣n2 þ s1⌣ðn2⌣1n2Þ;
dν4 ¼ O5½n3� ½see Eq:ð221Þ�: ð18Þ

Γ2 ¼ fω2⌣n0 ∈ H2ðGb;Z2Þjn0 ∈ H0ðGb;ZTÞg;
Γ3 ¼ fω2⌣n1 þ s1⌣n1⌣n1 þ ðω2⌣1ω2Þbn0=2c ∈ H3ðGb;Z2Þjn1 ∈ H1ðGb;Z2Þ; n0 ∈ H0ðGb;ZTÞg;
Γ4 ¼ fO4½n2� ½see Eq:ð137Þ� ∈ H4ðGb;Uð1ÞTÞjn2 satisfying Eq:ð120Þ for some n1 ∈ H1ðGb;Z2Þg ∪ Γ4

n0≠0: ð19Þ

2. Summary of classification examples

Using the above data, we calculate the classifications for
FSPT phases with several simple symmetry groups. They
are summarized in Table III. Some of the derivations are
given in Appendix E. In particular, we calculate the
classifications for 2D FSPT phases with arbitrary unitary
finite Abelian group Gf in Appendix E 1. Our results are
exactly the same as that in Ref. [13], which uses a totally
different approach by investigating the braiding statistics of

the gauge flux. The calculations for 3D FSPT phases with
arbitrary unitary finite Abelian group Gf are given in
Ref. [68]. The results are also consistent with 3D loop
braiding statistics approaches. We calculate the classifica-
tions of FSPT phases for the four fermionic symmetry
groups with Gb ≅ Z2 in Appendix E 2. They are also
consistent with previously known results. As an example of
non-Abelian Gf, we calculate the FSPT phases with

quaternion group symmetry Gf ¼ Qf
8 in Appendix E 3.

TABLE III. Classifications of FSPT phases with some simple fermionic symmetry group Gf in different spatial
dimensions. Invertible topological orders protected by Zf

2 only are not included in this table.

Gfn dim 1 2 3

Zf
2 × Z2

Z2 Z8 Z1

Zf
2 × Z2kþ1

Z1 Z2kþ1 Z1

Zf
2 × Z2k

Z2

�
Z4k × Z2; k even
Z8k; k odd

Z1

Zf
2 × Z2 × Z2

Z3
2 Z2

8 × Z4 Z2
2

Zf
2 × Z2 × Z4

Z3
2 Z2

8 × Z3
2

Z4 × Z2

Zf
2 × Z2 × Z8

Z3
2 Z16 × Z8 × Z3

2
Z8 × Z2

Zf
2 × Z4 × Z4

Z2
2 × Z4 Z2

8 × Z4 × Z3
2 Z2

4 × Z2

Zf
2 × Z4 × Z8

Z2
2 × Z4 Z16 × Z8 × Z4 × Z3

2
Z8 × Z4 × Z2

Zf
2 × Z2 × Z2 × Z2

Z4
2 Z3

8 × Z3
4 × Z2 Z8

2

Zf
2 × Z2 × Z2 × Z4

Z4
2 Z3

8 × Z4 × Z6
2 Z3

4 × Z5
2

Zf
2 × Z2 × Z4 × Z4

Z4
2 Z3

8 × Z4 × Z8
2 Z4

4 × Z6
2

Zf
2k ðk ¼ 2n ≥ 2Þ Z1 Zk=2 Z1

Zf
4 × Z2

Z2 Z4 Z2

Zf
4 × Z4

Z4 Z8 × Z2 Z2

Zf
8 × Z2

Z2 Z4 × Z2 Z4

Zf
4 × Z2 × Z2

Z3
2 Z2

4 × Z2
2 Z5

2

Zf
4 × Z2 × Z4

Z4 × Z2
2 Z8 × Z4 × Z3

2 Z4 × Z4
2

Zf
4 × Z4 × Z4

Z3
4 Z2

8 × Z2
4 × Z2

2 Z2
4 × Z4

2

Zf
2 × ZT

2
Z4 Z1 Z1

ZTf
4 ¼ Zf

2 ×ω2
ZT

2
Z2 Z2 Z16

Qf
8 ¼ Zf

2 ×ω2
ðZ2 × Z2Þ Z1 Z2 Z1
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D. Organization of the paper

The rest of the paper is organized as follows. In Sec. II,
we review the key concept of SLU transformations. Using
this approach, we show the classifications of BSPT phases
in various dimensions. In Sec. III, we summarize the
procedures of constructing FSPT states. The definition
of FSLU transformations is given in Sec. III A. All layers of
degrees of freedom and their symmetry transformation
rules are summarized in Sec. III B. In Sec. III C, we discuss
briefly the two essential requirements of the FSLU trans-
formations: the coherence equations and the symmetry
conditions. Using the outlined procedure, the details of the
classifications of 1D, 2D, and 3D FSPT phases are given in
Secs. IV, V, and VI, respectively. In each dimension, we
first give the symmetric decoration procedures. Then, the F
move (FSLU transformation) and its coherence equation
are given explicitly. As the final step in classifying FSPT
phases in each dimension, we discuss some new coboun-
daries associated with ASPT states in one lower dimension.
We summarize this work in Sec. VII.
In Appendix A, we show the classification of the

simplest 0D FSPT phases. In Appendix B, we list all
possible 2D and 3D moves that admit a branching structure.
In Appendix C, the (local) Kasteleyn orientations for 2D
and 3D lattices are discussed briefly. In Appendix D, we
discuss the Bockstein homomorphism mapping a Z2-
valued cocycle to a ZT-valued cocycle. It is useful in
checking whether the obstruction function ð−1Þfk , where
fk is a Z2-valued cocycle, is aUð1ÞT-valued coboundary or
not. The detail calculations of FSPT phases for some simple
groups are given in Appendix E. Some of the results are
already summarized in Table III.

II. SLU TRANSFORMATION AND
CLASSIFICATION OF BSPT PHASES

A. SLU transformation and BSPT phases

From the definition of SPT states, it is easy to see that (in
the absence of global symmetry)

jSPTi ¼ UM
circjtriviali: ð20Þ

Namely, an SPT state can be connected to a trivial state
(e.g., a product state) via LU transformation (in the absence

of global symmetry). Clearly, Eq. (20) implies that the
support space [69] of any SPT state in a region must be one
dimensional. This result is simply because a trivial state
(e.g., a product state) has a one-dimensional support space,
and any SPT state will become a product state via a proper
local basis change (induced by a LU transformation).
In the presence of global symmetry, we can further

introduce the notion of SLU transformations classifying
SPT phases in interacting bosonic systems. By SLU trans-
formation, we mean the corresponding piecewise LU oper-
ator is invariant under symmetryG. More precisely, we have
Upwl ¼

Q
i e

−iHbðgi0;gi1;gi2;…Þ ≡Q
i Uðgi0; gi1; gi2;…Þ and

Uðggi0; ggi2; ggi3;…Þ ¼ Uðgi0; gi1; gi2;…Þ for any g ∈ G.
(We note that here we choose the group element basis
gi0; gi1; gi2;… to represent bosonic symmetric unitary oper-
ator acting on a region labeled by i.) However, we need to
enforce the SLU transformations to be one dimensional
(when acting on the support space ρA for any region A),
and we call them invertible SLU transformations. Thus,
we claim that SPT phases in interacting bosonic systems can
be classified by an equivalence class of invertible SLU
transformations.
SPT phases are also referred to as invertible (nonchiral)

topological phases. It turns out that the novel concept of
invertible SLU transformation even allows us to construct
very general fixed-point SPT states. All of these fixed-point
wave functions admit exactly solvable parent Hamiltonians
consisting of commuting projectors on an arbitrary tri-
angulation with an arbitrary branching structure.

B. Fixed-point wave function and classification
for BSPT phases in 1D

As a warm-up, let us begin with fixed-point wave
function in 1D and use SLU transformation to derive the
well-known classification results of 1D BSPT phases.
Without the loss of generality, here we assume that every
(locally ordered) vertex i of the 1D lattice has bosonic
degrees of freedom labeled by a group element gi ∈ G.
Our 1D fixed-point state is a superposition of those basis

states with all possible 1D graph with a branching structure
(denoted by the arrow from left to right):

ð21Þ

In the following, we derive the rules of wave function
renormalization generated by SLU transformations for the
above wave function and show how to construct all BSPT
states in 1D. To obtain a fixed-point wave function, we
need to understand the changes of the wave function under
renormalization. In 1D, renormalization can be understood as

removing some degrees of freedom by reducing the
number of vertices. The basic renormalization process is
known as the (2-1) Pachner move of triangulation of 1D
manifold.
To be more precise, the (2-1) move is an SLU trans-

formation between two different 1D graphs:
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ð22Þ

We note that the jGj is the order of the group G, and we
introduce the normalization factor 1=jGj1=2 in the above
expression due to the change of vertex number. Here,
ν2ðg0; g1; g2Þ is a Uð1Þ-valued function with vari-
ables gi ∈ G. Since we are constructing a symmetric
state, ν2 should be symmetric under the action of G
with ν2ðgg0; gg1; gg2Þ ¼ ν2ðg0; g1; g2Þ [we note that
ν2ðgg0; gg1; gg2Þ ¼ ν�2ðg0; g1; g2Þ if g is antiunitary].
Since we are constructing a fixed-point wave function, it

shouldbe invariantunder renormalization.For instance,wecan
use twodifferentsequencesof theabove(2-1)movesEq.(22) to
connect a fixed initial state and a fixed final state. Different
approaches should give rise to the same wave function. These
constraints give us the consistent equations for ν2.
The simplest example is the following two paths between

two fixed states:

ð23Þ

ð24Þ

The constraint is that the products of F moves for the above
two processes equal each other:

ν2ðg0; g1; g3Þν2ðg1; g2; g3Þ ¼ ν2ðg0; g2; g3Þν2ðg0; g1; g2Þ:
ð25Þ

The above equation implies

dν2ðg0; g1; g2; g3Þ ¼
ν2ðg1; g2; g3Þν2ðg0; g1; g3Þ
ν2ðg0; g2; g3Þν2ðg0; g1; g2Þ

¼ 1; ð26Þ

which is exactly the same as the cocycle equation of
group cohomology theory, and it means ν2 should be a
Uð1ÞT-valued 2-cocycle.
Using an SLU transformation, we can further redefine

the basis state jfglgi as

jfglgi0 ¼ Uμ1;m0
jfglgi ¼

Y
hiji

μ1ðgi; gjÞjfglgi: ð27Þ

In the new basis, one finds that the phase factor in Eq. (22)
becomes

ν02ðg0; g1; g2Þ≡ ν2ðg0; g1; g2Þ
μ1ðg1; g2Þμ1ðg0; g1Þ

μ1ðg0; g2Þ
: ð28Þ

Since our gapped phases are defined by SLU transforma-
tions, ν02 and ν2 belong to the same phase. In general, the
elements ν2 in the same group cohomology class in
H2½G;Uð1ÞT � correspond to the same 1D BSPT phase.
SLU transformations not only give rise to the local rules

of constructing fixed-point wave functions, but also give
rise to commuting-projector parent Hamiltonian for these
fixed-point wave functions. In 1D, the parent Hamiltonian
can be expressed as H ¼ −

P
i Hi, where the matrix

element of Hi are defined as

ð29Þ

which acts only on the states on site i and its neighboring
sites. However, Hi does not alter the states on neighboring
sites of i.
The above amplitude can be computed by SLU trans-

formations by considering the following moves for a three-
site patch:

ð30Þ

which implies that

H
g0igi
i hg0i; g1g2jHijgi; g1g2i ¼

1

jGj
ν2ðg1; gi; g2Þ
ν2ðg1; g0i; g2Þ

¼ 1

jGj
ν2ðg1; gi; g0iÞ
ν2ðgi; g0i; g2Þ

; ð31Þ

where we use the 2-cocycle condition of ν2 in the last step.
Clearly,Hi is an Hermitian projector that satisfiesH†

i ¼ Hi

and H2
i ¼ Hi. Moreover, the 2-cocycle condition Eq. (25)

further guarantees that all Hi on different sites commute
with each other. As an operator, we can also just define the
action of Hi on site i and its neighboring sites 1,2 as

Hijgi; g1g2i ¼
1

jGj
X
g0i

ν2ðg1; gi; g0iÞ
ν2ðgi; g0i; g2Þ

jg0i; g1g2i: ð32Þ
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C. Fixed-point wave function and classification for
BSPT phases in 2D

The fixed-point wave functions for BSPT phases in 2D
are similar to the 1D case. We can again use the group
element basis to construct the local Hilbert space on each
vertex of arbitrary triangulation:

ð33Þ

We assume that the triangulation admits a branching
structure that can be labeled by a set of local arrows on all
links (edges) with no oriented loop for any triangle.
Mathematically, the branching structure can be regarded
as a discrete version of a spinc structure and can be
consistently defined on arbitrary triangulation of orientable
manifolds. The basic renormalization process is known as
the (2-2) and (2-0)/(0-2) Pachner move of triangulation
of 2D manifold. Moreover, according to the definition of
BSPT phases, we also require that the support space of
SLU transformations be one dimensional, such that it can
adiabatically connect to a product state in the absence of
global symmetry. Below, we discuss physically consistent
conditions for those SLU transformations generating fixed-
point wave functions.
An example of the (2-2) move [now we call it

the standard (2-2) move, which is the analogy of the F
move in a unitary fusion category theory] is presented as
follows:

ð34Þ

Here, ν3ðg0; g1; g2; g3Þ is a Uð1Þ-valued 3-cochain that is
symmetric under g action ν3ðgg0; gg1; gg2; gg3Þ ¼ ν3ðg0;
g1; g2; g3Þ [again, ν3ðgg0; gg1; gg2; gg3Þ ¼ ν�3ðg0; g1; g2; g3Þ
if g is antiunitary].
Apart from the (2-2) move, there is another (2-0)

move that can change the total number of vertices for
triangulations:

ð35Þ

We also add a normalization factor jGj−1=2 in front of the
(2-0) move operator, for the vertex number is reduced by
one from the left state to the right state [70].
It is easy to check that the other (2-2) moves with

different branching structure, e.g., the analogy of the H
move, can always be derived by the standard (2-2) move
and (2-0)/(0-2) move. Consider the SLU transformation for
the following patch:

ð36Þ

The above deformation scheme implies that

ð37Þ

The remaining (2-2) moves are the analogies of the dual F
move and dual H move; they can also be derived from the
basis (2-2) move and (2-0)/(0-2) move. For example, let us
assume

ð38Þ

where ν̄3ðg0; g1; g2; g3Þ is another Uð1Þ-valued function
which is different from ν3ðg0; g1; g2; g3Þ. Consider the SLU
transformation on the following patch:
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ð39Þ

On the other hand, by applying the (2-0) move directly, we
have

ð40Þ

The above two reduction schemes should agree, which
implies that ν̄3ðg0; g1; g2; g3Þν3ðg0; g1; g2; g3Þ ¼ 1 or
ν̄3ðg0; g1; g2; g3Þ ¼ ν−13 ðg0; g1; g2; g3Þ.
Moreover, the combination of the (2-2) move and (2-0)

move further allows us to define a new set of renormaliza-
tion moves which reduces the number of vertices, namely,
the (3-1) move. For example, consider the SLU trans-
formation for the following patch:

ð41Þ

The above deformation scheme implies that

ð42Þ

In Fig. 16 of Appendix B, we list all possible (2-2) and
(3-1) moves that are consistent with a branching structure.
In the above, we discuss the SLU moves. The most

important one is the standard (2-2) move in Eq. (34).
Similar to the 1D case, if we apply the (2-2) move for
bigger patch as seen in Fig. 1, we can derive the consistent
conditions for ν3 describing fixed-point wave functions:

ðdν3Þðg0; g1; g2; g3; g4Þ

≡ ν3ðg1; g2; g3; g4Þν3ðg0; g1; g3; g4Þν3ðg0; g1; g2; g3Þ
ν3ðg0; g2; g3; g4Þν3ðg0; g1; g2; g4Þ

¼ 1:

ð43Þ

Mathematically, this equation is known as the 3-cocycle
equation.
Similar to the 1D case, we can use SLU to redefine the

basis state jfglgi as

jfglgi0 ¼ Uμ2 jfglgi ¼
Y
hijki

μ2ðgi; gj; gkÞshijki jfglgi; ð44Þ

where shijki ¼ �1 denotes the orientation of the triangle
hijki. One finds that the phase factor in Eq. (34) becomes

ν03ðg0; g1; g2; g3Þ

¼ ν3ðg0; g1; g2; g3Þ
μ2ðg1; g2; g3Þμ2ðg0; g1; g3Þ
μ2ðg0; g2; g3Þμ2ðg0; g1; g2Þ

: ð45Þ

FIG. 1. The self-consistent equation on a big patch. The
branching structure on this patch is induced by a local direction
from left to right. Mathematically, it is known as the 3-cocycle
equation.
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So the elements ν3 in the same group cohomology class in
H3½G;Uð1ÞT � correspond to the same 2D BSPT phase.
Again, similar to the 1D case, the 2D SLU trans-

formations can also be used to construct commuting-
projector parent Hamiltonian for these fixed-point wave
functions. The Hamiltonian is a summation of vertex terms
as H ¼ −

P
�H�. Again, the matrix element Hg0�;g�� can be

evaluated as a product of a sequence of moves that change
the group element of vertex � from g� to another g0�. For
example, we can consider the following moves for a
triangular lattice:

ð46Þ

We shift the lattice a little, such that the branching structure
is induced by a local direction from left to right. The first
step of the above figures is a combination of three (2-2)
moves. The second step is a (3-1) move that removes the
vertex with group label g� at the center. The third step is a
(1-3) move that creates a vertex with group label g0� at
the center. And the last step is a combination of three
(2-2) moves that change the lattice to the original shape.
Since our wave function is at the fixed point and ν3
satisfy the 3-cocycle condition Eq. (43), the terms H�
for different vertices commute with each other. Clearly, H�
is also a Hermitian projection operator satisfying H†� ¼ H�
and H2� ¼ H�. Thus, the constructed Hamiltonian as a
summation of H� terms is a commuting-projector parent
Hamiltonian.

D. Fixed-point wave function and classification
for BSPT phases in 3D

The fixed-point wave functions for BSPT phases in 3D
are similar to the 1D and 2D cases. We can again use
the group element basis to construct the local Hilbert
space on each vertex of arbitrary triangulation. The basic

renormalization process is known as the (2-3) and (2-0)
Pachner move of triangulation of 3D manifold:

ð47Þ

An example of the (2-3) move [now we call it the
standard (2-3) move] is presented as follows:

ð48Þ

Here, ν4ðg0; g1; g2; g3; g4Þ is a Uð1Þ-valued 4-cochain that
is symmetric under g action ν4ðgg0; gg1; gg2; gg3; gg4Þ ¼
ν4ðg0; g1; g2; g3; g4Þ [ν4ðgg0; gg1; gg2; gg3; gg4Þ ¼ ν�4ðg0; g1;
g2; g3; g4Þ if g is antiunitary].
Again, apart from the (2-3) move, there are two (2-0)

moves consisting with the branching structure that can
change the total number of vertices for triangulations:

ð49Þ

and

ð50Þ

Again, we add a normalization factor jGj−1=2 in front of the
(2-0) move operator, for the vertex number is reduced by
one from the left state to the right state [71].
It is easy to check that other (2-3) moves with different

branching structure can always be generated by the
standard (2-3) move and (2-0)/(0-2) move. Moreover, the
combination of the (2-3) move and (2-0) move further
allows us to define a new set of renormalization moves
which reduces the number of vertices, namely, the (4-1)

CONSTRUCTION AND CLASSIFICATION OF SYMMETRY… PHYS. REV. X 10, 031055 (2020)

031055-11



move. In Figs. 17 and 18 of Appendix B, we list all possible
(2-3) and (4-1) moves that admit a branching structure.
In the above, we discuss the SLU moves. The

most important one is the standard (2-3) move in

Eq. (48). Similar to the 1D and 2D cases, if we apply
the (2-3) move for a bigger patch, we can derive the
consistent conditions for ν4 describing fixed-point wave
functions:

ðdν4Þðg0; g1; g2; g3; g4; g5Þ≡ ν4ðg1; g2; g3; g4; g5Þν4ðg0; g1; g3; g4; g5Þν4ðg0; g1; g2; g3; g5Þ
ν4ðg0; g2; g3; g4; g5Þν4ðg0; g1; g2; g4; g5Þν4ðg0; g1; g3; g2; g4Þ

¼ 1: ð51Þ

Similar to the 1D and 2D cases, we can use SLU to redefine the basis state jfglgi as

jfglgi0 ¼ Uμ3 jfglgi ¼
Y
hijkli

μ3ðgi; gj; gk; glÞshijkli jfglgi; ð52Þ

where shijkli ¼ �1 denotes the orientation of the tetrahedron. One finds that the phase factor in Eq. (48) becomes

ν04ðg0; g1; g2; g3; g4Þ ¼ ν4ðg0; g1; g2; g3; g4Þ
μ3ðg1; g2; g3; g4Þμ3ðg0; g1; g3; g4Þμ3ðg0; g1; g2; g3Þ

μ3ðg0; g2; g3; g4Þμ3ðg0; g1; g2; g4Þ
: ð53Þ

So the elements ν4 in the same group cohomology
class in H4½G;Uð1ÞT � correspond to the same 3D BSPT
phase.
We can also use the above moves to construct a 3D

commuting-projector parent Hamiltonian. Each term of
the Hamiltonian is a sequence of 3D moves that
changes the label of a vertex from g� to g0�. All the
terms commute with each other, because the wave
function is at the fixed point and ν4 satisfy the 4-cocycle
condition Eq. (53).
Finally, we notice that for antiunitary symmetry, e.g.,

time-reversal symmetry, the above construction and clas-
sification scheme is not complete. It has been pointed out
[8] that the decoration of the E8 state on the G-symmetry
domain walls gives rise to new BSPT states beyond group
cohomology classification. Apparently, the dataH1ðG;ZTÞ
classify such a decorating pattern and the corresponding
additional BSPT states. Since H1ðG;ZTÞ is trivial for all
unitary symmetry groups G and H1ðZT

2 ;ZTÞ ¼ Z2 for the
(antiunitary) time-reversal symmetry, we understand why
the beyond group cohomology BSPT phases arise only for
antiunitary symmetry. Thus, we conclude that the two
cohomology groups of the symmetry group G, H1ðG;ZTÞ
and H4½G;Uð1ÞT �, give rise to a complete classification of
BSPT phases in 3D.

III. FSLU TRANSFORMATION
AND FSPT PHASES

A. Fermionic symmetric local unitary
transformations

In Ref. [72], it is shown that fermionic local unitary
(FLU) transformations can be used to define and classify

intrinsic topological phases for interacting fermion sys-
tems. The Fock space structure and fermion parity con-
servation symmetry of fermion systems can be naturally
encoded into FLU transformations. It is well known that the
finite-time FLU evolution is closely related to fermionic
quantum circuits with finite depth, which is defined
through piecewise FLU operators. A piecewise FLU
operator has the formUpwl ¼

Q
i e

−iHfðiÞ ≡Q
i UðiÞ, where

HfðiÞ is a fermionic Hermitian operator and UðiÞ is the
corresponding fermionic unitary operator defined in Fock
space that preserves fermion parity (e.g., contains an even
number of fermion creation and annihilation operators) and
acts on a region labeled by i. Note that regions labeled by
different i’s are not overlapping. We further require that the
size of each region is less than some finite number l. The
unitary operator Upwl defined in this way is called a
piecewise fermionic local unitary operator with range l.
A fermion quantum circuit with depth M is given by the
product of M piecewise fermionic local unitary operators:

UM
circ ¼ Uð1Þ

pwlU
ð2Þ
pwl…UðMÞ

pwl . It is believed that any FLU
evolution can be simulated with a constant-depth fermionic
quantum circuit and vice versa. Therefore, the equivalence
relation between gapped states in interacting fermion
systems can be rewritten in terms of constant-depth
fermionic quantum circuits:

jψð1Þi ∼ jψð0Þi iff jψð1Þi ¼ UM
circjψð0Þi: ð54Þ

Thus, we can use the term FLU transformation to refer to
both FLU evolution and constant-depth fermionic quantum
circuit. From the definition of the FSPT state, it is easy to
see that (in the absence of global symmetry)
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jFSPTi ¼ UM
circjtriviali: ð55Þ

Namely, an FSPT state can be connected to a trivial state
(e.g., a product state) vial FLU transformation (in the
absence of global symmetry). Similar to the BSPT case,
Eq. (55) implies that the support space of any FSPT in
region Amust be one dimensional. This constraint is simply
because a trivial state (e.g., a product state) has a one-
dimensional support space, and any FSPT state becomes a
product state via a proper local basis change (induced by a
FLU transformation).
In the presence of global symmetry, we can further

introduce the notion of invertible FSLU transformations to
define and classify FSPT phases in interacting fermion
systems. By FSLU transformation, we mean that the
corresponding piecewise FLU operator is invariant under
total symmetry group Gf.

B. Layers of degrees of freedom

There are at most four layers of degrees of freedom in
total in our fixed-point wave function of the FSPT state
(up to four spacetime dimensions). The bosonic states
are always at the vertices. And the fermionic degrees
of freedom (complex fermions, Majorana fermions, and
2D pþ ip chiral superconductors) are decorated on
the intersecting submanifold of the bosonic state. In
summary, the degrees of freedom of our FSPT states
are [73]

(i) jGbj level bosonic (spin) state jgii (gi ∈ Gb) on each
vertex i;

(ii) jGbj species of complex fermions cσij…k (σ ∈ Gb) on
each codimension-0 simplex hij…ki;

(iii) jGbj species of Majorana fermions γσij…k;A and
γσij…k;B (σ ∈ Gb), which come from complex fer-
mions aσij…k ¼ ðγσij…k;A þ iγσij…k;BÞ=2, on the two
sides of each codimension-1 simplex hij…ki;

(iv) jGbj species of 2D pþ ip chiral superconductors
(may have several copies) on the dual surface of
each codimension-2 simplex. The chiral Majorana
modes along the edge of the dual surface are
labeled by ψσ

ij…k;L or ψσ
ij…k;R depending on the

chirality.
The above degrees of freedom have different symmetry
transformation rules. The symmetry transformation of
Gb on the bosonic state is the same as that in the BSPT
states (g ∈ Gb):

UðgÞjgii ¼ jggii: ð56Þ

For complex fermions, we choose the symmetry trans-
formations under Gb to be

UðgÞcσij…kUðgÞ† ¼ ð−1Þω2ðg;σÞcgσij…k: ð57Þ

The symmetry transformation rules of Majorana fer-
mions γσij…k;A=B are induced by the transformation of
complex fermion aσij…k:

UðgÞaσij…kUðgÞ† ¼ ð−1Þω2ðg;σÞagσij…k; ð58Þ

UðgÞγσij…k;AUðgÞ† ¼ ð−1Þω2ðg;σÞγgσij…k;A; ð59Þ

UðgÞγσij…k;BUðgÞ† ¼ ð−1Þω2ðg;σÞþs1ðgÞγgσij…k;B: ð60Þ

And the symmetry transformations of chiral Majorana
modes on the boundary of decorated pþ ip super-
conductors are chosen to be

UðgÞψσ
ij…k;RUðgÞ† ¼ ð−1Þω2ðg;σÞψgσ

ij…k;gðRÞ; ð61Þ

UðgÞψσ
ij…k;LUðgÞ† ¼ ð−1Þω2ðg;σÞþs1ðgÞψgσ

ij…k;gðLÞ: ð62Þ

We discuss more about why we choose the trans-
formation rules for Majorana modes in Sec. VI F 2.
In this way, the Gb species of fermions span a space

that supports a projective representation of Gb with
coefficient Pω2

f :

UðgÞUðhÞ ¼ Pω2ðg;hÞ
f UðghÞ; ð63Þ

with Pf ¼ −1 when acting on fermion parity odd states.
We note that the projective representation U of Gb is
equivalent to a linear representation Ũ of Gf by

ŨðPn
fgÞ ≔ Pn

fUðgÞ: ð64Þ

One can check directly that Ũ is indeed a genuine linear
representation of Gf:

ŨðPm
f gÞŨðPn

fhÞ ¼ ŨðPm
f g · P

n
fhÞ; ð65Þ

where the dot product in Gf is defined in Eq. (2).
In the previous constructions of the FSPT state for

Gf ¼ Zf
2 ×Gb, we put only one species of fermions on

each simplex [52,53]. They transform trivially under the
action of Gb (and Gf). To construct a FSPT state for

Gf ¼ Zf
2 ×ω2

Gb, we need a projective representation of
Gb with coefficient ω2 to make it a linear representation of
Gf. We choose the canonical jGbj-dimensional projective
representation Eq. (57), which can be constructed for
arbitrary finite symmetry group Gb. Although there are
jGbj species fermions cσij…k (σ ∈ Gb) on each simplex
hij…ki, (at most) only one of them cgiij…k is decorated or in
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the occupied state, and all other fermion species cσij…k

(σ ≠ gi) are in the vacuum states. In such a way, the FSPT
constructions for symmetry group Gf ¼ Zf

2 ×Gb can be

generalized to the case of Gf ¼ Zf
2 ×ω2

Gb.

C. Symmetry conditions and consistency equations

Since we are constructing FSPT states, the F moves
should be compatible with the symmetry action UðgÞ
defined in Sec. III B. To be more precise, let us
consider the following two-dimensional commuting
diagram:

ð66Þ

where the horizontal F move changes the triangulations
of the spatial manifold and the vertical symmetry
action UðgÞ changes the bosonic degrees of freedom
from fgig to fggig (similar for the fermionic ones).
The outside parts “� � �” correspond to other triangula-
tions of the spatial manifold and other symmetry
actions on the states. This two-dimensional diagram
should commute for an arbitrary horizontal Pachner
move of arbitrary triangulations and vertical symmetry
action with arbitrary g ∈ Gb. The requirement of sym-
metric fixed-point wave function implies the following
conditions.
(1) The diagram Eq. (66) commutes, i.e.,

FðfggigÞ ¼ UðgÞFðfgigÞUðgÞ†; ∀ g ∈ Gb: ð67Þ

(2) The vertical direction of diagram Eq. (66) should
form a projective representation of Gb with coef-

ficient ω2, i.e., UðgÞUðhÞ ¼ Pω2ðg;hÞ
f UðghÞ when

acting on these states. This projective representation
of Gb induces a linear representation of Gf by
Eq. (64).

(3) The horizontal direction of diagram Eq. (66)
should satisfy some coherence equation, which
is known as a super (fermionic) pentagon equation
in 2D. In the FSPT setting, it is a twisted cocycle
equation.

For the triangulations of d-dimensional space manifold,
the Pachner move involves dþ 2 vertices. So the basic F

move can be denoted by Fðg0; g1;…; gdþ1Þ. With the help
of Eq. (67), we can obtain the generic F move

Fðg0; g1;…; gdþ1Þ ¼ g0Fðe; g−10 g1;…; g−10 gdþ1Þ
¼ Uðg0ÞFðe; g−10 g1;…; g−10 gdþ1ÞUðg0Þ†;

ð68Þ

provided that we define the standard F symbol with the
first argument being the identity element e ∈ Gb. Using
this definition of the F move, Eq. (67) is automatically
satisfied. This result is because of the following commuting
diagram:

ð69Þ

We can deduce the dashed arrow UðgÞ from solid arrows

Uðg0Þ and Uðgg0Þ, due to UðgÞUðhÞ ¼ Pω2ðg;hÞ
f UðghÞ and

the fermion parity even property of the F operators.

IV. FIXED-POINT WAVE FUNCTION AND
CLASSIFICATION OF FSPT STATES IN 1D

In this section, we give the explicit constructions and
classifications of 1D FSPT states. The fixed-point wave
functions are obtained by decorating complex fermions to
BSPT states consistently. Formally, the wave function is a
superposition of all basis states jfgigi with legitimate
decorations:

ð70Þ

The basis state jfgigi is a state (with vertex i labeled
by gi ∈ Gb) decorated by complex fermions cσij at link
hiji. The constructed fixed-point wave function jΨi
should be both symmetric and topological (invariant
under retriangulations of the lattice). As shown below,
these constraints would give us the consistency con-
ditions for the 1D FSPT classifications summarized in
Eqs. (8)–(11).
We note that the 1D Kitaev chain is a fermionic

invertible topological order. Since it does not need any
bosonic symmetry protection (Zf

2 cannot be broken), we
do not consider it as a FSPT state. The Kitaev chain
layer is useful when considering it as the ASPT on the
boundary of a 2D FSPT state. The 2D classification data
n2 is trivialized.
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This section is organized as follows. The two layers of
degrees of freedom (bosonic states and complex fermions)
are introduced in Sec. IVA. In Sec. IV B, we propose the
procedures of symmetrically decorating complex and
Majorana fermions to BSPT states. Then, the construction
and the consistency equations of the FSLU transformations
are discussed in Secs. IV C and IV D, respectively.

A. Two layers of degrees of freedom

The basic idea to construct FSPT states is to decorate
complex fermions to the BSPT states. Therefore, there are
two layers of degrees of freedom, including the bosonic
ones, in the 1D lattice model:

(i) jGbj level bosonic (spin) state jgii (gi ∈ Gb) on each
vertex i and

(ii) jGbj species of complex fermions cσij (σ ∈ Gb) at the
center of each link hiji.

These degrees of freedom are summarized in one unit cell
in the following:

ð71Þ

Here, we choose the link direction from vertex i to
vertex j (from left to right). The vertices are labeled by
gi and gj, which are elements of Gb. The blue ball is the
decorated complex fermion cσij (σ ∈ Gb) at the center of
link hiji.
The symmetry transformations of these degrees of free-

dom under Gb are the same as the discussions in Sec. III B.
To be more specific to the 1D case, we summarize them as
(g; gi; σ ∈ Gb)

UðgÞjgii ¼ jggii; ð72Þ

UðgÞcσijUðgÞ† ¼ ð−1Þω2ðg;σÞcgσij : ð73Þ

While the bosonic degrees of freedom on each vertex form
a linear representation of Gb, the complex fermions form a
projective representation of Gb with coefficient ð−1Þω2 . In
this way, they all transform linearly under the action of Gf

defined by Eq. (64).
Although there are jGbj species of complex fermions in

the Hilbert space of the system, we see later that (at most)
only one of them is decorated nontrivially in the fixed-point
wave function. If we consider the case of ω2 ¼ 0 (i.e.,
Gf ¼ Zf

2 ×Gb), the symmetry transformation rules are
independent of group element label σ of the fermions
[see Eq. (73)]. Therefore, we can reduce these jGbj species
of fermions to only one species without a group element
label. The resulting states are exactly the ones studied in
Refs. [52,53].

B. Decoration of complex fermions

In the group cohomology theory of BSPT phases [4], the
fixed-point wave functions are constructed as superposi-
tions of all basis state jfgigi. The coefficients in front of
these basis states are Uð1Þ-valued cocycles. To construct
FSPT states, we introduce the fermionic degrees of freedom
associated to the basis states in the previous section. In the
following, we discuss the detailed procedures of system-
atically decorating complex fermions. These decorations
should be designed to be symmetric under symmetry
actions.
The complex fermion decoration is specified by a

Z2-valued 1-cochain n1 ∈ C1ðGb;Z2Þ, which is the first
classification data for 1D FSPT phases. If n1ðgi; gjÞ ¼ 0,
all the modes of complex fermions cσij (σ ∈ Gb) at link
hiji are unoccupied (shown by blue circles in figures).
On the other hand, if n1ðgi; gjÞ ¼ 1, exactly one com-
plex fermion cgiij is decorated at the center of the
oriented link hiji (shown by filled blue balls in figures),
and all other complex fermions cσij (σ ≠ gi) are still in
vacuum states.
The above complex fermion decoration rule is Gb

symmetric. Under a UðgÞ action, the vertex labels of
link hiji become ggi and ggj. According to the decoration
rule, the decorated complex fermion [if n1ðggi; ggjÞ ¼
n1ðgi; gjÞ ¼ 1] should be cggiij , which is exactly the complex
fermion cgiij by a UðgÞ action.

C. F moves

For a fixed triangulation of spatial manifold, we can
decorate complex fermions symmetrically as discussed
above. However, we want to construct fixed-point wave
functions that are invariant under retriangulation of the
space. To connect different triangulations, there are
FSLU transformations for each Pachner move. For
the 1D lattice, there is essentially only one Pachner
move given by

ð74Þ

where the FSLU F operator is defined as

Fðg0; g1; g2Þ ¼ jGbj1=2ν2ðg0; g1; g2Þðcg002Þ†n1ðg0;g2Þ
× ðcg001Þn1ðg0;g1Þðcg112Þn1ðg1;g2Þ: ð75Þ

In the above expression of the F symbol, jGbj1=2 is the
normalization factor, because the number of lattice sites is
reduced by one. ν2ðg0; g1; g2Þ is a Uð1Þ phase factor
depending on three group elements of Gb. For BSPT
states, the F operator has only these two bosonic factors.
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For FSPT states, however, there are complex fermion terms
of the form c†cc. The complex fermion term annihilates the
possibly decorated (depending on n1) complex fermions
cg112 and c

g0
01 on the two links in the right-hand-side state and

create a new complex fermion cg002 at the center of link h02i
in the left-hand-side state.
As discussed above, the F move should be a FSLU

operator. Therefore, it should be both fermion parity even
and symmetric under Gb action. These two conditions give
us several consistency equations for the classification data
n1 and ν2.

1. Fermion parity conservation

Since the complex fermions are decorated according to
n1ðgi; gjÞ, the complex fermion parity change of the F
move Eq. (74) is

ΔPc
fð012Þ ¼ ð−1Þn1ðg0;g2Þþn1ðg0;g1Þþn1ðg1;g2Þ

¼ ð−1Þdn1ðg0;g1;g2Þ: ð76Þ

As a result, the conservation of fermion parity under the F
move enforces the condition

dn1 ¼ 0 ðmod 2Þ; ð77Þ

which is the cocycle equation for the decoration data n1.

2. Symmetry condition

The Fmove should also be consistent with the symmetry
actions [see Eq. (66)]. In 1D, we have the following
commuting diagram:

ð78Þ

or the symmetry condition for F operators:

Fðgg0; gg1; gg2Þ ¼ UðgÞFðg0; g1; g2ÞUðgÞ†: ð79Þ

As discussed in Sec. III C, the above equation can be
viewed as a definition of the generic Fðg0; g1; g2Þ in terms
of the standard F move Fðe; g−10 g1; g−10 g2Þ:

Fðg0; g1; g2Þ ¼ g0Fðe; g−10 g1; g−10 g2Þ
≔ Uðg0ÞFðe; g−10 g1; g−10 g2ÞUðg0Þ†: ð80Þ

Therefore, we need only to fix the expression of the
standard F move Fðe; g−10 g1; g−10 g2Þ, and all other non-
standard F moves are obtained by a symmetry action on the
standard one. The explicit expression of the standard F
move Fðe; g−10 g1; g−10 g2Þ is given by

Fðe; g−10 g1; g−10 g2Þ ¼ jGbj1=2ν2ðg−10 g1; g−11 g2Þðce02Þ†n1ðe;g
−1
0
g2Þðce01Þn1ðe;g

−1
0
g1Þðcg−10 g1

12 Þn1ðg
−1
0
g1;g−10 g2Þ: ð81Þ

Note that the Uð1Þ coefficient in the standard F move is chosen to be the inhomogeneous cochain
ν2ðg−10 g1; g−11 g2Þ ≔ ν2ðe; g−10 g1; g−10 g2Þ. And we do not impose the condition “ν2ðgg0; gg1; gg2Þ ¼ ν2ðg0; g1; g2Þ” a priori.
In fact, as shown below, this condition does not hold, in general.
We can apply a Uðg0Þ action on the standard F move Eq. (81) and compare it with the generic expression Eq. (75). The

symmetry conditions for n1 and ν2 are

n1ðg0; g1Þ ¼ n1ðe; g−10 g1Þ ¼ n1ðg−10 g1Þ; ð82Þ

ν2ðg0; g1; g2Þ ¼ g0ν2ðg−10 g1; g−11 g2Þ ¼ ν2ðg−10 g1; g−11 g2Þ1−2s1ðg0Þ · ð−1Þðω2⌣n1Þðg0;g−10 g1;g−11 g2Þ; ð83Þ

respectively, where the term ð−1Þω2⌣n1 comes from the symmetry transformations of c
g−1
0
g1

12 . We also introduce new
notations to relate the homogeneous cochain ν2ðg0; g1; g2Þ ¼ g0ν2ðg−10 g1; g−11 g2Þ and the inhomogeneous cochain
ν2ðg−10 g1; g−11 g2Þ ¼ eν2ðg−10 g1; g−11 g2Þ. In the following, when we write the cochain νd without arguments, we always
mean the inhomogeneous one, i.e., νd ¼ eνd.

D. Associativity and twisted cocycle equations

The F move reduces three vertices on the lattice to two vertices. If one considers reducing four vertices to two vertices,
there are two inequivalent ways to do that. The final results should be independent of the two ways. This constraint gives us
the consistency equation for Pachner moves:
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ð84Þ

In terms of F operators, the above commuting diagram means

Fðg0; g2; g3Þ · Fðg0; g1; g2Þ ¼ Fðg0; g1; g3Þ · Fðg1; g2; g3Þ: ð85Þ

Similar to the standard F symbol, which can be used to derive all other nonstandard ones by a symmetry action, we can also
assume g0 ¼ e in the above equation. All other consistency equations with generic g0 can be deduced from this standard
equation by a Uðg0Þ action. Therefore, we need only to consider the consistency equation

Fðe; g−10 g2; g−10 g3Þ · Fðe; g−10 g1; g−10 g2Þ ¼ Fðe; g−10 g1; g−10 g3Þ · Fðg−10 g1; g−10 g2; g−10 g3Þ
¼ Fðe; g−10 g1; g−10 g3Þ · ðg−10 g1ÞFðe; g−11 g2; g−11 g3Þ: ð86Þ

The above equation is simpler than the generic one [Eq. (85)], since only the last F symbol is nonstandard.
Substituting the standard F move [Eq. (81)], the consistency equation [Eq. (86)] becomes

ν2ðg−10 g2; g−12 g3Þν2ðg−10 g1; g−11 g2Þ ¼ ν2ðg−10 g1; g−11 g3Þ½ν2ðg−11 g2; g−12 g3Þ�1−2s1ðg−10 g1Þð−1Þðω2⌣n1Þðg−10 g1;g−11 g2;g−12 g3Þ; ð87Þ

where the last term ð−1Þω2⌣n1 comes from the Uðg−10 g1Þ
action on Fðe; g−11 g2; g−11 g3Þ [see Eq. (82)]. Note that
the complex fermions do not contribute any fermion signs.
So we have the twisted cocycle equation for inhomo-
geneous ν2:

dν2 ¼ O3½n1�; ð88Þ

with obstruction function

O3½n1� ¼ ð−1Þω2⌣n1 : ð89Þ

In summary, the associativity condition for the F moves
in 1D gives us the twisted cocycle equation [Eqs. (88) and
(89)] for inhomogeneous cochain ν2.

E. Classification of 1D FSPT phases

The general classification of 1DFSPT phases is as follows.
We first calculate the cohomology groups H1ðGb;Z2Þ and
H2½Gb;Uð1ÞT �. For each n1 ∈ H1ðGb;Z2Þ, we solve the
twisted cocycle equation [Eq. (10)] for ν2. If ν2 is in the
trivialization subgroup Γ2 in Eq. (11), it is known to be
trivialized by complex fermion decoration [52]; see
Appendix A for more details. So the obstruction-free n1
and trivialization-free ν2 fully classify the 1D FSPT phases.
We note that we can use the FSLU transformations to

construct the commuting-projector parent Hamiltonians.

Each term of the Hamiltonian is a sequence of fermionic F
moves that changes the label of a vertex from g� to g0�. All
the terms commute with each other, for our FSPT wave
function is at the fixed point.

V. FIXED-POINT WAVE FUNCTION AND
CLASSIFICATION OF FSPT STATES IN 2D

In this section, we construct and classify FSPT states in
two spatial dimensions. The fixed-point wave function is
again a superposition of all basis states jfgigi with fermion
decorations. The basis state jfgigi is a state (with vertex i
labeled by gi ∈ Gb) decorated by complex fermions cσij at
link hiji and Majorana fermions γσi;A and γσi;B near vertex i
according to several designed rules. So the fixed-point
wave function looks like

ð90Þ

A. Three layers of degrees of freedom

In 2D, we decorate two layers of fermionic degrees of
freedom to the BSPT states. Therefore, there are three
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layers of degrees of freedom, including the bosonic ones, in
our 2D triangulation lattice model:

(i) jGbj level bosonic (spin) state jgii (gi ∈ Gb) on each
vertex i,

(ii) jGbj species of complex fermions cσijk (σ ∈ Gb) at
the center of each triangle hijki, and

(iii) jGbj species of complex fermions (split to Majorana
fermions) aσij ¼ ðγσij;A þ iγσij;BÞ=2 (σ ∈ Gb) on the
two sides of each link hiji.

These three layers of degrees of freedom are summarized in
one triangle in the following figure:

ð91Þ

Here, the three vertices of the triangle are labeled by
g0; g1; g2 ∈ Gb. The blue ball is the complex fermion cσ012
(σ ∈ Gb) at the center of triangle h012i. Red dots represent
Majorana fermions γσij;A and γσij;B (σ ∈ Gb) on the two sides
of link hiji.
The symmetry transformations of these degrees of

freedom under Gb are summarized then as follows
(g; gi; σ ∈ Gb):

UðgÞjgii ¼ jggii; ð92Þ

UðgÞcσijkUðgÞ† ¼ ð−1Þω2ðg;σÞcgσijk; ð93Þ

UðgÞγσij;AUðgÞ† ¼ ð−1Þω2ðg;σÞγgσij;A; ð94Þ

UðgÞγσij;BUðgÞ† ¼ ð−1Þω2ðg;σÞþs1ðgÞγgσij;B: ð95Þ

As in the 1D case, the bosonic degrees of freedom form a
linear representation ofGb (andGf). On the other hand, the
fermion modes support projective representations of Gb
with coefficient ð−1Þω2 and linear representations of Gf

defined by Eq. (64).
In the simpler case of Gf ¼ Zf

2 ×Gb, all the flavors of
fermions have the same transformation rule for different
group element label σ. So we can suppress the species
labels. This result is again the previous group super-
cohomology models [52,53].

B. Decorations of fermion layers

In this section, we give a systematic procedure to
decorate Kitaev chains and complex fermions to the basis

state jfgigi labeled by gi ∈ Gb for each vertex i. Similar to
the 1D case, we decorate (at most) only one species of
fermions to the state, although the Hilbert space is spanned
by jGbj copies of fermions. Again, the decorations should
be designed to respect the symmetry.

1. Kitaev chain decoration

The Kitaev chain decoration in 2D is similar to the
constructions in the pioneering works Refs. [74,75].
However, we adopt the more general procedures in
Ref. [53], which can deal with arbitrary triangulations of
the 2D spatial manifold. The generalization in this paper for
symmetry group Gf ¼ Zf

2 ×ω2
Gb is that we put (at most)

one of the Gb species Majorana fermions into nontrivial
pairings and all others vacuum pairings. If we consider the
symmetry group Gb ¼ ZT

2 and nontrivial 2-cocycle
ω2ðT; TÞ ¼ 1, our construction on a fixed triangular lattice
reproduces the exactly solvable T2 ¼ −1 topological super-
conductor model in Ref. [76].
To simplify our notations and make it easier to generalize

to higher dimensions, we present some notations for
Majorana fermion pairings. For two Majorana fermions

γei;C and γg
−1h
j;D at vertices i and j (g; h ∈ Gb; C;D ∈ fA; Bg),

we can choose the pairing such that

−iγei;Cγ
g−1h
j;D ¼ 1; ð96Þ

when acting on this state. We call it standard pairing, as the
first Majorana fermion is labeled by the identity element
e ∈ Gb. The standard pairing is illustrated in figures by a
red arrow pointing from vertex iC to vertex jD. For the
nonstandard pairing between γgi;C and γhj;D, we can use a
UðgÞ action on both sides of Eq. (96) and obtain

−iγgi;Cγhj;D ¼ ð−1Þω2ðg;g−1hÞþs1ðgÞð1þδCBþδDBÞ; ð97Þ

where δCB ¼ 1 (¼ 0) if the Majorana fermion γσi;C is the B-
type (A-type) one. This difference comes from the sym-
metry transformations of A- and B-type Majorana fermions
[see Eqs. (94) and (95)]. For simplicity in describing the
pairing, we introduce the projection operator of the
Majorana fermion pairing as

Pg;h
iC;jD ≔UðgÞPe;g−1h

iC;jD UðgÞ† ¼UðgÞ1
2
ð1− iγei;Cγ

g−1h
j;D ÞUðgÞ†

¼ 1

2
½1− ð−1Þω2ðg;g−1hÞþs1ðgÞð1þδCBþδDBÞiγgi;Cγ

h
j;D�:

ð98Þ

This generic pairing projection operator Pg;h
iC;jD is obtained

from a UðgÞ action on the standard pairing projection
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operator Pe;g−1h
iC;jD ¼ ð1 − iγei;Cγ

g−1h
j;D Þ=2. So the symmetric

nature of the pairings can be easily seen from the symmetry
transformations of the projection operators (g; h; k ∈ Gb):

UðgÞPh;k
iC;jDUðgÞ† ¼ Pgh;gk

iC;jD: ð99Þ

In 2D and higher dimensions, we use the generic pairing
rule Eq. (97) and the projection operator Eq. (98) to
construct Gb-symmetric states.
Decoration procedure.—Our Majorana fermions γσij;A

and γσij;B (σ ∈ Gb) are on the two sides of each link hiji. We
use the convention that the Majorana fermion on left-hand
side (right-hand side) of the oriented link hiji is γσij;A (γσij;B).
The vacuum pairing between them is from A to B:
−iγσij;Aγσij;B ¼ 1. To decorate Kitaev chains on the lattice,
we should also add arrows to the small red triangle inside
each triangle h012i (see Fig. 2). These red arrows are
constructed from the discrete spin structures (a choice of
trivialization of Stiefel-Whitney homology class w0 dual to
cohomology class w2) of the 2D spatial spin manifold
triangulation. The Majorana fermions are designed to pair
up with each other according to these red arrows. The red
arrows constructed have the property that the number of
counterclockwise arrows in a loop with even red links is
always odd. This property is crucial for the decorated
Kitaev chain to have fixed fermion parity. For details of the
Kasteleyn orientations for arbitrary triangulation, we refer
the interested readers to Ref. [53].
The Kitaev chain decoration is specified by

n1ðgi; gjÞ ∈ Z2, which is a function of two group elements
gi; gj ∈ Gb. If n1ðgi; gjÞ ¼ 0, the Majorana fermions γσij;A
and γσij;B on the two sides of link hiji are in vacuum
pairings: −iγσij;Aγσij;B ¼ 1 (for all σ ∈ Gb). On the other
hand, if n1ðgi; gjÞ ¼ 1, there is a domain wall along the
direction dual to link hiji, where a Kitaev chain is
decorated [see the green belt shown in Eq. (100)]. For
all jGbj species of Majorana fermions, we put only γgiij;A and
γgiij;B to be in the nontrivial pairing. All other jGbj − 1

species of Majorana fermions γσij;A and γσij;B with σ ≠ gi are
still in vacuum pairings. Here is an example of the Kitaev
chain decoration around the vertex g2 inside a triangle (we
omit the operator labels of Majorana fermions which are in
vacuum pairings):

ð100Þ

The domain wall decorated by a Kitaev chain is indicated
by a green belt. Trivial (vacuum) pairings and nontrivial
pairings are represented by dashed red lines and solid red
lines, respectively. The red (blue) arrows show the trivial
(nontrivial) pairing directions of Majorana fermions:

ð101Þ

ð102Þ

We discuss more about the pairing directions and why they
are symmetric later.
Consistency condition.—According to our decoration

rule, the number of decorated Kitaev chains going through
the boundary of a given triangle h012i is

ðdn1Þðg0;g1;g2Þ¼n1ðg1;g2Þþn1ðg0;g2Þþn1ðg0;g1Þ:
ð103Þ

Since we are constructing a gapped state without intrinsic
topological order, there should be no dangling free
Majorana fermions inside any triangle. Therefore, we have
the (mod 2) equation

dn1 ¼ 0: ð104Þ

This equation is the consistency condition for the Kitaev
chain decoration data n1.
Symmetric pairing directions.—Now, let us turn back to

the details of Majorana fermion pairings inside the triangle
h012i. The strategy of constructing Gb-symmetric pairings
is the same as in the 1D case: We first consider the standard
triangle of g0 ¼ e and then apply a Uðg0Þ action to obtain
all other nonstandard triangles. The Majorana fermion
pairings constructed in this way are automatically sym-
metric, due to the symmetry transformation rule of the
pairing projection operators [Eq. (99)]. For the standard

(a) (b)

FIG. 2. Kasteleyn orientations of the resolved dual lattice. For a
given triangulation of the 2D spatial spin manifold (shown by
black links), we can construct a resolved dual lattice (shown by
red links). The Majorana fermion pairings should respect the red
link arrows in the figures.
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triangle, the Majorana fermions are paired (trivially or
nontrivially) according to the Kasteleyn orientations indi-
cated by red arrows. The pairings in the nonstandard
triangle is obtained by a Uðg0Þ action as follows:

ð105Þ

Note that Majorana fermions γσij;A and γσij;B (σ ≠ gi) of
link hiji are always in vacuum pairings ð−iγσij;Aγσij;B ¼ 1Þ,
independent of the n1 configurations. So their pairing
directions always follow the red arrow Kasteleyn
orientations in both figures of the above equation. For
the two Majorana fermions γgiij;A and γgiij;B of the link hiji,
there are two possibilities. If n1ðgi; gjÞ ¼ 0, these two
Majorana fermions are also in vacuum pairing, with the
direction indicated by the red arrow and projection
operator

Pgi;gi
ijA;ijB ¼ Uðg0ÞPg−1

0
gi;g−10 gi

ijA;ijB Uðg0Þ−1 ¼
1

2
ð1 − iγgiij;Aγ

gi
ij;BÞ:
ð106Þ

On the other hand, if n1ðgi; gjÞ ¼ 1, we pair the Majorana
fermion inside the triangle with another one belonging to
another link with also n1 ¼ 1 [for example, γg002B and γg112A
are paired in Eq. (100)]. Note that there are always an
even number of Majorana fermions in nontrivial pairing
among the three (γg112A, γ

g0
02B, and γg001A) inside the triangle

h012i, for we have ðdn1Þðg0; g1; g2Þ ¼ 0 (mod 2) from
Eq. (104). There are three possible nontrivial pairings
inside the triangle h012i, with Majorana pairing projection
operators

Pg0;g0
02B;01A ¼ Uðg0ÞPe;e

02B;01AUðg0Þ† ¼
1

2
ð1 − iγg002Bγ

g0
01AÞ;

ð107Þ
Pg0;g1
02B;12A ¼ Uðg0ÞPe;g−1

0
g1

02B;12AUðg0Þ†

¼ 1

2
½1 − ð−1Þω2ðg0;g−10 g1Þiγg002Bγ

g1
12A�; ð108Þ

Pg1;g0
12A;01A ¼ Uðg0ÞPg−1

0
g1;e

12A;01AUðg0Þ†

¼ 1

2
½1 − ð−1Þω2ðg0;g−10 g1Þþs1ðg0Þiγg112Aγ

g0
01A�: ð109Þ

Among the three possible nontrivial pairings, only the
last two may change their directions in the nonstandard
triangle. They are indicated by blue arrows in the right-
hand-side figure in Eq. (105). This result can be
understood from the following facts: The ð−1Þω2 term
appears in the projection operators when the pairing is
between Majorana fermions with different group
element labels; and the ð−1Þs1 term appears when the
pairing is between the same A=B-type Majorana fer-
mions. The pairing Eq. (107) between γg002B and γg001A
belongs to neither of the above two cases. So their
pairing direction is the same as the red arrow even after
Uðg0Þ action.
Majorana fermion parity.—For convenience, we can

define the Majorana fermion parity Pγ
fð012Þ of a triangle

h012i to be the product of fermion parities of the Majorana
fermion pairings along the three dashed red links inside the
triangle. Since the symmetry action may change the pairing
directions inside a triangle, the Majorana fermion parity of
this triangle may also be changed. The fermion parity
difference between the standard and nonstandard triangles
can be calculated from the number of pairing arrows that
are reversed by Uðg0Þ action, which, of course, depends
on the n1 configurations. We can use, for example,
n1ðg0; g1Þn1ðg1; g2Þ ¼ 0, 1 to indicate whether γg112A and
γg001A are paired or not. So the Majorana fermion parity
change inside the triangle is, in general, given by

ΔPγ
fð012Þ ¼ ð−1Þω2ðg0;g−10 g1Þ½n1ðg0;g2Þn1ðg1;g2Þþn1ðg0;g1Þn1ðg1;g2Þ�þs1ðg0Þn1ðg0;g1Þn1ðg1;g2Þ

¼ ð−1Þω2ðg0;g−10 g1Þn1ðg1;g2Þþs1ðg0Þn1ðg0;g1Þn1ðg1;g2Þ

¼ ð−1Þðω2⌣n1þs1⌣n1⌣n1Þðg0;g−10 g1;g−11 g2Þ; ð110Þ

where we use ðdn1Þðg0; g1; g2Þ ¼ 0 from Eq. (104)
in the second step. The above equation is a summary
of phase factors from Eqs. (107)–(109). We note
that the above expression is also true for negative oriented
triangles. All the fermion parity change cases involve

the particular Majorana fermion γg112A (γg112B for negative
oriented triangles). We use it later in the definition
of the F symbol to compensate the fermion parity
changes of the Majorana fermion pairing projection
operators.

QING-RUI WANG and ZHENG-CHENG GU PHYS. REV. X 10, 031055 (2020)

031055-20



Although the Majorana fermion parity of a given triangle
may be changed, the fermion parity of the whole system is
fixed under the global UðgÞ action. Since the fermion parity
of thevacuumpairings are not changed by symmetry actions,
we need to consider only the n1 domain walls decorated by
Kitaev chains. For a particular (closed) Kitaev chain, the
Majorana fermionparity is the same as thevacuumpairings if
the pairings are constructed according to Kasteleyn orienta-
tions of the resolved dual lattice. It is also not hard to show
that symmetry action always changes the arrow even times,
following the pairing rules of Eq. (105). Therefore, we
conclude all closed Kitaev chains have even fermion parity,
although the local fermion parity of a triangle may be
changed compare to the Kasteleyn orientations.
To sum up, among the jGbj species of Majorana fermions,

we decorate exactly one Kitaev chain to each symmetry
domain wall specified by the n1 configurations of the state.
The decoration is symmetric under symmetry actions. The
Majorana fermion parity of a triangle is changed according to
Eq. (110) compared to the Kasteleyn oriented pairings.

2. Complex fermion decoration

The rules of complex fermion decoration are much
simpler than the pairings of Majorana fermions. The
decoration is specified by a Z2-valued 2-cochain

n2 ∈ C1ðGb;Z2Þ. If n2ðgi; gj; gkÞ ¼ 0, all the modes of
complex fermions cσijk (σ ∈ Gb) at the center of triangle
hijki (i < j < k) are unoccupied. On the other hand, if
n2ðgi; gj; gkÞ ¼ 1, exactly one complex fermion mode cgiijk
is decorated at the center of triangle hijki. All other
complex fermions cσijk (σ ≠ gi) are still in vacuum states.
The complex fermion decoration rule is Gb symmetric.

Under a UðgÞ action, the vertex labels fgig becomes fggig.
According to our decoration rule, the decorated complex
fermion [if n2ðggi; ggj; ggkÞ ¼ n2ðgi; gj; gkÞ ¼ 1] should be
cggiijk, which is exactly the complex fermion cgiijk by a UðgÞ
action.

C. F moves

To compare the states on different triangulations of the
2D spatial manifold, we should consider the 2D Pachner
move, which is essentially the retriangulation of a rec-
tangle. The Pachner move induces a FSLU transformation
of the FSPT wave functions from the right-hand-side
triangulation lattice T 0 to the left-hand-side lattice T .
We can first define the standard F move for a rectangle
with g0 ¼ e; then other nonstandard ones can be
obtained by simply a Uðg0Þ action. The standard F move
is given by

ð111Þ

where the FSLU F operator is defined as

Fðe; 0̄1; 0̄2; 0̄3Þ ¼ ν3ð0̄1; 1̄2; 2̄3Þðce†012Þn2ð012Þðce†023Þn2ð023Þðce013Þn2ð013Þðc
g−1
0
g1

123 Þn2ð123ÞX0123½n1�: ð112Þ

We use the abbreviation īj for g−1i gj in the arguments of F,
and n2ðijkÞ represents n2ðgi; gj; gkÞ ¼ n2ðg−1i gj; g−1j gkÞ
for short.
The Uð1Þ phase factor ν3ð0̄1; 1̄2; 2̄3Þ ¼ ν3ðg−10 g1;

g−11 g2; g−12 g3Þ in the front of the F symbol is an inhomo-
geneous 3-cochain depending on three group elements. By
definition, it is related to the homogeneous cochain by

ν3ðg−10 g1; g−11 g2; g−12 g3Þ ¼ ν3ðe; g−10 g1; g−10 g2; g−10 g3Þ;
ð113Þ

with the first argument of homogeneous cochain to be the
identity element e ∈ Gb. Later, we use symmetry conditions
to relate ν3ðe; g−10 g1; g−10 g2; g−10 g3Þ and ν3ðg0; g1; g2; g3Þ.
The complex fermion term of the form c†c†cc annihi-

lates two complex fermions at the two triangles of the right-
hand-side figure and creates two on the left-hand-side
figure in Eq. (111). According to our decoration rules
developed in Sec. V B 2, the triangle hijki is decorated by
complex fermion cgiijk. So, in the standard F move, only the

last fermion c
g−1
0
g1

123 has group element label g−10 g1, and the
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other three fermions all have group element label e. We
note that, different from the Gf ¼ Zf

2 ×Gb case [53], the
complex fermion parity of the 2D F move does not need to
be conserved, in general.
The term X0123½n1� is related to the Kitaev chain

decorations. In terms of Majorana fermion pairing projec-
tion operators [Eq. (98)], the general expression of the X
operator is

X0123½n1� ¼ P0123½n1� · ðγg
−1
0
g2

23B Þdn2ð0123Þ; ð114Þ

P0123½n1� ¼
�Y

loopi

2ðLi−1Þ=2
�� Y

Majorana pairs ha;biinT
Pga;gb
a;b

�

×

� Y
link hiji∉T

Y
σ∈Gb

Pσ;σ
ijA;ijB

�
: ð115Þ

The Majorana fermion γ
g−1
0
g2

23B is added for fermion parity
considerations (which are discussed in detail in the next
section). If we do not add this term, X0123½n1� projects the
right-hand-side state to zero, whenever the Majorana
fermion parity is changed under this F move. We choose

the Majorana fermion γ
g−1
0
g2

23B , because all the Majorana
fermion parity change cases involve it in the standard F
move [see the blue arrows in Eq. (111)]. The pairing
projection operator P0123½n1� in Eq. (115) has three terms.
The first term is a normalization factor, where 2Li is the
length of the ith loop in the transition graph of Majorana
pairing dimer configurations on the left triangulation lattice
T and right lattice T 0. The second term projects the state to
the Majorana pairing configuration state in the left figure.
The third term is the product of the vacuum projection
operators for those Majorana fermions that do not appear
explicitly in the left figure. As an example, the explicit X
operator for the n1 configurations shown in Eq. (111) is

X0123½n1� ¼ 21=2
�
Pe;e
01B;02AP

e;e
02B;03A

Y
σ≠e

Pσ;σ
02A;02B

�

×

�Y
σ∈Gb

Pσ;σ
13A;13B

�
: ð116Þ

Since there are no pairings for the two blue arrow links in
Eq. (111), the Majorana fermion parity is always conserved
for this n1 configuration.
The F symbol constructed above should be a FSLU

operator. So it should be both fermion parity even and
symmetric under Gb action. Similar to the 1D case, we can
use these conditions to obtain several consistency equations
for the cochains n1, n2, and ν3.

1. Fermion parity conservation

It is proved that the Majorana fermion parity is conserved
under a 2D F move if they are paired according to the
Kasteleyn orientations in 2D [53]. Nevertheless, some of
the links are not Kasteleyn oriented in the standard F move
Eq. (111), because the triangle h123i is nonstandard; i.e.,
the group element label of the first vertex is not e ∈ Gb. It
should be obtained from the standard one by a Uðg−10 g1Þ
action. So the blue arrows inside this triangle may change
their directions according to our symmetric pairing rules.
The Majorana fermion parity change of this triangle can be
calculated from Eq. (110). Note that the three group
element labels of the vertices are now g−10 g1, g−10 g2, and
g−10 g3. So the Majorana fermion parity change under the
standard F move is

ΔPγ
fðFÞ ¼ ð−1Þðω2⌣n1þs1⌣n1⌣n1Þðg−10 g1;g−11 g2;g−12 g3Þ: ð117Þ

On the other hand, the complex fermion parity change
under the F move can be simply calculated by counting the
complex fermion numbers of the two sides:

ΔPc
fðFÞ ¼ ð−1Þn2ðg−10 g1;g−11 g2Þþn2ðg−10 g2;g−12 g3Þþn2ðg−10 g1;g−11 g3Þþn2ðg−11 g2;g−12 g3Þ ¼ ð−1Þdn2ðg−10 g1;g−11 g2;g−12 g3Þ: ð118Þ

As a result, the conservation of total fermion parity
ΔPf ¼ ΔPγ

f · ΔPc
f ¼ 1 under the F move enforces the

condition

dn2 ¼ ω2⌣n1 þ s1⌣n1⌣n1: ð119Þ

It shows that the Majorana fermions and complex fermions
are coupled to each other.

This result is very different from the 2D FSPT states with
unitary group Gf ¼ Zf

2 × Gb (i.e., ω2 ¼ 0 and s1 ¼ 0)
[53], where the fermion parities of the Majorana fermions
and complex fermions are conserved separately. So
Eq. (119) is reduced to a simple cocycle equation
dn2 ¼ 0. In the case of T2 ¼ −1 topological superconduc-
tors [76], although both ω2 and s1 are nontrivial, there
combination ω2 þ s1⌣n1 ¼ 0 is also trivial. So we still
have dn2 ¼ 0. That is the reason why it admits the exactly
solvable model with only Kitaev chain decorations.
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2. Symmetry condition

In the previous discussions, we consider only the standard F move with g0 ¼ e. The nonstandard F moves are
constructed by symmetry actions on the standard one. From Eq. (66), we have the following commuting diagram:

ð120Þ

So the nonstandard F operator is defined as

Fðg0; g1; g2; g3Þ ¼ g0Fðe; g−10 g1; g−10 g2; g−10 g3Þ ≔ Uðg0ÞFðe; g−10 g1; g−10 g2; g−10 g3ÞUðg0Þ†: ð121Þ

The F moves constructed in this way are automatically symmetric, because we can derive the transformation rule

Fðgg0; gg1; gg2; gg3Þ ¼ UðgÞFðg0; g1; g2; g3ÞUðgÞ†; ð122Þ

using Eq. (63) and the fact that F is fermion parity even.
After a Uðg0Þ action on the standard F operator Eq. (112), we can obtain the generic F symbol expression:

Fðg0; g1; g2; g3Þ ¼ ν3ðg0; g1; g2; g3Þðcg0†012Þn2ð012Þðcg0†023Þn2ð023Þðcg0013Þn2ð013Þðcg1123Þn2ð123ÞX0123½n1�: ð123Þ

The complex fermions now have group element labels g0 or g1. And the X operator is

X0123½n1� ¼ P0123½n1� · ðγg223BÞdn2ð0123Þ; ð124Þ

with added Majorana fermion γg223B rather than γ
g−1
0
g2

23B . P0123½n1� has a similar expression as Eq. (115) that projects the
Majorana fermions to the pairing state on the left-hand-side figure (the group element labels are changed appropriately).
From the decoration rules of Majorana fermions and complex fermions, n1 and n2 are invariant under symmetry actions.

The generic homogeneous cochain ν3 in Eq. (123) is a combination of the inhomogeneous ν3 in the standard F move and
the �1 signs appearing in the symmetry action. So we have the following symmetry conditions for n1, n2, and ν3:

n1ðg0; g1Þ ¼ n1ðe; g−10 g1Þ ¼ n1ðg−10 g1Þ; ð125Þ

n2ðg0; g1; g2Þ ¼ n2ðe; g−10 g1; g−10 g2Þ ¼ n2ðg−10 g1; g−11 g2Þ; ð126Þ

ν3ðg0; g1; g2; g3Þ ¼ g0ν3ðg−10 g1; g−11 g2; g−12 g3Þ ¼ ν3ðg−10 g1; g−11 g2; g−12 g3Þ1−2s1ðg0Þ ·Osymm
4 ðg0; g1; g2; g3Þ: ð127Þ

The symmetry sign Osymm
4 in the last equation is given by
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Osymm
4 ðg0; g1; g2; g3Þ ¼ ð−1Þω2ðg0;g−10 g1Þn2ð123Þþ½s1ðg0Þþω2ðg0;g−10 g2Þ�dn2ð0123Þ

¼ ð−1Þðω2⌣n2þs1⌣dn2Þðg0;g−10 g1;g−11 g2;g−12 g3Þþω2ðg0;g−10 g2Þdn2ðg−10 g1;g−11 g2;g−12 g3Þ; ð128Þ

where the sign ð−1Þω2ðg0;g−10 g1Þn2ð123Þ comes from the sym-

metry transformation Eq. (93) of c
g−1
0
g1

123 and the sign
ð−1Þ½s1ðg0Þþω2ðg0;g−10 g2Þ�dn2ð0123Þ comes from the symmetry

transformation Eq. (95) of γ
g−1
0
g2

23B in the X operator. We
note that the last term ω2dn2 in Eq. (128) is not a cup
product or cup-1 product form. This symmetry sign Osymm

4

appears later in the twisted cocycle equation for ν3 as part
of the obstruction function [see Eq. (131)].

D. Superpentagon and twisted cocycle equations

The F moves should satisfy a consistency condition
known as the pentagon equation for fusion categories. In a
fermionic setting, it is a superpentagon equation with some

fermion sign twist for superfusion categories [72,77,78].
The 2D FSPT states correspond to a special kind of
superfusion category in which all the simple objects are
invertible. So the classification of 2D FSPT states can be
understood mathematically as the classification of pointed
superfusion categories corresponding to a given sym-
metry group.
Similar to previous discussions, we need to consider only

the standard superpentagon equation with g0 ¼ e. All other
superpentagon equations can be obtained from it by a
Uðg0Þ symmetry action. So it is enough to merely consider
the standard superpentagon as coherence conditions. This
standard superpentagon equation is shown in Fig. 3.
Algebraically, we have the following equation:

Fðe; 0̄2; 0̄3; 0̄4Þ · Fðe; 0̄1; 0̄2; 0̄4Þ ¼ Fðe; 0̄1; 0̄2; 0̄3Þ · Fðe; 0̄1; 0̄3; 0̄4Þ · Fð0̄1; 0̄2; 0̄3; 0̄4Þ
¼ Fðe; 0̄1; 0̄2; 0̄3Þ · Fðe; 0̄1; 0̄3; 0̄4Þ · 0̄1Fðe; 1̄2; 1̄3; 1̄4Þ; ð129Þ

where we use īj to denote g−1i gj. Note that only the last F
symbol is nonstandard in the above equation.
Now we can substitute the explicit expression of the

standard F move Eq. (112) into the standard superpentagon
equation [Eq. (129)]. After eliminating all complex fer-
mions and Majorana fermions, we obtain a twisted cocycle
equation for the inhomogeneous 3-cochain ν3. In general,
the twisted cocycle equation reads

dν3 ¼ O4½n2�; ð130Þ

whereO4½n2� is a functional of n2 only (as well asω2 and s1
parametrizing the symmetry group, of course). The n1
dependence of O4 is through dn2 by Eq. (119). Since the
fermion parities of Majorana fermions and complex fer-
mions are coupled to each other, O4½n2� is much more
complicated than the special result O4½n2� ¼ ð−1Þn2⌣n2 for
unitary Gf ¼ Zf

2 ×Gb [52,53,72].
From general considerations, the obstruction function

O4½n2� consists of four terms:

O4½n2� ¼ Osymm
4 ½n2� ·Oc

4½n2� ·Ocγ
4 ½dn2� ·Oγ

4½dn2�: ð131Þ

These four terms have different physical meanings and are
summarized as

Osymm
4 ½n2�ð01234Þ
¼ ð−1Þðω2⌣n2þs1⌣dn2Þð01234Þþω2ð013Þdn2ð1234Þ; ð132Þ

Oc
4½n2� ¼ ð−1Þn2⌣n2þdn2⌣1n2 ; ð133Þ

Ocγ
4 ½dn2� ¼ ð−1Þdn2⌣2dn2 ; ð134Þ

Oγ
4½dn2�ð01234Þ
¼ ð−1Þdn2ð0124Þdn2ð0234Þð−iÞdn2ð0123Þ½1−dn2ð0124Þ� ðmod 2Þ:

ð135Þ

Note that the dn2 terms in the exponent of (−i) in the last
equation should be understood as taking mod 2 values (can
be only 0 or 1). And the notation ⌣i is the higher cup
product by Steenrod [65]. By adding a coboundary
ð−1Þdðs1⌣n2þn2⌣2dn2Þ to the obstruction function and shift-
ing ν3 → ν3ð−1Þs1⌣n2þn2⌣2dn2 , we can simplify the above
obstruction function to
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O4½n2�ð01234Þ ¼ ð−1Þðω2⌣n2þn2⌣n2þn2⌣1dn2Þð01234Þþω2ð013Þdn2ð1234Þþdn2ð0124Þdn2ð0234Þð−iÞdn2ð0123Þ½1−dn2ð0124Þ� ðmod 2Þ: ð136Þ

We note that only the first three terms ω2⌣n2 þ n2⌣n2 þ
n2⌣1dn2 in the exponent are expressed as a (higher) cup
product form, while other terms are not. If we consider the
special case of ω2 ¼ 0 and s1 ¼ 0, then we have dn2 ¼ 0
from Eq. (119). So the above equation reduces to the
known sign twistO4½n2� ¼ ð−1Þn2⌣n2 in the superpentagon
or supercohomology equation [52,72].
Before calculating the obstruction function in detail, we

note that we check numerically that the claimed expression
Eq. (136) ofO4½n2� is a cocycle, i.e., dO4 ¼ 1, for arbitrary
choices of s1, ω2, n1, and n2 satisfying the corresponding
consistency equations. This check is a consistency check,
because the superpentagon equation [Eq. (129)] always

implies a one-higher-dimensional equation involving one
more vertex.

1. Calculations of obstruction function O4½n2�
In this subsection, we give explicit calculations of the

four terms of the obstruction function O4½n2� in Eq. (131).
The first term Osymm

4 ½n2� comes from the Uð0̄1Þ sym-
metry action on Fðe; 1̄2; 1̄3; 1̄4Þ in the last term in
Eq. (129). The homogeneous ν3 in the nonstandard F
move is related to the inhomogeneous ν3 of the standard F
move by a symmetry action [see Eq. (127)]. So, using the
explicit expression Eq. (128), we have

Osymm
4 ½n2�ð0̄1; 0̄2; 0̄3; 0̄4Þ ¼ ð−1Þðω2⌣n2þs1⌣dn2Þð0̄1;1̄2;2̄3;3̄4Þþω2ð0̄1;1̄3Þdn2ð1̄2;2̄3;3̄4Þ;

which is exactly Eq. (132) claimed above.

The second termOc
4½n2� is the fermion sign from reordering the complex fermion operators ðcg−10 gi

ijk Þn2ðgi;gj;gkÞ in Eq. (129).
To compare the complex fermion operators on the two sides of the superpentagon equation, one has to rearrange these
operators and finally obtain the fermion sign

FIG. 3. Standard superpentagon equation. The dual trivalent graph of the triangulation is the usual string diagram pentagon equation
for the tensor category. Algebraically, this standard superpentagon condition corresponds to Eq. (129). Since the group element label of
the first vertex is e ∈ Gb, all the fermionic F moves are standard except 0̄1F1234. Note that we use a simpler notation Fijkl ¼
Fðe; īj; j̄k; k̄lÞ in the figure. Blue arrows indicate that the Majorana fermion pairing directions may be changed compared to the red
arrow Kasteleyn orientations.
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Oc
4½n2�ð01234Þ ¼ ð−1Þðn2⌣n2þdn2⌣n2Þð01234Þ

¼ ð−1Þn2ð012Þn2ð234Þþ½dn2ð0234Þn2ð012Þþdn2ð0134Þn2ð123Þþdn2ð0124Þn2ð234Þ�: ð137Þ

This equation is a generalization of the usual sign twist ð−1Þn2⌣n2 for 2-cocycle n2. If dn2 ≠ 0, we have another
term ð−1Þdn2⌣1n2 .
The third term Ocγ

4 ½dn2� of the obstruction function originates from reordering the complex fermion and the Majorana
fermions. For instance, to put all complex fermion operators to the front of Majorana fermion operators on the left-hand side
of Eq. (129), we have to switch the X operator of Fð0234Þ and the complex fermions of Fð0124Þ. So there is a fermion sign
ð−1Þdn2ð0234Þdn2ð0124Þ. Combining it with the fermion signs from the right-hand side, we have the total sign

Ocγ
4 ½dn2�ð01234Þ ¼ ð−1Þðdn2⌣2dn2Þð01234Þ

¼ ð−1Þdn2ð0123Þdn2ð0134Þþdn2ð0234Þdn2ð0124Þþdn2ð0123Þdn2ð1234Þþdn2ð0134Þdn2ð1234Þ: ð138Þ

Since the fermion parities of the X operator and the
complex fermion operator c†c†cc are related only to
dn2, this obstruction function Ocγ

4 ½dn2� is a functional of
dn2 (rather than n2 directly).
In the rest of this subsection, we calculate the most

complicated part Oγ
4½dn2� of the obstruction function. In

addition to �1, this Majorana fermion term can also take
values in �i. Whenever the Majorana fermion parity of the
F move is changed, i.e., dn2ð0123Þ ¼ 1, there is a dangling

Majorana fermion γ
g−1
0
g2

23B in the X operator [Eq. (114)]. The
presence of Majorana fermions depends only on dn2. So,
similar toOcγ

4 ½dn2�, we expectOγ
4½dn2� to be a functional of

dn2 only.
We can denote the five X operators in the standard

superpentagon equation [Eq. (129)] by X1234 ¼

P2ðγ0̄334BÞdn2ð1234Þ, X0234 ¼ P4ðγ0̄334BÞdn2ð0234Þ, X0134 ¼
P3ðγ0̄334BÞdn2ð0134Þ, X0124 ¼ P5ðγ0̄224BÞdn2ð0124Þ, and X0123 ¼
P4ðγ0̄223BÞdn2ð0123Þ. Here, Pi is the Majorana pairing projec-
tion operator of the corresponding ith figure (1 ≤ i ≤ 5) in
the superpentagon equation in Fig. 3. We use the con-
vention that the rightmost figure is the first one with
projection operator P1, and the other four figures are
counted counterclockwise. We also use the simpler notation

γ0̄iijB ≔ γ
g−1
0
gi

ijB : ð139Þ

Using these X operators, the obstruction function coming
from Majorana fermions can be calculated by

Oγ
4½dn2� ¼ hX†

1234X
†
0134X

†
0123X0234X0124i

¼ hP1ðγ0̄334BÞdn2ð1234ÞP2ðγ0̄334BÞdn2ð0134ÞP3ðγ0̄223BÞdn2ð0123ÞP4P4ðγ0̄334BÞdn2ð0234ÞP5ðγ0̄224BÞdn2ð0124ÞP1i: ð140Þ

The average is taken over the Majorana fermion state of the
rightmost figure in Fig. 3. We also insert P1, which is 1
acting on the rightmost state, at the first and the last places
of the operator string.
Equation (140) should be calculated separately for

different Majorana fermion configurations. Among the five
dangling Majorana fermions of the five X operators, only
three of them are different:

ðγ0̄334B; γ0̄224B; γ0̄223BÞ: ð141Þ

So we can use the triple of their number,

½dn2ð0̂Þþdn2ð1̂Þþdn2ð2̂Þ;dn2ð3̂Þ;dn2ð4̂Þ� ðmod2Þ; ð142Þ

to indicate the presence or absence of the three Majorana
fermions in Eq. (140). For simplicity, we use the notation

dn2ðîÞ ≔ dn2ð01…î…34Þ; ð143Þ

where î means that the number i is removed from the
argument. Each element of the triple corresponds to the
Majorana fermion parity change of one or several F moves.
There are in total 23=2 ¼ 4 different possibilities for the
Majorana fermion parity changes (see the first column in
Table IV), since the total Majorana parity of the five F
moves should be even. We can now calculate Oγ

4½dn2� for
these four cases separately.
As an example, let us calculate Oγ

4½dn2� for the second
case with Majorana fermion parity changes (1,0,1) (the
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third row in Table IV). The dangling Majorana fermions
present in Eq. (140) are γ0̄334B and γ0̄223B. We can expand the
projection operators Pi to Majorana fermion operators.
Since γ0̄334B and γ0̄223B are paired in the triangle h234i of the
rightmost figure in Fig. 3, we can consider only their
pairing term [recall Eq. (98)]

P0̄2;0̄3
23B;34B ¼ 1

2
½1 − ð−1Þω2ð0̄2;2̄3Þþs1ð0̄2Þiγ0̄223Bγ

0̄3
34B� ð144Þ

in P1. All other projection operators Pi with i ≠ 1 can be
chosen to be 1. So the obstruction function Eq. (98) can be
calculated as

Oγ
4½dn2�ð01234Þjð1;0;1Þ
¼ hðγ0̄334BÞdn2ð0̂Þþdn2ð2̂Þγ0̄223Bðγ0̄334BÞdn2ð1̂ÞP1i ð145Þ

¼ hðγ0̄334BÞdn2ð0̂Þþdn2ð2̂Þγ0̄223Bðγ0̄334BÞdn2ð1̂Þ
× ð−1Þω2ð0̄2;2̄3Þþs1ð0̄2Þð−iγ0̄223Bγ0̄334BÞi ð146Þ

¼ ð−iÞð−1Þω2ð0̄2;2̄3Þþs1ð0̄2Þþdn2ð1̂Þ ð147Þ

¼ −i: ð148Þ

Note that we replace P1 by the second term of Eq. (144) to
obtain Eq. (146) (see the third column in Table IV). In this
way, the Majorana fermions all appear in Eq. (146) even
times. After switching the Majorana fermions γ0̄223B and

ðγ0̄334BÞdn2ð1̂Þ, we obtain a fermion sign ð−1Þdn2ð1̂Þ. Then, we
can eliminate all Majorana fermion operators, since their
square is one. To simplify the phase factor Eq. (147), we
observe that the conditions

dn2ð3̂Þ ¼ ½ω2ð0̄1; 1̄2Þ þ s1ð0̄1Þn1ð1̄2Þ�n1ð2̄4Þ ¼ 0; ð149Þ

dn2ð4̂Þ ¼ ½ω2ð0̄1; 1̄2Þ þ s1ð0̄1Þn1ð1̄2Þ�n1ð2̄3Þ ¼ 1 ð150Þ

imply n1ð2̄3Þ ¼ 1 and n1ð2̄4Þ ¼ 0. We also have
n1ð3̄4Þ ¼ 1 from dn1ð234Þ ¼ 0. Using the relation

dn2ð1̂Þ ¼ ω2ð0̄2; 2̄3Þn1ð3̄4Þ þ s1ð0̄2Þn1ð2̄3Þn1ð3̄4Þ
¼ ω2ð0̄2; 2̄3Þ þ s1ð0̄2Þ; ð151Þ

the exponent of (−1) in Eq. (147) is, in fact, 0. We,
therefore, have the final resultOγ

4½dn2�ð01234Þjð1;0;1Þ ¼ −i.
Similarly, we can calculate Oγ

4½dn2� for all other cases of
Majorana fermion parity changes. The information we need
in the calculation is shown in Table IV. The final results
shown in the last column in Table IV can be summarized
into a simple expression (which is a functional of dn2 only):

Oγ
4½dn2�ð01234Þ¼ ð−1Þdn2ð3̂Þdn2ð1̂Þð−iÞdn2ð4̂Þ½1−dn2ð3̂Þ� ðmod 2Þ

¼ ð−1Þdn2ð0124Þdn2ð0234Þ
× ð−iÞdn2ð0123Þ½1−dn2ð0124Þ� ðmod 2Þ: ð152Þ

The dn2 terms in the exponent of (−i) should be understood
as taking mod 2 values (can be only 0 or 1). This result is
exactly the result claimed previously in Eq. (135).

E. Boundary ASPT states in Γ2

We construct 2D FSPT states in the above discussions.
However, not all of them correspond to distinct FSPT
phases. In the following subsection, we construct explicitly
a FSLU transformation path to connect an FSPT state with
n2 ¼ ω2 and a state without complex fermion decorations.
The physical understanding is that there is a gapped
symmetric boundary for the 2D FSPT state. So we
conclude that the state with n2, which is in the new
coboundary subgroup

Γ2 ¼ fω2 ∈ H2ðGb;Z2Þg; ð153Þ

should be considered as in the trivial FSPT phase.

1. FSLU to trivialize the 2D bulk

Let us fix the symmetry groupGf with givenGb, ω2, and
s1. We consider the special group supercohomology 2D
FSPT state constructed from ðn2; ν3Þ data satisfying
dn2 ¼ 0 and dν3 ¼ O4 ¼ ð−1Þω2⌣n2þn2⌣n2 [52]. We show

TABLE IV. Calculations of Oγ
4½dn2� for all possible Kitaev chain configurations in the superpentagon equation in Fig. 3. The first

column is the Majorana fermion parity change triple ½dn2ð0̂Þ þ dn2ð1̂Þ þ dn2ð2̂Þ; dn2ð3̂Þ; dn2ð4̂Þ� (mod 2). There are in total four
different cases. The second column is a simplified version of Eq. (140) for each case. The third and fourth columns are the Majorana
pairing projection operators we use in calculation. The last column is the final result ofOγ

4½dn2�, which can be summarized by Eq. (152).

Pγ
f changes Expression of Oγ

4½dn2� P1 P4 Oγ
4½dn2�

(0,0,0) hðγ0̄334BÞdn2ð0̂Þþdn2ð2̂Þþdn2ð1̂Þi 1 1 1

(1,0,1) hðγ0̄334BÞdn2ð0̂Þþdn2ð2̂Þγ0̄223Bðγ0̄334BÞdn2ð1̂ÞP1i ð−1Þs1ð0̄2Þþω2ð0̄2;2̄3Þð−iγ0̄223Bγ0̄334BÞ 1 −i
(1,1,0) hðγ0̄334BÞdn2ð0̂Þþdn2ð2̂ÞP4ðγ0̄334BÞdn2ð1̂Þγ0̄224BP1i ð−1Þω2ð0̄2;2̄3Þð−iγ0̄334Bγ0̄224AÞ −iγ0̄224Aγ0̄224B ð−1Þdn2ð1̂Þ
(0,1,1) hðγ0̄334BÞdn2ð0̂Þþdn2ð2̂Þγ0̄223BP4ðγ0̄334BÞdn2ð1̂Þγ0̄224BP1i −iγ0̄223Bγ0̄224A −iγ0̄224Aγ0̄224B ð−1Þdn2ð1̂Þ
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that the 2D FSPT state with n2 ¼ ω2 can be connected to a
product state by FSLU transformations.
Consider a 2D triangulation lattice of a closed oriented

spatial manifold. The FSPT wave function is a super-
position of the basis states with coefficients related to ν3
[see Eq. (90)]. The n2 data specify the decorations of
complex fermion cgiijk at the center of each triangle hijki of
the bosonic basis state jfgigi. So the fermionic basis state
can be expressed as

jðaÞi ¼
Y
hijki

ðcgi†ijkÞn2ðijkÞjfgigi: ð154Þ

We show in the following that the above state can be
transformed by two FSLUs as

jðaÞi!U1 jðbÞi!U2 jðcÞi; ð155Þ

where the schematic figures of these three states are shown
in Fig. 4. The final state jðcÞi is obtained from the bosonic
state jfgigi by decorating a small Kitaev chain around each
vertex [see the Kitaev chain along the gray arc in Fig. 4(c)].
After shrinking the small Kitaev chain to each vertex i, we
can view the state jgii0 with a fermion mode as a new basis
state. So the final state has the expression

jðcÞi ¼ jfgigi0 ¼⊗i jgii0; ð156Þ

which is a fermionic product state without complex fermion
decorations on the triangles. Therefore, using the two
FSLUs U1 and U2, we have connect an FSPT state with
complex fermion decorations specified by n2 ¼ ω2 to
another FSPT state without complex fermion decorations.
So the decoration data n2 ¼ ω2 for a complex fermion layer
are trivialized.
The following are the detailed constructions for the two

FSLU transformations.
(i) The first FSLU transformation U1 from jðaÞi to

jðbÞi.—Apart from the complex fermion cσ012 (blue dots) at
the center of the triangle in Fig. 4(a), we also add 3jGbj
fermion modes (aσ012, aσ012, and aσ012) near the three

vertices (0, 1, and 2) of the triangle and split them
into 6jGbj Majorana fermions [red dots in Fig. 4(a)].
The Majorana fermions are paired from γσA to γσB (vacuum
pair) near each vertex, respecting the right-hand rule
of the triangle orientation (green arrows). Since all the
Majorana fermions are in vacuum pairings, we do not
change the initial state Eq. (155) with only complex
fermions cgiijk.
After the transformation byU1, the initial state is changed

to the intermediate state jðbÞi shown in Fig. 4(b). In the state
jðbÞi, there are exactly one nontrivial Majorana chain (red
lines) and jGbj − 1 trivial Majorana chains (dotted green
arrow) along the boundary of the triangle. The Majorana
fermions forming nontrivial Kitaev chain are labeled by
group elements of the nearby vertices. And the pairing
directions are chosen to respect the Gb symmetry. So the
projection operators Eq. (98) for the nontrivial pairings (red
lines) inside the triangle h012i in Fig. 4(b) are

Pg0;g1
012B;012A ¼ Uðg0ÞPe;g−1

0
g1

012B;012AUðg0Þ†

¼ 1

2
½1 − ð−1Þω2ðg0;g−10 g1Þiγg0012Bγ

g1
012A�; ð157Þ

Pg1;g2
012B;012A ¼ Uðg0ÞPe;g−1

1
g2

012B;012AUðg0Þ†

¼ 1

2
½1 − ð−1Þω2ðg1;g−11 g2Þiγg1012Bγ

g2
012A�; ð158Þ

Pg0;g2
012A;012B ¼ Uðg0ÞPe;g−1

0
g2

012A;012BUðg0Þ†

¼ 1

2
½1 − ð−1Þω2ðg0;g−10 g2Þiγg0012Aγ

g2
012B�: ð159Þ

The blue arrow on the red link in Fig. 4(b) means that the
actual arrow direction is obtained by aGb action and depends
on ω2. The above Kitaev chain decoration procedure along
the boundary of a triangle is very similar to the 1D FSPT
construction with only three vertices. TheMajorana pairings
have the following properties: (i) Both the vacuum and the
nontrivial pairings are invariant under Gb action. (ii) The
fermion parity change of Majorana chains from Fig. 4(a) to

(a) (b) (c)

FIG. 4. FSLU transforms a 2D “FSPT” state to a fermion product state. There are two FSLU transformations ðaÞ !U1ðbÞ !U2ðcÞ to
trivialize the initial 2D FSPT state. (a) Majorana fermions are in vacuum pairs (green arrows). (b) There is exactly one Kitaev Majorana
chain inside the triangle (red links). (c) There is one Kitaev Majorana chain around each vertex (inside the gray arc). And we can shrink it
to the vertex and redefine the basis state jgii for the vertex.
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Fig. 4(b) inside the triangle is exactly ð−1Þω2ðg−10 g1;g−11 g2Þ.
This result is obtained by noticing that the summation of
three ω2 terms in the above three equations is equal to
ω2ðg−10 g1; g−11 g2Þ, according to dω2ðg0; g−10 g1; g−11 g2Þ ¼ 0.
Since we choose n2 ¼ ω2, we conclude that the complex
fermion mode cgiijk at the center of the triangle should be

totally annihilated, to make sure that U1 is fermion
parity even.
In such a way, the FSLU transformation U1 annihilates

the fermions at the center of each triangle and creates a
small Kitaev Majorana chain along the boundary of the
triangle. The explicit expression of the standard FSLU
transformation U1 with g0 ¼ e is

U1 ¼
Y
hijki

ðcgiijkÞn2ðijkÞ
�Y

σ≠gi

Pσ;σ
ijkA;ijkB

Y
σ≠gj

Pσ;σ
ijkA;ijkB

Y
σ≠gk

Pσ;σ
ijkA;ijkB

�
ðPgi;gj

ijkB;ijkAP
gj;gk
ijkB;ijkAP

gi;gk
ijkA;ijkBÞðγgiijkAÞn2ðijkÞ: ð160Þ

The first term cgkijk is used to remove the complex fermions
at the center of each triangle. Other terms are Majorana
fermion pairing projection operators Eq. (98) to decorate
one Kitaev chain along the boundary of the triangle. The
last dangling Majorana operator is inserted for fermion
parity considerations. Other nonstandard U1 can be ob-
tained from the standard one by a Uðg0Þ action. Therefore,
the operator U1 from jðaÞi to jðbÞi is both fermion parity
even and symmetric under Gb action.
(ii) The second FSLU transformation U2 from jðbÞi to

jðcÞi.—Since the state is on a closed oriented surface, there
are four Majorana fermions on the two sides of the oriented
link hiji. For convenience, we now relabel them by γgiij1; γ

gj
ij1

on the right-hand side and γgiij2; γ
gj
ij2 on the left-hand side of

the oriented link hiji (see the four red dots near each link).
We can use an FSLU U2 to change the Majorana fermion
pairings from P

gi;gj
ij1;ij1 ¼ P

gi;gj
ij2;ij2 ¼ 1 [see red links in

Fig. 4(b)] to Pgi;gi
ij1;ij2 ¼ P

gj;gj
ij2;ij1 ¼ 1 [see red links in

Fig. 4(c)]. These four Majorana fermions near link hiji
form a loop with Kasteleyn orientations. So the Majorana
fermion parity is unchanged under this FSLU.
The expression for the FSLU U2 is simply

U2 ¼
Y
hiji

Pgi;gi
ij1;ij2P

gj;gj
ij2;ij1: ð161Þ

Note that the actual direction of the blue arrow
in Fig. 4(c) near vertex i depends on Pgi;gi

ij1;ij2 ¼
UðgiÞ 12 ð1 − iγeij1γ

e
ij2ÞUðgiÞ†. So the arrow direction is

reversed if s1ðgiÞ ¼ 1, and γgiij1 and γgiij2 are Majorana
fermions belonging to the same A=B type.
After the above two FSLU transformations U1 and U2,

we have a state where each vertex is surrounded by one
nontrivial Majorana chain (red arrows) and jGbj − 1 trivial
Majorana chains (green arrows). The fermion parity of this
vertex depends on the number and the orientations of the
triangles sharing this vertex. We can define a new state jgii0
around the vertex i as the combination of the original
bosonic state jgii and the neighboring Majorana fermions

[the degrees of freedom inside the gray circles in Fig. 4(c)].
It is easy to check that jgii0 has the same Gb-transformation
property as jgii, i.e., jgii0 → jggii0. So the final state jðcÞi is
a fermionic product state [Eq. (156)].
In summary, using the two FSLU transformations

Eqs. (160) and (161), we can remove the complex fermions
at the triangles of an FSPT state with n2 ¼ ω2 and obtain an
FSPT state with n2 ¼ 0. Therefore, the complex fermion
decoration layer with n2 ¼ ω2 is trivialized by these FSLU
transformations.

2. Boundary ASPT of the 2D bulk

We show that the 2D FSPT state with n2 ¼ ω2 on a
closed surface can be connected to an FSPT state with
n2 ¼ 0. However, for a system with a boundary, there is
something unusual left.
Consider a state defined on a 2D triangulation lattice

with a boundary. We can perform FSLU transformations
similar to Eqs. (160) and (161). The only difference is that
the link hiji in the product in Eq. (161) is not on the
boundary of the space manifold, since there are only two
Majorana fermions near the each boundary link (see Fig. 5
for an example with only one interior vertex labeled by g�).
After the transformations, the bulk state becomes a tensor
product of interior vertex state jgii0 [see Fig. 6(a) for an
example]. But the boundary is transformed only under U1

and is a so-called 1D ASPT state [see Fig. 6(b) for an
example]. This boundary state is again a combination of
one nontrivial Majorana chain [see red links in Fig. 6(b)]
and jGbj − 1 trivial ones [see green links in Fig. 6(b)].
The anomalous feature of the boundary can be seen from

the symmetry action on the boundary. Under a UðgÞ
symmetry action, the Majorana fermions are transformed
as γgiA → ð−1Þω2ðg;giÞγggiA and γgiB → ð−1Þω2ðg;giÞþs1ðgÞγggiB .
Since there are three types of Majorana pairings on the
boundary [see Fig. 6(b)], we should analyze their symmetry
transformations separately:

(i) Vacuum pairings (green lines) −iγgiA γ
gi
B ¼ 1 are

transformed trivially under Gb action.
(ii) The nontrivial Majorana pairings (red lines) parallel

to link hiji are always A-B type pairing with
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different group element labels gi and gj. Under the
g ∈ Gb action, the pairing arrow is changed accord-
ing to ð−1Þω2ðg;giÞþω2ðg;gjÞ.

(iii) The nontrivial Majorana pairings (red lines) crossing
a black lattice link are always labeled by the same
group element and can be of different A=B types. So
the pairing arrow is changed as ð−1Þs1ðgÞ if the
pairing is A-A or B-B type.

Therefore, depending on ω2ðg; giÞ, ω2ðg; gjÞ, and s1ðgÞ, the
local Majorana fermion parity (pairing direction) for the
second and third types of pairings may be changed.
For a closed 1D array of Majorana fermions as the

boundary of a 2D bulk [see Fig. 6(b), for example], it is not
hard to show that the total Majorana fermion parity is
always fixed under Gb action [79]. However, if we want to
define a similar state on an open chain [such as Fig. 6(b)
with an open boundary condition], the total fermion parity
may be violated under UðgÞ action. This result is simply
because the direction of the link crossing the boundary may
be changed. So the symmetry action is incompatible with
the fermion parity of the open 1D ASPT chain. It implies
that the 1D ASPT state can exist only on the boundary of a
2D bulk state.

3. Boundary F move and fermion parity violation

There is another way to understand the anomalous
feature of the 1D boundary. We can try to construct such

a 1D state without 2D bulk directly and find out the
inconsistency of the state.
We consider the 1D state with a Kitaev chain and without

complex fermion decoration (n1 ¼ 0). We put jGbj species
of Majorana fermions near each vertex similar to the 2D
construction. But only one of them is in nontrivial pairings
between different vertices. The F move for this state is
given by

ð162Þ

where the FSLU F operator is defined as

Fðg0;g1;g2Þ¼jGbj1=2ν2ðg0;g1;g2ÞX ðviolate fermionparityÞ:
ð163Þ

X is someMajorana fermion projection operators to impose
the Majorana pairings. Since the Majorana fermion parity
change of the F move is ð−1Þω2ðg−10 g1;g−11 g2Þ (one can check
directly using Kasteleyn orientations), the above F symbol
may violate the Majorana fermion parity. So the state is
obstructed if ½ω2� is nontrivial.
However, we can introduce a 2D bulk to the above 1D

state we are constructing. The difference is that we can use

(a) (b) (c)

FIG. 5. FSLU transformations for “FSPT” state on a 2D surface with boundary. Similar to the “FSPT” state on a closed surface, there
are two FSLU transformations ðaÞ⟶U1ðbÞ⟶U2ðcÞ to trivialize the initial 2D “FSPT” state. (a) Original 2D “FSPT” state with
complex fermion decorations. (b) There is exactly one Kitaev’s Majorana chain inside each triangle (red links). (c) There is one Kitaev's
Majorana chain around each bulk vertex. The degrees of freedom inside the gray circle are combined to be the new basis state jg�i0 for
the bulk vertex. There is a remaining 1D ASPT state along the 1D boundary of the 2D bulk.

(a)
(b)

FIG. 6. ASPT on the 1D boundary of 2D bulk. On the boundary, the Majorana fermions forming a nontrivial Kitaev chain (red dots)
are labeled by A=B and g ∈ Gb. The blue arrow indicates that the pairing directions may be changed under symmetry action. (a) 2D bulk
(b) 1D boundary.
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a complex fermion from the 2D bulk to compensate the
Majorana fermion parity of the 1D F move Eq. (163). So
the new F move reads

Fðg0;g1;g2Þ¼ jGbj1=2ν2ðg0;g1;g2Þðcg0012Þn2ðg0;g1;g2ÞX: ð164Þ

We have to impose the condition

n2 ¼ ω2 ð165Þ

to make the new F move total fermion parity even. So there
is no longer fermion parity inconsistency for the 1D ASPT
state on the boundary of a 2D bulk.
In fact, the 1D F move Eqs. (162) and (164) can be

understood as the FSLU transformation U1 Eq. (160) for a
single triangle h012i (see Fig. 7). The upper two links h01i
and h12i correspond to the right-hand side of the 1D F
move. And the lower link h02i corresponds to the left-hand
side of the 1D F move. The additional complex fermion
cg0012 in 1D F move Eq. (164) is merely the decorate
complex fermion at the center of the 2D triangle. This
picture relates the 1D FSPT obstruction and the 2D FSPT
trivialization and explains the trivialization relation
Eq. (165) in a simple way.

F. Classification of 2D FSPT phases

The general classification of 2D FSPT phases is as
follows. We first calculate the cohomology groups
H1ðGb;Z2Þ, H2ðGb;Z2Þ, and H3½Gb;Uð1ÞT �. For each
n1 ∈ H1ðGb;Z2Þ, we solve the twisted cocycle equation
[Eq. (14)] for n2. For each solution n2, we solve the twisted
cocycle equation [Eq. (14)] for ν3. If n2 and ν3 are in the
trivialization subgroup Γ2 and Γ3 in Eq. (15), then they are
trivialized by boundaryASPT states. (Similar to the 1Dcase,

we can define Γ3 to describe those 2DBSPT state trivialized
by fermions.) So the obstruction-free and trivialization-free
ðn1; n2; ν3Þ fully classify the 2D FSPT phases.
Similar to the bosonic case, we can also use the 2D

FSLU transformations to construct the commuting-projec-
tor parent Hamiltonians. The procedure is tedious but
straightforward. For the case of complex fermion deco-
rations only, it is given explicitly in Ref. [72]. The terms of
the Hamiltonian are sequences of fermionic F moves that
change the group element label of a vertex from one to
another. All the terms commute with each other, because
our FSPT wave function is at the fixed point.

VI. FIXED-POINT WAVE FUNCTION AND
CLASSIFICATION OF FSPT STATES IN 3D

The fixed-point wave function for a FSPT state in 3D has
four layers of degrees of freedom. It is a superposition of all
possible basis states as (we omit the 2D pþ ip chiral
superconductor layer in the figure for simplicity)

ð166Þ

The basis state is labeled by group elements of Gb on each
vertex. On the plane dual to each link, we put a 2D pþ ip
chiral superconductor. Different from other layers, the pþ
ip superconductor layer does not have a fixed-point wave
function on a discrete lattice [80]. So we do not discuss this
layer decoration until the end of this section. Along the dual
link of each triangle, we decorate Kitaev chains (see green
lines in the above equation). And at the center of each
tetrahedron, we decorate some complex fermions (see blue
dots in the above equation).

A. Four layers of degrees of freedom

Similar to 2D, we construct FSPT states on a 3D lattice
by decorating complex fermions, Kitaev chains, and pþ ip
superconductors to the BSPT states. Therefore, there are
four layers of degrees of freedom including the bosonic
ones on a 3D triangulation lattice:

(i) jGbj level bosonic (spin) state jgii (gi ∈ Gb) on each
vertex i,

(ii) jGbj species of complex fermions cσijkl (σ ∈ Gb) at
the center of each tetrahedron hijkli,

(iii) jGbj species of complex fermions (split to Majorana
fermions) aσijk ¼ ðγσijk;A þ iγσijk;BÞ=2 (σ ∈ Gb) on the
two sides of each triangle hijki, and

(a) (b)

FIG. 7. Relation between FSLU U1 for a 2D triangle and 1D F
move. The 2D triangle can be viewed as a 1D F move from the
upper two links to the lower link. It relates the trivialization of 2D
n2 data to the obstruction of a 1D Kitaev chain. (a) The FSLU
transformation U1 in Eq. (160) for a single triangle. This FSLU
changes the fermion parities of the Majorana fermions and the
complex fermions by ð−1Þω2ð0̄1;2̄3Þ and ð−1Þn2ð012Þ, respectively.
(b) The 1D F move Eq. (164) for the boundary ASPT state. This
F move changes the fermion parities of the Majorana fermions
and the complex fermions by ð−1Þω2ð0̄1;2̄3Þ and ð−1Þn2ð012Þ,
respectively.
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(iv) jGbj species of 2D pþ ip chiral superconduc-
tors [may have several copies indicated by
n1ðgi; gjÞ ∈ ZT] on the plane dual to link hiji.
The boundary chiral Majorana modes (along the
link dual to some triangle) are ψσ

ij;L;α or ψσ
ij;R;α

(σ ∈ Gb) depending on the chirality (left- or right-
hand rule with respect to the oriented link hiji).
Here, α labels the number of the chiral Majorana
modes [α ¼ 1; 2;…; jn1ðgi; gjÞj].

The four layers of degrees of freedom are summarized in
one tetrahedron of the 3D triangulation lattice in Fig. 8. The
four vertices of the tetrahedron are labeled by
g0; g1; g2; g3 ∈ Gb. In Fig. 8(a), the blue ball is the complex
fermion cσ0123 (σ ∈ Gb) at the center of the tetrahedron. Red
dots represent Majorana fermions γσijk;A and γσijk;B (σ ∈ Gb)
on the two sides of the triangle hijki. We use the convention
that the direction pointing from γσijk;A to γσijk;B is the same as
the right-hand rule orientation of the triangle hijki. In Fig. 8
(b), each green area dual to link hiji represents the
decorated 2D pþ ip superconductors. There are
jn1ðgi; gjÞj right-moving or left-moving chiral Majorana
modes ψgi

i;R=L;α (α ¼ 1; 2;…; jn1j) along the boundary (red
line) of the green area dual to each link hiji.
As discussed in Sec. III B, the symmetry transformation

rules of these degrees of freedom under Gb are summarized
as follows (g; gi; σ ∈ Gb):

UðgÞjgii ¼ jggii; ð167Þ

UðgÞcσijklUðgÞ† ¼ ð−1Þω2ðg;σÞcgσijkl; ð168Þ

UðgÞγσijk;AUðgÞ† ¼ ð−1Þω2ðg;σÞγgσijk;A; ð169Þ

UðgÞγσijk;BUðgÞ† ¼ ð−1Þω2ðg;σÞþs1ðgÞγgσijk;B; ð170Þ

UðgÞψσ
ij;R;αUðgÞ† ¼ ð−1Þω2ðg;σÞψgσ

ij;gðRÞ;α; ð171Þ

UðgÞψσ
ij;L;αUðgÞ† ¼ ð−1Þω2ðg;σÞþs1ðgÞψgσ

ij;gðLÞ;α: ð172Þ

The bosonic degrees of freedom always form a linear
representation of Gb (and Gf). On the other hand, the
fermion modes support projective representations of Gb
with coefficient ð−1Þω2 and, hence, linear representations
of Gf by Eq. (64).

B. Decorations of fermion layers

In this section, we construct systematic procedures of
decorating Kitaev chains and complex fermions to the
bosonic basis state jfgigi. Each layer of the degrees of
freedomtwists theconsistentequationsfor thenext layer.The
decoration rules should respect the symmetry in all layers.
We focus on the Kitaev chain and complex fermion

decoration here, and the decorations of 2D pþ ip super-
conductors are discussed at the end of this section.

1. Kitaev chain decoration

The Kitaev chain decoration in 3D is similar to the
constructions in Ref. [53]. The difference is that we put
jGbj species ofMajorana fermions rather than one.However,
we still put only one species of Majorana fermions into
nontrivial pairings along the decorated Kitaev chain.
a. Decoration procedure.—For a given 3D triangulation

lattice, we first construct the resolved dual lattice (red
lattice shown in Fig. 9). Our Majorana fermions γσijk;A and
γσijk;B (σ ∈ Gb) are at the (red) vertices on the two sides of
each (black) triangle hijki. The red arrow follows the
convention that the direction from γσijk;A to γ

σ
ijk;B is the same

as the right-hand rule orientation of the triangle hijki. The
direction of vacuum pairing between them is from A to B:
−iγσijk;Aγσijk;B ¼ 1 when acting on the state. To decorate
Kitaev chains on the red lattice, we also should add arrows
to the small red tetrahedron inside each black tetrahedron
(see Fig. 9). These red arrows are constructed from the
discrete spin structures (a choice of trivialization of Stiefel-
Whitney homology class w1 dual to cohomology class w2)
of the 3D spatial spin manifold triangulation. The Majorana
fermions are always paired according to these red arrows on
the red lattice. The red arrows have the property that the
number of counterclockwise arrows in the smallest red loop
around each black link is always odd. For details of the
local Kasteleyn orientations for arbitrary triangulation, we
refer the interested reader to Ref. [53].
The Kitaev chain decoration on the red lattice is specified

by n2ðgi; gj; gkÞ ∈ Z2, which is a function of three group
elements gi; gj; gk ∈ Gb. If n2ðgi; gj; gkÞ ¼ 0, the Majorana
fermions γσijk;A and γσijk;B on the two sides of the triangle

(a) (b)

FIG. 8. Four layers of degrees of freedom in a tetrahedron of a
3D triangulation lattice. (a) Layers of bosonic state jgii on each
vertex i, complex fermions cσijkl at the center of each tetrahedron
hijkli, and Majorana fermions γσijk;A=B on the two sides of each
triangle hijki. (b) Layer of a 2D pþ ip chiral superconductor on
the (green) plane dual to each link hiji. The boundary chiral
Majorana modes of the pþ ip superconductors are along the
(red) intersecting lines of the (green) planes.
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hijki are in vacuum pairings: −iγσijk;Aγσijk;B ¼ 1 (for all
σ ∈ Gb). On the other hand, if n2ðgi; gj; gkÞ ¼ 1, we
decorate a Kitaev chain going through the triangle hijki.
For all jGbj species of Majorana fermions, we put only
γgiijk;A and γgiijk;B to be in the nontrivial pairing. All other
jGbj − 1 species of Majorana fermions γσijk;A and γσijk;B with
σ ≠ gi are still in vacuum pairings. Here is an example of
the decoration of Kitaev chain going through triangles
h013i and h023i of the tetrahedron h0123i (we omit the
operator labels of Majorana fermions which are in vacuum
pairings along the Kitaev chain):

ð173Þ

The decorated Kitaev chain is indicated by a green line
(γg0013B-γ

g0
013A-γ

g1
123A-γ

g1
123B). Along the Kitaev chain, there is a

nontrivial pairing between γg1123A and γg0013A. And the
Majorana fermions γσ013A=B (σ ≠ g0) and γσ123A=B (σ ≠ g1)
are all in vacuum pairings. For the triangles without a
Kitaev chain going through (triangles h012i and h023i), the
Majorana fermions on their two sides are all in vacuum
pairings (γσ012A=B and γσ023A=B for all σ ∈ Gb). In summary,
we have the following Majorana fermion pairings:

ð174Þ

ð175Þ

Both the trivial and nontrivial Majorana fermion pairings
are indicated by gray ellipses. The blue arrow means that
the pairing direction of Majorana fermions may be changed
compared to the local Kasteleyn orientation indicated by
red arrow. We discuss more about the detailed pairing
directions and why they are symmetric later.
b. Consistency condition.—According to our decoration

rule, the total number of decorated Kitaev chains going
through the four boundary triangles of a given tetrahedron
h0123i is

ðdn2Þðg0; g1; g2; g3Þ ¼ n2ðg1; g2; g3Þ þ n2ðg0; g2; g3Þ
þ n2ðg0; g1; g3Þ þ n2ðg0; g1; g2Þ:

ð176Þ

Since we are constructing a gapped state without intrinsic
topological order, there should be no dangling free
Majorana fermions inside any tetrahedron. So the number
of total Kitaev chains going through the boundary of a
tetrahedron should be even. We therefore have the (mod 2)
equation

dn2 ¼ 0; ð177Þ

as the consistency condition for Kitaev chain decorations.
c. Symmetric pairing directions.—Now let us turn back

to the details of symmetric Majorana fermion pairings
inside each tetrahedron of the 3D triangulation lattice. Our
strategy of constructing Gb-symmetric pairings is the same

(a) (b)

FIG. 9. Local Kasteleyn orientations of the resolved dual lattice. For a given triangulation of the 3D spatial spin manifold (shown by
black links), we can construct a resolved dual lattice (shown by red links). The Majorana fermion pairings (in the standard tetrahedron)
should respect the red link arrows in the figures. (a) Positive oriented tetrahedron (b) Negative oriented tetrahedron.
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as in the 2D case: We first consider the standard tetrahedron
with g0 ¼ e and then apply aUðg0Þ action to obtain all other
nonstandard tetrahedra with generic group element labels. In
this way, the Majorana fermion pairings are automatically
symmetric because of the symmetry transformation rule of

the pairing projection operators Eq. (99). For the standard
tetrahedron, the Majorana fermions are paired according to
the local Kasteleyn orientations indicated by red arrows. And
the pairings in the nonstandard tetrahedron is obtained by a
Uðg0Þ action as follows:

ð178Þ

Note that the Majorana fermions γσijk;A and γσijk;B (σ ≠ gi) on
the two sides of triangle hijki are always in vacuum pairings
ð−iγσijk;Aγσijk;B ¼ 1Þ, independent of the n2 configurations.
So their pairing directions always follow the red arrow local
Kasteleyn orientations in both figures of the above equation.
For the twoMajorana fermions γgiijk;A and γ

gi
ijk;B of the triangle

hijki, there are two possibilities. Ifn2ðgi; gj; gkÞ ¼ 0 (there is
no Kitaev chain going through this triangle), these two
Majorana fermions are also in vacuum pairing, with the
direction indicated by the red arrow and projection operator

Pgi;gi
ijkA;ijkB ¼ Uðg0ÞPg−1

0
gi;g−10 gi

ijkA;ijkB Uðg0Þ−1 ¼
1

2
ð1 − iγgiijk;Aγ

gi
ijk;BÞ:
ð179Þ

On the other hand, if n2ðgi; gj; gkÞ ¼ 1 (there is a Kitaev
chain going through this triangle), we pair the Majorana
fermion inside the triangle with another one belonging to
another triangle with also n2 ¼ 1 [for example, γg1123A and
γg0013A are paired in Eq. (173)]. Note that there are always an
even number of Majorana fermions in nontrivial pairing
among the four Majorana fermions (γg1123A, γ

g0
023B, γ

g0
013A, and

γg0012B) inside the tetrahedron h0123i, for we have
ðdn2Þðg0; g1; g2; g3Þ ¼ 0 (mod 2) from Eq. (177). There
are in total ð4 × 3Þ=2 ¼ 6 possible nontrivial pairings
inside the tetrahedron h0123i (i.e., the six links of the
small red tetrahedron inside the big tetrahedron h0123i).
The Majorana pairing projection operators of them are as
follows:

Pg0;g0
012B;013A ¼ Uðg0ÞPe;e

012B;013AUðg0Þ† ¼
1

2
ð1 − iγg0012Bγ

g0
013AÞ; ð180Þ

Pg0;g0
023B;013A ¼ Uðg0ÞPe;e

023B;013AUðg0Þ† ¼
1

2
ð1 − iγg0023Bγ

g0
013AÞ; ð181Þ

Pg0;g0
023B;012B ¼ Uðg0ÞPe;e

023B;012BUðg0Þ† ¼
1

2
½1 − ð−1Þs1ðg0Þiγg0023Bγg0012B�; ð182Þ

Pg0;g1
023B;123A ¼ Uðg0ÞPe;g−1

0
g1

023B;123AUðg0Þ† ¼
1

2
½1 − ð−1Þω2ðg0;g−10 g1Þiγg0023Bγ

g1
123A�; ð183Þ

Pg0;g1
012B;123A ¼ Uðg0ÞPe;g−1

0
g1

012B;123AUðg0Þ† ¼
1

2
½1 − ð−1Þω2ðg0;g−10 g1Þiγg0012Bγ

g1
123A�; ð184Þ

Pg1;g0
123A;013A ¼ Uðg0ÞPg−1

0
g1;e

123A;013AUðg0Þ† ¼
1

2
½1 − ð−1Þω2ðg0;g−10 g1Þþs1ðg0Þiγg1123Aγ

g0
013A�: ð185Þ
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Among the six possible nontrivial pairings, only the last
four may change their directions in the nonstandard
triangle. They are indicated by blue arrows in the right-
hand-side figure in Eq. (178). This result can be understood
from the following facts from the symmetry transformation
on projection operators Eq. (98): The ð−1Þω2 term appears
in the projection operators when the pairing is between
Majorana fermionswith different group element labels [see
Eqs. (183)–(185)], and the ð−1Þs1 term appears when the
pairing is between the same A=B-type Majorana fermions
[see Eqs. (182) and (185)]. The first two pairings
[Eqs. (180) and (181)] belong to neither of the above
two cases. So their pairing direction is the same as the red
arrow Kasteleyn orientations even after Uðg0Þ action.
There is another subtlety when n2 ¼ 1 for all four

triangles of a tetrahedron. There are four strings of
Kitaev chains meeting at the tetrahedron h0123i. In this
case, we should resolve the crossing point of the four

strings. We use the convention that the Majorana fermions
γg1123A and γg0013A are paired and γg0023B and γg0012B are paired
[see Fig. 10(a)]. Of course, all other Majorana fermions
γσijk;A=B with σ ≠ gi are still in vacuum pairings. This
resolvation convention is the same as Ref. [53].
d. Majorana fermion parity.—Since the symmetry action

may change the pairing directions inside a tetrahedron, the
Majorana fermion parity of this tetrahedron may also be
changed. We can calculate the fermion parity difference
between the standard and nonstandard tetrahedra by counting
the number of pairing arrows that are reversed by Uðg0Þ
action. It, of course, depends on the n2 configurations. We
can use, for example, n2ðg0; g1; g2Þn2ðg1; g2; g3Þ ¼ 0, 1 to
indicate whether γg1012B and γg1123A are paired or not. So the
Majorana fermion parity change inside the triangle is, in
general, given by

ΔPγ
fð0123Þ ¼ ð−1Þω2ðg0;g−10 g1Þn2ðg1;g2;g3Þþs1ðg0Þ½n2ðg0;g2;g3Þn2ðg0;g1;g2Þþn2ðg0;g1;g3Þn2ðg1;g2;g3Þ�

¼ ð−1Þ½ω2⌣n2þs1⌣ðn2⌣1n2Þ�ðg0;g−10 g1;g−11 g2;g−12 g3Þ; ð186Þ

where we use the higher cup product definition
ðn2⌣1n2Þð0123Þ ¼ n2ð023Þn2ð012Þ þ n2ð013Þn2ð123Þ.
The above equation is a summary of the phase factors
appearing in Eqs. (180)–(185). The first term ð−1Þω2

appears iff n2ðg1; g2; g3Þ ¼ 1. And the second term
ð−1Þs1ðg0Þ in the first line of Eq. (186) appears when
n2ðg0; g2; g3Þn2ðg0; g1; g2Þ ¼ 1 or n2ðg0;g1;g3Þn2ðg1;
g2;g3Þ¼1. Note that, different from the 2D case, we cannot
find a single Majorana fermion involving all the Majorana
fermion parity configurations.

The above discussions of Majorana fermion pairings also
apply to the negative oriented tetrahedra. The red arrow
local Kasteleyn orientations inside a tetrahedron are given
in Fig. 9(b). The symmetric Majorana fermion pairing in a
nonstandard tetrahedron is also obtained by a Uðg0Þ action
from the standard tetrahedron. We also have Majorana
pairing projection operators similar to Eqs. (180)–(185) for
negative oriented tetrahedron. For n2 configurations with
four Kitaev chains meeting at one negative oriented
tetrahedron, we use the resolvation convention shown in

3

(a) (b)

FIG. 10. Resolvation of four strings of Kitaev chains meeting at one tetrahedron. If four strings (green lines) meet at one tetrahedron,
we should pair the Majorana fermions γg1123A=B to γg0013A=B and γg0023B=A to γg0012B=A (gray ellipses) for a positive or negative oriented
tetrahedron. We omit the labels of Majorana fermions (γσijk;A=B with σ ≠ gi) that are in vacuum pairings in the figure. (a) Positive oriented
tetrahedron (b) Negative oriented tetrahedron.
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Fig. 10(b). And the expression of Majorana fermion parity
changes Eq. (186) is valid for both positive and negative
oriented tetrahedra.
To sum up, although there are jGbj species of Majorana

fermions, we decorate exactly one Kitaev chain to each
intersection line of symmetry domain walls specified by n2
configurations. The decoration is compatible with sym-
metry actions. The Majorana fermion parity of a tetrahe-
dron is changed according to Eq. (186) compared to the
local Kasteleyn oriented pairings.

2. Complex fermion decoration

The rules of complex fermion decoration are much
simpler than that of the Majorana fermions. The decoration
is specified by a Z2-valued 3-cochain n3 ∈ C1ðGb;Z2Þ. If
n3ðgi; gj; gk; glÞ ¼ 0, all the modes of complex fermions
cσijkl (σ ∈ Gb) at the center of tetrahedron hijkli
(i < j < k < l) are unoccupied. On the other hand, if
n3ðgi; gj; gk; glÞ ¼ 1, exactly one complex fermion mode
cgiijkl is decorated at the center of tetrahedron hijkli [see

Fig. 8(a)]. All other complex fermions cσijkl (σ ≠ gi) are still
in vacuum states.
It is simple to check that the complex fermion decoration

is Gb symmetric. Under a UðgÞ action, the bosonic vertex
label fgig becomes fggig. And we should decorate cggiijkl

to the tetrahedron hijkli if n3ðggi; ggj; ggk; gglÞ ¼
n3ðgi; gj; gk; glÞ ¼ 1. This result is exactly the complex
fermion cgiijkl by a UðgÞ action.

C. F moves

The 3D Pachner move for different triangulations of 3D
spatial manifold induces FSLU transformation of the FSPT
wave functions on the lattices. Since the FSPT state is
invertible, we need to consider only one of the many
Pachner moves. Other Pachner moves can be derived from
this one using the invertibility and unitarity of the move.
We can first define the standard F move with g0 ¼ e, and
then other nonstandard ones can be obtained by simply a
Uðg0Þ action. The standard F move is given by

ð187Þ

on the (black) triangulation lattice and

ð188Þ

on the (red) resolved dual lattice. This Pachner move
involves five vertices from h0i to h4i, with group element
labels e, g−10 g1, g−10 g2, g−10 g3, and g−10 g4 in Gb. There are
three tetrahedra (h0123i, h0134i, and h1234i) in the right-
hand-side figure and two tetrahedra (h0124i and h0234i) in
the left-hand-side figure in Eq. (187). The Pachner move
removes the link h13i on the right. Note that we omit the

pþ ip layer in the above figures. And for each tetrahedron,
the meeting point of the four red or green strings in
Eq. (188) should be resolved to a small tetrahedron with
local Kasteleyn orientations in Eq. (188) [using the con-
vention Fig. 9(b)]. The blue arrows of the red links inside
the only nonstandard tetrahedron h1234i [see the right-
hand-side figure in Eq. (188)] mean that their directions
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may be changed underUðg−10 g1Þ action compared to the red
arrow local Kasteleyn orientations [see Eq. (178)]. The
green line represents the decorated Kitaev chain specified
by the n2 data. We also omit the blue ball symbols for the

decorated complex fermions at the center of the tetrahedra
in the figures.
The explicit expression of the standard FSLU F operator

for the above Pachner move is

Fðe; 0̄1; 0̄2; 0̄3; 0̄4Þ ¼ ν4ð0̄1; 1̄2; 2̄3; 3̄4Þðce†0124Þn3ð0124Þðce†0234Þn3ð0234Þðce0123Þn3ð0123Þðce0134Þn3ð0134Þðc
g−1
0
g1

1234 Þ
n3ð1234ÞX01234½n2�:

ð189Þ

We use the abbreviation īj for g−1i gj in the arguments of F
and ν4. Different from ν4, the 3-cochain n3 is symmetric
under Gb action. So there is no difference between
homogeneous and inhomogeneous n3. We use n3ðijklÞ
to represent n3ðgi; gj; gk; glÞ ¼ n3ðg−1i gj; g−1j gk; g−1k glÞ for
short. In the following, we explain the terms in the F
operator in Eq. (189) one by one. There is some subtlety
about the Majorana fermion parity changes for the X
operator. We give the explicit expression for X in the next
subsection.
The Uð1Þ phase factor ν4ð0̄1; 1̄2; 2̄3; 3̄4Þ ¼ ν4ðg−10 g1;

g−11 g2; g−12 g3; g−13 g4Þ in the front of the F symbol is an
inhomogeneous 4-cochain depending on four group ele-
ments of Gb. By definition, the inhomogeneous cochain is
related to the homogeneous one by

ν4ðg−10 g1; g−11 g2; g−12 g3; g−13 g4Þ
¼ ν4ðe; g−10 g1; g−10 g2; g−10 g3; g−10 g4Þ; ð190Þ

with the first argument of the homogeneous ν4 the identity
element e ∈ Gb. As discussed below, we can relate
ν4ðe; g−10 g1; g−10 g2; g−10 g3; g−10 g4Þ and ν4ðg0; g1; g2; g3; g4Þ
from the symmetry conditions of F. Different from the
special case Gf ¼ Zf ×Gb, they do not equal each other,
in general.
The complex fermion term of the form c†c†ccc anni-

hilates three complex fermions at the three tetrahedra of the
right-hand-side figure and creates two in the left-hand-side
figure in Eq. (187). Following Sec. VI B 2, the tetrahedron
hijkli is decorated by complex fermion cgiijkl. So, in the

standard F move, only the last fermion c
g−1
0
g1

1234 has group
element label g−10 g1, and all other four fermions have group
element label e. We note that, different from the special
caseGf ¼ Zf

2 × Gb where we have dn3 ¼ n2⌣n2 [53], the
complex fermion number n3 has a more complicated
relation with the n2 data, in general.

1. Majorana fermion parity and X operator

In this subsection, we give an explicit expression for the
X operator in the standard F move Eq. (189), which is
related to the Kitaev chain decorations.

As a consequence of the local Kasteleyn orientation of
the red lattice, the Majorana fermion parities for the two
Kitaev chain decorated states on the two sides of Eq. (187)
may be different. It is shown in Ref. [53] that, if the
Majorana fermions are paired according to the local
Kasteleyn orientations, the Majorana fermion parity differ-
ence under the F move is

ΔPγ
fðFÞjs1¼ω2¼0 ¼ ð−1Þðn2⌣n2Þð01234Þ: ð191Þ

So, among all the Kitaev chain decoration configurations of
the F move, only the ones with n2ð012Þ ¼ n2ð234Þ ¼ 1
change the Majorana fermion parity [see the green lines in
Eq. (187) for an example]. However, for a generic sym-
metry group with nonzero s1 and ω2, the Majorana
fermions are paired according to the rules designed in
Sec. VI B 1. As shown by blue arrows in Eq. (178), the
pairing directions inside the nonstandard tetrahedron may
be changed by the symmetry action compared to the local
Kasteleyn orientations.
In the standard F move Eq. (187), there are in total five

relevant tetrahedra. Four of these tetrahedra are standard,
with the group element label of the first vertex e ∈ Gb.
However, the tetrahedron h1234i on the right-hand side in
Eq. (187) is nonstandard and has first vertex label g−10 g1.
Therefore, only inside the tetrahedron h1234i of the
standard F move may the pairing directions of the
Majorana fermions be changed. The pairings are given
by the projection operators Eqs. (180)–(185), with the
replacement ðg0; g1; g2; g3Þ → ðg−10 g1; g−10 g2; g−10 g3; g−10 g4Þ.
Furthermore, as discussed also in Sec. VI B 1, the Majorana
fermion parity change for a nonstandard tetrahedron h0123i
compared to the local Kasteleyn orientations is given by
Eq. (186). For the tetrahedron h1234i of the standard F
move, the Majorana fermion parity change compared to the
local Kasteleyn orientations is then

ΔPγ
fð1234Þ ¼ ð−1Þ½ω2⌣n2þs1⌣ðn2⌣1n2Þ�ðg−10 g1;g−11 g2;g−12 g3;g−13 g4Þ:

ð192Þ

This result is obtained from Eq. (186) by the simple
replacement ðg0; g1; g2; g3Þ → ðg−10 g1; g−10 g2; g−10 g3; g−10 g4Þ.
Combining it with Eq. (191), the total Majorana fermion
parity change under the standard F move Eq. (187) is
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ΔPγ
fðFÞ ¼ ð−1Þ½n2⌣n2þω2⌣n2þs1⌣ðn2⌣1n2Þ�ð01234Þ: ð193Þ

We note that there is no difference between the homo-
geneous and inhomogeneous notations for Z2-valued
cocycles s1 and ω2 and cochain n2, for they are symmetric
under Gb action. So we can just use (01234) to represent
ðg0; g1; g2; g3; g4Þ or ðg−10 g1; g−11 g2; g−12 g3; g−13 g4Þ in the
above equation. This situation is very different from the
Uð1Þ phase factor ν4.
It is convenient to split the exponent of (−1) in Eq. (193)

into two parts:

α4ð01234Þ ≔ ðn2⌣n2 þ ω2⌣n2Þð01234Þ
þ s1ð01Þn2ð124Þn2ð234Þ ðmod 2Þ; ð194Þ

β4ð01234Þ ≔ s1ð01Þn2ð134Þn2ð123Þ ðmod 2Þ: ð195Þ

Their summation gives the total Majorana fermion parity
change number

α4 þ β4 ¼ n2⌣n2 þ ω2⌣n2 þ s1⌣ðn2⌣1n2Þ ðmod 2Þ:
ð196Þ

The philosophy of this splitting is as follows. The first
part α4 has the property that α4ð01234Þ ¼ 1 implies
n2ð234Þ ¼ 1, because all of the terms in α4ð01234Þ contain
the factor n2ð234Þ. However, the second part β4 does not
contain the factor n2ð234Þ. For a given Kitaev chain
configuration n2, if α4ð01234Þ ¼ 1 and β4ð01234Þ ¼ 0,
we can conclude that the Majorana fermion parity of the
Kitaev chain going through the link h234i is changed. We

can add a Majorana fermion operator γ
g−1
0
g2

234B to the X
operator of Eq. (189) to represent the correct fermion
parity change. On the other hand, if α4ð01234Þ ¼ 0 and
β4ð01234Þ ¼ 1, the Majorana fermion parity of the Kitaev
chain going through the link h123i is changed. We can add

another Majorana fermion operator γ
g−1
0
g1

123A to the X operator

(we can also use γ
g−1
0
g1

134A as another convention). In this case,

adding γ
g−1
0
g2

234B does not make sense, because the Kitaev chain
may not even go through this Majorana fermion.
With the above understanding, the explicit form of

X01234½n2� in the standard F move Eq. (189) can be
expressed by Majorana fermion pairing projection oper-
ators as

X01234½n2� ¼ P01234½n2� · ðγg
−1
0
g2

234B Þ
α4ð01234Þðγg−10 g1

123A Þ
β4ð01234Þ;

ð197Þ

P01234½n1� ¼
�Y

loopi

2ðLi−1Þ=2
�� Y

Majorana pairsha;biinT
Pga;gb
a;b

�

×

� Y
trianglehijki∉T

Y
σ∈Gb

Pσ;σ
ijkA;ijkB

�
: ð198Þ

The two Majorana fermion operators γ
g−1
0
g2

234B and γ
g−1
0
g1

123A are
inserted when α4ð01234Þ ¼ 1 and β4ð01234Þ ¼ 1, respec-
tively. The first part P01234½n1� in the X operator Eq. (197) is
the Majorana fermion pairing projection operator, which
enforces the symmetric pairing rules for the left-hand-side
Majorana state in Eq. (187). Similar to the 2D case, the
general expression of P01234½n1� [Eq. (198)] has three terms.
The first term is a normalization factor, where 2Li is the
length of the ith loop in the transition graph of Majorana
pairing dimer configurations on the left triangulation lattice
T and right lattice T 0. The second term projects the right-
hand-side state to the left-hand-side state using the pairing
projection operators [Eq. (98)]. And the third term is the
vacuum projection operators for the Majorana fermions
that do not appear explicitly in the left figure. For example,
the explicit X operator for the n2 configurations
shown in Eq. (187) [only n2ð012Þ ¼ n2ð024Þ ¼ n2ð123Þ ¼
n2ð234Þ ¼ 1] is

X01234½ñ2� ¼ 2

�
P
e;g−1

0
g2

024B;234BP
e;e
012A;024A

Y
σ≠e

Pσ;σ
024A;024B

�

×

�Y
σ∈Gb

Pσ;σ
013A;013BP

σ;σ
123A;123BP

σ;σ
134A;134B

�

× ðγg−10 g2
234B Þ

α4ð01234Þ; ð199Þ

where we do not need γ
g−1
0
g1

123A , because the configura-
tion n2ð134Þ ¼ 0 implies β4ð01234Þ ¼ s1ð01Þn2ð134Þn2
ð123Þ ¼ 0.
The F symbol in Eq. (189) should be a FSLU operator. It

should be both fermion parity even and symmetric under
Gb action. We can use these constraints to obtain several
consistency equations for the cochains n2, n3, and ν4.

2. Fermion parity conservation

As discussed in the previous subsection, the Majorana
fermion parity change for the standard F move is given by
Eq. (191), if the pairings are according to the local
Kasteleyn orientations. From the symmetry action on the
only nonstandard tetrahedron h1234i of the standard F
move, there is an additional Majorana fermion parity
change [Eq. (192)]. By combining them, we obtain the
total Majorana fermion parity change [Eq. (193)] for the
standard F move.
On the other hand, the complex fermion parity change

under the standard F move can be simply calculated by
counting the complex fermions decorated at the five
tetrahedra on the two sides:
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ΔPc
fðFÞ ¼ ð−1Þn3ð1234Þþn3ð0234Þþn3ð0134Þþn3ð0124Þþn3ð0123Þ

¼ ð−1Þdn3ð01234Þ: ð200Þ

As a FSLU transformation, the standard F move should
preserve the total fermion parity. So we have the constraint
ΔPfðFÞ ¼ ΔPγ

fðFÞ · ΔPc
fðFÞ ¼ 1. Using the explicit

expressions Eqs. (193) and (200), we have the following
(mod 2) equation:

dn3 ¼ n2⌣n2 þ ω2⌣n2 þ s1⌣ðn2⌣1n2Þ: ð201Þ

The decorations of Majorana fermions and complex fer-
mions are not independent and should satisfy the above
constraint.
We note that, if we consider the special case of unitary

symmetry group Gf ¼ Zf
2 × Gb (i.e., ω2 ¼ 0 and s1 ¼ 0),

the above equation is reduced to the previous known result
dn3 ¼ n2⌣n2 [53,62,63].

3. Symmetry condition

In the previous constructions, we considered only the
standard F move Eq. (187) with the first vertex label
e ∈ Gb. The nonstandard F move is defined to be obtained
from the standard one by a Uðg0Þ symmetry action. In such
a way, the F moves are symmetric under Gb actions. In this
subsection, we derive the symmetry transformation rules
for the F move and the Uð1Þ phase factor ν4 in front of the
F move.
According to Eq. (66), we have the following com-

muting diagram for the standard and nonstandard F
moves (we omit the decorated fermion layers in the
figures):

ð202Þ

So the nonstandard F operator is defined as

Fðg0; g1; g2; g3; g4Þ ¼ g0Fðe; g−10 g1; g−10 g2; g−10 g3; g−10 g4Þ ≔ Uðg0ÞFðe; g−10 g1; g−10 g2; g−10 g3; g−10 g4ÞUðg0Þ†: ð203Þ

The nonstandard F moves constructed in this way are automatically symmetric, because one can show the
transformation rule for the nonstandard F moves

Fðgg0; gg1; gg2; gg3; gg4Þ ¼ UðgÞFðg0; g1; g2; g3; g4ÞUðgÞ†; ð204Þ

using Eq. (63) and the fact that F operator is fermion parity even.
Using a Uðg0Þ action on the standard F operator Eq. (189), we can obtain the nonstandard F symbol expression as

Fðg0; g1; g2; g3; g4Þ
¼ ν4ðg0; g1; g2; g3; g4Þðcg0†0124Þn3ð0124Þðcg0†0234Þn3ð0234Þðcg00123Þn3ð0123Þðcg00134Þn3ð0134Þðcg11234Þn3ð1234ÞX01234½n2�Y01234½n1�: ð205Þ
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The decorated complex fermions now have group element
labels g0 (for the first four complex fermions) or g1 (for the
last complex fermion). And the X operator is

X01234½n2� ¼ P01234½n2� · ðγg2234BÞα4ð01234Þðγg1123AÞβ4ð01234Þ;
ð206Þ

with added Majorana fermion γg2234B and γg1123A, rather than

γ
g−1
0
g2

234B and γ
g−1
0
g1

123A in Eq. (197). The operator P01234½n2�
projects the Majorana fermions to the pairing state on
the left-hand-side figure. It has a similar expression as
Eq. (198) and is a product of many Majorana pairing

projection operators [Eq. (98)] with appropriate group
element labels. The operator Y01234½n1� in Eq. (205) is
an operator to change the pþ ip superconductor decora-
tion configurations. We discuss this layer of decoration in
Sec. VI F separately.
From the decoration rules of Majorana fermions and

complex fermions constructed in previous sections, the data
n1, n2, and n3 are invariant under Gb symmetry actions.
The homogeneous cochain ν4 in the nonstandard F move
Eq. (205) is a combination of the inhomogeneous ν4 in the
standard F move Eq. (189) and the �1 signs which appear
from the symmetry action. Therefore, we have the follow-
ing symmetry conditions for the data n1, n2, n3, and ν4:

n1ðg0; g1Þ ¼ n1ðe; g−10 g1Þ ¼ n1ðg−10 g1Þ; ð207Þ

n2ðg0; g1; g2Þ ¼ n2ðe; g−10 g1; g−10 g2Þ ¼ n2ðg−10 g1; g−11 g2Þ; ð208Þ

n3ðg0; g1; g2; g3Þ ¼ n3ðe; g−10 g1; g−10 g2; g−10 g3Þ ¼ n3ðg−10 g1; g−11 g2; g−12 g3Þ; ð209Þ

ν4ðg0; g1; g2; g3; g4Þ ¼ g0ν4ðe; g−10 g1; g−10 g2; g−10 g3; g−10 g4Þ ¼ g0ν4ðg−10 g1; g−11 g2; g−12 g3; g−13 g4Þ
¼ ν4ðg−10 g1; g−11 g2; g−12 g3; g−13 g4Þ1−2s1ðg0Þ ·Osymm

5 ðg0; g1; g2; g3; g4Þ: ð210Þ

The last equation can be viewed as the definition of homogeneous ν4 in the nonstandard F move Eq. (205) in terms of the
inhomogeneous ν4 in the standard F move Eq. (189). The symmetry sign difference Osymm

5 is given by

Osymm
5 ðg0; g1; g2; g3; g4Þ ¼ ð−1Þω2ð0;0̄1Þn3ð1234Þþ½ω2ð0;0̄2Þþs1ð0Þ�α4ð01234Þþω2ð0;0̄1Þβ4ð01234Þ

¼ ð−1Þðω2⌣n3þs1⌣α4Þð0;0̄1;1̄2;2̄3;3̄4Þþω2ð0;0̄2Þα4ð01234Þþω2ð0;0̄1Þβ4ð01234Þ: ð211Þ

We note that some of the terms above cannot be expressed
as a cup product form. The above equation can be obtained
by straightforward calculation using Eq. (203). In the first
line of Eq. (211), the first term of the form ð−1Þω2n3 comes
from the Uðg0Þ symmetry transformation Eq. (168) of the

last complex fermion c
g−1
0
g1

1234 in the standard F move
Eq. (189). The second term of the form ð−1Þðω2þs1Þα4
comes from the symmetry transformation Eq. (170) of

γ
g−1
0
g2

234B in the X operator Eq. (197) of the standard F move
Eq. (189). And the last sign of the form ð−1Þω2β4 comes

from the symmetry transformation Eq. (169) of γ
g−1
0
g1

123A in the
X operator Eq. (197) of the standard F move. The 4-
cochains α4 and β4 are defined in Eqs. (194) and (195).
If we have β4 ¼ 0 (for example, s1 ¼ 0 or n1 ¼ 0), we

need only to insert the dangling Majorana fermion operator

γ
g−1
0
g2

234B in the standard X operator. The expressions of the
standard F move Eq. (189) and X operator Eq. (197) are
similar to the special case of s1 ¼ ω2 ¼ 0 [53]. Using
dn3 ¼ α4 þ β4 ¼ α4, the symmetry sign Eq. (211) is
reduced to

Osymm
5 ðg0; g1; g2; g3; g4Þjβ4¼0 ¼ ð−1Þω2ð0;0̄1Þn3ð1234Þþ½ω2ð0;0̄2Þþs1ð0Þ�dn3ð01234Þ

¼ ð−1Þðω2⌣n3þs1⌣dn3Þð0;0̄1;1̄2;2̄3;3̄4Þþω2ð0;0̄2Þdn3ð01234Þ: ð212Þ

The symmetry sign Osymm
5 appears later in the twisted

cocycle equation for ν4 as part of the obstruction function
[see Eq. (215)]. In the special case of β4 ¼ 0, the calcu-
lation of O5 is much simpler than the generic case.

D. Superfusion hexagon and twisted cocycle equations

Just as the 2D F move should satisfy the superpentagon
equation of the superfusion category, the 3D F move
should satisfy a superhexagon equation of the superfusion
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2-category. One should distinguish it from the hexagon
equation of the braided tensor category, for the former is in
the fusion level rather than the braided level. Our 3D FSPT
states constructed correspond to some kind of pointed
superfusion 2-categories with a given symmetry group.
It is enough to merely consider the standard super-

hexagon equations with first vertex label e ∈ Gb as

coherence conditions, because all other nonstandard
ones can be obtained from it by a Uðg0Þ symmetry
action. The standard superhexagon equation is shown in
Fig. 11 for the triangulation lattice and Fig. 12 for the
dual lattice. Algebraically, we have the following
equation:

Fðe; 0̄2; 0̄3; 0̄4; 0̄5Þ ·Fðe; 0̄1; 0̄2; 0̄4; 0̄5Þ ·Fðe; 0̄1; 0̄2; 0̄3; 0̄4Þ¼Fðe; 0̄1; 0̄2; 0̄3; 0̄5Þ ·Fðe; 0̄1; 0̄3; 0̄4; 0̄5Þ ·Fð0̄1; 0̄2; 0̄3; 0̄4; 0̄5Þ
¼Fðe; 0̄1; 0̄2; 0̄3; 0̄5Þ ·Fðe; 0̄1; 0̄3; 0̄4; 0̄5Þ · 0̄1Fðe; 1̄2; 1̄3; 1̄4; 1̄5Þ;

ð213Þ

where we again use īj to denote g−1i gj. In the above
equation, only the last F symbol is nonstandard. It can be
obtained from the standard one by a Uðg−10 g1Þ symmetry
action [see Eq. (203)].
Using the explicit expression of the standard F move

Eq. (189), we can unfold the standard superhexagon
equation [Eq. (213)]. By eliminating all complex fermions

and Majorana fermions, we can obtain a twisted cocycle
equation for the inhomogeneous 3-cochain ν3 in the
standard F move. In general, the twisted cocycle equation
reads

dν4 ¼ O5½n3�; ð214Þ

FIG. 11. Standard superfusion hexagon equation. Algebraically, this standard superhexagon condition corresponds to Eq. (213). The
colored numbers i and j in the subscript of F indicate that the link hiji with the same color is added after this F move. Since the group
element label of the first vertex is e ∈ Gb, all the fermionic F moves are standard except 0̄1F12345. We use a simpler notation Fijklm ¼
Fðe; īj; j̄k; k̄l; l̄mÞ for the standard F move. We also omit all the fermion layers in the figure.
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whereO5½n3� is a functional of n3 only (as well as ω2 and s1 parametrizing the given symmetry group). The n2 dependence
of O5 is through dn3 by Eq. (201). With nonzero ω2 and s1, the obstruction function O5½n3� is more complicated than the
special result for unitary Gf ¼ Zf

2 ×Gb [53,62,63].
Similar to the 2D case, the obstruction function O5½n3� consists of four terms from general considerations:

O5½n3� ¼ Osymm
5 ½n3� ·Oc

5½n3� ·Ocγ
5 ½dn3� ·Oγ

5½dn3�: ð215Þ

The explicit expressions of these four terms are summarized, respectively, as

Osymm
5 ½n3�ð012345Þ ¼ ð−1Þðω2⌣n3þs1⌣α4Þð012345Þþω2ð013Þα4ð12345Þþω2ð012Þβ4ð12345Þ; ð216Þ

Oc
5½n3� ¼ ð−1Þn3⌣1n3þdn3⌣2n3 ; ð217Þ

Ocγ
5 ½dn3� ¼ ð−1Þdn3⌣3dn3 ; ð218Þ

Oγ
5½dn3�ð012345Þjβ4¼0 ¼ ð−1Þdn3ð02345Þdn3ð01235Þþω2ð023Þ½dn3ð01245Þþdn3ð01235Þþdn3ð01234Þ�

× idn3ð01245Þdn3ð01234Þ ðmod 2Þ × ð−iÞ½dn3ð12345Þþdn3ð02345Þþdn3ð01345Þ�dn3ð01235Þ ðmod 2Þ: ð219Þ

We note that the expression of the last term Oγ
5½dn3� is obtained under the assumption of β4 ¼ 0 [see Eq. (195)]. This

assumption is true for s1 ¼ 0 (unitary Gb) or n1 ¼ 0. The calculation of generic Oγ
5 with nonzero β4 is much more

complicated (but the procedures are the same), so we leave it for the future. By adding a coboundary ð−1Þdðs1⌣n3þn3⌣3dn3Þ to
the obstruction function and shifting ν4 → ν4ð−1Þs1⌣n3þn3⌣3dn3 , we can simplify the above obstruction function to

FIG. 12. Superfusion hexagon equation on the lattice dual to triangulation in Fig. 11. Each meeting point of four red links should be
resolved to a small tetrahedron as in Fig. 9(b).
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O5½n3�ð012345Þjβ4¼0 ¼ ð−1Þðω2⌣n3þn3⌣1n3þn3⌣2dn3Þð012345Þþω2ð013Þdn3ð12345Þ

× ð−1Þdn3ð02345Þdn3ð01235Þþω2ð023Þ½dn3ð01245Þþdn3ð01235Þþdn3ð01234Þ�

× idn3ð01245Þdn3ð01234Þ ðmod 2Þ × ð−iÞ½dn3ð12345Þþdn3ð02345Þþdn3ð01345Þ�dn3ð01235Þðmod 2Þ: ð220Þ
If we consider the special case of ω2 ¼ s1 ¼ 0, then we have dn3 ¼ n2⌣n2 from Eq. (201). And the above obstruction
reduces to the known result for Gf ¼ Zf

2 ×Gb [53,62,63].
Before calculating the obstruction function O5½n3� in detail, we note that we check numerically that O5½n3� [Eq. (220)]

satisfies dO5 ¼ 1. It should be true, because the superhexagon equation [Eq. (213)] implies a one-higher-dimensional
equation involving one more vertex.

1. Calculations of obstruction function O5½n3�
In this subsection, we give explicit calculations of the four terms of the obstruction functionO5½n3� in Eq. (215), with the

assumption of β4 ¼ 0.
The first term Osymm

5 ½n3� comes from the Uð0̄1Þ symmetry action on Fðe; 1̄2; 1̄3; 1̄4; 1̄5Þ in the last term of Eq. (213).
Since the homogeneous ν4 of the nonstandard F move is obtained from the standard one by a symmetry action
[Eq. (210)], there is a sign difference Osymm

5 between them. Using the replacement ðg0; g1; g2; g3; g4Þ →
ðg−10 g1; g−10 g2; g−10 g3; g−10 g4; g−10 g5Þ in the explicit expression [Eq. (211)], we have

Osymm
5 ½n3�ð0̄1; 0̄2; 0̄3; 0̄4; 0̄5Þ ¼ ð−1Þðω2⌣n3þs1⌣α4Þð0̄1;1̄2;2̄3;3̄4;4̄5Þþω2ð0̄1;1̄3Þα4ð12345Þþω2ð0̄1;1̄2Þβ4ð12345Þ;

where α4 and β4 are defined in Eqs. (194) and (195). This result is exactly Eq. (216) claimed above. If we consider the
special case of β4 ¼ 0, the result is reduced to

Osymm
5 ½n3�ð0̄1; 0̄2; 0̄3; 0̄4; 0̄5Þjβ4¼0 ¼ ð−1Þðω2⌣n3þs1⌣dn3Þð0̄1;1̄2;2̄3;3̄4;4̄5Þþω2ð0̄1;1̄3Þdn3ð12345Þ:

The second termOc
5½n3� is the complex fermion sign from reordering the fermion operators ðcg−10 gi

ijkl Þ
n3ðijklÞ in Eq. (213). To

compare the complex fermion operators on the two sides of the superhexagon equation, we have to rearrange these
operators. The reordering give us the complex fermion sign

Oc
5½n3�ð012345Þ¼ ð−1Þðn3⌣1n3þdn3⌣2n3Þð01234Þ

¼ ð−1Þn3ð0345Þn3ð0123Þþn3ð0145Þn3ð1234Þþn3ð0125Þn3ð2345Þ

· ð−1Þdn3ð01234Þn3ð0145Þþdn3ð02345Þn3ð0125Þþdn3ð01234Þn3ð1245Þþdn3ð01345Þn3ð1235Þþdn3ð01234Þn3ð2345Þþdn3ð01245Þn3ð2345Þ:

ð221Þ

This result is claimed in Eq. (217). It is a generalization of the signO5½n3�js1¼ω2¼n1¼n2¼0 ¼ ð−1ÞSq2ðn3Þ ¼ ð−1Þn3⌣1n3 in the

special group supercohomology theory in Ref. [52]. The general group supercohomology theory for unitaryGf ¼ Zf
2 ×Gb

also has this complex fermion sign [53].
The third obstruction function termOcγ

4 ½dn2� originates from reordering the complex fermion and the Majorana fermions.
It is also present in Ref. [53] and has the form

Ocγ
5 ½dn3�

¼ ð−1Þdn3⌣3dn3

¼ ð−1Þdn3ð01245Þdn3ð01234Þþdn3ð01235Þdn3ð01345Þþdn3ð02345Þdn3ð01234Þþdn3ð02345Þdn3ð01245Þþdn3ð01235Þdn3ð12345Þþdn3ð01345Þdn3ð12345Þ:

ð222Þ

This result is exactly claimed previously in Eq. (218). This
obstruction function is a functional of dn3 (rather than n3
directly), because the fermion parities of the X operator and
the complex fermion operator c†c†cc depend only on dn3.

In the rest of this subsection, we deal with the most
complicated part Oγ

5½dn3�, with the assumption β4 ¼ 0.
Similar to the Majorana fermion phase factor in Ref. [53],
this obstruction function takes value in f�1;�ig. Since the
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presence of the dangling Majorana fermions in X depends
on dn3, we expect that O

γ
5½dn3� is a functional of dn3 only.

Let us denote the six X operators in the standard
superhexagon equation [Eq. (213)] by X12345 ¼
P2ðγ0̄3345BÞdn3ð12345Þ, X02345 ¼ P4ðγ0̄3345BÞdn3ð02345Þ, X01345 ¼
P3ðγ0̄3345BÞdn3ð01345Þ, X01245 ¼ P5ðγ0̄2245BÞdn3ð01245Þ, X01235 ¼
P4ðγ0̄2235BÞdn3ð01235Þ, and X01234 ¼ P6ðγ0̄2234BÞdn3ð01234Þ. Here,
the operatorPi is theMajorana pairing projection operator of
the corresponding ith figure (1 ≤ i ≤ 6) in the superhexagon
equation shown in Figs. 11 and 12. We use the convention
that the rightmost figure is the first one with projection
operator P1, and the other five figures are counted counter-
clockwise. (Note that this labeling convention is different

from Ref. [53].) We also use the simpler notations for the
Majorana fermion operators

γ0̄iijkB ≔ γ
g−1
0
gi

ijkB : ð223Þ

Since the superhexagon equation involves only vertices from
h0i to h5i, we can simplify the argument of dn3 as

dn3ðîÞ ≔ dn3ð01…î…45Þ; ð224Þ

where the number i is removed in the argument. The
obstruction function Oγ

5 coming from Majorana fermions
can be calculated from the X operators as

Oγ
5½dn3� ¼ hX†

12345X
†
01345X

†
01235X02345X01245X01234i

¼ hP1ðγ0̄3345BÞdn3ð0̂ÞP2ðγ0̄3345BÞdn3ð2̂ÞP3ðγ0̄2235BÞdn3ð4̂ÞP4P4ðγ0̄3345BÞdn3ð1̂ÞP5ðγ0̄2245BÞdn3ð3̂ÞP6ðγ0̄2234BÞdn3ð5̂ÞP1i: ð225Þ

The average is taken over theMajorana fermion pairing state
of the rightmost figure (with projection operator P1) in
Figs. 11 and 12. We also insert P1, which is 1 acting on the
rightmost state, at the first and the last places of the operator
string in Eq. (225).
We can calculate Eq. (225) separately for different

Majorana fermion configurations specified by n2.
Among the six dangling Majorana fermions of the six X
operators in Eq. (225), only four of them are different:

ðγ0̄3345B; γ0̄2245B; γ0̄2235B; γ0̄2234BÞ: ð226Þ

We can use the quadruple of their number,

½dn3ð0̂Þþdn3ð1̂Þþdn3ð2̂Þ;dn3ð3̂Þ;dn3ð4̂Þ;dn3ð5̂Þ� ðmod2Þ;
ð227Þ

to indicate the presence or absence of the four Majorana
fermions in Eq. (225), respectively. Each element of the
quadruple corresponds to the Majorana fermion parity
change of one or several Fmoves. In total, there are 24=2 ¼
8 different possibilities for the Majorana fermion parity
changes (see the first column in Table V), for the total
Majorana fermion parity of the six Fmoves should be even.
For the eight different cases, we can calculate Oγ

5½dn3�
separately.
Let us consider the third case (the fourth row inTableV) as

an example. The Majorana fermion parity change quadruple
½dn3ð0̂Þþdn3ð1̂Þþdn3ð2̂Þ;dn3ð3̂Þ;dn3ð4̂Þ;dn3ð5̂Þ� (mod 2)
corresponds to (1,0,1,0). So the danglingMajorana fermions
present in Eq. (225) are γ0̄3345B and γ0̄2235B. We can expand the
projection operatorsPi toMajorana fermion operators. Since
γ0̄3345B and γ

0̄2
235B are paired inside the tetrahedron h2345i of the

lower right figure (with projection operator P5) in Figs. 11
and12,we can consider only their pairing projection operator
in P5 [recall Eq. (98)]:

P0̄2;0̄3
235B;345B ¼ 1

2
½1 − ð−1Þω2ð0̄2;2̄3Þiγ0̄2235Bγ

0̄3
345B�: ð228Þ

We can choose the second term in the above equation and all
other projection operators Pi with i ≠ 5 to be 1. Then, the
obstruction function Eq. (225) can be expressed as

Oγ
5½dn3�ð012345Þjð1;0;1;0Þ
¼ hðγ0̄3345BÞdn3ð0̂Þþdn3ð2̂Þγ0̄2235Bðγ0̄3345BÞdn3ð1̂ÞP5i ð229Þ

¼ hðγ0̄3345BÞdn3ð0̂Þþdn3ð2̂Þγ0̄2235Bðγ0̄3345BÞdn3ð1̂Þ
× ð−1Þω2ð0̄2;2̄3Þð−iγ0̄2235Bγ0̄3345BÞi ð230Þ

¼ ð−iÞð−1Þdn3ð1̂Þþω2ð0̄2;2̄3Þ: ð231Þ

In such away, Eq. (230) contains allMajorana fermions even
times. After reordering these Majorana fermion operators,
they all square to one. Finally, we obtain Eq. (231) as the
obstruction function for this case.
We can similarly calculate Oγ

5½dn3� for all eight cases of
Majorana fermion parity changes. The information we need
in the calculation is shown in Table V. Sometimes, we need
not only P5 but also P4. And in P4 or P5, we may need
several nontrivial Majorana pairing projection operators
Eq. (98) (such as in the case of the last row in Table V).
They are shown in the fourth and fifth columns in Table V.
The final results of Oγ

5 are shown in the last column in
Table V. They can be summarized into two equivalent
expressions as (Oγ

5 is a functional of dn3 only)
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Oγ
5½dn3�ð012345Þjβ4¼0 ¼ ð−1Þdn3ð1̂Þdn3ð4̂Þþω2ð0̄2;2̄3Þ½dn3ð3̂Þþdn3ð4̂Þþdn3ð5̂Þ�

× idn3ð3̂Þ½1−dn3ð4̂Þ�dn3ð5̂Þ ðmod 2Þ × ð−iÞ½1−dn3ð3̂Þ�dn3ð4̂Þ½1−dn3ð5̂Þ� ðmod 2Þ

¼ ð−1Þdn3ð1̂Þdn3ð4̂Þþω2ð0̄2;2̄3Þ½dn3ð3̂Þþdn3ð4̂Þþdn3ð5̂Þ�

× idn3ð3̂Þdn3ð5̂Þ ðmod 2Þ × ð−iÞ½dn3ð0̂Þþdn3ð1̂Þþdn3ð2̂Þ�dn3ð4̂Þ ðmod 2Þ: ð232Þ

Note that the dn3 terms in the exponent of (�i) should be
understood as taking mod 2 values (can be only 0 or 1).
They correspond to the third and sixth cases in Table V. The
term ð−1Þdn3ð1̂Þ appears in the last column in Table V if and
only if dn3ð4̂Þ ¼ 1. And the term ð−1Þω2ð0̄2;2̄3Þ appears
whenever dn3ð3̂Þ þ dn3ð4̂Þ þ dn3ð5̂Þ ¼ 1 (mod 2). That is
the origin of the (−1) terms in Eq. (232). Note that the
exponent of �i for the first (second) expression of Oγ

5½dn3�
is a cubic (quadratic) Z2-valued function of n3. The
expression ofOγ

5½dn3� is the same as the claimed Eq. (219).
If we consider the unitary symmetry group Gf ¼ Zf

2 ×
Gb (ω2 ¼ s1 ¼ 0), the Majorana obstruction function
Eq. (232) is reduced to an expression as a functional of
n22 (because of dn3 ¼ n2⌣n2 in this case). Although the
expression is different from the result in Ref. [53] in
appearance, one can show that they are exactly the same
after some calculations. It is also the same as the ð3þ 1ÞD
spin cobordism result [62,63].

E. Boundary ASPT states

In the above discussions in this section, we construct 3D
FSPT states by decorating several layers of fermion modes

to the BSPT states. The decorations of Kitaev chains and
complex fermions are specified by two Z2-valued cochains
n2 and n3.
In this section, we show that some of the n2 and n3 data,

in fact, correspond to FSPT states belonging to the trivial
FSPT phase. This data trivialization can be understood by
investigating the boundary ASPT states on the 2D boun-
dary of the 3D FSPT bulk.

1. Boundary ASPT states in Γ2 with p + ip
superconductors

Similar to the 2D case, we show in this section that the
3D FSPT data n2 ¼ ω2 are trivialized by the boundary
ASPT state. The 2D boundary is, in fact, a state with (one
layer) pþ ip chiral superconductor decorations.
Since there is no fixed-point wave function construction

for 2D pþ ip superconductor on a discrete lattice [80], its
decoration is very different from the Kitaev chains and
complex fermions. In the boundary ASPT state construc-
tion, we put pþ ip superconductor domains around each
vertex i of the triangulation lattice and use symmetric mass
terms to gap out the edge modes and glue them together. In
the following, we first discuss the procedure of decorating

TABLE V. Calculations of Oγ
5½dn3� for all possible Kitaev chain configurations in the superhexagon equation shown in Figs. 11 and

12. The first column is the Majorana fermion parity change quadruple ½dn3ð0̂Þ þ dn3ð1̂Þ þ dn3ð2̂Þ; dn3ð3̂Þ; dn3ð4̂Þ; dn3ð5̂Þ� (mod 2).
There are in total eight different cases. The second column is a simplified version of Eq. (225). The third and fourth columns are the
Majorana pairing projection operators we use in the calculation. The last column is the final result ofOγ

5½dn3�, which can be summarized
by Eq. (232).

Pγ
f changes Expression of Oγ

5½dn3� P4 P5 Oγ
5½dn3�

(0,0,0,0) hðγ0̄3345BÞdn3ð0̂Þþdn3ð2̂Þþdn3ð1̂Þi 1 1 1

(1,0,0,1) hðγ0̄3345BÞdn3ð0̂Þþdn3ð2̂ÞP4ðγ0̄3345BÞdn3ð1̂ÞP5γ
0̄2
234Bi P0̄2;0̄2

234A;234B P0̄3;0̄2
345B;234A ð−1Þω2ð0̄2;2̄3Þ

(1,0,1,0) hðγ0̄3345BÞdn3ð0̂Þþdn3ð2̂Þγ0̄2235Bðγ0̄3345BÞdn3ð1̂ÞP5i 1 P0̄2;0̄3
235B;345B ð−iÞð−1Þdn3ð1̂Þþω2ð0̄2;2̄3Þ

(0,0,1,1) hðγ0̄3345BÞdn3ð0̂Þþdn3ð2̂Þγ0̄2235BP4ðγ0̄3345BÞdn3ð1̂ÞP5γ
0̄2
234Bi P0̄2;0̄2

234A;234B P0̄2;0̄2
235B;234A ð−1Þdn3ð1̂Þ

(1,1,0,0) hðγ0̄3345BÞdn3ð0̂Þþdn3ð2̂ÞP4ðγ0̄3345BÞdn3ð1̂ÞP5γ
0̄2
245Bi P0̄2;0̄2

245A;245B P0̄3;0̄2
345B;245A ð−1Þω2ð0̄2;2̄3Þ

(0,1,0,1) hðγ0̄3345BÞdn3ð0̂Þþdn3ð2̂ÞP4ðγ0̄3345BÞdn3ð1̂ÞP5γ
0̄2
245Bγ

0̄2
234Bi P0̄2;0̄2

234A;234B

P0̄2;0̄2
245A;245B

P0̄2;0̄2
234A;245A

i

(0,1,1,0) hðγ0̄3345BÞdn3ð0̂Þþdn3ð2̂Þγ0̄2235BP4ðγ0̄3345BÞdn3ð1̂ÞP5γ
0̄2
245Bi P0̄2;0̄2

245A;245B P0̄2;0̄2
235B;245A ð−1Þdn3ð1̂Þ

(1,1,1,1) hðγ0̄3345BÞdn3ð0̂Þþdn3ð2̂Þγ0̄2235BP4ðγ0̄3345BÞdn3ð1̂ÞP5γ
0̄2
245Bγ

0̄2
234Bi P 0̄2;0̄2

234A;234B

P 0̄2;0̄2
245A;245B

P 0̄2;0̄3
235B;345B

P 0̄2;0̄2
234A;245A

ð−1Þdn3ð1̂Þþω2ð0̄2;2̄3Þ
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pþ ip superconductors. Then, we propose a field theory
description of symmetrically gapping out the chiral
Majorana modes along the edge.
The detailed decorations are as follows. For an arbitrary

triangulation of the 2D boundary of a 3D FSPT state, we
put pþ ip superconductors on a disk centered at each
vertex i. The 2D disks of the superconductors are always
gapped. And on the boundary, there are right-moving chiral
Majorana modes [see the green arrows in Eq. (233)]. We
denote these chiral Majorana modes by ψgi

i;R. A picture of
the chiral Majorana modes in a triangle of the 2D boundary
of 3D FSPT bulk is

ð233Þ

The decorated state should be symmetric under Gb
action. If the chiral Majorana modes around vertex i with
gi ¼ e are ψe

i;R, then, for generic gi ∈ Gb, the decorated
pþ ip superconductors should have chiral Majorana
modes ψgi

i;giðRÞ;α according to the symmetry transformation

rules:

UðgÞψσ
i;RUðgÞ† ¼ ð−1Þω2ðg;σÞψgσ

i;gðRÞ; ð234Þ

UðgÞψσ
i;LUðgÞ† ¼ ð−1Þω2ðg;σÞþs1ðgÞψgσ

i;gðLÞ: ð235Þ

Here, we denote giðRÞ ¼ R if s1ðgiÞ ¼ 0 (gi is unitary) and
giðRÞ ¼ L if s1ðgiÞ ¼ 1 (gi is antiunitary). The physical
meaning is that the unitary symmetry UðgÞ changes only
the group element label of chiral modes from gi to ggi.
However, time-reversal symmetry transforms pþ ip
superconductors to p − ip superconductors, and vice versa.
So the right-moving and left-moving chiral Majorana
modes on the edge are switched.
The next step in our construction is to gap out all the

chiral Majorana modes to obtain a fully gapped boundary
state. Consider the interface between two pþ ip domains
labeled by g0 and g1 shown below:

ð236Þ

There is a necessary condition for gapping out the chiral
Majorana modes ψg0

0;R=L and ψg1
1;R=L shown by green arrows

above: The number of net chiral modes along the direction
dual to h01i is zero. If s1ðg−10 g1Þ ¼ 1, then one of the two
right-moving chiral Majorana modes is reversed. There are
two chiral modes moving in the same direction along the
link dual to h01i. This result is illegal, for we want the
boundary to be a gapped state. So we conclude that
the boundary ASPT state with pþ ip superconductors is
impossible if there are some antiunitary symmetries in Gb.
In the following discussions of the ASPT state with pþ ip
superconductors, we always assume Gb is unitary.
Let us introduce explicitly the symmetric mass terms to

gap out the chiral Majorana modes. Similar to the previous
discussions, we can first assume the group element labels of
link h01i are e and g−10 g1. The standard mass terms along
the edge dual to link h01i are

Hh01i
std ¼ im

Z
dxψe

0;RðxÞψ
g−1
0
g1

1;R ðxÞ: ð237Þ

The nonstandard mass terms are obtained from the above
standard ones by a symmetry action:

Hh01i
mass ¼ Uðg0ÞHh01i

std Uðg0Þ†

¼ ð−1Þω2ðg0;g−10 g1Þim
Z

dxψg0
0;RðxÞψg1

1;RðxÞ; ð238Þ

where we use the symmetry transformation rule Eq. (234)
of Majorana modes. Note that there is no minus sign from
the imaginary unit i, for Gb should be unitary according to
the previous discussions. The mass terms constructed
above are, of course, Gb symmetric, since they are all
obtained from the standard mass terms by a symmetry
action.
It is well known that changing the sign of the mass m of

two counterpropagating chiral Majorana modes induces a
phase transition from a nontopological superconductor to a
topological superconductor [81]. If the resulting gapped
edge is a 1D topological superconductor, there is effectively
a Kitaev chain going along the direction of the chiral modes
[see the dashed red line in Eq. (236)]. We can assume the
standard mass terms Eq. (237) with m > 0 correspond to
the trivial gapped phase. Then, the true mass terms
Eq. (238) induce effective Kitaev chains going through
the link h01i. The number of effective Kitaev chains equals
the number of negative mass terms:

ω2ðg0; g−10 g1Þ: ð239Þ

If we consider the triangle h012i with mass terms Hh12i
mass,

Hh02i
mass, and Hh01i

mass on the boundary, the (mod 2) number of
effective Kitaev chains going through the three links is
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ω2ðg−10 g1; g−11 g2Þ ¼ ω2ðg1; g−11 g2Þ þ ω2ðg0; g−10 g2Þ
þ ω2ðg0; g−10 g1Þ; ð240Þ

where we use ðdω2Þðg0; g−10 g1; g−11 g2Þ ¼ 0 (mod 2).
If ω2 is nontrivial in Eq. (240), there may be an odd

number of Kitaev chains going into the triangle h012i.
Since our state is on the boundary of a 3D FSPT bulk, we
can connect the Kitaev chain to the 3D bulk FSPT state [see
Eq. (173)]. The number of Kitaev chains going through a
triangle of a 3D FSPT state is exactly the n2 data which are
discussed in detail in Sec. VI B 1. So we have n2 ¼ ω2 to
have a gapped state (including both the boundary and the
bulk). Since we construct a gapped symmetric (ASPT) state
without topological order on the boundary of the 3D FSPT
state, we conclude that the bulk FSPT with n2 ¼ ω2 is
trivial. This result is the origin of the trivialization group

Γ2 ¼ fω2⌣n0 ∈ H2ðGb;Z2Þjn0 ∈ H0ðGb;ZTÞg ð241Þ

for 3D FSPT phases claimed in Eq. (19). We note that the
pþ ip superconductor is incompatible with time-reversal
symmetry. So there is no Γ2 trivialization if Gb contains
antiunitary symmetry. In other words, Eq. (241) is equiv-
alent to

Γ2 ¼
� fω2 ∈ H2ðGb;Z2Þg; Gb is unitary;

0; Gb contains antiunitary;

ð242Þ

because H0ðGb;ZTÞ ¼ Z if Gb is unitary and
H0ðGb;ZTÞ ¼ 0 if Gb contains antiunitary symmetries.

2. Boundary ASPT states in Γ3 with p + ip
superconductors

The ASPT state in Eq. (241) is realized as one layer of a
2D pþ ip superconductor [n0 ¼ 1 ∈ H0ðGb;ZTÞ] on the
boundary of 3D FSPT states with n2 ¼ ω2 Majorana chain
decorations. The fluctuating Majorana chains (the n2 data)
in the 3D bulk become the effective Majorana chains along
the 1D domain walls of 2D boundary pþ ip supercon-
ductors. Therefore, there is a gapped symmetric boundary
without topological order, and the 3D bulk is trivialized.
In this section, we consider the ASPT state with

two layers of 2D pþ ip superconductor decoration
[n0 ¼ 2 ∈ H0ðGb;ZTÞ]. So, according to Eq. (241), there
is no Γ2 trivialization. However, we show below that there
is a Γ3 trivialization of the 3D FSPT state with n3 ¼
ω2⌣1ω2 complex fermion decorations. This result is
related to the fact that the F move of n0 ¼ 2 pþ ip
superconductors on the 2D boundary changes fermion
parity by ΔPψ

f ðFÞ ¼ ð−1Þω2⌣1ω2. This result is similar to
the Γ3 trivialization related to n1 (2D boundary Majorana
chain decorations) discussed in the next section.

The setup of the n0 ¼ 2 ASPT state is similar to the state
discussed in Sec. VI E 1. Near the vertex i of the space
triangulation, we put a disk of two layers of pþ ip
superconductors labeled by gi. Along the boundary, we
have two chiral Majorana modes indicated by green curves
in, for example, Eqs. (233) and (236). After adding
symmetric mass terms along the line dual to link hiji,
we can gap out the chiral Majorana modes. If the sign of
mass ð−1Þω2ðgi;g−1i gjÞ [see the discussions above Eq. (239)] is
negative, there are n0 ¼ 2 effective Majorana chains going
through the link hiji. Since we want to analyze the fermion
parities, we have to pair up the Majorana fermions in the
effective Majorana chains. If ω2ðgi; g−1i gjÞ ¼ 1, there are
n0 ¼ 2 effective Majorana chains, leaving two Majorana
fermions on each side of link hiji. We can pair them up as
shown in Fig. 13(b) (always from α ¼ 1 to α ¼ 2 on each
side). Note that the vacuum pairings for ω2ðgi; g−1i gjÞ ¼ 0

are the standard A to B pairings [see Fig. 13(a)]. So the
fermion parity of the nontrivial pairings is always odd
(compared to the vacuum pairings), as the small loop with
length four is non-Kasteleyn oriented.
Now we can consider the pþ ip superconductor con-

figurations in one triangle h012i. The three mass term signs
ω2ðgi; g−1i gjÞ for the three links are independent of each
other. So we have in total 23 ¼ 8 configurations, which can
be divided into four cases. (i) All three ω2’s are zero. Then
all the effective Majorana fermions near the three links are
in the vacuum pairings shown in Fig. 13(a). And the
fermion parity of this configuration is Pψ

f ¼ þ1. (ii) One of
the three ω2’s is one [see Fig. 14(a) of ω2ðg1; g−11 g2Þ ¼ 1,
for example]. Then there is only one length-4 loop with
non-Kasteleyn orientation. And the fermion parity is
Pψ
f ¼ ð−1Þ1 ¼ −1. (iii) Two of the three ω2’s are one

[see Fig. 14(b) of ω2ðg0; g−10 g2Þ ¼ ω2ðg1; g−11 g2Þ ¼ 1, for
example]. We connect the effective Majorana chains going
through the two links (according to the Kasteleyn orienta-
tion rules in Fig. 2). So the total fermion parity of this
configuration is Pψ

f ¼ ð−1Þ3 ¼ −1. (iv) All three ω2’s are
one [see Fig. 14(c), for example]. We again connect the
effective Majorana chains going through two (arbitrary)

(a) (b)

FIG. 13. There are n0 ¼ 2 effective Majorana chains (α ¼ 1, 2)
going through link hiji iff ω2ðgi; g−1i gjÞ ¼ 1. The vacuum and
nontrivial pairing directions are shown in (a) and (b), respectively.
We note that α ¼ 1, 2 effective Majorana chains should be
understood as the stacking in the direction perpendicular to the
paper. They are not related to the branching structure (black
arrows).
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links [for example, links h02i and h12i in Fig. 14(c)]
and leave the third link Majorana chain unchanged.
Then, the total fermion parity of this configuration is
Pψ
f ¼ ð−1Þ4 ¼ þ1. The total fermion parity is independent

of the choice we make to connect the effective Majorana

chains. We can choose arbitrary two links of the triangle
and connect the Majorana fermions through them. This
result is why we choose the conventions in Fig. 13. For all
the configurations, one can check easily that the fermion
parity can be summarized as

Pψ
f ðh012iÞ ¼ ð−1Þω2ð0̄1;1̄2Þþω2ð0;0̄1Þω2ð0;0̄2Þþω2ð0;0̄1Þω2ð1;1̄2Þþω2ð0;0̄2Þω2ð1;1̄2Þ; ð243Þ

where we use ðdω2Þð0; 0̄1; 1̄2Þ¼ω2ð0̄1; 1̄2Þþω2ð1; 1̄2Þþ
ω2ð0; 0̄2Þþω2ð0; 0̄1Þ¼0 (mod 2).
With the fermion parity formula for one triangle, we can

derive the fermion parity change of the standard F move
Eq. (111). Since all ω2ðgi; g−1i gjÞ for link hiji are, in
general, independent of each other, there are in total 26 ¼
64 possible configurations for the F move. The fermion
parity change of the F move is obtained from the fermion
parities of the four relevant triangles on the two sides.
However, the small dimer cover loop crossing links h02i
and h13i are counted twice by the two adjacent tri-
angles. Therefore, the fermion parity change of the F
move is the product of four triangle fermion parities [see
Eq. (243) for triangle h012i] with a modification factor
ð−1Þω2ð0;0̄2Þþω2ð1;1̄3Þ. After some tedious calculations, one
can show that the final result is the cup-1 product of ω2:

ΔPψ
f ðFÞ ¼ Pψ

f ðh012iÞ · Pψ
f ðh023iÞ · Pψ

f ðh013iÞ
· Pψ

f ðh123iÞ · ð−1Þω2ð0;0̄2Þþω2ð1;1̄3Þ

¼ ð−1Þω2ð0̄2;2̄3Þω2ð0̄1;1̄2Þþω2ð0̄1;1̄3Þω2ð1̄2;2̄3Þ

¼ ð−1Þðω2⌣1ω2Þð0̄1;1̄2;2̄3Þ: ð244Þ

If the exponent in Eq. (244) is a nontrivial cocycle in
H3ðGb;Z2Þ, then the 2D F move necessarily breaks the
fermion parity of the pþ ip superconductor system.
However, if we introduce a 3D FSPT bulk with complex
fermion decoration n3 ¼ ω2⌣1ω2, the total fermion parity
is preserved. This preservation is simply because the 2D

boundary F move also changes the bulk complex fermion
number by n3ðg0; g1; g2; g3Þ. Therefore, two layers of
pþ ip superconductors can be viewed as a 2D ASPT
state which trivializes the 3D FSPT state with complex
fermion decoration n3 ¼ ω2⌣1ω2. So we have a triviali-
zation group Γ3 as

Γ3⊃fðω2⌣1ω2Þbn0=2c∈H3ðGb;Z2Þjn0∈H0ðGb;ZTÞg:
ð245Þ

Note that we introduce n0 ∈ H0ðGb;ZTÞ in the above
expression. Only unitaryGb is compatiblewithpþ ip chiral
superconductors. And odd n0 (with nontrivial ω2) already
leads to nontrivial trivialization group Γ2 Eq. (241) in a lower
level. Only n0 ¼ 2 produces nontrivial Γ3 and a nontrivial
ASPT state on the boundary of 3DFSPTwithn3 ¼ ω2⌣1ω2.
An explicit example of this Γ3 trivialization Eq. (245) with
n0 ¼ 2 is the FSPT state with Gf ¼ Qf

8 (see Appendix E 3).

3. Boundary ASPT states in Γ3 with Kitaev chains

There is another layer of boundary ASPT state for the
3D FSPT state. This boundary ASPT state has Kitaev
chain decorations and trivializes the complex fermion
decoration data

n3 ¼ ω2⌣n1 þ s1⌣n1⌣n1; ð246Þ

for some n1 ∈ H1ðGb;Z2Þ. The second part s1⌣n1⌣n1 is
discussed in detail in Ref. [66]. It is used to construct a 2D

(a) (b) (c)

FIG. 14. Different effective Majorana chain configurations and their total fermion parities Pψ
f . The fermion parity can be easily

calculated by counting the number of length-4 (non-Kasteleyn-oriented) loops in the figures. (a) ω2ðgi; g−1i gjÞ ¼ 1 for one link with
fermion parity Pψ

f ¼ ð−1Þ1. (b) ω2ðgi; g−1i gjÞ ¼ 1 for two links with fermion parity Pψ
f ¼ ð−1Þ3. (c) ω2ðgi; g−1i gjÞ ¼ 1 for three links

with fermion parity Pψ
f ¼ ð−1Þ4.
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ASPT state on the boundary of 3D FSPT state with time-
reversal symmetry T2 ¼ 1.
The generic boundary ASPT state with Kitaev chains can

be constructed similar to the 2D FSPT state with Kitaev
chain decorations in Sec. V B 1. We put (at most) one
Kitaev chain along the (red) dual link on the 2D boundary
according to the decoration data n1 ∈ H1ðGb;Z2Þ. The
fermion parity change of the Majorana fermions under the
boundary 2D F move is again given by [see Eq. (117)]

ΔPγ
fðFÞ ¼ ð−1Þðω2⌣n1þs1⌣n1⌣n1Þðg−10 g1;g−11 g2;g−12 g3Þ: ð247Þ

If the exponent of (−1) is not a Z2-valued coboundary, we
cannot preserve the boundary fermion parity even if we
introduce complex fermion decorations on the boundary.
However, since the ASPT state is on the boundary of a 3D
FSPT bulk, we can simply choose the bulk complex
fermion decoration data n3 with Eq. (246). Therefore,
the total system (including both the boundary and the
bulk) has definite total fermion parity.
Since we construct a gapped symmetric ASPT state

without topological order on the boundary of the 3D FSPT
state, we conclude that the bulk FSPTwith n3 ¼ ω2⌣n1 þ
s1⌣n1⌣n1 is trivialized. This conclusion is the origin of
the n1 part of the trivialization group Γ3:

Γ3 ⊃ fω2⌣n1 þ s1⌣n1⌣n1 ∈ H3ðGb;Z2Þjn1
∈ H1ðGb;Z2Þg: ð248Þ

Combine it with Eq. (245), and we obtain the trivialization
group

Γ3 ¼ fω2⌣n1 þ s1⌣n1⌣n1 þ ðω2⌣1ω2Þbn0=2c
∈ H3ðGb;Z2Þjn1 ∈ H1ðGb;Z2Þ; n0 ∈ H0ðGb;ZTÞg;

ð249Þ

which is claimed in Eq. (19).

F. An additional layer of p+ ip SC decorations

Apart from the Kitaev chain and complex fermion layers,
there is an additional layer of 2D pþ ip chiral SC
decorations specified by n1 ∈ H1ðGb;ZTÞ for 3D FSPT
states. The decoration of this layer is possible only whenGb
is not unitary. Since there are no fixed-point wave function
constructions of chiral states on a discrete lattice [80], we
discuss it after all the other layers in this section. However,
we can put a 2D continuum (infinite number of degrees of
freedom) free-fermion pþ ip SC state on the decoration
plane with the bulk mass approaching positive infinity. As
shown below, the obstruction function for the pþ ip chiral
superconductor decoration isω2⌣n1 þ s1⌣n1⌣n1. For the
3D topological superconductor with time-reversal symmetry
T2 ¼ −1, the obstruction function equals zero identically.

So this pþ ip layer does not twist the obstruction functions
of other higher layers. In this way, we can fully classify 3D
T2 ¼ −1 topological superconductors.

1. Consistency condition

We use n1ðgi; gjÞ ∈ Z to indicate the number of deco-
rated pþ ip chiral superconductor layers on the plane dual
to link hiji (see Fig. 15). If n1ðgi;j Þ < 0, we decorate
inverse pþ ip, i.e., p − ip, chiral superconductors. So the
number of chiral Majorana modes on the boundary of the
plane is jn1ðgi; gjÞj. The direction of the chiral Majorana
modes (see red arc arrows in Fig. 15) forms a right-hand
(left-hand) rule with respect to the oriented link hiji if
n1ðgi;j Þ > 0 [n1ðgi;j Þ < 0]. For a triangle hijki, there are
three pþ ip superconductor planes intersecting at the link
dual to the triangle (see the red link in Fig. 15). Since we are
constructing a gapped state, there should be no chiral
Majorana mode along this link. So we have the gappable
condition:

ðdn1Þðg0;g1;g2Þ¼ g0n1ðg1;g2Þ−n1ðg0;g2Þþn1ðg0;g1Þ¼0;

ð250Þ

which merely states that the number of left-moving and
right-moving chiral Majorana modes along the (red) link
dual to triangle h012i equal each other.
We explain the physical meaning of the g0 symmetry

action in the first term of Eq. (250). To be more precise, the
first step of our pþ ip superconductor decoration is to put
n1ðg−10 g1Þ (we use inhomogeneous notation for 1-cochain)
layers of pþ ip superconductors to the plane dual to the
standard link he; g−10 g1i, which has an identity group

FIG. 15. Decorations of pþ ip chiral superconductors for a
triangle h012i [see Fig. 8(b) for a tetrahedron]. The 2D chiral
superconductors are decorated on the (green) planes dual to the
three links h01i, h12i, and h02i. The direction of the chiral
Majorana mode along the boundary of the (green) plane dual to
link hiji is indicated by a (red) arc arrow (right-hand rule with
respect to the link direction) if n1 > 0. So there are three different
kinds of chiral Majorana modes along the (red) link dual to the
triangle h012i. After gapping out these chiral modes symmetri-
cally, there may be an effective Kitaev chain along the (red) link.
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element label for the first vertex. By applying a Uðg0Þ
symmetry action on this state, the group element label of
the link becomes hg0; g1i. At the same time, if g0 is time
reversal, the decorated pþ ip superconductors should
become p − ip under the Uðg0Þ action; i.e., n1ðg−10 g1Þ
becomes −n1ðg−10 g1Þ. After using the homogeneous nota-
tion and counting the directions of the left and right
directions of the chiral Majorana modes, we obtain the
cocycle equation of n1 with mathematically correct sym-
metry action in Eq. (250).
If g ∈ Gb is unitary, then one can show n1ðgkÞ ¼ kn1ðgÞ

for all k ∈ Z from Eq. (250). Since we consider only finite
Gb, we must have n1ðgÞ ¼ 0 for all unitary g ∈ Gb. So
H1ðGb;ZTÞ is trivial if Gb is a finite unitary group, and
there is no pþ ip chiral superconductor decoration layer.
For symmetry group Gb with antiunitary elements, one can
show

n1ðgÞ ¼
�
0; g is unitary;

1; g is antiunitary
ð251Þ

by adding some coboundaries. So we have H1ðGb;ZTÞ ¼
Z2 for Gb with antiunitary elements.

2. Symmetry transformations

The chiral Majorana modes along the boundary of the
plane dual to link hiji are denoted by ψgi

ij;R;α or ψgi
ij;L;α

(α ¼ 1; 2;…; jn1ðijÞj) for n1ðijÞ > 0 or n1ðijÞ < 0, respec-
tively. As discussed in Sec. VI A, the symmetry trans-
formation rules for the chiral Majorana modes are given by
Eqs. (171) and (172). The ω2 part is the usual projective
representation factor for Gb (such that it is a linear
representation of Gf). The s1 part is more subtle, which
needs some explanation.
To be more specific, the time-reversal symmetry acts on

the chiral Majorana modes as

UðTÞψgi
ij;R;αUðTÞ† ¼ ð−1Þω2ðT;giÞψTgi

ij;L;α; ð252Þ

UðTÞψgi
ij;L;αUðTÞ† ¼ −ð−1Þω2ðT;giÞψTgi

ij;R;α: ð253Þ

Basically, it changes ψR to ψL and ψL to −ψR (forgetting
the ω2 factor). So the left-moving and right-moving
chiral Majorana modes form a time-reversal Kramers
doublet with T2 ¼ −1. The reason to choose this symmetry
transformation convention is as follows. If we fold the three
(green) planes in Fig. 15 into one plane, we should obtain a
symmetric state on the pure 2D plane. The system consists
of several copies of pþ ip and p − ip chiral supercon-
ductors. However, it is known that we have only nontrivial
2D topological superconductors for time-reversal sym-
metry T2 ¼ −1 [76]. The T2 ¼ 1 case corresponds to
the ASPT state, which can exist only on the boundary
of a 3D bulk [66] (see also the FSPT classification

examples in Appendix E 2). Therefore, we choose the
chiral Majorana modes to form Kramers doublet under
time-reversal symmetry.

3. Symmetric mass terms

To obtain a symmetric gapped state, we should add
symmetric mass terms to the three kinds of chiral Majorana
modes along the link dual to each triangle hijki. The
strategy is again first considering the standard mass term
for the standard triangle with first vertex label e ∈ Gb. The
standard mass term has the following form:

imψe
outψ

g−1
0
gi

in or imψ
g−1
0
gi

out ψe
in; ð254Þ

where at least one of the two chiral Majorana modes is
labeled by the identity element e of Gb. The subscripts
“out” and “in” indicate the actual direction of the chiral
Majorana modes along the (red) link dual to the triangle,
i.e., going outside or inside the triangle (using the right-
hand rule). This direction is not locked with the sign of n1,
for the three links of the triangle have different right-hand
rule directions (see the red arc arrows in Fig. 15). We
always put an outgoing mode in front of an ingoing mode,
because we have to set a rule to know whether there is an
effective Kitaev chain compared to the “trivial” gapped
edge by checking simply the sign of the mass.
Other nonstandard mass terms are obtained from the

standard one by a symmetry action. There is an additional
minus sign for the mass from the symmetry action. The
negative mass induces an effective Kitaev chain along the
gapped edge (see Fig. 15). In the following, we consider
separately the symmetric mass terms for nontrivial ω2

and s1.
(a) Mass term signs from ω2.—We first consider the

standard mass terms for the standard triangle h012i with
group element labels e, g−10 g1, and g−10 g2 for three vertices.
According to Eq. (250), the number of left-moving and
right-moving modes along the (red) link dual to the triangle
should be the same. For simplicity, we assume all of
n1ð01Þ ¼ n1ðe; g−10 g1Þ, n1ð12Þ ¼ n1ðg−10 g1; g−10 g2Þ, and
n1ð02Þ ¼ n1ðe; g−10 g2Þ are positive integers and satisfy
n1ð02Þ ¼ n1ð01Þ þ n1ð12Þ. Then, we need two types of
standard mass terms to gap out these modes (assume
m > 0):

Hh012i
std ¼

Xn1ð01Þ
α¼1

im
Z

dxψe
01;R;αðxÞψe

02;R;αðxÞ

þ
Xn1ð12Þ
α¼1

im
Z

dxψ
g−1
0
g1

12;R;αðxÞψe
02;R;αðxÞ: ð255Þ

We note that the chiral modes ψe
01;R;α and ψ

g−1
0
g1

12;R;α are going
outside the triangle, while ψe

02;R;α is inside (see the red arc

QING-RUI WANG and ZHENG-CHENG GU PHYS. REV. X 10, 031055 (2020)

031055-50



arrows in Fig. 15). So it satisfies the standard mass term
rule Eq. (254).
For the nonstandard triangle with vertex label g0, g1,

and g2, we should use a symmetry action to obtain the
mass terms:

Hh012i
mass ¼Uðg0ÞHh012i

std Uðg0Þ†

¼
Xn1ð01Þ
α¼1

im
Z

dxψg0
01;R;αðxÞψg0

02;R;αðxÞ

þ
Xn1ð12Þ
α¼1

ð−1Þω2ðg0;g−10 g1Þim
Z

dxψg1
12;R;αðxÞψg0

02;R;αðxÞ;

ð256Þ

where the sign ð−1Þω2ðg0;g−10 g1Þ of the second type of mass
term comes from the symmetry transformation rule for

ψ
g−1
0
g1

12;R;α. The total number of effective Kitaev chain going
through the triangle h012i is then

ω2ðg0; g−10 g1Þn1ðg−11 g2Þ; ð257Þ

which is just the number of negative mass terms
in Eq. (256).
If the three n1 are not all positive, the mass terms are

different from Eq. (256). In general, there are three types of
mass terms which gap out different pairs of chiral Majorana
modes. The standard forms of these three types are

H01;02
std ¼

XN−jn1ð12Þj

α¼1

im
Z

dxψe
01;αðxÞψe

02;αðxÞ; ð258Þ

H12;02
std ¼

XN−jn1ð01Þj

α¼1

im
Z

dxψ
g−1
0
g1

12;α ðxÞψe
02;αðxÞ; ð259Þ

H01;12
std ¼

XN−jn1ð02Þj

α¼1

im
Z

dxψe
01;αðxÞψ

g−1
0
g1

12;α ðxÞ; ð260Þ

where we define N ¼ max ½jn1ð01Þj; jn1ð12Þj; jn1ð02Þj�.
Note that (at most) only two types of mass terms appear
for a given n1 configuration. We should choose the mass
terms which involve the chiral modes corresponding to the
biggest jn1j. For example, the two types of mass terms in
Eq. (255) both involve ψ02, because n1ð02Þ > 0 is the
biggest and N − jn1ð02Þj ¼ 0 for the summation in
Eq. (260). The order of the two Majorana modes in a
mass term should follow the rule Eq. (254) that the
outgoing mode appears in the front. It depends on the
configuration of n1. The above three equations are only one
example. (We also omit the R=L label of the chiral modes,
for the sign of n1 is indefinite.)

Independent of the signs of n1, the effective Kitaev
chain number is always Eq. (257). The minus signs of the
masses all come from the symmetry sign ð−1Þω2ðg0;g−10 g1Þ of

ψ
g−1
0
g1

12;R=L;α. Independent of the signs of n1, there are always
jn1ð12Þj mass terms associated with this chiral modes [see
Eqs. (259) and (260)]. Under a Uðg0Þ action from the
standard mass term to the actual mass term, all the terms in
Eqs. (259) and (260) have negative masses. So the (mod 2)
number of effective Kitaev chains is always Eq. (257).
(b) Mass term signs from s1.—There are additional signs

for the mass terms related to time-reversal symmetry. In
general, our standard mass term has the form (we omit the
group element labels)

im
Z

dxψout;sðxÞψ 0
in;s0 ðxÞ; ð261Þ

where the outgoing mode (going up in Fig. 15) is in front of
the ingoing mode (going down in Fig. 15). The labels s and
s0 denote R or L, depending on n1 > 0 or n1 < 0. Note that
the outgoing or ingoing is not locked with R=L (see the red
arc arrows in Fig. 15).
Under a unitary symmetry actionUðg0Þ, the mass term is

transformed to

im
Z

dxψout;sðxÞψ 0
in;s0 ðxÞ

⟶
unitary

Uðg0Þ
ð−1Þω2im

Z
dxψout;sðxÞψ 0

in;s0 ðxÞ; ð262Þ

where the sign ð−1Þω2 is exactly the transformation sign of
ψg−1

0
g1 discussed previously. So we can obtain the effective

Kitaev chain number Eq. (257) in a simple way.
On the other hand, if the symmetry Uðg0Þ is antiunitary,

it reverses the directions of all the chiral modes. The action
on the standard mass term Eq. (261) is

im
Z

dxψout;sðxÞψ 0
in;s0 ðxÞ

⟶
antiunitary

Uðg0Þ
ð−1Þω2ð−1Þ1þ1þð1−δs;s0 Þim

Z
dxψ 0

out;−s0 ðxÞψ in;−sðxÞ:

ð263Þ

Apart from the ω2 term, there are three additional signs.
One minus sign comes from the antiunitary action on the
imaginary unit i. The second is the sign of switching two
chiral modes ψ and ψ 0, because time reversal changes the
outgoing modes to ingoing modes, and vice versa.
According to the rule Eq. (254), we should change their
orders. The third sign ð−1Þ1−δs;s0 appears only when s and s0
are different; i.e., the two modes are of different R=L types.
This sign is a consequence of the symmetry transformation
rules Eqs. (252) and (253): R → L and L → −R. The only
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mass term between R- and L-type modes is Eq. (260) for
ψ01;R=L and ψ01;L=R. Using the “canonical” 1-cocycle
Eq. (251), we conclude that the only mass term with a
(time-reversal-related) minus sign is −imψg1

12ψ
g0
01 with anti-

unitary g0. This case corresponds to s1ðg0Þ ¼ 1 − s1ðg1Þ ¼
s1ðg2Þ ¼ 1 and n1ð12Þ ¼ −n1ð01Þ ¼ 1 − n1ð02Þ ¼ 1. We
can summarize this (time-reversal-related) sign for the mass
term by ð−1Þs1ðg0Þn1ð0̄1Þn1ð1̄2Þ. So the (mod 2) number of
effective Kitaev chain going through the triangle related to
time-reversal symmetry is

s1ðg0Þn1ðg−10 g1Þn1ðg−11 g2Þ: ð264Þ

In summary, we can use symmetric mass terms to gap out
all the chiral Majorana modes along the (red) link dual to
the triangle h012i. There are effective Kitaev chains left
along the link, with (mod 2) number

ðω2⌣n1 þ s1⌣n1⌣n1Þðg0; g−10 g1; g−11 g2Þ
¼ ω2ðg0; g−10 g1Þn1ðg−11 g2Þ þ s1ðg0Þn1ðg−10 g1Þn1ðg−11 g2Þ;

ð265Þ

which is a combination of Eqs. (257) and (264).

4. Obstruction function

If we consider a tetrahedron h0123i of the 3D triangu-
lation lattice of the spatial manifold, there are four triangles
on the boundary and four (red) links with chiral Majorana

modes [see Fig. 8(b)]. We should add mass terms Hh123i
mass ,

Hh023i
mass ,H

h013i
mass , and H

h012i
mass for all the triangles, following the

discussions above. The total number of effective Kitaev
chains crossing the boundary of the tetrahedron can be
calculated as the summation of four terms similar to
Eq. (265). Using the cocycle equations for ω2, s1, and
n1, we have dðω2⌣n1 þ s1⌣n1⌣n1Þðg0; g−10 g1; g−11 g2;
g−12 g3Þ ¼ 0. So the total (mod 2) number of effective
Kitaev chains for the tetrahedron is

ðω2⌣n1 þ s1⌣n1⌣n1Þðg−10 g1; g−11 g2; g−12 g3Þ: ð266Þ

To make sure that there are no dangling Majorana
fermion inside any tetrahedron of the lattice, the number
of effective Kitaev chains should equal the number of
decorated Kitaev chains specified by n2. So we have the
consistency equation

dn2 ¼ ω2⌣n1 þ s1⌣n1⌣n1: ð267Þ

If the right-hand side of the above equation is not a
Z2-valued 3-coboundary, there is no solution for n2 on
the left-hand side. We note that the above equation is the
same as the 1D consistency equation [Eq. (119)], although
the physical meanings are totally different.

G. Classification of 3D FSPT phases

The general classification of 3DFSPT phases is as follows.
We first calculate the cohomology groups H1ðGb;ZTÞ,
H2ðGb;Z2Þ, H3ðGb;Z2Þ, and H4ðGb;Uð1ÞTÞ. For each
n1 ∈ H1ðGb;ZTÞ, we solve the twisted cocycle equation
Eq. (18) for n2. For each solution n2, we solve the twisted
cocycle equation [Eq. (18)] for n3. And for each solution n3,
we solve the twisted cocycle equation [Eq. (18)] for ν4. If n2,
n3, and ν4 are in the trivialization subgroup Γ2, Γ3, and Γ4 in
Eq. (19), then they are trivialized by boundary ASPT states.
(Similar to the 1D and 2D case, we can define Γ4 to describe
those 3D BSPT states trivialized by fermions.) So the
obstruction-free and trivialization-free ðn1; n2; n3; ν4Þ fully
classify the 3D FSPT phases.
We can also use the 3D FSLU transformations to

construct the commuting-projector parent Hamiltonians.
The procedure is again tedious but straightforward. Each
term of the Hamiltonian is a sequence of 3D fermionic F
moves that changes the group element label of a vertex
from g� to g0�. Different terms commute with each other, for
the 3D FSPT wave function is at the fixed point.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we construct gapped fermionic state with
symmetry Gf by decorating fermionic degrees of freedom.
In d spatial dimensions, they are constructed using several
layers of data ð…; nd−1; nd; νdþ1Þ, which is an element in
… × Cd−1ðGb;Z2Þ × CdðGb;Z2Þ × Cdþ1½Gb;Uð1ÞT � (see
Table I). There are several consistency conditions for them.
Basically, the coboundary of one layer data should equal a
functional of the data of lower layers (see Table II). We can
summarize them as a system of twisted cocycle equations:

dð…; nd−1; nd; νdþ1Þ ¼ ð…;Od;Odþ1;Odþ2Þ: ð268Þ

Note that the obstruction function Odþ2 is a Uð1ÞT-valued
(dþ 2)-cocycle. And all other obstruction functions Oi

(i ≤ dþ 1) are in HiðGb;Z2Þ with Z2 coefficients. The
data ð…; nd−1; nd; νdþ1Þ correspond to a valid FSPT state if
and only if all the obstruction functions are coboundaries.
Otherwise, there are no solutions for data of the next layer.
There are two related questions about the constructed

FSPT states. The first is whether the states with different
ð…; nd−1; nd; νdþ1Þ data represent distinct FSPT phases. If
we have a path of FSLU transformations to connect them,
they are, in fact, in the same phase. So the FSPT
classification data should quotient these cases. The
second question is what happens to the state that is
obstructed by some nontrivial cocycleOi. There are some
physical inconsistencies for these states, because all the
obstruction functions have physical meanings such as
fermion parity conservation (see the last column in
Table II). But is it possible to construct such a state on
the boundary of a one-higher-dimensional state? If it is
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possible, we need to understand the physical properties of
the bulk, such as whether it is long-range entangled or
short-range entangled.
The answers of the above two questions are related to

the concept of anomalous SPT states [66]. If one of the
obstruction functions on the right-hand side of Eq. (268) is
not a coboundary, the state is obstructed, for it violates

some physical consistency constraints (see the last column
in Table II). However, this state can exist as an ASPT state
on the boundary of an FSPT state in (dþ 1) spatial
dimension. The ASPT states in (d − 1) spatial dimensions
induces new kinds of coboundaries for the classification
data of FSPT phases in d dimensions [52,53,66]. Formally,
we can write the new coboundaries as

ð…; nd−1; nd; νdþ1Þ ∼ ð…; nd−1; nd; νdþ1Þ þ dð…; nd−2; nd−1; νdÞ ð269Þ

¼ ð…; nd−1; nd; νdþ1Þ þ ð…;Od−1;Od;Odþ1Þ: ð270Þ

In the first line of the above equation, we identify the FSPT state with ð…; nd−1; nd; νdþ1Þ with another state by stacking the
coboundary of one lower dimension state with data ð…; nd−2; nd−1; νdÞ. The coboundary of the latter data, by Eq. (268), are
exactly the obstruction functions for the FSPT in one lower dimensions. Therefore, the lower-dimensional FSPTobstruction
functions will trivialize the higher-dimensional FSPT data.
Mathematically, the obstruction functions Oi for FSPT states in (d − 1) spatial dimensions form a subgroup of the

cohomology group HiðGb;Z2Þ (or Hi½Gb;Uð1ÞT �):

Γi ¼ fOi½ni−2�jni−2 ∈ Ci−2ðGb;Z2Þ is a classification data for FSPT inðd − 1Þdimensionsg: ð271Þ

If Oi½ni−2� is a nontrivial cocycle in Γi, the (d − 1)-
dimensional state with classification data ni−2 is obstructed.
On the other hand, if the classification data ni (or νi) for d-
dimensional FSPT state belong to the subgroup Γi, it is
trivialized because of the boundary ASPT state. Therefore,
the distinct classification data for a d-dimensional FSPT
state is, in fact, ni ∈ CiðGb; ·Þ=BiðGb; ·Þ=Γi [the coefficient
is Z2 or Uð1ÞT].
For each solution of Eq. (268), we can use the classi-

fication data to construct an FSPT state by decorating
several layers of fermionic degrees of freedom to the BSPT
state. These states belong to different FSPT phases if the
data are different in CiðGb; ·Þ=BiðGb; ·Þ=Γi. We can also
use the FSPT moves to construct commuting-projector
parent Hamiltonians. The Hamiltonian consists of a local
operator which corresponds to a sequence of F moves that
changes one vertex label from g� to g0�. Different terms
commute with each other, because the F moves satisfy the
coherence conditions.
We conjecture that, in principle, our classification

scheme for FSPT phases can also be applied to point
and space group symmetry, so long as the crystalline
principle and spin statistics relations [82] are carefully
considered. For example, the mirror symmetry with σ2 ¼ 1

(Zf
2 × ZP

2 ) should be regarded as a time-reversal symmetry
with T2 ¼ Pf (ZTf

4 ¼ Zf
2 ×ω2

ZT
2 ), while the mirror sym-

metry with σ2 ¼ Pf (ZTPf
4 ¼ Zf

2 ×ω2
ZP

2 ) should be
regarded as a time-reversal symmetry with T2 ¼ 1

(Zf
2 × ZT

2 ) [83]. The full details for the classification and
construction of point and space group protected FSPT
phases will be presented in our future work. Moreover, we

also believe that our construction and classification scheme
can be applied for continuum Lie group symmetry by using
the Borel cohomology. However, it is very difficult to
compute the obstruction functions for the general Lie
group, and we will develop special tools to handle this
problem in the future. Finally, how to generalize our
framework into FSPT phases protected by supersymmetry
will be an extremely interesting future direction.
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APPENDIX A: FIXED-POINT WAVE FUNCTION
AND CLASSIFICATION OF FSPT STATES IN 0D

In this appendix, we discuss the FSPT states in zero
spatial dimensions, which are classified by the one-
dimensional representations of Gf, i.e., H1½Gf;Uð1ÞT �.
As shown below, we can choose equivalently the classifica-
tion data to be n0 ∈ H0ðGb;Z2Þ and ν1 ∈ C1½Gb;Uð1ÞT �=
B1½Gb;Uð1ÞT � with some consistency equations. Although
the 0D case is rather degenerate, it shows the layer structure of
the FSPT classifications, which is also true but more
complicated in higher dimensions.
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1. Classification

It is known that the 0D BSPT states with symmetry
group Gb are classified by the one-dimensional linear
representations of Gb, i.e., H1½Gb;Uð1ÞT � [4]. This
classification is because the SPT state should be both
symmetric and nondegenerate. In zero spatial dimen-
sions, there is essentially no difference between bosonic
and fermionic systems, except that there is an additional
Zf

2 symmetry for the fermionic system. We can treat a
fermionic system with total fermionic symmetry group
Gf ¼ Zf

2 ×ω2
Gb as a bosonic system with total bosonic

symmetry group Gf. Therefore, we have the following
conclusion:

(i) 0D FSPT phases with symmetry group Gf¼Zf
2×ω2

Gb are classified by the one-dimensional irreducible
representations of Gf, i.e., H1½Gf;Uð1ÞT �.

Equivalently, we can unpack the above result and
show that

(i) 0D FSPT phases with symmetry group Gf¼Zf
2×ω2

Gb are classified by a 0-cocycle n0 and a 1-cochain
ν1, with some symmetry conditions and consistency
equations.

The second version of classification is more physical.
The first data n0 ∈ H0ðGb;Z2Þ is related to the fermion
parity of the state: Pf ¼ ð−1Þn0 . The second data ν1 ∈
C1½Gb;Uð1ÞT �=B1½Gb;Uð1ÞT � is the usual 0D BSPT
classification.
To get a sense of the classification, we first consider the

simpler case of Gf ¼ Zf
2 ×Gb. Using the Künneth for-

mula, we can split the one-dimensional representation
of Gf ¼ Zf

2 ×Gb into two parts: H1½Gf; Uð1ÞT � ¼
H1½Zf

2 ; Uð1ÞT � × H1½Gb; Uð1ÞT � ¼ Z2 × H1½Gb; Uð1ÞT �.
The first Z2 part corresponds to the one-dimensional
representation of Zf

2 , indicating the bosonic or fermionic
nature of the state. We can use the value of fermion parity
Pf ¼ ð−1Þn0 (n0 ∈ Z2 ¼ f0; 1g) to represent this Z2 clas-
sification. The second part is the same as the bosonic
counterpart, which is the one-dimensional irreducible
representation of Gb.
Now let us consider the generic case Gf ¼ Zf

2 ×ω2
Gb

obtained by Eq. (1). In general, for a given one-
dimensional representation Ũ of Gf, we can always
separate ŨðPn

fgÞ [with g ∈ Gb and Pn
fg ¼ ðPn

f; gÞ ∈ Gf]
into three parts:

ŨðPn
fgÞ ¼ Pn

fν1ðgÞKs1ðgÞ; ðA1Þ

where ν1ðgÞ is a Uð1Þ phase factor and K is the complex
conjugation operator depending on whether g contains
time reversal or not. Using the multiplication rule [Eq. (2)]
of Gf, the representation condition ŨðPn

fgÞŨðPm
f hÞ ¼

ŨðPn
fg · P

m
f hÞ becomes

ν1ðgÞν1ðhÞ1−2s1ðgÞ ¼ Pω2ðg;hÞ
f ν1ðghÞ: ðA2Þ

When acting on a state with fixed fermion parity ð−1Þn0
[we can again think of n0 ∈ H0ðGb;Z2Þ ¼ Z2 as a
0-cocycle], the above equation can be summarized as

ðdν1Þðg; hÞ ≔
ν1ðhÞ1−2s1ðgÞν1ðgÞ

ν1ðghÞ
¼ ð−1Þðω2⌣n0Þðg;hÞ; ðA3Þ

which means that the cocycle equation of ν1 is
twisted by ω2⌣n0. If we define the homogeneous
ν1 by the inhomogeneous one as ν1ðg;gaÞ¼ gν1ðaÞ¼
ν1ðaÞ ·ð−1Þðω2⌣n0Þðg;aÞ (we omit the superscript g of the
inhomogeneous gν1 if g ¼ e is the identity element of Gb),
we obtain the symmetry conditions and consistency
equations for n0 and ν1. It is easy to see that, under the
condition ω2¼0, the classification is reduced to the
previous discussed case Gf ¼ Zf

2 × Gb where n0 and ν1
are decoupled cocycles.

2. Fixed-point wave functions

The above discussion on the 0D FSPT state is from the
perspective of symmetry representation Ũ. We can also
construct fixed-point wave functions.
For n0 ¼ 0, the wave function is fermion parity even.

Using the basis state jσi with symmetry transformation

ŨðPn
fgÞjσi ¼ jgσi; ðA4Þ

we can construct the fixed-point wave function as

jΨi ¼
X
σ∈Gb

ν1ðσÞ−1jσi: ðA5Þ

It is easy to check that the wave function supports a one-
dimensional representation of Gf:

ŨðPn
fgÞjΨi ¼ ν1ðgÞjΨi: ðA6Þ

For n0 ¼ 1, the wave function is a fermionic state. The
basis state is created by a fermion creation operator as
(σ ∈ Gb)

jσi ¼ c†σj0i: ðA7Þ

The symmetry transformation of the basis state under Gf is

ŨðPn
fgÞjσi ¼ ð−1Þnjgσi: ðA8Þ

The fixed-point wave function is also a superposition of all
basis states:

jΨi ¼
X
σ∈Gb

ν1ðσÞ−1jσi; ðA9Þ
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with odd fermion parity. One can check the one-dimen-
sional representation of Gf on this fixed-point wave
function:

ŨðPn
fgÞjΨi ¼ ð−1Þnν1ðgÞjΨi: ðA10Þ

3. Trivialization of some 1D BSPT states
in fermionic system

The obstruction function ð−1Þω2⌣n0 on the right-hand
side of Eq. (A3) comes from the projective representation
Eq. (A2) of Gb on 0D fermions. Although the 0D fermion
state forms a projective representation of Gb, it is a one-
dimensional linear representation of Gf.
On the other hand, it is well known that the classification

data ν2 ∈ H2½Gb;Uð1Þ� of 1D BSPT states also correspond
to the projective representation of the bosonic symmetry
group. The physical meaning is that the 0D edge mode of
this 1D BSPT open chain is a projective representation of
Gb. Since the edge degeneracy cannot be lifted by
symmetric terms, we conclude that the 1D bulk is a
nontrivial BSPT.
Now let us consider the problem of embedding the 1D

BSPT state with ν2 into a fermionic system. We want to
know that whether this BSPT state is still nontrivial as an
FSPT state. From the perspective of edge states, we can
couple a 0D fermionic state with projective representation
ð−1Þω2⌣n0 of Gb to the boundary of this 1D BSPT state.
Then, the total projective representation of the edge is
ν2 × ð−1Þω2⌣n0 . If ν2 ∈ Γ2 ¼ fð−1Þω2⌣n0 jn0 ∈ Z2g, the
projective representation of the edge is, in fact, a linear
representation by choosing appropriate n0. So there is
no nontrivial edge state in this fermionic system. We
conclude that the BSPT states in Γ2 are trivialized as a
fermionic state.
The trivialization of some d-dimensional BSPT states

in a fermionic system is also known even for the case
of Gf ¼ Zf

2 ×Gb [52]. In this case, the trivialization

subgroup is Γdþ1¼fð−1ÞSq2ðnd−1Þjnd−1∈Hd−1ðGb;Z2Þg⊂
Hdþ1½Gb;Uð1Þ�. There are more terms if we consider
groups with nontrivial ω2 and s1. But it is still exactly
the obstruction function for FSPT states in one lower
dimensions.
There is another way of obtaining the trivialization

subgroup of the BSPT states from the perspective of
FSLU. We can construct an explicit FSLU for an FSPT
state [see Eqs. (46) and (47) in Ref. [53]]. The final result is
that the Uð1Þ coefficient of the wave function is modified
by an element of the trivialization subgroup Γdþ1. Since the
two FSPT states should be considered as in the same phase
(they are connected by FSLU), we conclude that the BSPT
states in Γdþ1 are trivialized in fermionic system.

FIG. 16. All possible 2D (2-2) and (3-1) moves that admit a
branching structure.

FIG. 17. All possible 3D (2-3) moves that admit a branching
structure.

FIG. 18. All possible 3D (4-1) moves that admit a branching
structure.
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APPENDIX B: 2D AND 3D MOVES THAT ADMIT
A BRANCHING STRUCTURE

In this appendix, we list all possible 2D (2-2) and (3-1)
moves that admit a branching structure (see Fig. 16). The
3D (2-3) and (4-1) moves that admit a branching structure
are shown in Figs. 17 and 18. The arrow on the left-hand
side of the figures indicates the time direction.

APPENDIX C: KASTELEYN ORIENTATIONS

To decorate Majorana fermions on the 2D or 3D
triangulation lattices, we need (local) Kasteleyn orienta-
tions to design the pairing directions between the Majorana
fermions. In the following, we discuss briefly how to
construct (local) Kasteleyn orientations from arbitrary
triangulation of the spatial manifold. We refer the interested
reader to Ref. [53] for more details.
The (local) Kasteleyn orientations are constructed

for arbitrary triangulation T of a spin manifold (spatial
manifold with dimension d) with vanishing second Stiefel-
Whitney cohomology class ½w2� ¼ ½0�. Using the math-
ematical result of Ref. [84], we know the representative on
arbitrary triangulation of the Stiefel-Whitney homology
class wd−2, which is the Poincaré dual of w2. Then, we can
construct a resolved dual lattice P̃ with (local) Kasteleyn
oriented links.
The procedure of constructing (local) Kasteleyn orien-

tations is as follows [53]:
(1) Given a (black) triangulation lattice T with branch-

ing structure for a d-dimensional spatial spin
manifold,

(2) construct the (red) resolved dual lattice P̃, which is
merely the lattice of Majorana fermions. The (red)
link orientations are constructed rules related to the
Stiefel-Whitney homology class wd−2 in Ref. [84].

(3) Find the expression of wd−2 as a formal summation
of singular (d − 2)-simplices (i.e., non-Kasteleyn-
oriented simplices) of T by Ref. [84].

(4) Connect singular (d − 2)-simplices in T by (blue)
(d − 1)-simplices S (i.e., ∂S ¼ wd−2).

(5) Reverse the orientations of (red) links dual to (blue)
(d − 1)-simplices belonging to S.

(vi) Now, all the (d − 2)-simplices in T are Kasteleyn
oriented.

After all the above steps, the resolved dual lattice P̃ now
has (local) Kasteleyn orientations, meaning that the small-
est (red) loop in P̃ around each (d − 2)-simplex in T is
Kasteleyn oriented.
Using the above procedure for the special 2D and 3D

triangulations, we obtain the (local) Kasteleyn orientation
assignment for links inside a triangle and a tetrahedron
shown in Figs. 2 and 9, respectively. All the Majorana
fermions inside the standard triangle or tetrahedron are
paired according to these (local) Kasteleyn orientations.

APPENDIX D: CHECKING Uð1Þ COEFFICIENT
OBSTRUCTIONS BY BOCKSTEIN

HOMOMORPHISM

In solving the classification equations of FSPT states, we
encounter an equation of the last layer such as

dνk−1 ¼ ð−1Þfk ¼ e2πiðfk=2Þ; ðD1Þ

where fk ∈ HkðGb;Z2Þ is a Z2-valued k-cocycle. This
equation has no solution for νk−1, iff e2πiðfk=2Þ is a nontrivial
Uð1Þ-valued cocycle in Hk½Gb;Uð1Þ�.
It is well known that HkðGb;R=ZÞ ≅ Hkþ1ðGb;ZÞ,

which comes from the short exact sequence 0 → Z →

R !mod 1
R=Z → 0 and the condition HkðGb;RÞ ¼ 0 for

finite discrete or compact Lie group Gb. The isomorphism
is given by the connecting homomorphism of the long exact
sequence, which is basically the differential operator d
acting on the R=Z-valued cocycles. According to this
isomorphism, ð−1Þfk ¼ e2πiðfk=2Þ is a nontrivial Uð1Þ-
valued k-cocycle iff βðfkÞ ≔ dfk=2 is a nontrivial
Uð1Þ-valued (kþ 1)-cocycle. Here, β is the Bockstein
homomorphism, which is the connecting homomorphism

from the short exact sequence 0 → Z!×2Z !mod 2
Z2 → 0. It

maps a Z2-valued k-cocycle to a Z-valued (kþ 1)-cocycle.
In summary, in order to check the last layer obstruction,

we can investigate the Bockstein homomorphism of theZ2-
valued obstruction functions:

ð−1Þfk ∈ Bk½Gb;Uð1Þ� ⇔ βðfkÞ ∈ Bkþ1ðGb;ZÞ: ðD2Þ

In many cases, the Bockstein homomorphism of fk is easy
to check with the identity

βðfkÞ ¼
dfk
2

: ðD3Þ

The mod 2 value of Bockstein homomorphism is also
related to the Steenrod square as

Sq1ðfkÞ ¼ fk⌣k−1fk ¼ βðfkÞ ðmod 2Þ: ðD4Þ

All the above discussions can be easily generalized to the
obstruction functions such as ifk ¼ e2πiðfk=4Þ and the ZT
rather than Z coefficient.
The above result can be also understood from the

perspective of the universal coefficient theorem. We can
use this theorem to obtain the Z2 coefficient cohomology
groups from the Z coefficient ones:

HkðGb;Z2Þ ¼ ½HkðGb;ZÞ ⊗Z Z2�
⊕ TorZ1 ½Hkþ1ðGb;ZÞ;Z2�: ðD5Þ

The above equation splits HkðGb;Z2Þ into two types of
cocycles: The first type is obtained from a Z-valued
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k-cocycle by mod 2; the second type is obtained from a Z-
valued (kþ 1)-cocycle by basically the inverse of
Bockstein homomorphism. So ð−1Þfk is a trivial Uð1Þ-
valued cocycle iff fk is the first type Z2-valued cocycle (or,
equivalently, ½βðfkÞ� ¼ ½0�).

APPENDIX E: FSPT EXAMPLES

In this appendix, we give the classifications for FSPT
phases for some symmetry groups. Some simple results are
summarized in Table III.

1. 2D FSPT phases for arbitrary unitary
finite Abelian group

Let us consider the arbitrary unitary finite Abelian
symmetry group:

Gf ¼ Zf
2N0

×
YK
i¼1

ZNi
: ðE1Þ

We show below that our general group supercohomology
theory gives the same classification result as Ref. [13].
The symmetry group Gf is a central extension of the

bosonic unitary finite Abelian groupGb ¼
Q

K
i¼0ZNi

byZf
2

with the nontrivial (N0 ≥ 2) 2-cocycle

ω2ða; bÞ ¼
�
a0 þ b0
N0

�
; ðE2Þ

where we use a ¼ ða0; a1;…; aKÞ with 0 ≤ ai ≤ Ni − 1 to
denote the elements in the additive Abelian group Gb. The
notation bxc means the greatest integer less than or equal
to x. If N0 is odd, we have ½ω2� ¼ ½0� in H2ðGb;Z2Þ, and
the fermionic symmetry group Gf is merely the direct

product of Zf
2 and Gb ¼

Q
K
i¼0ZNi

. We can treat both N0

odd and N0 even at one time in the following. Note that we
use a different notation for N0 compared to Ref. [13],
where the fermionic symmetry group is chosen to be
Gf ¼ Zf

N0
×
Q

K
i¼1ZNi

.
Before calculating the classifications, we first list the

relevant cohomology groups for Gb with different
coefficients:

H1ðGb;Z2Þ ¼
Y

0≤i≤K
Zgcdð2;NiÞ; ðE3Þ

H2ðGb;Z2Þ ¼
Y

0≤i≤K
Zgcdð2;NiÞ

Y
0≤i<j≤K

Zgcdð2;NijÞ; ðE4Þ

H3½Gb;Uð1ÞT � ¼
Y

0≤i≤K
ZNi

Y
0≤i<j≤K

ZNij

Y
0≤i<j<k≤K

ZNijk
;

ðE5Þ

H4½Gb;Uð1ÞT �
¼

Y
0≤i<j≤K

Z2
Nij

Y
0≤i<j<k≤K

Z2
Nijk

Y
0≤i<j<k<l≤K

ZNijkl
: ðE6Þ

Here, gcdðx; yÞ denotes the greatest common divisor of x
and y. And Nij…k means the greatest common divisor of
Ni; Nj;…, and Nk. One can show the above results using
the Künneth formula and the universal coefficient theorem
for group cohomology. Note that Ni should be even (which
we assume in the following calculations); otherwise, there
is no nontrivial Z2-valued cocycle associated with the
subgroup ZNi

.
There are also “canonical” forms for the cocycles in the

cohomology groups above. To calculate the obstructions,
we consider the Z2-valued cocycles:

nðiÞ1 ðaÞ ¼ ai ðmod 2Þ; ðE7Þ

nðiÞ2 ða; bÞ ¼
�
ai þ bi
Ni

�
; ðE8Þ

nði;jÞ2 ða; bÞ ¼ ðnðiÞ1 ⌣nðjÞ1 Þða; bÞ ¼ aibj ðmod 2Þ; ðE9Þ

where 0 ≤ i ≤ K for the first two cocycles and 0 ≤ i <
j ≤ K for the last cocycle. They exhaust all nontrivial
cocycles in H1ðGb;Z2Þ and H2ðGb;Z2Þ. We note that the

2-cocycle Eq. (E2) is merely ω2 ¼ nð0Þ2 in terms of the
above notations.

a. Obstructions

Different from the Abelian symmetry group Gf ¼
Zf

2 ×Gb, not all Kitaev chain and complex fermion
decorations are possible for the symmetry group
Eq. (E1). We should calculate the obstructions for each
layers, using the consistency equations shown in Eq. (14)
(see also Table II). Since we do not consider the invertible
topological order pþ ip superconductors as FSPT states,
we need only to calculate the obstructions for n1 and n2.
We use frequently the Z2 and Uð1Þ-valued cocycle invar-
iants in Refs. [16,85,86] to check whether a cocycle is
trivial or not for finite Abelian groups.
(1) Obstructions for n1.—From Eq. (14), the obstruction

function for n1 is O3½n1� ¼ ω2⌣n1 because of s1 ¼ 0.

If we choose n1 ¼ nðiÞ1 (0 ≤ i ≤ K), the obstruction
function is

O3½n1� ¼ ω2⌣n1 ¼ nð0Þ2 ⌣nðiÞ1 : ðE10Þ

It is known for finite Abelian groups that the above

equation is always a nontrivial cocycle if both nð0Þ2 and

nðiÞ1 are nontrivial cocycles.
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Therefore, ifN0 is odd, all n1 in Eq. (E3) are obstruction-
free, and the Kitaev chain decorations are possible. If N0

is even (Gf is a nontrivial central extension of Gb), all
nontrivial n1 in Eq. (E3) are obstructed, and the Kitaev
chain decorations are illegal. The (cohomology class)
number of obstruction-free n1 is

#ðobstruction-free n1Þ ¼
Y

1≤i≤K

gcdð2; NiÞ
gcdð2; N0iÞ

: ðE11Þ

(2) Obstructions for n2.—From Eq. (14) [see also
Eq. (136)], the obstruction function for n2 is

O4½n2� ¼ ð−1Þn2⌣n2þω2⌣n2 ; ðE12Þ

which is a cocycle in H4ðGb;Uð1ÞTÞ. Note that, if N0 is
odd, we can choose ω2 ¼ 0, and the equation for n2 is
always dn2 ¼ 0. So many terms in Eq. (136) vanish,
including the (�i) terms. Since there are many different
types of n2 in Eq. (E4), we discuss them separately.

(2.1) n2 ¼ nð0Þ2 .—Since ω2 ¼ nð0Þ2 , the obstruction func-
tion Eq. (E12) is always 1. So this n2 is obstruction-free.

(2.2) n2 ¼ nðiÞ2 ð1 ≤ i ≤ KÞ.—Using the Uð1Þ-valued
cocycle invariants, it is easy to check that both
ð−1Þn2⌣n2 and ð−1Þω2⌣n2 are Uð1Þ-valued coboundaries.
So this n2 is also obstruction-free.

(2.3) n2 ¼ nð0;iÞ2 ð1 ≤ i ≤ KÞ.—In this case, the cocycle

ð−1Þω2⌣n2 ¼ ð−1Þnð0Þ2
⌣nð0;iÞ

2 ¼ ð−1Þnð0Þ2
⌣nð0Þ

1
⌣nðiÞ

1 is nontri-

vial. And the other part ð−1Þn2⌣n2 ¼ ð−1Þnð0;iÞ2
⌣nð0;iÞ

2 is
still a 4-coboundary. So these nontrivial n2 are always
obstructed.

(2.4) n2 ¼ nði;jÞ2 ð1 ≤ i < j ≤ KÞ.—In this case, the
obstruction function is

O4½n2� ¼ ð−1Þn2⌣n2þω2⌣n2

¼ ð−1Þnði;jÞ2
⌣nði;jÞ

2
þnð0Þ

2
⌣nði;jÞ

2

¼ ð−1ÞnðiÞ1 ⌣nðjÞ
1
⌣nðiÞ

1
⌣nðjÞ

1
þnð0Þ

2
⌣nðiÞ

1
⌣nðjÞ

1 : ðE13Þ

By calculating the Uð1Þ-valued cocycle invariants, the first

part ð−1ÞnðiÞ1 ⌣nðjÞ
1
⌣nðiÞ

1
⌣nðjÞ

1 is always a 4-coboundary. The

second part ð−1Þnð0Þ2
⌣nðiÞ

1
⌣nðjÞ

1 is a 4-coboundary if and only

if Nij=N0ij is even. So n
ði;jÞ
2 (1 ≤ i < j ≤ K) is obstruction-

free if and only if Nij=N0ij is even.
Summarizing the above results for n2, the total number

of obstruction-free n2 is

#ðobstruction-free n2Þ

¼
Y

0≤i≤K
gcdð2; NiÞ

Y
1≤i<j≤K

gcd

�
2;

Nij

N0ij

�
: ðE14Þ

b. Trivializations

(1) Trivializations of n2.—According to the trivialized
subgroups Eq. (15) for 2D FSPT states, the 2-cocycle n2
in the Γ2 is trivialized by 1D ASPT states on the boundary.
It is discussed in detail in Sec. V E. For the 2-cocycle

ω2 ¼ nð0Þ2 , we have Γ2 ¼ fω2⌣n0 ∈ H2ðGb;Z2Þjn0 ∈
H0ðGb;Z2Þg ¼ hnð0Þ2 i. The complex fermion decoration

data n2 ¼ nð0Þ2 are trivialized. (Note that this n2 is not
obstructed as discussed above.) So the first subgroup
Zgcdð2;N0Þ of H

2ðGb;Z2Þ in Eq. (E4) does not correspond
to a nontrivial 2D FSPT state.
Combining the trivializations of n2 with obstruction-free

n2 number Eq. (E14), the number of trivialization-free
obstruction-free n2 is

#ðtrivialization-free obstruction-free n2Þ

¼
Y

1≤i≤K
gcdð2; NiÞ

Y
1≤i<j≤K

gcd
�
2;

Nij

N0ij

�
: ðE15Þ

(2) Trivializations of ν3.—For the bosonic Uð1Þ phase
factor ν3, the trivialized subgroup in Eq. (15) can be
calculated as

Γ3 ¼ fð−1Þω2⌣n1 ∈ H3½Gb;Uð1ÞT �jn1 ∈ H1ðGb;Z2Þg
¼ hð−1Þnð0Þ2

⌣nðiÞ
1 j0 ≤ i ≤ K; gcdð2; NiÞ ¼ 2i: ðE16Þ

For the cocycles in the subgroup ZN0
×
Q

1≤i≤K Z0i of
H3½Gb;Uð1ÞT � in Eq. (E5), they have a “canonical” form

expressed as lower-dimensional Z2-valued cocycles nðiÞ1
(0 ≤ i ≤ K) and nð0Þ2 as (only for even Ni; otherwise, the

cocycle nðiÞ1 is trivial)

ν3 ¼ e2πiðk=NiÞnð0Þ2
⌣nðiÞ

1 ðk ¼ 0; 1;…; N0i − 1Þ: ðE17Þ

The generating cocycle of Γ3 in Eq. (E16) can be expressed

as ð−1Þnð0Þ2
⌣nðiÞ

1 ¼ e2πiðNi=2=NiÞnð0Þ2
⌣nðiÞ

1 . Comparing it with
the above equation, we see that if Ni is odd, or Ni=2 is an
integral multiplier of N0i, then the part of Γ2 related to
ZNi

⊂ Gb (0 ≤ i ≤ K) is trivial in H3½Gb;Uð1ÞT �.
Otherwise, the 3-cocycle ν3 in Eq. (E17) with k ¼ Ni=2
(mod N0i) is trivialized by the 2D ASPT state. The results
calculated above can also be obtained from calculating the
cocycle invariants for ν3 [16,85,86].
In summary, (1) if N0 is even, one nontrivial ν3 in ZN0

⊂
H3½Gb;Uð1ÞT � is trivialized. Otherwise, all elements in
ZN0

⊂ H3½Gb;Uð1ÞT � are nontrivial. (2) For 1 ≤ i ≤ K,
and the subgroup ZN0i

⊂ H3½Gb;Uð1ÞT �, we also have two
possibilities. If Ni is even and Ni=N0i is odd [87], then one
nontrivial ν3 in ZN0i

⊂ H3½Gb;Uð1ÞT � is trivialized.
Otherwise, all elements in ZN0i

⊂ H3½Gb;Uð1ÞT � are

QING-RUI WANG and ZHENG-CHENG GU PHYS. REV. X 10, 031055 (2020)

031055-58



nontrivial. So the number of trivialization-free cocycles in
the subgroup ZN0

×
Q

1≤i≤K Z0i ⊂ H3½Gb;Uð1ÞT � in
Eq. (E5) is

N0

gcdð2; N0Þ
Y

1≤i≤K

gcdð2N0; NiÞ
gcdð2; NiÞ

: ðE18Þ

The total number of ν3 that is not trivialized in Eq. (E5) is

#ðtrivialization-free ν3Þ

¼ N0

gcdð2; N0Þ
Y

1≤i≤K
Ni

·
gcdð2N0; NiÞ
gcdð2; NiÞ

Y
1≤i<j≤K

Nij

Y
0≤i<j<k≤K

Nijk: ðE19Þ

c. Full classification

From the above calculations of obstructions and trivial-
izations, we can obtain the number of 2D FSPT phases with
symmetry group Eq. (E1) by combining Eqs. (E11), (E15),
and (E19):

#ðFSPTÞ ¼ N0

gcdð2; N0Þ
Y

1≤i≤K
Ni ·

gcdð2; NiÞ · gcdð2N0; NiÞ
gcdð2; N0iÞ

×
Y

1≤i<j≤K
Nij · gcd

�
2;

Nij

N0ij

� Y
0≤i<j<k≤K

Nijk:

ðE20Þ

If N0 is even, the above equation is reduced to

#ðFSPTÞjN0even¼
N0

2

Y
1≤i≤K

Ni ·gcdð2N0;NiÞ

×
Y

1≤i<j≤K
Nij ·gcd

�
2;

Nij

N0ij

� Y
0≤i<j<k≤K

Nijk:

ðE21Þ

On the other hand, if N0 is odd, we have

#ðFSPTÞjN0odd ¼ N0

Y
1≤i≤K

Ni · gcdð2; NiÞ

· gcdð2N0; NiÞ
Y

1≤i<j≤K
Nij

· gcd ð2; NijÞ
Y

0≤i<j<k≤K
Nijk: ðE22Þ

After some calculations [88], one can show that the above
two equations for the number of 2D FSPT phases are
exactly the same as Eqs. (42) and (43) of Ref. [13], which
are obtained from a totally different approach of the

braiding statistics data of the gauge flux. Furthermore,
one can show that the group structure of general group
supercohomology classification [89] also agrees with
Ref. [13]. We note again that we use a different convention
of N0 definition compared to Ref. [13].

2. Four symmetry groups with Gb ≅ Z2
and different s1 and ω2

If we focus on the bosonic symmetry group Gb that is
isomorphic to Z2 ¼ f0; 1g, there are in total four different
Gf with different choices of cocycles s1 and ω2. It is already
discussed briefly at the end of Sec. I B. The nontrivial
cocycles in H1ðZ2;Z2Þ ¼ Z2 and H2ðZ2;Z2Þ ¼ Z2 are

s1ðaÞ ¼
�
1; a ¼ 1;

0; others;
ðE23Þ

ω2ða; bÞ ¼
�
1; a ¼ b ¼ 1;

0; others:
ðE24Þ

The classifications of FSPT phases for these groups are given
in Table III. For convenience, we resummarize them in
Table VI.
We note that we do not consider the invertible topologi-

cal order (such as a Kitaev chain in 1D) as a FSPT state,
since they do not need any bosonic symmetry protection
(Zf

2 can never be broken). If we include them to consider
invertible phases, the classification results are given in
Table VII. There is an additional Z2 subgroup for
Gf ¼ Zf

2 × Z2 and Gf ¼ Zf
2 × ZT

2 in 1D (obstructed if
ω2 is nontrivial). It corresponds to the n0 data of 1D
invertible topological order of Kitaev chain. There is an
additional
Z classification for symmetry group Gf ¼ Zf

2 × Z2 and

Gf ¼ Zf
4 in 2D. It corresponds to the several layers of 2D

pþ ip chiral superconductors as fermionic invertible
topological orders (the root states of the two Z classifica-
tions are different). It is not possible if there is time-reversal
symmetry in Gb [for H0ðGb;ZTÞ ¼ 0]. We note that all
the results are consistent with the spin cobordism calcu-
lations [10].

TABLE VI. Classification of FSPT phases with Gb ≅ Z2 and
different choices of s1 and ω2.

Gfn dim 0 1 2 3

Zf
2 × Z2

Z2 × Z2 Z2 Z8 Z1

Zf
4 ¼ Zf

2 ×ω2
Z2

Z4 Z1 Z1 Z1

Zf
2 × ZT

2
Z2 Z4 Z1 Z1

ZTf
4 ¼ Zf

2 × ω2
ZT

2
Z1 Z2 Z2 Z16
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a. Gf =Z
f
2 × Z2

(1) 0D.—The classification data are ðn0; ν1Þ ∈
H0ðGb;Z2Þ ×H1½Gb;Uð1ÞT � ¼ Z2 × Z2. There are no
obstructions and trivializations for these data. In another
approach, the classification of one-dimensional irreducible
representations for Gf is H1½Zf

2 × Z2; Uð1ÞT � ¼ Z2 × Z2.
So the two approaches agree with each other, and the 0D
FSPT phases are classified by Z2 × Z2.
(2) 1D.—The classification data are ðn1; ν2Þ ∈

H1ðGb;Z2Þ ×H2½Gb;Uð1ÞT � ¼ Z2 × Z1. There are no
obstructions or trivializations.
(3) 2D.—The classification data are ðn1;n2;ν3Þ∈

H1ðGb;Z2Þ×H2ðGb;Z2Þ×H3½Gb;Uð1ÞT �¼Z2×Z2×Z2.
There are no obstructions or trivializations. And the group
structure of the classification [89] can be shown to be Z8.
So two copies of Kitaev chain decoration states give the
complex fermion decoration state. Two copies of complex
fermion decoration states give the nontrivial BSPT state.
And, finally, two copies of BSPT states are trivial. This
classification of 2D topological superconductors with Z2

Ising symmetry is first obtained in Ref. [47].
(4) 3D.—The classification data are ðn1;n2;n3;ν4Þ∈

H1ðGb;ZÞ×H2ðGb;Z2Þ×H3ðGb;Z2Þ×H4½Gb;Uð1ÞT � ¼
Z1 ×Z2 ×Z2 ×Z1. One can show that the nontrivial
cocycles satisfy n2⌣n2 ∉ B4ðGb;Z2Þ and ð−1Þn3⌣1n3 ∉
B5½Gb;Uð1ÞT �. According to the consistency equations in
Table II, all states are obstructed. There is only one
trivial phase.

b. Gf =Z
f
4 =Z

f
2 ×ω2

Z2

(1) 0D.—In terms of our classification data, we have
ðn0; ν1Þ ∈ H0ðGb;Z2Þ ×H1½Gb;Uð1ÞT � ¼ Z2 × Z2. And
both data are obstruction-free. In another way, the
one-dimensional irreducible representation for Gf is

classified by H1½Zf
4 ; Uð1ÞT � ¼ Z4. So the classification

is Z4.
(2) 1D.—The classification data are ðn1; ν2Þ ∈

H1ðGb;Z2Þ ×H2½Gb;Uð1ÞT � ¼ Z2 × Z1. However, the
nontrivial n1 is obstructed. So there is only one trivial
phase.

(3) 2D.—The classification data are ðn1;n2;ν3Þ∈
H1ðGb;Z2Þ×H2ðGb;Z2Þ×H3½Gb;Uð1ÞT �¼Z2×Z2×Z2.
The nontrivial n1 is obstructed. As discussed in detail in
Sec. V E, the nontrivial n2 is trivialized by the boundary 1D
ASPT (recall the obstruction of Kitaev chain layer n0 in
1D). And the nontrivial cocycle ν3 is also trivialized (recall
the obstruction of n1 in 1D). So the classification is Z1,
which is consistent with Refs. [13,56].
(4) 3D.—The classification data are ðn1;n2;n3;ν4Þ∈

H1ðGb;ZÞ×H2ðGb;Z2Þ×H3ðGb;Z2Þ×H4½Gb;Uð1ÞT � ¼
Z1×Z2×Z2×Z1. The nontrivial n2 is trivialized (recall
the obstruction of n0 in 2D). And the nontrivial n3 is also
trivialized (recall the obstruction of n1 in 2D). So there is
only one trivial phase.

c. Gf =Z
f
2 × ZT

2

(1) 0D.—The classification data are ðn0; ν1Þ ∈
H0ðGb;Z2Þ ×H1½Gb;Uð1ÞT � ¼ Z2 × Z1. The cocycle n0
is obstruction-free. In another approach, the classification
of one-dimensional irreducible representations for Gf is

H1½Zf
2 × ZT

2 ; Uð1ÞT � ¼ Z2. So the classification is Z2.
(2) 1D.—The classification data are ðn1; ν2Þ ∈

H1ðGb;Z2Þ ×H2½Gb;Uð1ÞT � ¼ Z2 × Z2. There is neither
obstruction nor trivialization. The classification is Z4. If
we include the invertible topological order Kitaev chain,
then the classification is Z8. This classification of 1D
T2 ¼ 1 topological superconductors is first obtained in
Refs. [42,43].
(3) 2D.—The classification data are ðn1;n2;ν3Þ∈

H1ðGb;Z2Þ×H2ðGb;Z2Þ×H3½Gb;Uð1ÞT �¼Z2×Z2×Z1.
The nontrivial n1 obstructed for s1⌣n1⌣n1 is nontrivial
in H3ðGb;Z2Þ. This obstruction is the fermion parity
obstruction for T2 ¼ 1 2D topological superconductors
considered in Refs. [66,76]. The nontrivial n2 is obstructed
for ð−1Þn2⌣n2 ∉ B4½Gb;Uð1ÞT �. So there is only one
trivial phase.
(4) 3D.—The classification data are ðn1;n2;n3;ν4Þ∈

H1ðGb;ZÞ×H2ðGb;Z2Þ×H3ðGb;Z2Þ×H4½Gb;Uð1ÞT � ¼
Z2×Z2×Z2×Z2. The nontrivial cocycle data n1 of
pþ ip chiral superconductor decoration is obstructed
for s1⌣n1⌣n1 ∉ B3ðGb;Z2Þ. The nontrivial n2 is also
obstructed, by calculating the cocycle invariants for the
obstruction function n2⌣n2þs1⌣ðn2⌣1n2Þ∉B4ðGb;Z2Þ.
The nontrivial n3 is trivialized by the 2D ASPT state (recall
the obstruction of n1 in 2D). And the nontrivial ν4 is also
trivialized by another layer of the 2D ASPT state (recall the
obstruction of n2 in 2D). In summary, there is only one
trivial FSPT phase.

d. Gf =Z
Tf
4 =Zf

2 ×ω2
ZT

2

(1) 0D.—The classification data are ðn0; ν1Þ ∈
H0ðGb;Z2Þ ×H1½Gb;Uð1ÞT � ¼ Z2 × Z1. Since the co-
cycle ð−1Þω2⌣n0 ∈ H2½Gb;Uð1ÞT � is nontrivial, the

TABLE VII. Classification of fermionic invertible phases with
Gb ≅ Z2 and different choices of s1 and ω2. The differences
compared to Table VI (with fermionic invertible topological
orders included) are emphasized by bold.

Gfn dim 0 1 2 3

Zf
2 × Z2

Z2 × Z2 Z2 × Z2 Z × Z8 Z1

Zf
4 ¼ Zf

2 ×ω2
Z2

Z4 Z1 Z Z1

Zf
2 × ZT

2
Z2 Z8 Z1 Z1

ZTf
4 ¼ Zf

2 × ω2
ZT

2
Z1 Z2 Z2 Z16
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nontrivial n0 is obstructed. In another approach, the
classification of one-dimensional irreducible representa-
tions for Gf is H1½Zf

2 ×ω2
ZT

2 ; Uð1ÞT � ¼ Z1. So the clas-
sification is Z1. The physical meaning is that a nontrivial
fermionic mode with T2 ¼ −1 must be in a Kramers
doublet, which is twofold degenerate. So there is only
one trivial class.
(2) 1D.—The classification data are ðn1; ν2Þ ∈

H1ðGb;Z2Þ ×H2½Gb;Uð1ÞT � ¼ Z2 × Z2. The nontrivial
n1 is obstruction-free. The nontrivial ν2 is trivialized by
the 0D ASPT state (recall the obstruction of n0 in 0D). So
the classification is Z2 corresponding to the complex
fermion decorations.
(3) 2D.—The classification data are ðn1;n2;ν3Þ∈

H1ðGb;Z2Þ×H2ðGb;Z2Þ×H3½Gb;Uð1ÞT �¼Z2×Z2×Z1.
The first cocycle n1 is obstruction-free, for the obstruction
function is zero: ω2⌣n1 þ s1⌣n1⌣n1 ¼ 0. The nontrivial
cocycle data n2 is trivialized (recall the obstruction of n0 in
1D). In summary, there is only one nontrivial topological
superconductor with T2 ¼ −1. It is exactly the Kitaev chain
decoration state constructed in Ref. [76].
(4) 3D.—The classification data are ðn1;n2;n3;ν4Þ∈

H1ðGb;ZÞ×H2ðGb;Z2Þ×H3ðGb;Z2Þ×H4½Gb;Uð1ÞT � ¼
Z2×Z2×Z2×Z2. The nontrivial cocycle n1 is obstruc-
tion-free, for the obstruction function is ω2⌣n1 þ s1⌣
n1⌣n1 ¼ 0. The nontrivial cocycle n2 is also obstruction-
free, since the obstruction function ω2⌣n2 þ n2⌣n2 þ
s1⌣ðn2⌣1n2Þ ¼ s1⌣ðn2⌣1n2Þ is in B4ðGb;Z2Þ. Since
H5½Gb;Uð1ÞT � ¼ 0, the classification data n3 are always
obstruction-free. In summary, all four layers of classifica-
tion data are obstruction-free and trivialization-free. So the
classification of 3D T2 ¼ −1 topological superconductors
is Z16, which is first shown by Kitaev and Morgan [90].

3. FSPT states with quaternion group
Gf =Q

f
8 =Z

f
2 ×ω2

ðZ2 × Z2Þ
The quaternion group Q8 is defined as Q8 ¼ hi; j; kji2 ¼

j2 ¼ k2 ¼ ijki with order 8. Usually, we denote ijk as −1.
Other useful relations are ij ¼ k, jk ¼ i, and ki ¼ j, which
can be easily derived from the definition of Q8. Since the
center ofQ8 is f�1g, we can unambiguously identify it with
the fermion parity group Zf

2 . Then, the bosonic symmetry
group (as a quotient group) Gb ¼ Gf=Z

f
2 ¼ Qf

8=Z
f
2 is

generated by [i] and [j] and has relations ½i�2 ¼ ½j�2 ¼
½i�½j� ¼ ½1�. So Gb is isomorphic to Z2 × Z2. In terms of the
short exact sequence, we have

1 → Zf
2 → Qf

8 → Z2 × Z2 → 1: ðE25Þ

The nontrivial 2-cocycle of the central extension is given by

ω2 ¼ nð1Þ2 þ nð2Þ2 þ nð1Þ1 nð2Þ1 ; ðE26Þ

which is the most nontrivial element in H2ðZ2 × Z2;Z2Þ ¼
Z3

2 ¼ hnð1Þ2 ; nð2Þ2 ; nð1Þ1 nð2Þ1 i. Here, nðiÞ1 and nðiÞ2 ¼ nðiÞ1 ⌣nðiÞ1
are the nontrivial 1- and 2-cocycles, respectively, for the ith

(i ¼ 1, 2) Z2 subgroup of Gb ¼ Zð1Þ
2 × Zð2Þ

2 . The three
terms of ω2 in Eq. (E26) indicate i2 ¼ −1, j2 ¼ −1, and
ij ¼ −ji, respectively, in Qf

8 .
We show below that there is a 3D anomaly-free FSPT

state for Gf ¼ Qf
8 with complex fermion decoration

n3 ¼ nð1Þ2 ⌣nð2Þ1 þ nð1Þ1 ⌣nð2Þ2 . However, this state is trivi-
alized by ω2⌣1ω2 ∈ Γ3 [see Eq. (19)], which is related to
the boundary 2D ASPT state with n0 ¼ 2 copies of pþ ip
superconductors.

The relevant cohomology groups of Gb ¼ Zð1Þ
2 × Zð2Þ

2

with Z2 a coefficient are

H0ðZ2 × Z2;Z2Þ ¼ Z2 ¼ h1i; ðE27Þ

H1ðZ2 × Z2;Z2Þ ¼ Z2
2 ¼

D
nð1Þ1 ; nð2Þ1

E
; ðE28Þ

H2ðZ2 × Z2;Z2Þ ¼ Z3
2 ¼

D
nð1Þ2 ; nð2Þ2 ; nð1Þ1 nð2Þ1

E
; ðE29Þ

H3ðZ2 × Z2;Z2Þ ¼ Z4
2 ¼

D
nð1Þ3 ; nð1Þ2 nð2Þ1 ; nð1Þ1 nð2Þ2 ; nð2Þ3

E
;

ðE30Þ

H4ðZ2 × Z2;Z2Þ
¼ Z5

2 ¼
D
nð1Þ4 ; nð1Þ3 nð2Þ1 ; nð1Þ2 nð2Þ2 ; nð1Þ1 nð2Þ3 ; nð2Þ4

E
: ðE31Þ

And the cohomology groups with Uð1Þ a coefficient are

H1½Z2 × Z2; Uð1Þ� ¼ Z2
2; ðE32Þ

H2½Z2 × Z2; Uð1Þ� ¼ Z2; ðE33Þ

H3½Z2 × Z2; Uð1Þ� ¼ Z3
2; ðE34Þ

H4½Z2 × Z2; Uð1Þ� ¼ Z2
2; ðE35Þ

H5½Z2 × Z2; Uð1Þ� ¼ Z4
2: ðE36Þ

a. 0D

The classification data are ðn0;ν1Þ∈H0ðGb;Z2Þ×
H1½Gb;Uð1Þ�¼Z2×Z2

2. From the equation dν1 ¼
ð−1Þω2n0 , we see that n0 ¼ 1 is obstructed, as ½ð−1Þω2 � ¼
½ð−1Þnð1Þ1

nð2Þ
1 � is the nontrivial cocycle inH2½Z2×Z2;Uð1Þ�¼

Z2. So the classification is Z2
2, which is the same as BSPT

phases.
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b. 1D

The classification data are ðn0; n1; ν2Þ ∈ H0ðGb;Z2Þ×
H1ðGb;Z2Þ ×H2½Gb;Uð1Þ� ¼ Z2 × Z2

2 × Z2. The equa-
tion dn1 ¼ ω2⌣n0 implies that n0 ¼ 1 is obstructed.

From the equation dν2 ¼ ð−1Þω2n1 , we see that n1 ¼ nðiÞ1
is obstructed: ½ð−1Þω2n

ðiÞ
1 � ¼ ½ð−1ÞnðiÞ1 nðiÞ

2 � ∉ B3½Gb;Uð1Þ�.
The nontrivial BSPT ν2 ¼ ð−1Þnð1Þ1

nð2Þ
1 is trivialized by 0D

obstruction function ð−1Þω2n0 with n0 ¼ 1. Therefore, there
is only one trivial FSPT phase in 1D.

c. 2D

The classification data are ðn0; n1; n2; ν3Þ ∈
H0ðGb;ZÞ×H1ðGb;Z2Þ×H2ðGb;Z2Þ×H3½Gb;Uð1Þ� ¼
Z×Z2

2 ×Z3
2 ×Z3

2. The n0 ¼ 1 (pþ ip superconductor)
state is obstructed by the equation dn1 ¼ ω2⌣n0. And all
the n1 are obstructed by the equation dn2 ¼ ω2⌣n1. The
data n2 ¼ ω2 are trivialized by 1DASPT state ω2⌣n0 with

n0 ¼ 1. So we need only to consider n2 ∈ Z2
2 ¼ hnð1Þ2 ; nð2Þ2 i.

Since ½ð−1Þω2n2þn2n2 � ¼ ½ð−1Þnð1Þ1
nð2Þ
1
nðiÞ
2 � if n2 ¼ nðiÞ2 , we

conclude that all n2 are obstructed or trivialized. For the
BSPT state ν3, two of the three root states are trivialized by

1D ASPT ð−1Þω2n
ðiÞ
1 . Therefore, the 2D FSPT phases

(invertible phases excluded) are classified by Z2, which
is generated by one of the BSPT root phases.

d. 3D

The classification data are ðn1;n2;n3;ν4Þ∈H1ðGb;ZÞ×
H2ðGb;Z2Þ×H3ðGb;Z2Þ×H4½Gb;Uð1Þ�¼Z1×Z3

2×Z4
2×

Z2
2. The data n2 ¼ ω2 are trivialized by ω2⌣n0 with

n0 ¼ 1. And all other n2 are obstructed by the equation
dn3 ¼ ω2n2 þ n2n2. For the n3 data, the 1D ASPT

with ω2n
ðiÞ
1 trivializes the n3 data from Z4

2 to Z2
2,

which can be chosen to be hnð1Þ2 nð2Þ1 ; nð1Þ1 nð2Þ2 i. For the
two root n3, one can show that ½dν4� ¼ ½ð−1Þω2n3þn3n3 � ¼
½ð−1Þnð1Þ3

nð2Þ
2
þnð1Þ

2
nð2Þ
3 �. So the only obstruction-free and trivi-

alization-free n3 is n3 ¼ nð1Þ2 nð2Þ1 þ nð1Þ1 nð2Þ2 . However, from
the n0 ¼ 2 trivialization Eq. (245), this n3 is the same as

and trivialized by ω2⌣1ω2 ¼ Sq1ðω2Þ ¼ Sq1½nð1Þ1 nð2Þ1 �. For
the BSPT ν4, they are all trivialized by the 2D ASPT with
ð−1Þω2n2þn2n2 . In conclusion, there is only one 3D FSPT
trivial phase.
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