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The classification and lattice model construction of symmetry-protected topological (SPT) phases in
interacting fermion systems are very interesting but challenging. In this paper, we give a systematic fixed-
point wave function construction of fermionic SPT (FSPT) states for generic fermionic symmetry group

Gy = Z-’; X, Gp Which is a central extension of bosonic symmetry group G;, (may contain time-reversal

symmetry) by the fermion parity symmetry group Zé = {1, P;}. Our construction is based on the concept

of an equivalence class of finite-depth fermionic symmetric local unitary transformations and decorating
symmetry domain wall picture, subjected to certain obstructions. We also discuss the systematical
construction and classification of boundary anomalous SPT states which leads to a trivialization of the
corresponding bulk FSPT states. Thus, we conjecture that the obstruction-free and trivialization-free
constructions naturally lead to a classification of FSPT phases. Each fixed-point wave function admits an
exactly solvable commuting-projector Hamiltonian. We believe that our classification scheme can be
generalized to point and space group symmetry as well as continuum Lie group symmetry.

DOI: 10.1103/PhysRevX.10.031055

I. INTRODUCTION
A. The goal of this paper

Topological phases of quantum matter have become a
fascinating subject in the past three decades. The concept
of long-range entanglement and an equivalence class of
finite-depth local unitary (LU) transformation [1] provides
us a paradigm toward classifying and systematically
constructing these intriguing quantum states. It was
realized that the patterns of long-range entanglement
are the essential data to characterize various topological
phases of quantum matter.

In recent years, the research on the interplay between
topology and symmetry also has achieved a lot of fruitful
results. The concept of an equivalence class of finite-depth
symmetric LU (SLU) transformations suggests that, in the
presence of global symmetry, even short-range entangled
(SRE) states still can belong to many different phases if
they do not break any symmetry of the system. (It is well
known that the traditional Landau symmetry-breaking
states are characterized by different broken symmetries.)
Thus, these new SRE states of quantum matter are named
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as symmetry-protected topological (SPT) phases [2—4].
Topological insulators [5,6] are the simplest examples of
SPT phases, which are protected by time-reversal and
charge-conservation symmetries.

By definition, all SPT phases can be adiabatically con-
nected to a trivial disorder phase (e.g., a product state or an
atomic insulator) in the absence of global symmetry. In
Ref. [2], it is first pointed out that the well-known spin-1
Haldane chain [7] is actually an SPT phase which can be
adiabatically connected to a trivial disorder phase in the
absence of any symmetry. Thus, SPT phases can always be
constructed by applying LU transformations onto a trivial
product state. Such a special property makes it possible to
systematically construct and classify SPT phases for inter-
acting systems. For example, Refs. [3,4] introduce a sys-
tematic way of constructing fixed-point partition functions
and exactly solvable lattice models for interacting bosonic
systems using group cohomology theory, and it has been
believed that such a construction is fairly complete for
bosonic SPT (BSPT) phases protected by unitary symmetry
up to 3D. Physically, the corresponding fixed-point ground-
state wave functions of such a construction can be regarded
as a superposition of fluctuation symmetry domain walls.
Later, it was pointed out that, by further decorating the Eg
state onto the symmetry domain wall [8], the fluctuation
symmetry domain wall picture can actually describe all
BSPT phases, which are believed to be classified by
cobordism theory [9,10]. In Sec. II, we review how to
use the equivalence class of finite-depth SLU transformation
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approach and fluctuation symmetry domain wall picture to
classify and construct all BSPT phases with unitary sym-
metries up to 3D.

Although the SRE SPT phases seem to be not as
interesting as long-range entangled topological phases
due to the absence of bulk fractionalized excitations, the
concept of “gauging” the global symmetry of SPT phases
establishes a direct mapping from SPT phases to intrinsic
topological phases. In fact, it has been shown that different
BSPT phases protected by a unitary symmetry group G can
be characterized by different types of braiding statistics of
G flux in 2D and different types of the so-called three-loop
braiding statistics of flux lines in 3D [11-22]. Very recently,
it has been further conjectured that all topological phases in
3D interacting systems can actually be realized by “gaug-
ing” certain SPT phases [23,24].

Moreover, the classification of SPT phases in interacting
systems turns out to be a one-to-one correspondence with
the classification of global anomalies on the boundary [25].
For example, anomalous surface topological order is
proposed as another very powerful way to identify and
characterize different 3D SPT phases in interacting systems
[26-37]. In high-energy physics, it is well known that
global anomalies can be characterized and classified by
cobordism (spin cobordism) for interacting boson (fer-
mion) systems; thus, it is not a surprise that the classi-
fication of SPT phases is closely related to cobordism (spin
cobordism) theory [10,20,21].

Despite the fact that great success has been made on the
construction and classification of SPT phases in interacting
boson systems and free-fermion systems, understanding of
SPT phases in interacting fermion systems is still very
limited, especially on the construction of microscopic
models. Previously, a lot of effort has been made on the
reduction of the free-fermion classifications [38—41] under
the effect of interactions [42-49]. On the other hand,
stacking BSPT states onto free-fermion SPT states is
another obvious way to generate some new SPT phases
[34,50]. Apparently, these two approaches miss those
fermionic SPT (FSPT) phases that can be realized neither
in free-fermion systems nor in interacting bosonic systems
[13,51]. Moreover, it has been further shown that certain
BSPT phases become “trivial” (adiabatically connected to a
product state) [34,52] when embedded into interacting
fermion systems. Therefore, a systematical understanding
for the classification and construction of SPT phases in
interacting fermion systems is very desired.

Very recently, based on the concept of an equivalence
class of finite-depth fermionic SLU (FSLU) transformation
and decorated symmetry domain wall picture, a break-
through has been made on the full construction and

classification of FSPT states with a total symmetry G, =
Gy, % Z{ (where G, is the bosonic unitary symmetry and

Z-; is the fermion parity conservation symmetry) [53].
The fixed-point wave functions generated by FSLU

transformations can be realized by exactly solvable lattice
models, and the resulting classification results all agree
with previous studies in 1D and 2D using other methods
[43,52,54-57]. Most surprisingly, such a completely differ-
ent physical approach precisely matches the potential
global anomaly for interacting fermion systems classified
by spin cobordism theory [10,58-64].

It turns out that the mathematical objects that classify 1D
FSPT phases with a total symmetry G, = G, X Z{ can be
summarized as two cohomology groups of the symmetry
group G,: H'(G,,Z,) and H?[G,,U(1)], which corre-
spond to the complex fermion decoration on G, symmetry
domain walls and classification of 1D BSPT phases.

The mathematical objects that classify 2D FSPT phases
with a total symmetry G, = G;, X ZJ; are slightly compli-
cated and can be summarized as three cohomology groups of
the symmetry group G, [55,59]: H'(G,,, Z,), BH*(G,,, Z,),
and H3[G,, U(1)]. H' (G, Z,) corresponds to the Majorana
chain decoration on G, symmetry domain walls. Naively,
one may expect that the complex fermion decorations on the
intersection point of G, symmetry domain walls should be
described by the data H*(G,,Z,). However, it turns out
that such a decoration scheme suffers from obstructions, and
only the subgroup BH?(G,,, Z,) classifies valid and inequi-
valent 2D FSPT phases. More precisely, BH*(G,, Z,) is
defined by n, € H*(G,,Z,) that satisfy Sq*(n,) =0
in H*[G,, U(1)], where Sq* is the Steenrod square oper-
ation, Sq’>:HY(G,,Z,) - H"?(G,,Z,) [65]. Finally,
H3[G,, U(1)] is the well-known classification of BSPT
phases.

Similarly, the mathematical objects that classify 3D
FSPT phases with a total symmetry G, = G;, X Z; can
also be summarized as three cohomology groups of the
symmetry group G, [53,62]: BH?*(G,,, Z,), BH*(G,,Z,),
and Hj,[Gy, U(1)]. As a subgroup of H*(G,,Z,),
BH?(G,,. Z,) corresponds to the Majorana chain decora-
tion on the intersection lines of G, symmetry domain walls
subject to much more subtle and complicated objections
related to discrete spin structure. Again, as a subgroup of
H3(Gy,Z,), BH*(G,,Z,) corresponds to the complex
fermion decoration on the intersection points of G,
symmetry domain walls. And it is formed by elements n; €
H3(Gy, Z,) that satisfy Sq*(n3) =0 in H*[G,, U(1)].
Finally, H}.4[G,, U(1)] = H*[G,, U(1)]/T* corresponds
to stable BSPT phases when embedded into interacting
fermion systems. We note that I'* is a normal subgroup of
H*[G,.U(1)] generated by (=)5¢'(™), where n, e
H*(G,.Z,) and (=)%(") are viewed as elements of
H*[G,, U(1)]. Physically, I'* corresponds to those trivial-
ized BSPT phases when embedded into interacting fermion
systems.

In this paper, we aim to generalize the above construc-
tions and classifications of FSPT phases to generic
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fermionic symmetry group G, = ZJZC X, G, Which is a
central extension of bosonic symmetry group G, (may
contain time-reversal symmetry) by the fermion parity
symmetry group Z’; = {1.P;}. We show that the equiv-
alence class of finite-depth FSLU transformation and
decorated symmetry domain wall picture still applies for
generic cases, subjected to much more complicated
obstruction conditions. Moreover, we also clarify the
physical meaning of obstruction by introducing the notion
of anomalous SPT (ASPT) states [66], that is, a new kind of
SPT state that can be realized only on the boundary of
certain SPT states in one dimension higher. Meanwhile,
this notion also implies that the corresponding bulk
SPT states are actually trivialized. Finally, we show that,
if G, is time-reversal symmetry, an additional layer of
p + ip topological superconducting state decoration on
the symmetry domain wall leads to new FSPT states,
which is the analogy of decorating the Ey state onto the
symmetry domain wall for BSPT phases with time-reversal
symmetry [8].

B. Some generalities of fermionic symmetry groups

For a fermionic system with total symmetry group Gy,
there is always a subgroup: the fermion parity symmetry
group 7} = {1,P; = (-1)F}, where F is the total
fermion number operator. The subgroup ijc is in the center
of Gy, because all physical symmetries should not change
the fermion parity of the state, i.e., commute with Pj.

Therefore, we can construct a quotient group G, = G/ Z’; ,
which we call the bosonic symmetry group.

Conversely, for a given bosonic symmetry group Gy,
there are many different fermionic symmetry groups Gy,

which is the central extension of G, by Z;. We have the
following short exact sequence:

1 -7, - G- G, — 1. (1)

Different extensions G, are specified by 2-cocycles
w, € H*(Gy, Z, = {0, 1}). This result is the reason why
we denote Gy as Z{ X4, Gp,. The group element g; of G
has the form g; = (P}, g,) € Z} x G,,, with n(g) = 0, 1.
We may also simply denote it as g; = P;'.@ gp. And the
multiplication rule in Gy is given by

n n(h
g5 hy =P} g) - (P )

- (P;(g)+"(h)+w2<gb;hb)’ ghhb)v (2)

where we have P;(g)”(h)mzwb’hb) € 7, and g,h, € G,.

The associativity condition of g- h - k (g, h, k € G,) gives
rise to the cocycle equation for w,:

(dwy)(g, h, k) = wy(h, k) + @, (gh, k) + @,(g, hk)
+ wy(g.h) =0 (mod 2). (3)

We omit the subscript of g, and use merely g to denote the
group element of G, henceforth. One can also show that
adding coboundaries to @, gives rise to isomorphic Gy.
Therefore, , is an element in H*(G,, Z,) and classifies
the central extension of G, by Z‘S . Note that there is another
constraint for w, as w,(e,g) = wr(g,¢) =0 (e is the
identity element of Gp).

Another ingredient of the symmetry group is associated
with time-reversal symmetry which is antiunitary. We can
use a function s; with

0, g is unitary,

0 = { )

1, g is antiunitary

to indicate whether g € G, is antiunitary or not. The
function s; is a group homomorphism from G, to Z,
because of the property

(dsy)(g:h)=s,(h)+s,(gh) +s1(9)=0 (mod2). (5)

So s, can also be viewed as a 1-cocycle in H'(G,, Z,).

Let us consider some examples. The superconductor
with time-reversal symmetry 7% = P; (T? =—1 when
acting on single-fermion states) has bosonic symmetry
group G, = Z1 = {e, T} and fermionic symmetry group
Gy = sz = Z{ Xy, Z%. In terms of our language, the
2-cocycle w, and 1-cocycle s; have nonzero values
@,(T,T) =1 and s,(T) = 1, respectively. They are non-
trivial cocycles in H*(Z1,7,) =7, and H'(Z%, Z,) = Z,,
respectively. By choosing different @, and s;, we have
three other fermionic symmetry groups Gy: ZJZC X Z,
(trivial @, and trivial s,), Zf: = Z{ X, Z> (nontrivial w,
and trivial s), and ijc x Z¥ (trivial w, and nontrivial s, ).
We calculate the classifications of FSPT phases with these
four fermionic symmetry groups in Appendix E 2.

C. Summary of main results
1. Summary of data and equations

As discussed above, to specify the total symmetry
group G, of a fermionic system, we have a I-cocycle
s; € H'(Gy, Z,) which is related to time-reversal sym-
metry and a 2-cocycle w, € H*(G,,, Z,) which tells us how
G, is extended by Z{. They satisfy the (mod 2) cocycle
equations:

ds; =0, (6)

dw, = 0. (7)
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TABLE L

Layers of classification data. The cochains n, € C*(G,,Z,), n,_, € C*'(G,.Z,), and n,_, €

C%2(G,,, Zy) describe the decorations of 0D complex fermions, 1D Kitaev chains, and 2D p + ip superconductors
(SCs) in the d-spatial dimension model, respectively. And v, € C¥1[G,, U(1);] is the bosonic U(1) phase factor
in the wave function, which is related to the group cohomology classification of BSPT phases in d-spatial
dimension. There is also n, data in each dimension, if we want to classify fermionic invertible topological orders.
We omit these n,, states in this paper, for they do not need any G, symmetry protection. But they are important in the

trivialization group which will be discussed below.

Data\dim 1D 2D 3D

C'(Gy,) n; Complex fermion ny Kitaev chain n p + ip superconductor
C*(Gy,) 173 Phase factor n, Complex fermion ny Kitaev chain
C3(Gy, ) V3 Phase factor ns Complex fermion
C*(Gp.) vy Phase factor

Given the input information of the total symmetry group
Gy (ie., G, with s; and ®,), we summarize the classi-
fication data, symmetry conditions, consistency equations,
and extra coboundary (states trivialized by ASPT state in
one lower dimensions) for FSPT states in different physical
dimensions in Eqs. (8)-(19) (see also Table I for the
classification data and Table II for the physical meanings
of the consistency equations).

We note that the cochains n, € C*(G,,Z,), ny_, €
C* (G, Z,), and ny_, € C42(G,, Zy) describe the dec-
orations of 0D complex fermions, 1D Kitaev chains, and
2D p + ip superconductors (SCs) in the d-spatial dimen-
sion model, respectively. In 1D, it is possible only to
decorate a complex fermion onto the G, symmetry domain
wall, and the constraint dn; = 0 is nothing but the fermion
parity conservation requirement for a valid FSLU trans-
formation. In 2D, it is possible to decorate both a Majorana
chain onto the G, symmetry domain wall and a complex
fermion onto the intersection point of G, symmetry domain
walls. In order to construct FSPT states, we must decorate a
closed Majorana chain onto the G, symmetry domain wall,
and this constraint implies dn; = 0. Again, fermion parity
conservation of FSLU transformation requires that
dn, = (w, + s;~—n;)—n;. In 3D, it is even possible to
decorate a 2D p +ip SC state onto the G, symmetry
domain wall if G, contains antiunitary symmetry. However,
in order to construct such FSPT states, we must require
that there is no chiral Majorana mode on the intersection
lines of G, symmetry domain walls. Furthermore, dn, =
(@, 4+ s;~—~ny)—n, corresponds to the absence of a free

TABLE II.

Majorana fermion on the intersection points of G, sym-
metry domain walls, and dn; = (@, + ny)—n, + 51—
(ny—1n,) again corresponds to fermion parity conserva-
tion of FSLU transformation. Finally, the bosonic U(1)-
valued phase factor v, € C[G,, U(1);] must satisfy
the so-called twisted cocycle condition dv; = O, ;, which
is generated by fixed-point conditions of FSPT wave
functions. We note that the bosonic layer data v,, ; without
a superscript always mean the inhomogeneous cochain in
the twisted cocycle equation. The homogeneous cochain is
obtained by a symmetry action and may have additional
sign factors. There is also a symmetry action on the first
term of the coboundary definition in dv,, ;. Because time-
reversal symmetry has nontrivial actions on both Z; and
U(1);, there is an exponent 1 — 2s,(gy) = %1 for the first
term of dv,, .

Based on the above decoration construction, we can
obtain the FSPT classifications by solving the consistency
equations layer by layer as shown in Table II. The solutions
of these equations can be used to construct FSPT states.
And the final classifications are obtained from these data by
quotient some subgroups. We note that B’ are the coboun-
dary subgroups defined for the corresponding cochain
groups C' in the usual sense. The trivialization subgroups
I' of the classification data correspond to the states that are
trivialized by boundary ASPT states. In d spatial dimen-
sions, the U(1) factor v4,; in ¢! corresponds to a BSPT
state trivialized by fermions [52]. The complex fermion
decoration data n, in the next layer I'? are trivialized by
boundary ASPT states with Kitaev chains [66]. And the

Consistency equations and their physical meanings for each layers. The physical meanings of the twisted equations (of the

form dn; = O;,, or dv; = O, ) are given in the last column of the table. The explicit expressions of O4[n,] and Os[n;] are given in

Egs. (136) and (220), respectively.

Layers\dim 1D 2D

3D Physical meanings

p+ip SC

Kitaev chain

Complex fermion dn; =0
Phase factor dvy, = (=)™ duy = Oy4ln,]

dn1=0

d}’ll = 0

dny = (@ + s1—ny)—n,
dny, = (@, + s;—ny)—n; dnz = (w; + ny)—n, + s;—(n,—n,) Fermion parity conservation
dv, = Os[n;]

No chiral Majorana mode
No free Majorana fermion

Twisted cocycle equation
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Kitaev chain decoration data n,_, in I'*"! are trivialized
by boundary ASPT states with 2D p+ip chiral
superconductors.

A subtle trivialization subgroup is I'*, which trivializes
some 3D BSPT states in H*[G,, U(1)7] [see Eq. (19)].
Depending on whether the corresponding 2D ASPT state
has p + ip superconductor components or not, I'* can be
divided into two parts: [* =T, _, UT, ;. The first one
Fﬁozo is related to the ASPT state with boundary Majorana
chain n; and complex fermion 7, decorations [see the last
line of Eq. (19) for the expression]. In this subgroup, the 2D
ASPT state satisfies dn, = Os[n;] in Eq. (14), and the 3D
BSPT with 4-cocycle Oy4[n,] in Eq. (136) becomes a trivial
3D FSPT state. The second part Fflo#o is related to ny # 0
layers of p 4 ip superconductors as 2D ASPT states. By
gauging fermion parity, one can derive a complicated
expression for Fﬁo#o [67]. To the best of our knowledge,
so far there is no known example of G, corresponding to a
nontrivial solution of Ffm;&o- Therefore, it is possible that
Fﬁ(ﬁﬁo is always trivial for realistic physical systems, and we
study the full derivation of T, , elsewhere.

Our FSPT classification results in different spatial
dimensions are summarized below.

n1(990. 991) = n1(go. 91) = n1(g5" o).

1D: (I’ll, 1/2).—

ng (S HI(GI,,ZQ),
vy € C*[Gy. U(1)7)/B?[G,. U(1)]/T2. (8)

n1(990- 991) = n1(90. 91) = m (95" 1),

1/2(9, ga, gab) = gUZ(a’ b)
— by(a, b)1=20) . (—1)@—m)lgab)

©)
dn; =0,
dvy = (=1)»—m, (10)
2 ={(-1)" € H?[G,, U(1)]}. (11)

2D: (I’l], n2,y3).—

ny € H'(Gy, Z,),
ny € Cz(Gb’ ZZ)/BZ<G1)’ ZZ)/I—Q?
v3 € C°[G,, U(1)7]/B[G,, U(1)7)/T?.  (12)

n5(990. 991+ 992) = n2(go- 91. 92) = n2(95"91. 97" 9).

v3(g, ga, gab, gabc) = 3(a, b, ¢) = v3(a, b, c)' =219 . OF™ (g, ga, gab, gabc)  [see Eq.(129)]. (13)
d}’ll = O,
dn, = wy~n; + s;~n;—ny,
dvs = O4ln,]  [see Eq.(137)]. (14)
I = {0, € H*(G), Z,)},
3 ={(-1)""" € H*[G,,U(1)/]|n; € H' (G}, Z;)}. (15)
3D: (ny,ny,n3,14).—
ni € H'(Gy, Zy),
n, € C*(Gy,, Z,)/B*(Gy, Z,) /T2,
ny € C3(Gy, 2,)/B*(Gy,. Z,) /T3,
vy € C*G,, U(1)7]/B* Gy, U(1)7]/T*. (16)
ni(g.ga) = (e, a) = ni(a) = (=1)"9Wn,(a),
n5(990- 991 992) = n2(9o- 91- 92) = 1295 91, 97" 92).
n3(990- 991- 992 993) = n3(90- 91 92. 93) = n3(95" 91, 97" 92. 95 93).
v4(g, ga, gab, gabc, gabed) = %4(a, b, ¢, d) = vy(a, b, c,d)' =219 - O™ (g, ga, gab, gabc, gabed)  [see Eq.(212)].

(17)
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dl’ll = 0,

dl’l2 = Wr~—n; + Si~n;~—ny,

dny = wy~ny + ny~ny + s~ (ny~1n,),

dvy = Os|n;]
I'2 = {wy—ng € H(Gy,. Z5)|ng € H*(Gy, Z7)},

[see Eq.(221)]. (18)

F3 = {0)2an + s ~n;—n; + (0)2\-/1602) Ln0/2J S H3(Gb,Zz)|l’l1 (S Hl(Gh, Zz),l’lo S HO(Gb,ZT)},
I = {O4lny]  [see Eq.(137)] € H*(G,, U(1)7)|n, satistying Eq.(120) for some n; € H'(G,, Z,)} U T, 4. (19)

2. Summary of classification examples

Using the above data, we calculate the classifications for
FSPT phases with several simple symmetry groups. They
are summarized in Table III. Some of the derivations are
given in Appendix E. In particular, we calculate the
classifications for 2D FSPT phases with arbitrary unitary
finite Abelian group G, in Appendix E 1. Our results are
exactly the same as that in Ref. [13], which uses a totally
different approach by investigating the braiding statistics of

TABLE III.

the gauge flux. The calculations for 3D FSPT phases with
arbitrary unitary finite Abelian group G, are given in
Ref. [68]. The results are also consistent with 3D loop
braiding statistics approaches. We calculate the classifica-
tions of FSPT phases for the four fermionic symmetry
groups with G, = Z, in Appendix E2. They are also
consistent with previously known results. As an example of
non-Abelian G, we calculate the FSPT phases with

quaternion group symmetry G, = Q{; in Appendix E 3.

Classifications of FSPT phases with some simple fermionic symmetry group G in different spatial

dimensions. Invertible topological orders protected by Z{ only are not included in this table.

G\ dim 1 2 3
Z-’ZC x Z, Z, Zg Z,
75 X Zoys Z, Lok Z
Z{ X 2o Z, { Zy X Z,, keven Z,
Zgy, k odd
7l x 7, x 7, z 7ix 7, 7
7 x2,x 2, z3 7 x 73 Z,x 7,
7 x 7, x 7 z Z6 X Zs X 73 Zy X 7,
7 x7,%x 2, 73 x 27, Zix7,x73 7: x 7,
7 x 7, x 74 73 x 7, ZigxZyx Zy X 73 Zy X Zy X Zy
7 x 7, x 7, x 7, 7z Zix 73 x 7, 78
7 x 7, x 7, x 2, z3 Zix Zyx 75 Zx 75
7 x 7, x 7, x 2, 73 Z3xZ,x 78 73 x 7§
zj (k=2">2) Zy Zy Z
7l x 7, 7 Z, Z,
7l x 2z, z, Zyx 7, z,
Z-é X Z, Z, Zyx 2 Zy
Zx2,x 2, z Zx 23 z
Zhx 7, x 7,4 Z4yx 75 ZyxZyx 73 Z,x 75
Zix2,x2, z; 7% x 73 x 73 72 x 74
Zék x 7% Zy Z, Z,
zy =7} x,, 7% z, z, Zyg
Q{; = sz X, (23 X Z) Z, Z, Z,
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D. Organization of the paper

The rest of the paper is organized as follows. In Sec. II,
we review the key concept of SLU transformations. Using
this approach, we show the classifications of BSPT phases
in various dimensions. In Sec. III, we summarize the
procedures of constructing FSPT states. The definition
of FSLU transformations is given in Sec. III A. All layers of
degrees of freedom and their symmetry transformation
rules are summarized in Sec. III B. In Sec. III C, we discuss
briefly the two essential requirements of the FSLU trans-
formations: the coherence equations and the symmetry
conditions. Using the outlined procedure, the details of the
classifications of 1D, 2D, and 3D FSPT phases are given in
Secs. IV, V, and VI, respectively. In each dimension, we
first give the symmetric decoration procedures. Then, the F
move (FSLU transformation) and its coherence equation
are given explicitly. As the final step in classifying FSPT
phases in each dimension, we discuss some new coboun-
daries associated with ASPT states in one lower dimension.
We summarize this work in Sec. VIL

In Appendix A, we show the classification of the
simplest OD FSPT phases. In Appendix B, we list all
possible 2D and 3D moves that admit a branching structure.
In Appendix C, the (local) Kasteleyn orientations for 2D
and 3D lattices are discussed briefly. In Appendix D, we
discuss the Bockstein homomorphism mapping a Z,-
valued cocycle to a Zz-valued cocycle. It is useful in
checking whether the obstruction function (—1)/*, where
fris a Z,-valued cocycle, is a U(1),-valued coboundary or
not. The detail calculations of FSPT phases for some simple
groups are given in Appendix E. Some of the results are
already summarized in Table III.

II. SLU TRANSFORMATION AND
CLASSIFICATION OF BSPT PHASES

A. SLU transformation and BSPT phases

From the definition of SPT states, it is easy to see that (in
the absence of global symmetry)

|SPT) = UY_|trivial). (20)

Namely, an SPT state can be connected to a trivial state

(e.g., a product state) via LU transformation (in the absence
|

94

of global symmetry). Clearly, Eq. (20) implies that the
support space [69] of any SPT state in a region must be one
dimensional. This result is simply because a trivial state
(e.g., a product state) has a one-dimensional support space,
and any SPT state will become a product state via a proper
local basis change (induced by a LU transformation).

In the presence of global symmetry, we can further
introduce the notion of SLU transformations classifying
SPT phases in interacting bosonic systems. By SLU trans-
formation, we mean the corresponding piecewise LU oper-
ator is invariant under symmetry G. More precisely, we have
Uput = [Tye ™l =TT, Ulgio, g, g, ) and
U(99i0- 992+ 993+ ---) = U(Gio- Gi1+ Gia» ) for any g € G.
(We note that here we choose the group element basis
Jio» 9i1» 92 - - - tO TEpresent bosonic symmetric unitary oper-
ator acting on a region labeled by i.) However, we need to
enforce the SLU transformations to be one dimensional
(when acting on the support space p, for any region A),
and we call them invertible SLU transformations. Thus,
we claim that SPT phases in interacting bosonic systems can
be classified by an equivalence class of invertible SLU
transformations.

SPT phases are also referred to as invertible (nonchiral)
topological phases. It turns out that the novel concept of
invertible SLU transformation even allows us to construct
very general fixed-point SPT states. All of these fixed-point
wave functions admit exactly solvable parent Hamiltonians
consisting of commuting projectors on an arbitrary tri-
angulation with an arbitrary branching structure.

B. Fixed-point wave function and classification
for BSPT phases in 1D

As a warm-up, let us begin with fixed-point wave
function in 1D and use SLU transformation to derive the
well-known classification results of 1D BSPT phases.
Without the loss of generality, here we assume that every
(locally ordered) vertex i of the 1D lattice has bosonic
degrees of freedom labeled by a group element g; € G.

Our 1D fixed-point state is a superposition of those basis
states with all possible 1D graph with a branching structure
(denoted by the arrow from left to right):

W) = Z \I,(go g1 92 93

all conf.

In the following, we derive the rules of wave function
renormalization generated by SLU transformations for the
above wave function and show how to construct all BSPT
states in 1D. To obtain a fixed-point wave function, we
need to understand the changes of the wave function under
renormalization. In 1D, renormalization can be understood as

gs) {go g1 92 93 91 G5 > (21)

I
removing some degrees of freedom by reducing the
number of vertices. The basic renormalization process is
known as the (2-1) Pachner move of triangulation of 1D
manifold.

To be more precise, the (2-1) move is an SLU trans-
formation between two different 1D graphs:
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(90, 91,92) ¥ (go gz) :

(22)

i 1
éz) = ‘G|71/2V2

We note that the |G| is the order of the group G, and we
introduce the normalization factor 1/|G|'/? in the above
expression due to the change of vertex number. Here,
v>(90, 91,92) is a U(1)-valued function with vari-
ables ¢g; € G. Since we are constructing a symmetric
state, v, should be symmetric under the action of G

with  25(990. 991, 992) = v2(90. 91.92) [we note that
v2(990- 991+ 992) = ¥3(9o- 91 92) if g is antiunitary].

Since we are constructing a fixed-point wave function, it
should be invariant under renormalization. For instance, we can
use two different sequences of the above (2-1) moves Eq. (22) to
connect a fixed initial state and a fixed final state. Different
approaches should give rise to the same wave function. These
constraints give us the consistent equations for v,.

The simplest example is the following two paths between
two fixed states:

v (go 8 g gz)
1
= Ww(ghgz,gs) v (go g g;)
1
= @Vz(gugz,93)1/2(90791793) v (go gz) ;
(23)
U <go & &> gz)
1
= WV2(90a91792) v (go 2 g;)
1
= @1/2(90,91792)V2(90»92»93) Y (go g;) .
(24)

The constraint is that the products of F moves for the above
two processes equal each other:

1/2(90791793)1/2(91,92,93) = 1/2(90192,93)1/2(90191,92)-
(25)

The above equation implies

(90791793)
(90,91,92)

_ V2(91792’93)V2
’/2(907 92, 93)1/2

dvy(90. 91 92- 93) =1, (26)

which is exactly the same as the cocycle equation of
group cohomology theory, and it means v, should be a
U(1),-valued 2-cocycle.

Using an SLU transformation, we can further redefine
the basis state |{g;}) as

{9 = Uy {ai})

= [Im9)llad). @7
(ij)

In the new basis, one finds that the phase factor in Eq. (22)
becomes

#i(91 92)11 (90, 91)
/41(90,92) ' (28)

(90 91, 92) = v2(90. 91 92)
Since our gapped phases are defined by SLU transforma-
tions, v, and v, belong to the same phase. In general, the
elements v, in the same group cohomology class in
H?[G,U(1)y] correspond to the same 1D BSPT phase.

SLU transformations not only give rise to the local rules
of constructing fixed-point wave functions, but also give
rise to commuting-projector parent Hamiltonian for these
fixed-point wave functions. In 1D, the parent Hamiltonian
can be expressed as H = —) ; H;, where the matrix
element of H; are defined as

v (gl 8i

<\If (gl g gz)

which acts only on the states on site i and its neighboring
sites. However, H; does not alter the states on neighboring
sites of i.

The above amplitude can be computed by SLU trans-
formations by considering the following moves for a three-
site patch:

v (gl 8i gz)

1
= |G|1/2 91791792 (

1] glagﬂ 2 '
= 1@ Z (gl g

V3 glvgzagQ
(30)
which implies that
1 (91,91 92)
HY (¢, 919:|Hi g1, 019 2ol

(o 9192l FLl61 9192) = (G150 T 0n)
o 1 Uz(gl7gl’gl) (31)

|G‘y2(gt’gl’g2)

where we use the 2-cocycle condition of v, in the last step.
Clearly, H,; is an Hermitian projector that satisfies H; T=H,
and H? = H,. Moreover, the 2-cocycle condition Eq (25)
further guarantees that all H; on different sites commute
with each other. As an operator, we can also just define the
action of H; on site i and its neighboring sites 1,2 as

1) gl’gﬂg)
Hilgi, 9192) =g 1g0)- (32)
I |G|Zy2(gt’gt792) S
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C. Fixed-point wave function and classification for
BSPT phases in 2D

The fixed-point wave functions for BSPT phases in 2D
are similar to the 1D case. We can again use the group
element basis to construct the local Hilbert space on each
vertex of arbitrary triangulation:

g8 g7 96 95 g8 g7 96 95
11 11
|P) = Z U | 9 e 9o _r
all conf.
9o g1 92 g3 90 9 92 g3
(33)

We assume that the triangulation admits a branching
structure that can be labeled by a set of local arrows on all
links (edges) with no oriented loop for any triangle.
Mathematically, the branching structure can be regarded
as a discrete version of a spin® structure and can be
consistently defined on arbitrary triangulation of orientable
manifolds. The basic renormalization process is known as
the (2-2) and (2-0)/(0-2) Pachner move of triangulation
of 2D manifold. Moreover, according to the definition of
BSPT phases, we also require that the support space of
SLU transformations be one dimensional, such that it can
adiabatically connect to a product state in the absence of
global symmetry. Below, we discuss physically consistent
conditions for those SLU transformations generating fixed-
point wave functions.

An example of the (2-2) move [now we call it
the standard (2-2) move, which is the analogy of the F
move in a unitary fusion category theory] is presented as
follows:

83 &

gz gZ
)\ = V3(90,91,92793)‘I'
2 &

&o 8o
(34)

Here, v3(g0, 91, 92, 93) is a U(1)-valued 3-cochain that is

symmetric under g action v3(g99, 991> 992, 993) = v3(go»
91, 92, 93) lagain, v3(990. 991. 992. 993) = V3(90- 91 92. 93)
if g is antiunitary].

Apart from the (2-2) move, there is another (2-0)
move that can change the total number of vertices for
triangulations:

S
o

(35)

8o
8o

We also add a normalization factor |G|~'/? in front of the
(2-0) move operator, for the vertex number is reduced by
one from the left state to the right state [70].

It is easy to check that the other (2-2) moves with
different branching structure, e.g., the analogy of the H
move, can always be derived by the standard (2-2) move
and (2-0)/(0-2) move. Consider the SLU transformation for
the following patch:

83
)\ gz@zgz
&1
. &3
8o
! g
= Aanev ’ ) B )\ 2
|G|1/2 3(90, 91, 92, 93) L
8o
&
= 13(90, 91,92, 93) ¥ 2, e |,
&

8o

The above deformation scheme implies that

&3 &3
U | 8 = vl &
<Dg‘ v3(g0, 91,92, 93) 2@&
&o 8o

(37)

The remaining (2-2) moves are the analogies of the dual F
move and dual H move; they can also be derived from the
basis (2-2) move and (2-0)/(0-2) move. For example, let us
assume

8 &
&> &
hg = 13(90, 91, 92, 93)¥ . (38)
& &
8o 8o

where 73(go, 91, 92, 93) is another U(1)-valued function
which is different from v3(go, 91, g2, g3). Consider the SLU
transformation on the following patch:
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&3
&> &>
|\
& &
&o
&3
& &>
=13(90, 91, 92, 93)73(90, 91, 92, 93) ¥
& &
&o
&3
_ 1 _ &>
=—=13(90, 91, 92, 93)73(90, 91, 92, 93) ¥
|G‘ &
&o

(39)

On the other hand, by applying the (2-0) move directly, we
have

g &3
g g 1
vl = v (40)
& &) ‘G‘ &
8o 2

The above two reduction schemes should agree, which
implies  that  D3(g0, 91, 92, 93)v3(90 91, 925 93) = 1 or
73(90- 91+ 920 93) = 13" (90> 91 92, G3)-

Moreover, the combination of the (2-2) move and (2-0)
move further allows us to define a new set of renormaliza-
tion moves which reduces the number of vertices, namely,
the (3-1) move. For example, consider the SLU trans-
formation for the following patch:

83
1 2 (41)
- v
|G|/ &
8o

1
= |G|71/2V3(90791’92793)\I/

g g
&£o 84 8o &4
)

v;'(0123 v;'(1234)
&> / \

&>

g 0 g 4 g2 g g 4
g 0 g 4

FIG. 1. The self-consistent equation on a big patch. The
branching structure on this patch is induced by a local direction
from left to right. Mathematically, it is known as the 3-cocycle
equation.

The above deformation scheme implies that

& &

& 1 4
v %2 :WVB(Qoaghg%gs)qj Dz

& 8o
(42)

In Fig. 16 of Appendix B, we list all possible (2-2) and
(3-1) moves that are consistent with a branching structure.

In the above, we discuss the SLU moves. The most
important one is the standard (2-2) move in Eq. (34).
Similar to the 1D case, if we apply the (2-2) move for
bigger patch as seen in Fig. 1, we can derive the consistent
conditions for v5 describing fixed-point wave functions:

(dv3)(9o- 91+ 92- 93- 9a)

_ v3(91:92. 93.94)3(90- 91 93 94)v3(90- 91. 92 93) _ 4

v3(90s 92+ 93+ 94)v3(90s 91+ 92+ 9a)

(43)

Mathematically, this equation is known as the 3-cocycle
equation.

Similar to the 1D case, we can use SLU to redefine the
basis state [{g;}) as

{9} = U l{a}) = [Tmal9i-9j- 90" {ar}),  (44)
(ijk)
where s,y = =1 denotes the orientation of the triangle

(ijk). One finds that the phase factor in Eq. (34) becomes

’/3 (90- 91 92- 93)

ﬂz(gl » 92, 93)#2(907 a1, 93)
H2(90- 92 93)12(90- 91+ 92)

:V3(go,g1,92,93) . (45)
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So the elements v3 in the same group cohomology class in
H3[G,U(1)] correspond to the same 2D BSPT phase.
Again, similar to the 1D case, the 2D SLU trans-
formations can also be used to construct commuting-
projector parent Hamiltonian for these fixed-point wave
functions. The Hamiltonian is a summation of vertex terms

as H=->_, H,. Again, the matrix element H%% can be
evaluated as a product of a sequence of moves that change
the group element of vertex * from g, to another ¢,. For
example, we can consider the following moves for a
triangular lattice:

— 90 95

(46)

We shift the lattice a little, such that the branching structure
is induced by a local direction from left to right. The first
step of the above figures is a combination of three (2-2)
moves. The second step is a (3-1) move that removes the
vertex with group label g, at the center. The third step is a
(1-3) move that creates a vertex with group label ¢ at
the center. And the last step is a combination of three
(2-2) moves that change the lattice to the original shape.
Since our wave function is at the fixed point and u;
satisfy the 3-cocycle condition Eq. (43), the terms H,
for different vertices commute with each other. Clearly, H,
is also a Hermitian projection operator satisfying H, = H.,
and H? = H,. Thus, the constructed Hamiltonian as a
summation of H, terms is a commuting-projector parent
Hamiltonian.

D. Fixed-point wave function and classification
for BSPT phases in 3D

The fixed-point wave functions for BSPT phases in 3D
are similar to the 1D and 2D cases. We can again use
the group element basis to construct the local Hilbert
space on each vertex of arbitrary triangulation. The basic

renormalization process is known as the (2-3) and (2-0)
Pachner move of triangulation of 3D manifold:

g7 Yo g7 Yo
n n
94 ,': 95 94 ,’: g
I e 1 e
[N [y
) = Z v 4 A
L N 1 N
all conf. [ I R
3L/l ---c--=592 LY s
P DA
9o 91 90 g1
(47)

An example of the (2-3) move [now we call it the
standard (2-3) move] is presented as follows:

84 84

RS NN & | = va(90,91,92,93,94) ¥ & h\gz
1 l
&o 0

(48)

Here, v4(99, 91, 92+ 93, 94) is a U(1)-valued 4-cochain that
is symmetric under g action v4(999, 991, 992, 993, §94) =
v4(90» 91> 925 93+ 94) [4(990- 991> 9925 993+ 994) = v4(o» 91+
92, 93, g4) if g is antiunitary].

Again, apart from the (2-3) move, there are two (2-0)
moves consisting with the branching structure that can
change the total number of vertices for triangulations:

&3 &3
L] e
v gz e 2 (49)
& 8
&o 8o
and
3 &3
1
Vg gz = 7|G\1/2‘11 (50)
& 8
8o 8o

Again, we add a normalization factor |G|~!/2 in front of the
(2-0) move operator, for the vertex number is reduced by
one from the left state to the right state [71].

It is easy to check that other (2-3) moves with different
branching structure can always be generated by the
standard (2-3) move and (2-0)/(0-2) move. Moreover, the
combination of the (2-3) move and (2-0) move further
allows us to define a new set of renormalization moves
which reduces the number of vertices, namely, the (4-1)
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move. In Figs. 17 and 18 of Appendix B, we list all possible

(2-3) and (4-1) moves that admit a branching structure.
In the above, we discuss the SLU moves. The
most important one is the standard (2-3) move in
|

v4(91> 92+ 93 9a» 95)Va(9o- 91> 93+ 94- 95)v4 (9o 91+ 92 3+ G5)

Eq. (48). Similar to the 1D and 2D cases, if we apply
the (2-3) move for a bigger patch, we can derive the
consistent conditions for v, describing fixed-point wave
functions:

(dva) (90 91. 92. 93, 94. 95) = =1. (51)
v4(9o- 92+ 93+ 9. 95)v4(9o- 91+ 9. 9a- 95)va(9o- 91+ 93+ 92 9a)
Similar to the 1D and 2D cases, we can use SLU to redefine the basis state [{g;}) as
o) = Ul{ah) = [T #s(0i 9 90 90" Harh), (52)

(ijki)

where sy = £1 denotes the orientation of the tetrahedron. One finds that the phase factor in Eq. (48) becomes

/43(91, 92,93, g4>/43(90’ 91,93, 94)ﬂ3 (90, 91,92, 93)

Vy(90s 915 92+ 93+ 94) = v4(9os 91+ 92+ 93+ 9a)

So the elements v, in the same group cohomology
class in H*[G, U(1);] correspond to the same 3D BSPT
phase.

We can also use the above moves to construct a 3D
commuting-projector parent Hamiltonian. Each term of
the Hamiltonian is a sequence of 3D moves that
changes the label of a vertex from g, to ¢.. All the
terms commute with each other, because the wave
function is at the fixed point and v, satisfy the 4-cocycle
condition Eq. (53).

Finally, we notice that for antiunitary symmetry, e.g.,
time-reversal symmetry, the above construction and clas-
sification scheme is not complete. It has been pointed out
[8] that the decoration of the Eg state on the G-symmetry
domain walls gives rise to new BSPT states beyond group
cohomology classification. Apparently, the data H' (G, Z7)
classify such a decorating pattern and the corresponding
additional BSPT states. Since H'(G, Zy) is trivial for all
unitary symmetry groups G and H'(Z},Z;) = Z, for the
(antiunitary) time-reversal symmetry, we understand why
the beyond group cohomology BSPT phases arise only for
antiunitary symmetry. Thus, we conclude that the two
cohomology groups of the symmetry group G, H' (G, Z7)
and H*[G, U(1);], give rise to a complete classification of
BSPT phases in 3D.

III. FSLU TRANSFORMATION
AND FSPT PHASES

A. Fermionic symmetric local unitary
transformations

In Ref. [72], it is shown that fermionic local unitary
(FLU) transformations can be used to define and classify

(53
#3(90> 92 93+ 94 )43 (9os 91+ 92+ 9a) )

I
intrinsic topological phases for interacting fermion sys-
tems. The Fock space structure and fermion parity con-
servation symmetry of fermion systems can be naturally
encoded into FLU transformations. It is well known that the
finite-time FLU evolution is closely related to fermionic
quantum circuits with finite depth, which is defined
through piecewise FLU operators. A piecewise FLU
operator has the form U ,,,; = []; e=/() = [T; U(i), where
H (i) is a fermionic Hermitian operator and U(i) is the
corresponding fermionic unitary operator defined in Fock
space that preserves fermion parity (e.g., contains an even
number of fermion creation and annihilation operators) and
acts on a region labeled by i. Note that regions labeled by
different i’s are not overlapping. We further require that the
size of each region is less than some finite number /. The
unitary operator U, defined in this way is called a
piecewise fermionic local unitary operator with range /.
A fermion quantum circuit with depth M is given by the
product of M piecewise fermionic local unitary operators:

v =U E,lvz,l U szz,l...U %3 It is believed that any FLU
evolution can be simulated with a constant-depth fermionic
quantum circuit and vice versa. Therefore, the equivalence
relation between gapped states in interacting fermion
systems can be rewritten in terms of constant-depth

fermionic quantum circuits:

Uliielw(0)). (54)

circ

(1)) ~ lw(0)) iff [y (1)) =

Thus, we can use the term FLU transformation to refer to
both FLU evolution and constant-depth fermionic quantum
circuit. From the definition of the FSPT state, it is easy to
see that (in the absence of global symmetry)
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|[FSPT) = UY |trivial). (55)
Namely, an FSPT state can be connected to a trivial state
(e.g., a product state) vial FLU transformation (in the
absence of global symmetry). Similar to the BSPT case,
Eq. (55) implies that the support space of any FSPT in
region A must be one dimensional. This constraint is simply
because a trivial state (e.g., a product state) has a one-
dimensional support space, and any FSPT state becomes a
product state via a proper local basis change (induced by a
FLU transformation).

In the presence of global symmetry, we can further
introduce the notion of invertible FSLU transformations to
define and classify FSPT phases in interacting fermion
systems. By FSLU transformation, we mean that the
corresponding piecewise FLU operator is invariant under
total symmetry group Gy.

B. Layers of degrees of freedom

There are at most four layers of degrees of freedom in
total in our fixed-point wave function of the FSPT state
(up to four spacetime dimensions). The bosonic states
are always at the vertices. And the fermionic degrees
of freedom (complex fermions, Majorana fermions, and
2D p+ip chiral superconductors) are decorated on
the intersecting submanifold of the bosonic state. In
summary, the degrees of freedom of our FSPT states
are [73]

(i) |G,| level bosonic (spin) state |g;) (g; € G,) on each

vertex i;
(ii) |G| species of complex fermions cf; ,
each codimension-0 simplex (ij...k);
(iii) |G| species of Majorana fermions y7; ,, and
Y% xp (0 € Gp), which come from complex fer-

(6 € G,)on

mions af; , = (v, ya+irf 1p)/2, on the two
sides of each codimension-1 simplex (ij...k);

(iv) |G| species of 2D p + ip chiral superconductors
(may have several copies) on the dual surface of
each codimension-2 simplex. The chiral Majorana
modes along the edge of the dual surface are
labeled by Wi kL OF W kR depending on the
chirality.

The above degrees of freedom have different symmetry
transformation rules. The symmetry transformation of
G, on the bosonic state is the same as that in the BSPT
states (g € Gp):

U(g)lg:) = 199:)- (56)

For complex fermions, we choose the symmetry trans-
formations under G, to be

Ulg)ef;, (U(9)" = (=1))ef] . (57)

The symmetry transformation rules of Majorana fer-
mions Yiika /p are induced by the transformation of

complex fermion af; ,:

U(g)ag; U(9)" = (=1)=@af? |, (58)
U(Q)V?j...k,AU(g)-{- = <—1>w2(g’g)}’?ﬁ..k,Av (59)

U(!m’?j...k.BU(Q)T = (—1)wZ(g’a)Hl(g)}’?ﬁ..k,B- (60)

And the symmetry transformations of chiral Majorana
modes on the boundary of decorated p 4+ ip super-
conductors are chosen to be

U(Q)‘l’;‘jj...k.RU(Q)T = (—l)mm’ﬁ)‘/’iqﬁ..k,g(le)’ (61)

U(gys; 1 U(9)T = (=1) ooty 0 (62)

We discuss more about why we choose the trans-
formation rules for Majorana modes in Sec. VIF2.

In this way, the G, species of fermions span a space
that supports a projective representation of G, with
coefficient P}”:

U(g)U(h) = P9 U(gh), (63)

with P, = —1 when acting on fermion parity odd states.
We note that the projective representation U of G, is
equivalent to a linear representation U of G by

U(P}g) = PU(g). (64)

One can check directly that U is indeed a genuine linear
representation of Gy:

U(P}g)U(Pth) = U(P}g- P}h), (65)

where the dot product in Gy is defined in Eq. (2).

In the previous constructions of the FSPT state for
Gy = Z{ x G, we put only one species of fermions on
each simplex [52,53]. They transform trivially under the
action of G, (and Gy). To construct a FSPT state for
Gr= Zg X4, G, We need a projective representation of
G, with coefficient @, to make it a linear representation of
G . We choose the canonical |G, |-dimensional projective
representation Eq. (57), which can be constructed for
arbitrary finite symmetry group G,. Although there are
|G,| species fermions ¢f; x (0 €Gyp) on each simplex

ij...k), (at most) only one of them ¢?: , is decorated or in
J y ij...k

031055-13



QING-RUI WANG and ZHENG-CHENG GU

PHYS. REV. X 10, 031055 (2020)

the occupied state, and all other fermion species Tk
(6 # g;) are in the vacuum states. In such a way, the FSPT
constructions for symmetry group G, = Z’; x G, can be

generalized to the case of Gy = Z’; X, G-

C. Symmetry conditions and consistency equations

Since we are constructing FSPT states, the F moves
should be compatible with the symmetry action U(g)
defined in Sec. IIIB. To be more precise, let us

consider the following two-dimensional commuting
diagram:

l F({g:}) l
e r({gi}) —————— ¥ ({gi}) ——

U(g) Ul(g)

F({99:
- —— [Ur({99:}) G W7 ({99i})) —— -+

| |
(66)

where the horizontal F move changes the triangulations
of the spatial manifold and the vertical symmetry
action U(g) changes the bosonic degrees of freedom
from {g;} to {gg;} (similar for the fermionic ones).
The outside parts “---” correspond to other triangula-
tions of the spatial manifold and other symmetry
actions on the states. This two-dimensional diagram
should commute for an arbitrary horizontal Pachner
move of arbitrary triangulations and vertical symmetry
action with arbitrary g € G,. The requirement of sym-
metric fixed-point wave function implies the following
conditions.
(1) The diagram Eq. (66) commutes, i.e.,

F({99:}) = U(9)F({g:)U(9)". ¥ g€ Gy (67)

(2) The vertical direction of diagram Eq. (66) should
form a projective representation of G, with coef-
ficient w,, ie., U(g)U(h) :P;)2<g’h)U(gh) when
acting on these states. This projective representation
of G, induces a linear representation of G, by
Eq. (64).

(3) The horizontal direction of diagram Eq. (66)
should satisfy some coherence equation, which
is known as a super (fermionic) pentagon equation
in 2D. In the FSPT setting, it is a twisted cocycle
equation.

For the triangulations of d-dimensional space manifold,

the Pachner move involves d + 2 vertices. So the basic F

move can be denoted by F(gg, g1, -+, gar1)- With the help
of Eq. (67), we can obtain the generic F' move

F(go- g1+ ---+Gar1) = “F(e. g5 g1+ - 95" 9as1)
=U(g90)F(e. 95" 91+ . 95" 9a:1)U(g0)".
(68)

provided that we define the standard F symbol with the
first argument being the identity element e € G,,. Using
this definition of the F move, Eq. (67) is automatically
satisfied. This result is because of the following commuting
diagram:

F(67galglv "'7galgd+1)

Ulgo) W@
Ulyg
F(go, 915+ 9a+1) ==~~~ W, F (990,991, -, 99d+1)

(69)

We can deduce the dashed arrow U(g) from solid arrows
U(go) and U(ggy), due to U(g)U(h) = P?Z(g’h)U(gh) and
the fermion parity even property of the F operators.

IV. FIXED-POINT WAVE FUNCTION AND
CLASSIFICATION OF FSPT STATES IN 1D

In this section, we give the explicit constructions and
classifications of 1D FSPT states. The fixed-point wave
functions are obtained by decorating complex fermions to
BSPT states consistently. Formally, the wave function is a
superposition of all basis states |{g;}) with legitimate
decorations:

> w

all conf.

v) =

(70)

The basis state |{g;}) is a state (with vertex i labeled
by g; € G;,) decorated by complex fermions cf; at link
(ij). The constructed fixed-point wave function |¥)
should be both symmetric and topological (invariant
under retriangulations of the lattice). As shown below,
these constraints would give us the consistency con-
ditions for the 1D FSPT classifications summarized in
Egs. (8)—(11).

We note that the 1D Kitaev chain is a fermionic
invertible topological order. Since it does not need any

bosonic symmetry protection (Z’; cannot be broken), we
do not consider it as a FSPT state. The Kitaev chain
layer is useful when considering it as the ASPT on the
boundary of a 2D FSPT state. The 2D classification data
n, is trivialized.
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This section is organized as follows. The two layers of
degrees of freedom (bosonic states and complex fermions)
are introduced in Sec. IVA. In Sec. IV B, we propose the
procedures of symmetrically decorating complex and
Majorana fermions to BSPT states. Then, the construction
and the consistency equations of the FSLU transformations
are discussed in Secs. IV C and IV D, respectively.

A. Two layers of degrees of freedom

The basic idea to construct FSPT states is to decorate
complex fermions to the BSPT states. Therefore, there are
two layers of degrees of freedom, including the bosonic
ones, in the 1D lattice model:

(i) |G,| level bosonic (spin) state |g;) (g; € G},) on each

vertex i and

(ii) |G| species of complex fermions cf; (¢ € G,) at the

center of each link (ij).
These degrees of freedom are summarized in one unit cell
in the following:

[
gi <5 95 (9i,95,0 € Gp). (71)

Here, we choose the link direction from vertex i to
vertex j (from left to right). The vertices are labeled by
g; and g;, which are elements of G,. The blue ball is the
decorated complex fermion cf; (o € G,) at the center of
link (ij).

The symmetry transformations of these degrees of free-
dom under G, are the same as the discussions in Sec. III B.
To be more specific to the 1D case, we summarize them as
(gv g9i, 0 € Gb)

U(9)lgi) = 199:)» (72)

U(g)cqU(g)t = (=1)=2e0)cl?. (73)

While the bosonic degrees of freedom on each vertex form
a linear representation of G, the complex fermions form a
projective representation of G, with coefficient (—1)*2. In
this way, they all transform linearly under the action of G
defined by Eq. (64).

Although there are |G,| species of complex fermions in
the Hilbert space of the system, we see later that (at most)
only one of them is decorated nontrivially in the fixed-point
wave function. If we consider the case of w, =0 (i.e.,

Gy = Z’; X Gp), the symmetry transformation rules are
independent of group element label o of the fermions
[see Eq. (73)]. Therefore, we can reduce these |G,| species
of fermions to only one species without a group element
label. The resulting states are exactly the ones studied in
Refs. [52,53].

B. Decoration of complex fermions

In the group cohomology theory of BSPT phases [4], the
fixed-point wave functions are constructed as superposi-
tions of all basis state |{g,;}). The coefficients in front of
these basis states are U(1)-valued cocycles. To construct
FSPT states, we introduce the fermionic degrees of freedom
associated to the basis states in the previous section. In the
following, we discuss the detailed procedures of system-
atically decorating complex fermions. These decorations
should be designed to be symmetric under symmetry
actions.

The complex fermion decoration is specified by a
Z,-valued 1-cochain n; € C'(G,, Z,), which is the first
classification data for 1D FSPT phases. If n,(g;,g;) =0,
all the modes of complex fermions ¢f; (6 € G,) at link
(ij) are unoccupied (shown by blue circles in figures).
On the other hand, if n(g;, g;) = 1, exactly one com-
ly] is decorated at the center of the
oriented link (ij) (shown by filled blue balls in figures),
and all other complex fermions c¢f; (o # g;) are still in

plex fermion ¢

vacuum states.

The above complex fermion decoration rule is G,
symmetric. Under a U(g) action, the vertex labels of
link (ij) become gg; and gg;. According to the decoration
rule, the decorated complex fermion [if n,(gg;, 99;) =

n1(gi. g;) = 11 should be ¢, which is exactly the complex

ij »
fermion ¢f; by a U(g) action.

C. F moves

For a fixed triangulation of spatial manifold, we can
decorate complex fermions symmetrically as discussed
above. However, we want to construct fixed-point wave
functions that are invariant under retriangulation of the
space. To connect different triangulations, there are
FSLU transformations for each Pachner move. For
the 1D lattice, there is essentially only one Pachner
move given by

O N OO
v (90 sy gQ) - F(90>91a92) v (go g1 gQ) )
(74)

where the FSLU F operator is defined as

F(90: 91 92) = |Go|"*2(g0, 91, 92) (cfip) ™™ (90:92)

% (cgf)l)ﬂl(QO»HI)(C?IZ)"I(gl‘QZ). (75)

In the above expression of the F symbol, |G,|'/? is the
normalization factor, because the number of lattice sites is
reduced by one. v,(gg,91,9,) is a U(1) phase factor
depending on three group elements of G,. For BSPT
states, the F' operator has only these two bosonic factors.
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For FSPT states, however, there are complex fermion terms
of the form ¢’ cc. The complex fermion term annihilates the
possibly decorated (depending on n;) complex fermions
cfb and ¢} on the two links in the right-hand-side state and
create a new complex fermion c{) at the center of link (02)
in the left-hand-side state.

As discussed above, the F move should be a FSLU
operator. Therefore, it should be both fermion parity even
and symmetric under G, action. These two conditions give
us several consistency equations for the classification data
n; and v,.

1. Fermion parity conservation

Since the complex fermions are decorated according to
ny(gi,g;), the complex fermion parity change of the F
move Eq. (74) is

AP;(O]Q) = (=1)m(90.92)+m(do.91)+m1(91.62)
— (_l)dnl(goﬂl-!h)' (76)

As a result, the conservation of fermion parity under the F
move enforces the condition

dn; =0 (mod 2), (77)

which is the cocycle equation for the decoration data n;.

2. Symmetry condition

The F move should also be consistent with the symmetry
actions [see Eq. (66)]. In 1D, we have the following
commuting diagram:

F(Qngth)

OO
9o g2 go g1 92
U(9) v Y
O F (990,991, 992) OO
990 992 990 991 992

or the symmetry condition for F' operators:

F(990-991.99>) = U(9)F(g0.91.92)U(9)".  (79)

As discussed in Sec. IIIC, the above equation can be
viewed as a definition of the generic F(gy, g1, g>) in terms
of the standard F move F(e, g5'91. 95" 92):

F(go. 1. 92) = “F(e.g5" 91.95" 92)
= U(g0)F(e. 95" a1, 95" 92)U(g0)".  (80)

Therefore, we need only to fix the expression of the
standard F move F(e, g5'g1. g5 92), and all other non-
standard F moves are obtained by a symmetry action on the
standard one. The explicit expression of the standard F
move F(e, gy'g1. 951 g2) is given by

_ _ _ _ - - g g (95" 9195 92)
Fle.g5'91. 95" 92) = |Gp|V2ua (g5 g1 97" g2) () T (e 92) (e ymledtan) ¢y )™ 200 20 (81)

Note that the U(1) coefficient in the standard F move is chosen to be the inhomogeneous cochain
v2(95'91. 97" 92) = va(e. 95" 91, 95" 92)- And we do not impose the condition “v;(ggo, 991, 992) = v2(g0, 91.92)” @ priori.
In fact, as shown below, this condition does not hold, in general.

We can apply a U(g,) action on the standard F move Eq. (81) and compare it with the generic expression Eq. (75). The

symmetry conditions for n; and v, are

n1(90.91) = mie. g5 g1) = ni(gg' 91). (82)

— — _ _ _ — 11
va(90. 91 92) = %05(g5" 91, 97" 02) = va(g5' g1, 97" gp) 721 90) - (=) (@2 (G095 919 92 (83)

%' 0

respectively, where the term (—1)“>~" comes from the symmetry transformations of ¢}}”'. We also introduce new
notations to relate the homogeneous cochain v5(gy, g1, 92) = %v5(g5'g1,97'9,) and the inhomogeneous cochain
V(95 91,97 92) = va(95' g1, 97" 92)- In the following, when we write the cochain v, without arguments, we always

mean the inhomogeneous one, i.e., v; = v,.

D. Associativity and twisted cocycle equations

The F move reduces three vertices on the lattice to two vertices. If one considers reducing four vertices to two vertices,
there are two inequivalent ways to do that. The final results should be independent of the two ways. This constraint gives us

the consistency equation for Pachner moves:
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I N S

90 g1 93 F(123)
\

g g3 g g1 92 g3

FOB) v Fo1)

9o 92 93
In terms of F operators, the above commuting diagram means

F(90 92, 93) - F(90, 915 92) = F(90- 91> 93) - F(91, 92, 93)- (85)

Similar to the standard F' symbol, which can be used to derive all other nonstandard ones by a symmetry action, we can also
assume ¢, = e in the above equation. All other consistency equations with generic g, can be deduced from this standard
equation by a U(g,) action. Therefore, we need only to consider the consistency equation

Fle.gy' 9. 95" 93) - Fle. gy g1, 95" 92) = F(e. 95" 91, 95" 93) - F(95" 91. 95" 92 95" 93)
_ _ —1 _ _
=F(e.95'91.95"93) - 9 9F (e, 97" 9. 97" 93). (86)

The above equation is simpler than the generic one [Eq. (85)], since only the last F symbol is nonstandard.
Substituting the standard ¥ move [Eq. (81)], the consistency equation [Eq. (86)] becomes

_ _ _ _ _ _ _ _ _ -1 — N I |
v2(95 92 93 93)va (95 91, 971 92) = va(g5" g1, 97 93) 2 (97 90 95 1 g3)] 17251 90 90) (= 1) (@2 =)y 919 2.92793) | (87)

where the last term (—1)“>~™ comes from the U(gy'g;)
action on F(e,g7'92,97'g3) [see Eq. (82)]. Note that
the complex fermions do not contribute any fermion signs.
So we have the twisted cocycle equation for inhomo-
geneous s:

dvy = Ozny], (88)
with obstruction function
Oz[ny] = (=1)*>™. (89)

In summary, the associativity condition for the F moves
in 1D gives us the twisted cocycle equation [Egs. (88) and
(89)] for inhomogeneous cochain v,.

E. Classification of 1D FSPT phases

The general classification of 1D FSPT phases is as follows.
We first calculate the cohomology groups H'(G,,, Z,) and
H?[G,,U(1)7]. For each n, € H' (G, Z,), we solve the
twisted cocycle equation [Eq. (10)] for v,. If v, is in the
trivialization subgroup I'> in Eq. (11), it is known to be
trivialized by complex fermion decoration [52]; see
Appendix A for more details. So the obstruction-free n;
and trivialization-free v, fully classify the 1D FSPT phases.

We note that we can use the FSLU transformations to
construct the commuting-projector parent Hamiltonians.

Each term of the Hamiltonian is a sequence of fermionic F
moves that changes the label of a vertex from g, to ¢/. All
the terms commute with each other, for our FSPT wave
function is at the fixed point.

V. FIXED-POINT WAVE FUNCTION AND
CLASSIFICATION OF FSPT STATES IN 2D

In this section, we construct and classify FSPT states in
two spatial dimensions. The fixed-point wave function is
again a superposition of all basis states |{g;}) with fermion
decorations. The basis state [{g;}) is a state (with vertex i
labeled by g; € G;) decorated by complex fermions cf; at
link (ij) and Majorana fermions 77, and y{, near vertex i
according to several designed rules. So the fixed-point
wave function looks like

=3 w

all conf.

A. Three layers of degrees of freedom

In 2D, we decorate two layers of fermionic degrees of
freedom to the BSPT states. Therefore, there are three
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layers of degrees of freedom, including the bosonic ones, in
our 2D triangulation lattice model:
(i) |G| level bosonic (spin) state |g;) (g; € G,) on each
vertex i,
(ii) |G| species of complex fermions cf; (o € G) at
the center of each triangle (ijk), and
(iii) |G,| species of complex fermions (split to Majorana
fermions) af; = (y7; 4 +ir{;5)/2 (6 € G,) on the
two sides of each link (ij).
These three layers of degrees of freedom are summarized in
one triangle in the following figure:

o1

Here, the three vertices of the triangle are labeled by
90> 91- 92 € Gy. The blue ball is the complex fermion c§;,
(6 € G,) at the center of triangle (012). Red dots represent
Majorana fermions Yiia and y7; 5 (6 € Gy) on the two sides
of link (ij).

The symmetry transformations of these degrees of
freedom under G, are summarized then as follows
(gv 9i,0 € Gb):

U(9)lgi) = l99:)- (92)
U(g)cg U(g)t = (=1)=2@o)cfs (93)
U(g)r5aU(9)" = (1)), (94)

U(g)rg5U(g)" = (=1)loo)tsilayd,  (95)

As in the 1D case, the bosonic degrees of freedom form a
linear representation of G, (and G). On the other hand, the
fermion modes support projective representations of G,
with coefficient (—1)“> and linear representations of G,
defined by Eq. (64).

In the simpler case of G, = Z]; x Gy, all the flavors of
fermions have the same transformation rule for different
group element label 6. So we can suppress the species
labels. This result is again the previous group super-
cohomology models [52,53].

B. Decorations of fermion layers

In this section, we give a systematic procedure to
decorate Kitaev chains and complex fermions to the basis

state [{g;}) labeled by g; € G,, for each vertex i. Similar to
the 1D case, we decorate (at most) only one species of
fermions to the state, although the Hilbert space is spanned
by |G,| copies of fermions. Again, the decorations should
be designed to respect the symmetry.

1. Kitaev chain decoration

The Kitaev chain decoration in 2D is similar to the
constructions in the pioneering works Refs. [74,75].
However, we adopt the more general procedures in
Ref. [53], which can deal with arbitrary triangulations of
the 2D spatial manifold. The generalization in this paper for
symmetry group G, = Z’; X, Gy, 1s that we put (at most)
one of the G, species Majorana fermions into nontrivial
pairings and all others vacuum pairings. If we consider the
symmetry group G, =Z} and nontrivial 2-cocycle
@,(T, T) = 1, our construction on a fixed triangular lattice
reproduces the exactly solvable T2 = —1 topological super-
conductor model in Ref. [76].

To simplify our notations and make it easier to generalize
to higher dimensions, we present some notations for
Majorana fermion pairings. For two Majorana fermions

7{ ¢ and yﬁ)h atvertices i and j (9, h € G,; C,D € {A, B}),
we can choose the pairing such that

. ~1h
—iyicrip = L, (96)

when acting on this state. We call it standard pairing, as the
first Majorana fermion is labeled by the identity element
e € Gy,. The standard pairing is illustrated in figures by a
red arrow pointing from vertex iC to vertex jD. For the
nonstandard pairing between y‘?’ ¢ and y?’D, we can use a
U(g) action on both sides of Eq. (96) and obtain

_iV?,C}/?,D = (—1)w2<gag_lh)+sl(g)(1+5CB+5DE)’ (97)

where 6cp = 1 (= 0) if the Majorana fermion y? - is the B-
type (A-type) one. This difference comes from the sym-
metry transformations of A- and B-type Majorana fermions
[see Egs. (94) and (95)]. For simplicity in describing the
pairing, we introduce the projection operator of the
Majorana fermion pairing as

h eg'h 1 e g h
P?C,jD = U(Q)Ping U(ﬂ)T = U(Q)E(l - l?’i,C?’i{D )U(Q)T

[1- (_1)wz(g,g*‘h>+s1(g)(1+5cs+5us),~},?c},j;D]

| =

(98)

This generic pairing projection operator Pf]ch ;p 1s obtained
from a U(g) action on the standard pairing projection
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FIG. 2. Kasteleyn orientations of the resolved dual lattice. For a
given triangulation of the 2D spatial spin manifold (shown by
black links), we can construct a resolved dual lattice (shown by
red links). The Majorana fermion pairings should respect the red
link arrows in the figures.

—1 —1

operator P ]-[f' =(1- iyﬁcyf.Dh) /2. So the symmetric
nature of the pairings can be easily seen from the symmetry
transformations of the projection operators (g, i, k € G):

, h.gk
U(g)P?C]TjDU(g)T = P?c,)g'D- (99)

In 2D and higher dimensions, we use the generic pairing
rule Eq. (97) and the projection operator Eq. (98) to
construct G,-symmetric states.

Decoration procedure.—Our Majorana fermions 7iia
and 7§, 5 (6 € G,) are on the two sides of each link (ij). We
use the convention that the Majorana fermion on left-hand
side (right-hand side) of the oriented link (ij) is ¥4 % p)-
The vacuum pairing between them is from A to B:
—iy7; avip = 1. To decorate Kitaev chains on the lattice,
we should also add arrows to the small red triangle inside
each triangle (012) (see Fig. 2). These red arrows are
constructed from the discrete spin structures (a choice of
trivialization of Stiefel-Whitney homology class w, dual to
cohomology class w?) of the 2D spatial spin manifold
triangulation. The Majorana fermions are designed to pair
up with each other according to these red arrows. The red
arrows constructed have the property that the number of
counterclockwise arrows in a loop with even red links is
always odd. This property is crucial for the decorated
Kitaev chain to have fixed fermion parity. For details of the
Kasteleyn orientations for arbitrary triangulation, we refer
the interested readers to Ref. [53].

The Kitaev chain decoration is specified by
n(gi.9;) € Z,, which is a function of two group elements
9i»9; € Gyp. If ny(g;, g;) = 0, the Majorana fermions ¢, ,
and y7; p on the two sides of link (ij) are in vacuum
pairings: —iyf].’ A?’Z’,B =1 (for all 6 € G;,). On the other
hand, if n(g;,g;) = 1, there is a domain wall along the
direction dual to link (ij), where a Kitaev chain is
decorated [see the green belt shown in Eq. (100)]. For
all |G| species of Majorana fermions, we put only yly] 4 and

y‘f]’l,B to be in the nontrivial pairing. All other |G,| —1

species of Majorana fermions Yiia and yf; p with o # g; are
still in vacuum pairings. Here is an example of the Kitaev
chain decoration around the vertex g, inside a triangle (we
omit the operator labels of Majorana fermions which are in
vacuum pairings):

(100)

The domain wall decorated by a Kitaev chain is indicated
by a green belt. Trivial (vacuum) pairings and nontrivial
pairings are represented by dashed red lines and solid red
lines, respectively. The red (blue) arrows show the trivial
(nontrivial) pairing directions of Majorana fermions:

WA in =

mayee —Yj.4%5,8 = L. (101)

~90

91 w2(90,90 ' 91)
102B. 112A @ 290
——ae

~ 0557124 = (=1) -

(102)

We discuss more about the pairing directions and why they
are symmetric later.

Consistency condition.—According to our decoration
rule, the number of decorated Kitaev chains going through
the boundary of a given triangle (012) is

(dny)(90.91,92) =11(91.92) +11(90-92) +11(90:91)-
(103)

Since we are constructing a gapped state without intrinsic
topological order, there should be no dangling free
Majorana fermions inside any triangle. Therefore, we have
the (mod 2) equation

dn; =0. (104)
This equation is the consistency condition for the Kitaev
chain decoration data n;.

Symmetric pairing directions.—Now, let us turn back to
the details of Majorana fermion pairings inside the triangle
(012). The strategy of constructing G,-symmetric pairings
is the same as in the 1D case: We first consider the standard
triangle of gy = e and then apply a U(gy) action to obtain
all other nonstandard triangles. The Majorana fermion
pairings constructed in this way are automatically sym-
metric, due to the symmetry transformation rule of the
pairing projection operators [Eq. (99)]. For the standard
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triangle, the Majorana fermions are paired (trivially or
nontrivially) according to the Kasteleyn orientations indi-
cated by red arrows. The pairings in the nonstandard
triangle is obtained by a U(g,) action as follows:

9 "9 g2

L

Ao U(g90) Ve
A90 102B%
B25y ¥ iz e
¥ P01
v Y
e b4 -1 90 s g1
Y018 90 91 To1B

(105)

Note that Majorana fermions r5ia and yf; 5 (0 # g;) of
link (ij) are always in vacuum pairings (—iy; 4755 = 1),
independent of the n; configurations. So their pairing
directions always follow the red arrow Kasteleyn
orientations in both figures of the above equation. For
the two Majorana fermions y/; , and y{; ; of the link (ij),
there are two possibilities. If n(g;,g;) = 0, these two
Majorana fermions are also in vacuum pairing, with the
direction indicated by the red arrow and projection
operator

i 90" 9:-95" 9 - 90 i
P?jAg.ijB = U(go)Pi](')A,ijBo U(go) = (1- ly?j,Ay?]}B)'

(106)

N[ =

On the other hand, if n,(g;, g;) = 1, we pair the Majorana
fermion inside the triangle with another one belonging to
another link with also n; = 1 [for example, yJ35 and y{},
are paired in Eq. (100)]. Note that there are always an
even number of Majorana fermions in nontrivial pairing
among the three (y]5,, 7055, and yS,) inside the triangle
(012), for we have (dn;)(go,91,9,) =0 (mod 2) from
Eq. (104). There are three possible nontrivial pairings
inside the triangle (012), with Majorana pairing projection
operators

g 1 .
Pg%?om = U(gO)P(e);B,OlAU(QO)T = 5(1 - l},g%BygolA)’
(107)
~1
Pg%’gfm = U(QO)P(E)Q!JE,%AU(QO)T
1 _
=3l = (SNl (108)
) 95" 91.¢
P?lzg?om = U(QO)PIZA],;)IAU(QO)T
1 _
=5 [1- (_1)wz(go,g0‘gl)+s1(90),'7{1“7/3‘;/‘}_ (109)

Among the three possible nontrivial pairings, only the
last two may change their directions in the nonstandard
triangle. They are indicated by blue arrows in the right-
hand-side figure in Eq. (105). This result can be
understood from the following facts: The (—1)*2 term
appears in the projection operators when the pairing is
between Majorana fermions with different group
element labels; and the (—1)% term appears when the
pairing is between the same A/B-type Majorana fer-
mions. The pairing Eq. (107) between yjy, and 7,
belongs to neither of the above two cases. So their
pairing direction is the same as the red arrow even after
U(go) action.

Majorana fermion parity.—For convenience, we can
define the Majorana fermion parity P%(012) of a triangle
(012) to be the product of fermion parities of the Majorana
fermion pairings along the three dashed red links inside the
triangle. Since the symmetry action may change the pairing
directions inside a triangle, the Majorana fermion parity of
this triangle may also be changed. The fermion parity
difference between the standard and nonstandard triangles
can be calculated from the number of pairing arrows that
are reversed by U(g,) action, which, of course, depends
on the n; configurations. We can use, for example,
n1(90- 91)n1(91,92) =0, 1 to indicate whether y{,, and
Yoy4 are paired or not. So the Majorana fermion parity
change inside the triangle is, in general, given by

AP;(O] 2) = (-1 )wz(f]ﬂ’galgl)["1(9&92)"1(91 -92)+n1(90-91)m1(91-.92)1+51(90)n1 (9o-91)m1 (91.92)

where we use (dn;)(go,91.9,) =0 from Eq. (104)
in the second step. The above equation is a summary
of phase factors from Egs. (107)—(109). We note
that the above expression is also true for negative oriented
triangles. All the fermion parity change cases involve

(
(_ 1 )wz (90,96] g1)1(91,92)+51(90)n1 (9091 )71 (91,92)
(

-1 )((vzvnl“rflvnlvnl)(9006191 ~9f192) ,

(110)

|
the particular Majorana fermion y{,, (y]5; for negative

oriented triangles). We use it later in the definition
of the F symbol to compensate the fermion parity
changes of the Majorana fermion pairing projection
operators.
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Although the Majorana fermion parity of a given triangle
may be changed, the fermion parity of the whole system is
fixed under the global U(g) action. Since the fermion parity
of the vacuum pairings are not changed by symmetry actions,
we need to consider only the n; domain walls decorated by
Kitaev chains. For a particular (closed) Kitaev chain, the
Majorana fermion parity is the same as the vacuum pairings if
the pairings are constructed according to Kasteleyn orienta-
tions of the resolved dual lattice. It is also not hard to show
that symmetry action always changes the arrow even times,
following the pairing rules of Eq. (105). Therefore, we
conclude all closed Kitaev chains have even fermion parity,
although the local fermion parity of a triangle may be
changed compare to the Kasteleyn orientations.

To sum up, among the |G| species of Majorana fermions,
we decorate exactly one Kitaev chain to each symmetry
domain wall specified by the n; configurations of the state.
The decoration is symmetric under symmetry actions. The
Majorana fermion parity of a triangle is changed according to
Eq. (110) compared to the Kasteleyn oriented pairings.

2. Complex fermion decoration

The rules of complex fermion decoration are much
simpler than the pairings of Majorana fermions. The
decoration is specified by a Z,-valued 2-cochain

ny € CY(Gy, Z,). If ny(g;.gj.9x) =0, all the modes of
complex fermions ¢7;, (o € G;) at the center of triangle
(ijk) (i < j < k) are unoccupied. On the other hand, if
(9. 9;» g) = 1, exactly one complex fermion mode C‘:;]Jfk
is decorated at the center of triangle (ijk). All other
complex fermions T (6 # g;) are still in vacuum states.

The complex fermion decoration rule is G, symmetric.
Under a U(g) action, the vertex labels {g,} becomes {gg;}.
According to our decoration rule, the decorated complex
fermion [if n5(99, 99;, 99x) = n2(9i- gj» g&) = 11 should be

c/» which is exactly the complex fermion ¢}, by a U(g)
action.

C. F moves

To compare the states on different triangulations of the
2D spatial manifold, we should consider the 2D Pachner
move, which is essentially the retriangulation of a rec-
tangle. The Pachner move induces a FSLU transformation
of the FSPT wave functions from the right-hand-side
triangulation lattice 7’ to the left-hand-side lattice 7.
We can first define the standard F move for a rectangle
with gy =e; then other nonstandard ones can be
obtained by simply a U(gy) action. The standard F move
is given by

% ' ?“‘g\m 9 ' 92
r,.‘f;"h
w7 2B
C012.7 ¥
A . X = Fle.go 91,90 92,90 '93) ¥ (111)
N’LiA .
€ 1033 © Y“wfi:slf 96193
where the FSLU F operator is defined as
o = . -l 123
Fle,01,02,03) = 15(01, 12, 33)(¢51,)012) (1,029 (e m(013) (% oy gy (112)

We use the abbreviation ij for g7'g; in the arguments of F,
and n,(ijk) represents ny(g;, g, 9x) = na(g;' 95 97 9
for short.

The U(1) phase factor u3(01,12,23) =13(g5' g,
9192, 95" g3) in the front of the F symbol is an inhomo-
geneous 3-cochain depending on three group elements. By
definition, it is related to the homogeneous cochain by

v3(951 91, 97 90, 51 93) = vale. g5 91. 95 92. 951 93).
(113)

with the first argument of homogeneous cochain to be the
identity element e € G,,. Later, we use symmetry conditions
to relate v3(e, 65" 91, 65" 92- 95" 93) and v3(go, 91> 92, 93)-
The complex fermion term of the form c¢'c'cc annihi-
lates two complex fermions at the two triangles of the right-
hand-side figure and creates two on the left-hand-side
figure in Eq. (111). According to our decoration rules
developed in Sec. V B 2, the triangle (ijk) is decorated by
complex fermion c?j‘lk. So, in the standard F' move, only the

-1
last fermion ¢}, has group element label g;'g, and the
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other three fermions all have group element label e¢. We
note that, different from the Gy = Z’; X G, case [53], the
complex fermion parity of the 2D F move does not need to
be conserved, in general.

The term Xgp3[n;] is related to the Kitaev chain
decorations. In terms of Majorana fermion pairing projec-
tion operators [Eq. (98)], the general expression of the X
operator is

ya'yz)dnz(OIZS)

Xo123 ["1] = P0123[”1] : (7233 ) (114)

Poug[m}:(l—[z(“'”/z)( 11 PZ‘:ﬂ)
(a.b)inT

loopi Majorana pairs

H P 32:‘18)'

y ( (115)
link (ij)¢T 0€G,,

—1
The Majorana fermion ygng * is added for fermion parity

considerations (which are discussed in detail in the next
section). If we do not add this term, X¢;»3[n;] projects the
right-hand-side state to zero, whenever the Majorana
fermion parity is changed under this F move. We choose

~1
the Majorana fermion yg%Bgz, because all the Majorana

fermion parity change cases involve it in the standard F
move [see the blue arrows in Eq. (111)]. The pairing
projection operator Py,3[n;] in Eq. (115) has three terms.
The first term is a normalization factor, where 2L; is the
length of the ith loop in the transition graph of Majorana
pairing dimer configurations on the left triangulation lattice
7T and right lattice 7. The second term projects the state to
the Majorana pairing configuration state in the left figure.
The third term is the product of the vacuum projection
operators for those Majorana fermions that do not appear
explicitly in the left figure. As an example, the explicit X
operator for the n; configurations shown in Eq. (111) is

AP;(F) — (_1)nz(ga‘g],.ql"gz)+nz(gg‘gz,gg'ya)Jrnz(.qg‘m,g,“gs)ﬂz(gl‘]gz-y;'ys) — (_1)‘1”2(.(1519]’.L/l_l.(/Zegglg.%).

As a result, the conservation of total fermion parity
AP, = AP’; -AP% =1 under the F move enforces the

condition
di’lz = Wr~N, + Si~ny~nj.

(119)

It shows that the Majorana fermions and complex fermions
are coupled to each other.

_nl/2 e.e e.e 0.0
Xo123 [nl] =2 (POIB.O2APOZB,03A P02A.023>

x ( H PT;Z,BB)'

c€G),

o#e

(116)

Since there are no pairings for the two blue arrow links in
Eq. (111), the Majorana fermion parity is always conserved
for this n; configuration.

The F symbol constructed above should be a FSLU
operator. So it should be both fermion parity even and
symmetric under G,, action. Similar to the 1D case, we can
use these conditions to obtain several consistency equations
for the cochains ny, n,, and vs.

1. Fermion parity conservation

It is proved that the Majorana fermion parity is conserved
under a 2D F move if they are paired according to the
Kasteleyn orientations in 2D [53]. Nevertheless, some of
the links are not Kasteleyn oriented in the standard F move
Eq. (111), because the triangle (123) is nonstandard; i.e.,
the group element label of the first vertex is not e € G,,. It
should be obtained from the standard one by a U(gy'g;)
action. So the blue arrows inside this triangle may change
their directions according to our symmetric pairing rules.
The Majorana fermion parity change of this triangle can be
calculated from Eq. (110). Note that the three group
element labels of the vertices are now g;5'g;, g5'g,, and
95" g3 So the Majorana fermion parity change under the
standard F move is

AP};(F) = (_1)((Uzvnl+S1V"|V"1)(y6]y1 97 995" 93) (1 17)

On the other hand, the complex fermion parity change
under the F move can be simply calculated by counting the
complex fermion numbers of the two sides:

(118)

This result is very different from the 2D FSPT states with
unitary group G, = Z’; x G, (i.e., w, =0 and s; =0)
[53], where the fermion parities of the Majorana fermions
and complex fermions are conserved separately. So
Eq. (119) is reduced to a simple cocycle equation
dn, = 0. In the case of 7> = —1 topological superconduc-
tors [76], although both @, and s, are nontrivial, there
combination @, + s;~—n; = 0 is also trivial. So we still
have dn, = 0. That is the reason why it admits the exactly
solvable model with only Kitaev chain decorations.
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2. Symmetry condition

In the previous discussions, we consider only the standard F move with g, = e. The nonstandard F moves are
constructed by symmetry actions on the standard one. From Eq. (66), we have the following commuting diagram:

90 91 . 90 92 90 91 . 90 92
o °
°. Fle.95 91,90 '92:95 ' 93) ,®
LEK ] ° LEAK ] LK ] ° LEAK ]
o )
b4 °
¢ . 90 93 ‘ . 9o 93
U(go)l JU(go) (120)
9 2 92 g1 ° g2
® [ ]
° ° F(90791792793) ° @
e|e o eole eo|e ° oo
° °
hd [ ]
90 o 93 go " g3

So the nonstandard F operator is defined as

F(90.91.92.93) = *F(e. 95" 91. 95" 92- 95" 93) = U(90)F (€. 95" 91. 95" 92. 95" 93) U (o) (121)
The F moves constructed in this way are automatically symmetric, because we can derive the transformation rule

F(g90. 991 992+ 993) = U(9)F(90- 91. 92-93)U(9)", (122)

using Eq. (63) and the fact that F is fermion parity even.
After a U(go) action on the standard F operator Eq. (112), we can obtain the generic F' symbol expression:

F(90,91: 92, 93) = V3(90,91192193)(Cgolg)'h(om(Cgozg)nz(ozs) (13)™= ) (e1h3) =1 X g3 [y ). (123)
The complex fermions now have group element labels g, or g;. And the X operator is

Xoi3[n1] = Poiaz[mi] - (r535) =012, (124)

—1

with added Majorana fermion y33, rather than yg%Bgz. Py123[n;] has a similar expression as Eq. (115) that projects the

Majorana fermions to the pairing state on the left-hand-side figure (the group element labels are changed appropriately).
From the decoration rules of Majorana fermions and complex fermions, n; and n, are invariant under symmetry actions.

The generic homogeneous cochain v3 in Eq. (123) is a combination of the inhomogeneous v5 in the standard F move and

the =1 signs appearing in the symmetry action. So we have the following symmetry conditions for n,, n,, and vs:

n1(90.91) = nie. g5 g1) = ni(gg' 91). (125)
n3(90. 91 92) = ma(e. 95" 91, 95" 92) = na (95" 1. 97" 92). (126)

v3(90. 91, 92+ 93) = “v3(95" 91, 97" 2. 95 93) = v3(95" 91 97 920 951 93) T2 - O™ (g0 91, 92, 93). (127)

The symmetry sign O™ in the last equation is given by
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(')Zymm(go, 91, 0. 93) — (_l)wz(goagalgl)"2(123)+[51(90)+w2(y0,96192)]51”2(0123)

where the sign (—1)22(%-%'972(123) comes from the sym-

—1
metry transformation Eq. (93) of ¢{%; and the sign

(—1)s1(90)t@2(00.65"92)1dn>(0123) comes from the symmetry

-1
transformation Eq. (95) of 73%392 in the X operator. We

note that the last term w,dn, in Eq. (128) is not a cup
product or cup-1 product form. This symmetry sign O}"™"
appears later in the twisted cocycle equation for v as part
of the obstruction function [see Eq. (131)].

D. Superpentagon and twisted cocycle equations

The F moves should satisfy a consistency condition
known as the pentagon equation for fusion categories. In a
fermionic setting, it is a superpentagon equation with some

(-1 )(wzvnz+sl —dm)(90-95' 9197 9295 93)+@2(90.95" 92)dma (95 91,97 92,95 9)

(128)

fermion sign twist for superfusion categories [72,77,78].
The 2D FSPT states correspond to a special kind of
superfusion category in which all the simple objects are
invertible. So the classification of 2D FSPT states can be
understood mathematically as the classification of pointed
superfusion categories corresponding to a given sym-
metry group.

Similar to previous discussions, we need to consider only
the standard superpentagon equation with gy = e. All other
superpentagon equations can be obtained from it by a
U(go) symmetry action. So it is enough to merely consider
the standard superpentagon as coherence conditions. This
standard superpentagon equation is shown in Fig. 3.
Algebraically, we have the following equation:

F(e,02,03,04) - F(e,01,02,04) = F(e,01,02,03) - F(e,01,03,04) - F(01,02,03,04)

= F(e,01,02,03) - F(e,01,03,04) - 0'F(e, 12,13, 14),

where we use ij to denote g;'g;. Note that only the last
symbol is nonstandard in the above equation.

Now we can substitute the explicit expression of the
standard F move Eq. (112) into the standard superpentagon
equation [Eq. (129)]. After eliminating all complex fer-
mions and Majorana fermions, we obtain a twisted cocycle
equation for the inhomogeneous 3-cochain v5. In general,
the twisted cocycle equation reads

dvs = O4ny], (130)

where O, [n,] is a functional of n, only (as well as w, and s,
parametrizing the symmetry group, of course). The n;
dependence of O, is through dn, by Eq. (119). Since the
fermion parities of Majorana fermions and complex fer-
mions are coupled to each other, O4[n,| is much more
complicated than the special result O4[n,] = (—1)">~"2 for
unitary G = 7} x G, [52,53,72].

From general considerations, the obstruction function
Oy,[n,] consists of four terms:

O4lna] = O™ (o] - Oflma] - OF [dns) - Ofdms]. - (131)

(129)

These four terms have different physical meanings and are
summarized as

O™ [1n,](01234)

_ (_1)(wzvanrslvdnz)(01234)+w2(013)dn2(1234)’ (132)
Oflny] = (—1)mratdn=in, (133)
OF [dny] = (=1)4m—2dm, (134)

O [dn,) (01234)
— (_1)dn2(0124)dn2(0234)(_i)dnz(()]23)[]—dn2(0]24)] (mod 2).
(135)

Note that the dn, terms in the exponent of (—i) in the last
equation should be understood as taking mod 2 values (can
be only O or 1). And the notation —; is the higher cup
product by Steenrod [65]. By adding a coboundary
(=1)dlsr=mtm—=2dm) to the obstruction function and shift-
ing v3 — v3(—1)"1—"2F22dm we can simplify the above
obstruction function to
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04 [HZ} (01234) — (_1)(wzvnz+112vng+112v1dnz)(01234)+w2(013)dn2(1234)+dt12(0124)dn2(0234)(_l')d112(0123)[1—dn2(0124)] (mod 2)

We note that only the first three terms @w,—n, + ny—~n, +
n,~dn, in the exponent are expressed as a (higher) cup
product form, while other terms are not. If we consider the
special case of w, = 0 and s; = 0, then we have dn, =0
from Eq. (119). So the above equation reduces to the
known sign twist Oy [n,] = (—1)"~" in the superpentagon
or supercohomology equation [52,72].

Before calculating the obstruction function in detail, we
note that we check numerically that the claimed expression
Eq. (136) of O4[n,] is a cocycle, i.e., dO4 = 1, for arbitrary
choices of sy, @,, n;, and n, satisfying the corresponding
consistency equations. This check is a consistency check,
because the superpentagon equation [Eq. (129)] always
|

4

which is exactly Eq. (132) claimed above.

Osymm [nz] ((‘)1 , (‘)2’ (‘)3’ (‘)4) _ (_] )(mzvnz«H‘] —dn,)(01,12,23,34)+@,(01,13)dn, (12,23,34)

(136)

implies a one-higher-dimensional equation involving one
more vertex.

1. Calculations of obstruction function Oy4n,)

In this subsection, we give explicit calculations of the
four terms of the obstruction function O4[n,] in Eq. (131).

The first term O}™"[n,] comes from the U(01) sym-
metry action on F(e,12,13,14) in the last term in
Eq. (129). The homogeneous v5 in the nonstandard F
move is related to the inhomogeneous v5 of the standard F
move by a symmetry action [see Eq. (127)]. So, using the
explicit expression Eq. (128), we have

’

~1g. n2(9i.9;,
The second term Of[n,] is the fermion sign from reordering the complex fermion operators (cf]?kg B H909:94) 51 Eq. (129).

To compare the complex fermion operators on the two sides of the superpentagon equation, one has to rearrange these

operators and finally obtain the fermion sign

FIG. 3.

9o "ga

Standard superpentagon equation. The dual trivalent graph of the triangulation is the usual string diagram pentagon equation

for the tensor category. Algebraically, this standard superpentagon condition corresponds to Eq. (129). Since the group element label of
the first vertex is e € G, all the fermionic F moves are standard except °'F,34. Note that we use a simpler notation F ikl =
F(e,ij, jk,kl) in the figure. Blue arrows indicate that the Majorana fermion pairing directions may be changed compared to the red

arrow Kasteleyn orientations.
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O4[n,)(01234) = (-
= (—1)™

2(012)n5(234)+[dny (0234)n (012)+dny (0134)my (123)-+diy (0124)n (234)]

1 ) (ny—ny+dn,—n,)(01234)

(137)

This equation is a generalization of the usual sign twist (—1)"~" for 2-cocycle n,. If dn, # 0, we have another

term (—1)d—1m2,

The third term Oy [dn,] of the obstruction function originates from reordering the complex fermion and the Majorana
fermions. For instance, to put all complex fermion operators to the front of Majorana fermion operators on the left-hand side
of Eq. (129), we have to switch the X operator of F(0234) and the complex fermions of F(0124). So there is a fermion sign

(—1)dma(0234)dm (0124)

OZJ’ [di’lz] (01234) _ (_ 1 ) (dny—1dn,)(01234)

Since the fermion parities of the X operator and the
complex fermion operator c'c'cc are related only to
dn,, this obstruction function Oy’ [dn,] is a functional of
dn, (rather than n, directly).

In the rest of this subsection, we calculate the most
complicated part () [dn,] of the obstruction function. In
addition to +1, this Majorana fermion term can also take
values in £i. Whenever the Majorana fermion parity of the
F move is changed, i.e., dn,(0123) = 1, there is a dangling

Majorana fermion yzg Bg “in the X operator [Eq. (114)]. The
presence of Majorana fermions depends only on dn,. So,
similar to Oy [dn,], we expect O [dn;,] to be a functional of
dn, only.

We can denote the five X operators in the standard
superpentagon equation [Eq. (129)] by X4 =
|

Oy[an] <X7234X0134X012%X0234X0124>

= (Pa(1 ) P10 O P By PP () P () Oy

The average is taken over the Majorana fermion state of the
rightmost figure in Fig. 3. We also insert Py, which is 1
acting on the rightmost state, at the first and the last places
of the operator string.

Equation (140) should be calculated separately for
different Majorana fermion configurations. Among the five
dangling Majorana fermions of the five X operators, only
three of them are different:

(7(3)33’7(2)3&3’7(2%3)- (141)

So we can use the triple of their number,

[dny(0)+dny (1) +dny(2),dny(3).dny(4)] (mod2), (142)

= (= 1)dna(0123)dna(0134)-+dms (0234)dns (0124) s (0123) i (1234)-+dmy (0134) s (1234)

. Combining it with the fermion signs from the right-hand side, we have the total sign

(138)
|
Py(r%s) ™9, Xopsy = P4( 73p) OB, X =
P3( % ) 2(0134), Xoia = Ps( )d"2(0124>’ and Xgjp3 =

Py(y 23B)d”2(0123). Here, P, is the Majorana pairing projec-
tion operator of the corresponding ith figure (1 < i <5) in
the superpentagon equation in Fig. 3. We use the con-
vention that the rightmost figure is the first one with
projection operator P, and the other four figures are
counted counterclockwise. We also use the simpler notation

yl]B = },;};)B% . (139)

Using these X operators, the obstruction function coming
from Majorana fermions can be calculated by

(140)

|
to indicate the presence or absence of the three Majorana
fermions in Eq. (140). For simplicity, we use the notation
dny(1) = dny(01...1...34), (143)
where i means that the number i is removed from the
argument. Each element of the triple corresponds to the
Majorana fermion parity change of one or several /' moves.
There are in total 2°/2 = 4 different possibilities for the
Majorana fermion parity changes (see the first column in
Table 1V), since the total Majorana parity of the five F
moves should be even. We can now calculate O [dn;,]| for
these four cases separately.
As an example, let us calculate O [dn,]| for the second
case with Majorana fermion parity changes (1,0,1) (the
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TABLE IV. Calculations of O [dn,] for all possible Kitaev chain configurations in the superpentagon equation in Fig. 3. The first
column is the Majorana fermion parity change triple [dn,(0) 4 dn, (1) + dn,(2), dn,(3), dny(4)] (mod 2). There are in total four
different cases. The second column is a simplified version of Eq. (140) for each case. The third and fourth columns are the Majorana
pairing projection operators we use in calculation. The last column is the final result of O [dn,], which can be summarized by Eq. (152).

PY, changes Expression of Of[dn,] P, Py O} [dn,]
(0,0,0) ) <(ngB)dViz(O)ﬂinz(z)Jid"z(1)) ) ] l_ 1 1
(1.0.1) <(7’ )d"2(0)+d"2(2>7233(7343)“’(1)}'1> (_1)‘Y'(02)+772f02’23)( lyg%B}/MB) 71 i !
(1,1,0) <(}’02 )d"2(0)+d"2<2 P4(7 5)?ra(d 724BP1> (=122 (—iy 3 r%3,) —iY9347 %48 (=1)4=)
©.1.1) ((}’gZB)d”Z< )+dn2<2)72%BP4(73213)dn2( )7243P1> —iy53575%44 —iy%4Y%5 (—1)m)

third row in Table IV). The dangling Majorana fermions
present in Eq. (140) are y33, and y53,. We can expand the
pr0]ect10n operators P; to Majorana fermion operators.
Since 733, and y23 5 are paired in the triangle (234) of the
rightmost figure in Fig. 3, we can consider only their
pairing term [recall Eq. (98)]

pozos 1 [1 = (=1)@2(02:23) 51 (02) 2

23B34B ~ 5 172337(3)?13] (144)

in P;. All other projection operators P; with i # 1 can be
chosen to be 1. So the obstruction function Eq. (98) can be

calculated as

O [dn,)(01234)

(1.0,1)

= ((1%5) O dn2)y 92 (%) (D Py) (145)
(g 02 1 )

X (= 1) 2202230500 (i 0y 83p)) (146)
_ (_i)(_l)wz((_)2,§3)+sl((_)2)+dn2(1) (147)
=—i (148)

Note that we replace P by the second term of Eq. (144) to
obtain Eq. (146) (see the third column in Table IV). In this
way, the Majorana fermions all appear in Eq. (146) even
times. After switching the Majorana fermions y93,; and

(7% ,)%=(), we obtain a fermion sign (—1)42(1), Then, we
can eliminate all Majorana fermion operators, since their
square is one. To simplify the phase factor Eq. (147), we
observe that the conditions

d"z(g) =

[,(01,12) + 5, (01)n; (12)]n,(24) = 0, (149)

dny(4) = [,(01,12) + 5, (01)n; (12)]n,(23) =1 (150)
imply n,;(23) =1 and n;(24)=0. We also have

n;(34) =1 from dn,(234) = 0. Using the relation

dny(1) = @,(02,23)n,(34) + 5,(02)n,(23)n, (34)

= ,(02,23) + 5,(02), (151)
the exponent of (—1) in Eq. (147) is, in fact, 0. We,
therefore, have the final result O} [dn,](01234)| o ) = —i.

Similarly, we can calculate O} [dn,]| for all other cases of
Majorana fermion parity changes. The information we need
in the calculation is shown in Table IV. The final results
shown in the last column in Table IV can be summarized
into a simple expression (which is a functional of dn, only):
o [dnz](01234) _ ( )dnz(ﬁ)dnz(i)(_i)dnz(ﬁ)[l—dnz(ﬁ)] (mod 2)
= (—1)dna(0124)dn(0234)

X(_i)dnz(Ol23)[l—dn2(0124)] (mod2) (152)

The dn, terms in the exponent of (—7) should be understood
as taking mod 2 values (can be only O or 1). This result is
exactly the result claimed previously in Eq. (135).

E. Boundary ASPT states in I'

We construct 2D FSPT states in the above discussions.
However, not all of them correspond to distinct FSPT
phases. In the following subsection, we construct explicitly
a FSLU transformation path to connect an FSPT state with
n, = w, and a state without complex fermion decorations.
The physical understanding is that there is a gapped
symmetric boundary for the 2D FSPT state. So we
conclude that the state with n,, which is in the new
coboundary subgroup

I ={w, € H*(G,, Z,)}, (153)

should be considered as in the trivial FSPT phase.

1. FSLU to trivialize the 2D bulk

Let us fix the symmetry group G, with given G, @, and
s;. We consider the special group supercohomology 2D
FSPT state constructed from (n,,v3) data satisfying
dn, =0 and dv; = O, = (—1)®>—"2Htm=1 [52] We show
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FIG. 4. FSLU transforms a 2D “FSPT” state to a fermion product state. There are two FSLU transformations (a) ﬂ>(b) —(c) to
trivialize the initial 2D FSPT state. (a) Majorana fermions are in vacuum pairs (green arrows). (b) There is exactly one Kitaev Majorana
chain inside the triangle (red links). (c) There is one Kitaev Majorana chain around each vertex (inside the gray arc). And we can shrink it

to the vertex and redefine the basis state |g;) for the vertex.

that the 2D FSPT state with n, = w, can be connected to a
product state by FSLU transformations.

Consider a 2D triangulation lattice of a closed oriented
spatial manifold. The FSPT wave function is a super-
position of the basis states with coefficients related to v5
[see Eq. (90)]. The n, data specify the decorations of
complex fermion ¢/ 7 at the center of each triangle (ijk) of
the bosonic basis state |{g;}). So the fermionic basis state
can be expressed as

[(a)) = T [ (5= {g:}).

(ijk)

(154)

We show in the following that the above state can be
transformed by two FSLUs as

(@) 21(B) 2(c)),

where the schematic figures of these three states are shown
in Fig. 4. The final state |(c)) is obtained from the bosonic
state [{g; }) by decorating a small Kitaev chain around each
vertex [see the Kitaev chain along the gray arc in Fig. 4(c)].
After shrinking the small Kitaev chain to each vertex i, we
can view the state |g;)’ with a fermion mode as a new basis
state. So the final state has the expression

[(¢)) = {g:})

which is a fermionic product state without complex fermion
decorations on the triangles. Therefore, using the two
FSLUs U, and U,, we have connect an FSPT state with
complex fermion decorations specified by n, = w, to
another FSPT state without complex fermion decorations.
So the decoration data n, = w, for a complex fermion layer
are trivialized.

The following are the detailed constructions for the two
FSLU transformations.

(i) The first FSLU transformation U, from |(a)) to
|(b)).—Apart from the complex fermion ¢, (blue dots) at
the center of the triangle in Fig. 4(a), we also add 3|G,|
fermion modes (af;,, af,, and ag;,) near the three

(155)

=®; 9:)", (156)

vertices (0, 1, and 2) of the triangle and split them
into 6/G,| Majorana fermions [red dots in Fig. 4(a)].
The Majorana fermions are paired from y4 to y% (vacuum
pair) near each vertex, respecting the right-hand rule
of the triangle orientation (green arrows). Since all the
Majorana fermions are in vacuum pairings, we do not
change the initial state Eq. (155) with only complex
fermions ¢ e

After the transformation by U, the initial state is changed
to the intermediate state |(»)) shown in Fig. 4(b). In the state
|(b)), there are exactly one nontrivial Majorana chain (red
lines) and |G,| — 1 trivial Majorana chains (dotted green
arrow) along the boundary of the triangle. The Majorana
fermions forming nontrivial Kitaev chain are labeled by
group elements of the nearby vertices. And the pairing
directions are chosen to respect the G, symmetry. So the
projection operators Eq. (98) for the nontrivial pairings (red
lines) inside the triangle (012) in Fig. 4(b) are

qu’éqzla,om = U(QO)PSI(]ZB%IZAU(QO)
1 1.
_ 5 [1- (_1)mz(go,go]gl)173%237(’;112/\]’ (157)
POIZB 0124 = U(QO)P(E;IQZB%HA U(go)T
1 Y.
5 [1- (_l)wZ(gl’g‘192)’7311237(%212/4]’ (158)
o .
POIZA 0128 = = U(go)P Sl@A%lgBU(gO)}
1 1oy
= [ = () il o). (159)

The blue arrow on the red link in Fig. 4(b) means that the
actual arrow direction is obtained by a G, action and depends
on @,. The above Kitaev chain decoration procedure along
the boundary of a triangle is very similar to the 1D FSPT
construction with only three vertices. The Majorana pairings
have the following properties: (i) Both the vacuum and the
nontrivial pairings are invariant under G, action. (ii) The
fermion parity change of Majorana chains from Fig. 4(a) to
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Fig. 4(b) inside the triangle is exactly (—1)®2(%'916;"02),
This result is obtained by noticing that the summation of
three @, terms in the above three equations is equal to
@2(95" 91> 97" 92), according to dw, (g0, 95" 91, 97" 92) = 0.
Since we choose n, = @,, we conclude that the complex
fermion mode ¢ 7 at the center of the triangle should be

_ 9i \n,(ijk) 0,0 0 .0 9i-9; 99k Jis 9i  \ny(ijk
U= H(Cijk) : Pl]kAJkB szkA ijkB Pl]kA ijkB Pi/‘kB,iZkAszsz]kAszkAzlkB)(yy’kA) 2(i7k),
oY o#g; gl

(ijk)

The first term cl . is used to remove the complex fermions
at the center of each triangle. Other terms are Majorana
fermion pairing projection operators Eq. (98) to decorate
one Kitaev chain along the boundary of the triangle. The
last dangling Majorana operator is inserted for fermion
parity considerations. Other nonstandard U; can be ob-
tained from the standard one by a U(g,) action. Therefore,
the operator U, from |(a)) to |(b)) is both fermion parity
even and symmetric under G,, action.

(ii) The second FSLU transformation U, from |(b)) to
|(c)).—Since the state is on a closed oriented surface, there
are four Majorana fermions on the two sides of the oriented

link (ij). For convenience, we now relabel them by y? i v j,
on the right-hand side and y? i2) v ]2 on the left-hand side of

the oriented link (ij) (see the four red dots near each link).
We can use an FSLU U, to change the Majorana fermion

pairings from Pi’lgfl 1= Pi’zgjﬂ =1 [see red links in

Fig. 4()] to P} —Pfjfzgjjl =1 [see red links in

Fig. 4(c)]. These four Majorana fermions near link (i)
form a loop with Kasteleyn orientations. So the Majorana
fermion parity is unchanged under this FSLU.

The expression for the FSLU U, is simply

— 9i-9 95-9j
U2 HPJIL]ZPIJZ ijl
(i)

(161)

Note that the actual direction of the blue arrow
in Fig. 4(c) near vertex i depends on Py

gLz
U(gi)3(1- iyf]-]ysz)U(g,»)"'. So the arrow direction is
reversed if s;(g;) =1, and v, and y, are Majorana
fermions belonging to the same A/B type.

After the above two FSLU transformations U, and U,,
we have a state where each vertex is surrounded by one
nontrivial Majorana chain (red arrows) and |G| — 1 trivial
Majorana chains (green arrows). The fermion parity of this
vertex depends on the number and the orientations of the
triangles sharing this vertex. We can define a new state |g;)’
around the vertex i as the combination of the original

bosonic state |g;) and the neighboring Majorana fermions

totally annihilated, to make sure that U; is fermion
parity even.

In such a way, the FSLU transformation U; annihilates
the fermions at the center of each triangle and creates a
small Kitaev Majorana chain along the boundary of the
triangle. The explicit expression of the standard FSLU
transformation U; with gy = e is

(160)

I
[the degrees of freedom inside the gray circles in Fig. 4(c)].
It is easy to check that |g;)" has the same G ,-transformation
property as |g;), i.€., |g;)’ = |gg;)’. So the final state |(c)) is
a fermionic product state [Eq. (156)].

In summary, using the two FSLU transformations
Egs. (160) and (161), we can remove the complex fermions
at the triangles of an FSPT state with n, = @, and obtain an
FSPT state with n, = 0. Therefore, the complex fermion
decoration layer with n, = w, is trivialized by these FSLU
transformations.

2. Boundary ASPT of the 2D bulk

We show that the 2D FSPT state with n, = w, on a
closed surface can be connected to an FSPT state with
n, = 0. However, for a system with a boundary, there is
something unusual left.

Consider a state defined on a 2D triangulation lattice
with a boundary. We can perform FSLU transformations
similar to Eqgs. (160) and (161). The only difference is that
the link (ij) in the product in Eq. (161) is not on the
boundary of the space manifold, since there are only two
Majorana fermions near the each boundary link (see Fig. 5
for an example with only one interior vertex labeled by g..).
After the transformations, the bulk state becomes a tensor
product of interior vertex state |g;)’ [see Fig. 6(a) for an
example]. But the boundary is transformed only under U,
and is a so-called 1D ASPT state [see Fig. 6(b) for an
example]. This boundary state is again a combination of
one nontrivial Majorana chain [see red links in Fig. 6(b)]
and |G,| — 1 trivial ones [see green links in Fig. 6(b)].

The anomalous feature of the boundary can be seen from
the symmetry action on the boundary. Under a U(g)
symmetry action, the Majorana fermions are transformed
as 721’ N (—1)“’2(9*9'7;/%9" and 7/‘(,’3" N <_1)wz(g~g/)+sl(g)},%9f_
Since there are three types of Majorana pairings on the
boundary [see Fig. 6(b)], we should analyze their symmetry
transformations separately:

(i) Vacuum pairings (green lines) —zyA yB =1 are

transformed trivially under G, action.

(i1) The nontrivial Majorana pairings (red lines) parallel

to link (ij) are always A-B type pairing with
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FIG.5. FSLU transformations for “FSPT” state on a 2D surface with boundary. Similar to the “FSPT” state on a closed surface, there

are two FSLU transformations (a)—U1(b)

—U2(¢) to trivialize the initial 2D “FSPT” state. (a) Original 2D “FSPT” state with

complex fermion decorations. (b) There is exactly one Kitaev’s Majorana chain inside each triangle (red links). (c) There is one Kitaev's
Majorana chain around each bulk vertex. The degrees of freedom inside the gray circle are combined to be the new basis state |g, )’ for
the bulk vertex. There is a remaining 1D ASPT state along the 1D boundary of the 2D bulk.

93 g1

99 99 gs 9s 95 99 99
<~ g
R R IRESRL U e AR B
99 v 7B B
0 1 3 0
9 g2 g g9 g g
o) ®

FIG. 6. ASPT on the 1D boundary of 2D bulk. On the boundary, the Majorana fermions forming a nontrivial Kitaev chain (red dots)
are labeled by A/B and g € G,,. The blue arrow indicates that the pairing directions may be changed under symmetry action. (a) 2D bulk

(b) 1D boundary.

different group element labels g; and g;. Under the
g € Gy, action, the pairing arrow is changed accord-
ing to (=1)®2(0:9)+@2(9.9)),

(iii) The nontrivial Majorana pairings (red lines) crossing
a black lattice link are always labeled by the same
group element and can be of different A/B types. So
the pairing arrow is changed as (—1)*(9) if the
pairing is A-A or B-B type.

Therefore, depending on w;(g. g;), @1(g. g;), and s,(g), the
local Majorana fermion parity (pairing direction) for the
second and third types of pairings may be changed.

For a closed 1D array of Majorana fermions as the
boundary of a 2D bulk [see Fig. 6(b), for example], it is not
hard to show that the total Majorana fermion parity is
always fixed under G, action [79]. However, if we want to
define a similar state on an open chain [such as Fig. 6(b)
with an open boundary condition], the total fermion parity
may be violated under U(g) action. This result is simply
because the direction of the link crossing the boundary may
be changed. So the symmetry action is incompatible with
the fermion parity of the open 1D ASPT chain. It implies
that the 1D ASPT state can exist only on the boundary of a
2D bulk state.

3. Boundary F move and fermion parity violation

There is another way to understand the anomalous
feature of the 1D boundary. We can try to construct such

a 1D state without 2D bulk directly and find out the
inconsistency of the state.

We consider the 1D state with a Kitaev chain and without
complex fermion decoration (n; = 0). We put |G,| species
of Majorana fermions near each vertex similar to the 2D
construction. But only one of them is in nontrivial pairings
between different vertices. The F move for this state is
given by

~90 ,,’!]0 ~92 ,),!]z ,\/.(lﬂ ~90 91 91 92 92
10A 10B /2A 2B 0A T0B 1A 1B _12A 12B
> -—)—o -0 _ * —)—o -—)—o -9
U e = F(90,91,92) ¥ "5, ,

gJo 92 g0 g1 92
(162)

where the FSLU F operator is defined as

F(g0.91.92) =|Gy|"*v5(90.91.9>) X (violate fermion parity).
(163)

X is some Majorana fermion projection operators to impose
the Majorana pairings. Since the Majorana fermion parity
change of the F move is (—1)?2(% 91:9:'%) (one can check
directly using Kasteleyn orientations), the above F symbol
may violate the Majorana fermion parity. So the state is
obstructed if [@,] is nontrivial.

However, we can introduce a 2D bulk to the above 1D
state we are constructing. The difference is that we can use
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FIG. 7. Relation between FSLU U, for a 2D triangle and 1D F
move. The 2D triangle can be viewed as a 1D F move from the
upper two links to the lower link. It relates the trivialization of 2D
n, data to the obstruction of a 1D Kitaev chain. (a) The FSLU
transformation U, in Eq. (160) for a single triangle. This FSLU
changes the fermion parities of the Majorana fermions and the
complex fermions by (—1)?2(01:23) and (=1)(012), respectively.
(b) The 1D F move Eq. (164) for the boundary ASPT state. This
F move changes the fermion parities of the Majorana fermions
and the complex fermions by (—1)22(0123) and (—1)n(012),
respectively.

a complex fermion from the 2D bulk to compensate the
Majorana fermion parity of the 1D F move Eq. (163). So
the new F move reads

F(g()’ghgz):|Gb|1/21/2(90791,92)(03[12)"2(‘(]”’9“”)}(- (164)

We have to impose the condition

Ny, = Wy (165)
to make the new F move total fermion parity even. So there
is no longer fermion parity inconsistency for the 1D ASPT
state on the boundary of a 2D bulk.

In fact, the 1D F move Eqgs. (162) and (164) can be
understood as the FSLU transformation U; Eq. (160) for a
single triangle (012) (see Fig. 7). The upper two links (01)
and (12) correspond to the right-hand side of the 1D F
move. And the lower link (02) corresponds to the left-hand
side of the 1D F move. The additional complex fermion
cl, in 1D F move Eq. (164) is merely the decorate
complex fermion at the center of the 2D triangle. This
picture relates the 1D FSPT obstruction and the 2D FSPT
trivialization and explains the trivialization relation
Eq. (165) in a simple way.

F. Classification of 2D FSPT phases

The general classification of 2D FSPT phases is as
follows. We first calculate the cohomology groups
H'(G,,Z,), H*(Gy,Z,), and H?*|G,,U(1);]. For each
n, € H'(G,, Z,), we solve the twisted cocycle equation
[Eq. (14)] for n,. For each solution n,, we solve the twisted
cocycle equation [Eq. (14)] for vs. If n, and v5 are in the
trivialization subgroup I'> and I in Eq. (15), then they are
trivialized by boundary ASPT states. (Similar to the 1D case,

we can define I'® to describe those 2D BSPT state trivialized
by fermions.) So the obstruction-free and trivialization-free
(ny, ny,v3) fully classify the 2D FSPT phases.

Similar to the bosonic case, we can also use the 2D
FSLU transformations to construct the commuting-projec-
tor parent Hamiltonians. The procedure is tedious but
straightforward. For the case of complex fermion deco-
rations only, it is given explicitly in Ref. [72]. The terms of
the Hamiltonian are sequences of fermionic F moves that
change the group element label of a vertex from one to
another. All the terms commute with each other, because
our FSPT wave function is at the fixed point.

VI. FIXED-POINT WAVE FUNCTION AND
CLASSIFICATION OF FSPT STATES IN 3D

The fixed-point wave function for a FSPT state in 3D has
four layers of degrees of freedom. It is a superposition of all
possible basis states as (we omit the 2D p + ip chiral
superconductor layer in the figure for simplicity)

W) =

> ||

all conf. h

(166)

The basis state is labeled by group elements of G, on each
vertex. On the plane dual to each link, we put a 2D p + ip
chiral superconductor. Different from other layers, the p +
ip superconductor layer does not have a fixed-point wave
function on a discrete lattice [80]. So we do not discuss this
layer decoration until the end of this section. Along the dual
link of each triangle, we decorate Kitaev chains (see green
lines in the above equation). And at the center of each
tetrahedron, we decorate some complex fermions (see blue
dots in the above equation).

A. Four layers of degrees of freedom

Similar to 2D, we construct FSPT states on a 3D lattice
by decorating complex fermions, Kitaev chains, and p + ip
superconductors to the BSPT states. Therefore, there are
four layers of degrees of freedom including the bosonic
ones on a 3D triangulation lattice:

(i) |G,| level bosonic (spin) state |g;) (g; € G;,) on each

vertex i,

(ii) |G| species of complex fermions c7;; (¢ € G,) at

the center of each tetrahedron (ijkl),

(iii) |G| species of complex fermions (split to Majorana

fermions) af, = (y{j 4 + ir{j5)/2 (0 € G;) on the
two sides of each triangle (ijk), and
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FIG. 8. Four layers of degrees of freedom in a tetrahedron of a
3D triangulation lattice. (a) Layers of bosonic state |g;) on each
vertex i, complex fermions c7;, at the center of each tetrahedron
(ijkl), and Majorana fermions YZixa/p ON the two sides of each
triangle (ijk). (b) Layer of a 2D p + ip chiral superconductor on
the (green) plane dual to each link (ij). The boundary chiral
Majorana modes of the p + ip superconductors are along the
(red) intersecting lines of the (green) planes.

(iv) |G,| species of 2D p+ip chiral superconduc-
tors [may have several copies indicated by
ny(gi.9;) € Zr] on the plane dual to link (ij).
The boundary chiral Majorana modes (along the
link dual to some triangle) are y7;;., or yf g,
(6 € G;,) depending on the chirality (left- or right-
hand rule with respect to the oriented link (ij)).
Here, a labels the number of the chiral Majorana
modes [a = 1,2, ..., |n](g,~,gj)|].

The four layers of degrees of freedom are summarized in
one tetrahedron of the 3D triangulation lattice in Fig. 8. The
four vertices of the tetrahedron are labeled by
90, 91> 92, 93 € Gy, In Fig. 8(a), the blue ball is the complex
fermion c{,,; (6 € G},) at the center of the tetrahedron. Red
dots represent Majorana fermions y7;, , and y{; 5 (6 € G)
on the two sides of the triangle (ijk). We use the convention
that the direction pointing from y7; , t0 77} p is the same as
the right-hand rule orientation of the triangle (ijk). In Fig. 8
(b), each green area dual to link (ij) represents the
decorated 2D p +ip superconductors. There are
|n1(g;. g;)| right-moving or left-moving chiral Majorana
modes wﬁ’k/L;a (a=1,2,...,|n;]) along the boundary (red
line) of the green area dual to each link (ij).

As discussed in Sec. III B, the symmetry transformation

rules of these degrees of freedom under G, are summarized
as follows (g, g;, 0 € G):

U(9)lgi) = 199:) (167)
U(g)ctiU(g)T = (=1)@0cf . (168)
U(9)r5aU(9)" = (=1)=9)y5 ., (169)

U(9)r5pU(9)" = (—1)700 1@yt o (170)
U905 peU(9)" = (=1)20 % oo (171)
U(gs U(9)" = (m1)lortslay® o (172)

The bosonic degrees of freedom always form a linear
representation of G, (and Gy). On the other hand, the
fermion modes support projective representations of G,
with coefficient (—1)“2 and, hence, linear representations
of G; by Eq. (64).

B. Decorations of fermion layers

In this section, we construct systematic procedures of
decorating Kitaev chains and complex fermions to the
bosonic basis state |{g;}). Each layer of the degrees of
freedom twists the consistentequations for the nextlayer. The
decoration rules should respect the symmetry in all layers.

We focus on the Kitaev chain and complex fermion
decoration here, and the decorations of 2D p + ip super-
conductors are discussed at the end of this section.

1. Kitaev chain decoration

The Kitaev chain decoration in 3D is similar to the
constructions in Ref. [53]. The difference is that we put
|G, | species of Majorana fermions rather than one. However,
we still put only one species of Majorana fermions into
nontrivial pairings along the decorated Kitaev chain.

a. Decoration procedure.—For a given 3D triangulation
lattice, we first construct the resolved dual lattice (red
lattice shown in Fig. 9). Our Majorana fermions YTk and
Yirp (0 € Gp) are at the (red) vertices on the two sides of

each (black) triangle (ijk). The red arrow follows the
convention that the direction from Yiika O Vg is the same

as the right-hand rule orientation of the triangle (ijk). The
direction of vacuum pairing between them is from A to B:
=Y AY Gk = 1 when acting on the state. To decorate
Kitaev chains on the red lattice, we also should add arrows
to the small red tetrahedron inside each black tetrahedron
(see Fig. 9). These red arrows are constructed from the
discrete spin structures (a choice of trivialization of Stiefel-
Whitney homology class w, dual to cohomology class w?)
of the 3D spatial spin manifold triangulation. The Majorana
fermions are always paired according to these red arrows on
the red lattice. The red arrows have the property that the
number of counterclockwise arrows in the smallest red loop
around each black link is always odd. For details of the
local Kasteleyn orientations for arbitrary triangulation, we
refer the interested reader to Ref. [53].

The Kitaev chain decoration on the red lattice is specified
by 1,(9:. 9. gc) € Z,, which is a function of three group
elements g;, g;. g« € Gy. If ny(g:. 9;. gx) = 0, the Majorana
fermions y7; 4 and y7; 5 on the two sides of the triangle
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FIG. 9. Local Kasteleyn orientations of the resolved dual lattice. For a given triangulation of the 3D spatial spin manifold (shown by
black links), we can construct a resolved dual lattice (shown by red links). The Majorana fermion pairings (in the standard tetrahedron)
should respect the red link arrows in the figures. (a) Positive oriented tetrahedron (b) Negative oriented tetrahedron.

(ijk) are in vacuum pairings: —iy7, 4y7;p =1 (for all
0 € G,). On the other hand, if n,(g;,9,.9¢) = 1, we
decorate a Kitaev chain going through the triangle (ijk).
For all |G,| species of Majorana fermions, we put only
Y14 and yly p to be in the nontrivial pairing. All other
|G| — 1 species of Majorana fermions y7;; , and y7;, p with
o # g; are still in vacuum pairings. Here is an example of
the decoration of Kitaev chain going through triangles
(013) and (023) of the tetrahedron (0123) (we omit the
operator labels of Majorana fermions which are in vacuum
pairings along the Kitaev chain):

g3

o
0234

A %91
nolfs/;\ /0. / V1238
. o < g
‘o] i@

9o SRR 92

(173)

The decorated Kitaev chain is indicated by a green line
(83570 34T Ihaa-7ihsp)- Along the Kitaev chain, there is a
nontrivial pairing between y{,,, and y{};,. And the
Majorana fermions 013478 (6 # go) and Y1234/ (6 # q1)
are all in vacuum pairings. For the triangles without a
Kitaev chain going through (triangles (012) and (023)), the
Majorana fermions on their two sides are all in vacuum
pairings (¥4 /B and 7,34 /B for all 6 € G,). In summary,
we have the following Majorana fermion pairings:

~C. ~C.
lijk,A lijk,B <>
o-->--

— ik, aVigke = 1. (174)

i 90 _ (_1yw2(g0,95 "g1)+s1(90)
Vi234%0134 = (—1) 0 :

(175)

g1 90
V234 J0134 <~
o

Both the trivial and nontrivial Majorana fermion pairings
are indicated by gray ellipses. The blue arrow means that
the pairing direction of Majorana fermions may be changed
compared to the local Kasteleyn orientation indicated by
red arrow. We discuss more about the detailed pairing
directions and why they are symmetric later.

b. Consistency condition.—According to our decoration
rule, the total number of decorated Kitaev chains going
through the four boundary triangles of a given tetrahedron
(0123) is

(dny)(90. 91+ 920 93) = 12(91. 92, 93) + 12(90- 92. 93)
+ 12(90- 91- 93) + 12(90- 91+ 92)-
(176)

Since we are constructing a gapped state without intrinsic
topological order, there should be no dangling free
Majorana fermions inside any tetrahedron. So the number
of total Kitaev chains going through the boundary of a
tetrahedron should be even. We therefore have the (mod 2)
equation
dn, =0, (177)
as the consistency condition for Kitaev chain decorations.
c. Symmetric pairing directions.—Now let us turn back
to the details of symmetric Majorana fermion pairings
inside each tetrahedron of the 3D triangulation lattice. Our
strategy of constructing G,-symmetric pairings is the same
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as in the 2D case: We first consider the standard tetrahedron
with g, = e and then apply a U(g,) action to obtain all other
nonstandard tetrahedra with generic group element labels. In
this way, the Majorana fermion pairings are automatically
symmetric because of the symmetry transformation rule of

Note that the Majorana fermions y7;, , and y7;; 5 (o # g;) on
the two sides of triangle (ijk) are always in vacuum pairings
(=i¥7xa¥inp = 1), independent of the n, configurations.
So their pairing directions always follow the red arrow local
Kasteleyn orientations in both figures of the above equation.
For the two Majorana fermions y{}, , and y{;; , of the triangle
(ijk), there are two possibilities. If n,(g;, g;, g¢) = 0 (thereis
no Kitaev chain going through this triangle), these two
Majorana fermions are also in vacuum pairing, with the
direction indicated by the red arrow and projection operator

(1- iy?}k,Ay?;k,B)‘

(179)

N =

~1 —1
9i-9i _ 90 9i-9y 9i -1 _
PijkA,ijkB = U(QO)PijkA,ijkB Ulgo)™ =

P3i35.0134 = U(90)PGiap.0134U(90)" =
P33 0134 = U(90)P3p013aU(90)" =

P33 0108 = U(90)Po33p.0128U (90)" = % [1 = (=1)" @) iy pyiiag),
P3Sp 134 = U(go)138’29361]9.91123/4U(go)T =3 [1 = (=1)o2lo0gs0) iyt iy, ),

, €959
Pg(igé.lzm = U(QO)P<)120B.1123AU(go)T

, 95" 1.
P?123g/§,013A = U(QO)PI%SAI.OBAU(QO)T

)

the pairing projection operators Eq. (99). For the standard
tetrahedron, the Majorana fermions are paired according to
the local Kasteleyn orientations indicated by red arrows. And
the pairings in the nonstandard tetrahedron is obtained by a
U(go) action as follows:

(178)

On the other hand, if n,(g;, g;.gx) = 1 (there is a Kitaev
chain going through this triangle), we pair the Majorana
fermion inside the triangle with another one belonging to
another triangle with also n, = 1 [for example, y{};, and
70434 are paired in Eq. (173)]. Note that there are always an
even number of Majorana fermions in nontrivial pairing
among the four Majorana fermions (y{3 . 70535, 70034 and
Y,p) inside the tetrahedron (0123), for we have
(dns) (90> 91, 92, 93) = 0 (mod 2) from Eq. (177). There
are in total (4 x 3)/2 =6 possible nontrivial pairings
inside the tetrahedron (0123) (i.e., the six links of the
small red tetrahedron inside the big tetrahedron (0123)).
The Majorana pairing projection operators of them are as
follows:

1 .
5(1 - ’7301237’3(1%)’ (180)
1 - 90 90
5(1 — Y0238Y0134) (181)
(182)
1
- (183)
1 1.
- 2 [1 - (_1)wZ(gO’gO191)178(1237511123/4]’ (184)
1 _
[1- (—1)w2(go’golg‘>+S‘(g°)i7'(1]'23AYg(13A]- (185)
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gs

% g0
0055

g1

(a)

g2

v
S~ 90
®1s5

~90
/013 A

g1

(b)

FIG. 10. Resolvation of four strings of Kitaev chains meeting at one tetrahedron. If four strings (green lines) meet at one tetrahedron,
we should pair the Majorana fermions 1334/ to Yo134/8 and Yo0238/a 1O Y0128 A (gray ellipses) for a positive or negative oriented
tetrahedron. We omit the labels of Majorana fermions (7ikayp With o # g;) that are in vacuum pairings in the figure. (a) Positive oriented

tetrahedron (b) Negative oriented tetrahedron.

Among the six possible nontrivial pairings, only the last
four may change their directions in the nonstandard
triangle. They are indicated by blue arrows in the right-
hand-side figure in Eq. (178). This result can be understood
from the following facts from the symmetry transformation
on projection operators Eq. (98): The (—1)®? term appears
in the projection operators when the pairing is between
Majorana fermions with different group element labels [see
Eqgs. (183)—(185)], and the (—1)* term appears when the
pairing is between the same A/B-type Majorana fermions
[see Egs. (182) and (185)]. The first two pairings
[Eqgs. (180) and (181)] belong to neither of the above
two cases. So their pairing direction is the same as the red

arrow Kasteleyn orientations even after U(g,) action.
There is another subtlety when n, =1 for all four
triangles of a tetrahedron. There are four strings of
Kitaev chains meeting at the tetrahedron (0123). In this
case, we should resolve the crossing point of the four
|

strings. We use the convention that the Majorana fermions
{4 and y5, are paired and y§5,, and yj),, are paired
[see Fig. 10(a)]. Of course, all other Majorana fermions
711'7jk, A/B with ¢ # g; are still in vacuum pairings. This
resolvation convention is the same as Ref. [53].

d. Majorana fermion parity.—Since the symmetry action
may change the pairing directions inside a tetrahedron, the
Majorana fermion parity of this tetrahedron may also be
changed. We can calculate the fermion parity difference
between the standard and nonstandard tetrahedra by counting
the number of pairing arrows that are reversed by U(gq)
action. It, of course, depends on the 7, configurations. We
can use, for example, 75(go. 91 92)n2(91. 92. 93) = 0, 1 to
indicate whether y{},, and y{};, are paired or not. So the
Majorana fermion parity change inside the triangle is, in
general, given by

AP;(0123) - (_1)wz(go,.qa'm)nz(gn,gzm)ﬂn(go)[nz(yo-,gz-ys)nz(go-yl,92)+nz(go,y|,.<13)nz(yl,.clz,ga)}

— (_])[wzvnzﬂ'lv(”zvl"z)](%-%lg]sﬁlf]!/qulz_]!]s) ,

where we wuse the higher cup product definition
The above equation is a summary of the phase factors
appearing in Eqgs. (180)—(185). The first term (—1)*2
appears iff n,(g;,9,,93) = 1. And the second term
(=1)910) in the first line of Eq. (186) appears when
n(9o. 92. 93)12(90- 91, 92) = 1 or  ny(go.91.93)n2(91,
»,93)=1. Note that, different from the 2D case, we cannot
find a single Majorana fermion involving all the Majorana
fermion parity configurations.

(186)

The above discussions of Majorana fermion pairings also
apply to the negative oriented tetrahedra. The red arrow
local Kasteleyn orientations inside a tetrahedron are given
in Fig. 9(b). The symmetric Majorana fermion pairing in a
nonstandard tetrahedron is also obtained by a U(g,) action
from the standard tetrahedron. We also have Majorana
pairing projection operators similar to Eqs. (180)—(185) for
negative oriented tetrahedron. For n, configurations with
four Kitaev chains meeting at one negative oriented
tetrahedron, we use the resolvation convention shown in
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Fig. 10(b). And the expression of Majorana fermion parity
changes Eq. (186) is valid for both positive and negative
oriented tetrahedra.

To sum up, although there are |G,| species of Majorana
fermions, we decorate exactly one Kitaev chain to each
intersection line of symmetry domain walls specified by 7,
configurations. The decoration is compatible with sym-
metry actions. The Majorana fermion parity of a tetrahe-
dron is changed according to Eq. (186) compared to the
local Kasteleyn oriented pairings.

2. Complex fermion decoration

The rules of complex fermion decoration are much
simpler than that of the Majorana fermions. The decoration
is specified by a Z,-valued 3-cochain n; € C'(G,,, Z,). If
n3(9:. 9j» 9x- 1) = 0, all the modes of complex fermions
i (@€G,) at the center of tetrahedron (ijkl)
(i < j < k<) are unoccupied. On the other hand, if
n3(9:. 9j» 9x- 1) = 1, exactly one complex fermion mode
ciyy is decorated at the center of tetrahedron (ijkl) [see

012B 124A
A

on the (red) resolved dual lattice. This Pachner move
involves five vertices from (0) to (4), with group element
labels e, g5'g1, 95' 92, 95 93, and g5'gs in Gy, There are
three tetrahedra ((0123), (0134), and (1234)) in the right-
hand-side figure and two tetrahedra ((0124) and (0234)) in
the left-hand-side figure in Eq. (187). The Pachner move
removes the link (13) on the right. Note that we omit the

= Fle,95'91.90 92,90 ' 93,95 '9a) ¥

= Fle,90'91,95 " 92:90 '93:95 '91) ¥

Fig. 8(a)]. All other complex fermions c;’jkl (0 # g;) are still
in vacuum states.

It is simple to check that the complex fermion decoration

is G, symmetric. Under a U(g) action, the bosonic vertex

99i

label {g;} becomes {gg;}. And we should decorate ¢},
to the tetrahedron (ijkl) if n3(99:. 99;. 99k 991) =
n3(gi. 9> 9e- 1) = 1. This result is exactly the complex
fermion ¢f;;, by a U(g) action.

C. F moves

The 3D Pachner move for different triangulations of 3D
spatial manifold induces FSLU transformation of the FSPT
wave functions on the lattices. Since the FSPT state is
invertible, we need to consider only one of the many
Pachner moves. Other Pachner moves can be derived from
this one using the invertibility and unitarity of the move.
We can first define the standard F move with g, = e, and
then other nonstandard ones can be obtained by simply a
U(go) action. The standard F move is given by

(187)

(188)

p + ip layer in the above figures. And for each tetrahedron,
the meeting point of the four red or green strings in
Eq. (188) should be resolved to a small tetrahedron with
local Kasteleyn orientations in Eq. (188) [using the con-
vention Fig. 9(b)]. The blue arrows of the red links inside
the only nonstandard tetrahedron (1234) [see the right-
hand-side figure in Eq. (188)] mean that their directions
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may be changed under U(g,"g;) action compared to the red
arrow local Kasteleyn orientations [see Eq. (178)]. The
green line represents the decorated Kitaev chain specified
by the n, data. We also omit the blue ball symbols for the

|

— — — — — — — — ~1
F(e.01,02.03,04) = 14(01, 12,23, 34)(c{104)" O (c{334)" O (c6123)" 012 (c6134) OB (13 )

We use the abbreviation ij for g7'g; in the arguments of F
and vy. Different from vy, the 3-cochain n3 is symmetric
under G, action. So there is no difference between
homogeneous and inhomogeneous n3. We use ns3(ijkl)
to represent 13(g;, 9;, 9> 91) = 13(9; ' 95> 97 9k> 95 91) for
short. In the following, we explain the terms in the F
operator in Eq. (189) one by one. There is some subtlety
about the Majorana fermion parity changes for the X
operator. We give the explicit expression for X in the next
subsection.

The U(1) phase factor 1v4(01,12,23,34) = v4(g5' g1,
9792, 9593, 95'g4) in the front of the F symbol is an
inhomogeneous 4-cochain depending on four group ele-
ments of G,. By definition, the inhomogeneous cochain is
related to the homogeneous one by

vs(95" 91, 97" 92. 95" 93. 95 9a)

=v4(e. 95" 91. 95" 92. 95 93. 9" 94).  (190)
with the first argument of the homogeneous v, the identity
element e € G,. As discussed below, we can relate
vale. 95" 91. 95" 92- 95" 93. 95" 94) and v4(go. 91. 92. 3. 9a)
from the symmetry conditions of F. Different from the
special case Gy = Z; x Gy, they do not equal each other,
in general.

The complex fermion term of the form cfcccc anni-
hilates three complex fermions at the three tetrahedra of the
right-hand-side figure and creates two in the left-hand-side
figure in Eq. (187). Following Sec. VIB 2, the tetrahedron
(ijkl) is decorated by complex fermion C?}kl‘ So, in the

standard F' move, only the last fermion c?%;? has group
element label g5'g,, and all other four fermions have group
element label e. We note that, different from the special
case Gy = Zg x G, where we have dn; = ny~—~n, [53], the
complex fermion number n3; has a more complicated
relation with the n, data, in general.

1. Majorana fermion parity and X operator

In this subsection, we give an explicit expression for the
X operator in the standard F move Eq. (189), which is
related to the Kitaev chain decorations.

decorated complex fermions at the center of the tetrahedra
in the figures.

The explicit expression of the standard FSLU F operator
for the above Pachner move is

n5(1234)
’ Xo1234]12).

(189)

As a consequence of the local Kasteleyn orientation of
the red lattice, the Majorana fermion parities for the two
Kitaev chain decorated states on the two sides of Eq. (187)
may be different. It is shown in Ref. [53] that, if the
Majorana fermions are paired according to the local
Kasteleyn orientations, the Majorana fermion parity differ-
ence under the F move is

AP(F)], g = (=1)0=-m001239) (191)
So, among all the Kitaev chain decoration configurations of
the F move, only the ones with n,(012) = n,(234) =1
change the Majorana fermion parity [see the green lines in
Eq. (187) for an example]. However, for a generic sym-
metry group with nonzero s; and ,, the Majorana
fermions are paired according to the rules designed in
Sec. VIB 1. As shown by blue arrows in Eq. (178), the
pairing directions inside the nonstandard tetrahedron may
be changed by the symmetry action compared to the local
Kasteleyn orientations.

In the standard ¥ move Eq. (187), there are in total five
relevant tetrahedra. Four of these tetrahedra are standard,
with the group element label of the first vertex e € Gy,.
However, the tetrahedron (1234) on the right-hand side in
Eq. (187) is nonstandard and has first vertex label gy'g;.
Therefore, only inside the tetrahedron (1234) of the
standard F move may the pairing directions of the
Majorana fermions be changed. The pairings are given
by the projection operators Eqgs. (180)—(185), with the
replacement (go. g1.92.93) = (95" 91 95" 92 9" 93 9" 9a)-
Furthermore, as discussed also in Sec. VI B 1, the Majorana
fermion parity change for a nonstandard tetrahedron (0123)
compared to the local Kasteleyn orientations is given by
Eq. (186). For the tetrahedron (1234) of the standard F
move, the Majorana fermion parity change compared to the
local Kasteleyn orientations is then

Ap;(1234) — (_])[wzv"2+51V(”le”z)](%lgl 97 92,951 93951 94)
(192)

This result is obtained from Eq. (186) by the simple
replacement (go. g1, 92, 93) = (95" 91> 95" 920 95" 93 9o 94)-
Combining it with Eq. (191), the total Majorana fermion
parity change under the standard F move Eq. (187) is
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AP (F) — <_1)['lzvﬂz“rwzvﬂz-'rslv("zvl”2)](01234>_ (193)

We note that there is no difference between the homo-
geneous and inhomogeneous notations for Z,-valued
cocycles s; and @, and cochain n,, for they are symmetric
under G, action. So we can just use (01234) to represent
(90- 91 92.93.94) ot (95" 91.91'92.95'93. 95" 94) in the
above equation. This situation is very different from the
U(1) phase factor v.

It is convenient to split the exponent of (—1) in Eq. (193)
into two parts:

@,(01234) := (ny—n5 + @y —n,)(01234)
+ 51(01)n,(124)n,(234) (mod 2), (194)

B4(01234) := 5,(01)ny(134)n,(123) (mod 2).  (195)

Their summation gives the total Majorana fermion parity
change number

(mod 2).
(196)

ay + Py = ny—ny + wy~ny + 51— (ny—11y)

The philosophy of this splitting is as follows. The first
part @, has the property that a4(01234) =1 implies
n,(234) = 1, because all of the terms in a4 (01234) contain
the factor n,(234). However, the second part , does not
contain the factor n,(234). For a given Kitaev chain
configuration n,, if @4(01234) =1 and £,(01234) = 0,
we can conclude that the Majorana fermion parity of the
Kitaev chain going through the link (234) is changed. We

can add a Majorana fermion operator y';/%;g to the X
operator of Eq. (189) to represent the correct fermion
parity change. On the other hand, if @,(01234) =0 and
$4(01234) = 1, the Majorana fermion parity of the Kitaev
chain going through the link (123) is changed. We can add
another Majorana fermion operator ygl"z’;ﬁ to the X operator

~1
gy 9 . .
(we can also use 73,4 as another convention). In this case,

adding yggifg does not make sense, because the Kitaev chain
may not even go through this Majorana fermion.

With the above understanding, the explicit form of
Xo1234[no] in the standard F move Eq. (189) can be
expressed by Majorana fermion pairing projection oper-
ators as

,(01234) B4(01234)

9%'9
(¥1234) .

(197)

-1
Xo1234[n2] = Poiaalna] - (93545

Poiozaln] = (HZ(LI"]W) < H PZE%)
(a,byinT

loopi ‘Majorana pairs

X ( H H PZZA,[jkB)'

triangle(ijk) &7 0€G,,

(198)

—1 —1
. . %'9 %'9
The two Majorana fermion operators y,3,, and 7%, are

inserted when a,(01234) = 1 and f,(01234) = 1, respec-
tively. The first part P934 (] in the X operator Eq. (197) is
the Majorana fermion pairing projection operator, which
enforces the symmetric pairing rules for the left-hand-side
Majorana state in Eq. (187). Similar to the 2D case, the
general expression of Py;»34[n1] [Eq. (198)] has three terms.
The first term is a normalization factor, where 2L; is the
length of the ith loop in the transition graph of Majorana
pairing dimer configurations on the left triangulation lattice
7T and right lattice 7”. The second term projects the right-
hand-side state to the left-hand-side state using the pairing
projection operators [Eq. (98)]. And the third term is the
vacuum projection operators for the Majorana fermions
that do not appear explicitly in the left figure. For example,
the explicit X operator for the n, configurations
shown in Eq. (187) [only n,(012) = n,(024) = n,(123) =
n,(234) = 1] is

~1
~ o €9y 92 e.,e c,0
X01234 [Vlz] - 2<P024B,234BP012A.024AHP024A.024B>
oFe

c.0 0.0 0.0
X (H P013A,013BP123A,1238P134A,134B)

oeGy,

-1 01234)
9o g2
X (Y2345 ,

(199)
—1

where we do not need 77,4, because the configura-

tion n,(134) =0 implies £,(01234) = 5,(01)n,(134)n,

(123) = 0.

The F symbol in Eq. (189) should be a FSLU operator. It
should be both fermion parity even and symmetric under
G, action. We can use these constraints to obtain several
consistency equations for the cochains n,, n3, and vy.

2. Fermion parity conservation

As discussed in the previous subsection, the Majorana
fermion parity change for the standard " move is given by
Eq. (191), if the pairings are according to the local
Kasteleyn orientations. From the symmetry action on the
only nonstandard tetrahedron (1234) of the standard F
move, there is an additional Majorana fermion parity
change [Eq. (192)]. By combining them, we obtain the
total Majorana fermion parity change [Eq. (193)] for the
standard F' move.

On the other hand, the complex fermion parity change
under the standard F' move can be simply calculated by
counting the complex fermions decorated at the five
tetrahedra on the two sides:
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APS (F) — (_ 1 )n3(1234)+n3(0234)+n3(0134)+n3(0124)+t13(0123)

= (200)

(—1)dns(01234),

As a FSLU transformation, the standard F move should
preserve the total fermion parity. So we have the constraint
AP(F) = AP(F) - AP¢(F) = 1. Using the explicit
expressions Egs. (193) and (200), we have the following
(mod 2) equation:
dnz = ny—ny + wy—ny + 51— (ny—ny). (201)
The decorations of Majorana fermions and complex fer-
mions are not independent and should satisfy the above
constraint.
We note that, if we consider the special case of unitary
symmetry group G, = ijc x Gy, (i.e., w, =0 and s; = 0),

the above equation is reduced to the previous known result
dl”l3 = Ny~ny [53,62,63]

3. Symmetry condition

In the previous constructions, we considered only the
standard F move Eq. (187) with the first vertex label
e € Gy,. The nonstandard F' move is defined to be obtained
from the standard one by a U(g,) symmetry action. In such
a way, the F moves are symmetric under G, actions. In this
subsection, we derive the symmetry transformation rules
for the F move and the U(1) phase factor v in front of the
F move.

According to Eq. (66), we have the following com-
muting diagram for the standard and nonstandard F
moves (we omit the decorated fermion layers in the
figures):

9095 9 '9s
. Flegg'91.90"92.90 9395 94) §
e \ 9o 94 e \ 9o ga
9% 0 9% 'n
U(QO)J JU(QO) (202)
g3 g3
F(90791792793ag4)
90 \ r 94 g0 \ r 94
N g1
So the nonstandard F operator is defined as
F(90, 91 92.93-94) = “F (e, 95" 91 95" 92- 95" 93+ 95" 94) = U(90) F (e, 95" 91, 95" 92 95" 93- 95" 94) U (90) 7. (203)

The nonstandard F moves constructed in this way are automatically symmetric, because one can show the

transformation rule for the nonstandard F moves

F(990- 991+ 992- 993- 994) = U(9)F (90 91- 92- 93 94) U (9)"

(204)

using Eq. (63) and the fact that F operator is fermion parity even.
Using a U(go) action on the standard F operator Eq. (189), we can obtain the nonstandard F symbol expression as

F(90,91,92,93,94)

= v4(90. 91> 92+ 93 94)(03(124)”3(0124)(Cg%;4)n3(0234)(03323>n3<0123)(Cg(i34)"3(0134>(C?]234)'13(1234)X01234["2]Y01234[n1]-

(205)
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The decorated complex fermions now have group element
labels g, (for the first four complex fermions) or g, (for the
last complex fermion). And the X operator is

92 )(14 (01234) (

= Poioaa[na] - (v33up 90 Yps(01234),

Xo1234[12] Y1234

(206)

with added Majorana fermion y33,, and y{},,, rather than

yg‘éﬁ; and y({%;" in Eq. (197). The operator Pgy34[n-]

projects the Majorana fermions to the pairing state on
the left-hand-side figure. It has a similar expression as
Eq. (198) and is a product of many Majorana pairing
|

ni(g0.91) = mie. g5 g1) = ni(gy' 91).
n3(90. 91, 92) = male, 95" g1. 95" 92) = n2(95" 91, 971 92).

n3(90- 91. 92. 93) = n3(e. 95" 91. 95" 92. 95" 93) = n3(95" 91, 97" 9. 95 93).

V4(90» 915925 93, 94)

projection operators [Eq. (98)] with appropriate group
element labels. The operator Ygj34[n;] in Eq. (205) is
an operator to change the p + ip superconductor decora-
tion configurations. We discuss this layer of decoration in
Sec. VIF separately.

From the decoration rules of Majorana fermions and
complex fermions constructed in previous sections, the data
ni, ny, and n3 are invariant under G, symmetry actions.
The homogeneous cochain v, in the nonstandard F move
Eq. (205) is a combination of the inhomogeneous v, in the
standard F move Eq. (189) and the 1 signs which appear
from the symmetry action. Therefore, we have the follow-
ing symmetry conditions for the data n;, n,, ns, and vy:

=%u,(e. 95" 1. 95" 92- 95" 93 95 94) = “va(95" 91. 97" 2. 95" 930 5 ' 9a)
=vy(95' 91, 97" 92. 93" 93 95 9a)

(207)
(208)
(209)
1-251(g0) nymm(go 91,92, 93, 94) (210)

The last equation can be viewed as the definition of homogeneous v, in the nonstandard F move Eq. (205) in terms of the
inhomogeneous vy in the standard F move Eq. (189). The symmetry sign difference O™ is given by

Ogymm(go, 91,925 935 94) =

We note that some of the terms above cannot be expressed
as a cup product form. The above equation can be obtained
by straightforward calculation using Eq. (203). In the first
line of Eq. (211), the first term of the form (—1)“2"3 comes
from the U(gy) symmetry transformation Eq. (168) of the

—1
last complex fermion c¢ly;; in the standard F move

Eq. (189). The second term of the form (—1)(@*s1)
comes from the symmetry transformation Eq. (170) of

yg%ﬂ; in the X operator Eq. (197) of the standard F move

Eq. (189). And the last sign of the form (—1)?#* comes
|

—1)»

C’)éy“‘m(go, 9192 93, 94) |ﬂ4

The symmetry sign O™ appears later in the twisted
cocycle equation for v, as part of the obstruction function
[see Eq. (215)]. In the special case of f, = 0, the calcu-
lation of Os is much simpler than the generic case.

(_ 1 ) (@r—n3-+s1—ay)(0.01,12.23.34) 4+, (0.02)a4 (01234)+, (0.01)p, (01234)

5(0.01)n5(1234) +[w5(0.02) +5, (0

( ) @y —n3+s,—dn3)(0,01,12,23,34)+0,(0,02)dn;(01234)

(_1){,;2(0,61);13(1234) [02(0.02)+s, (0)]ats (01234) 0, (0.01)84(01234)

(211)

|
—1
from the symmetry transformation Eq. (169) of yf‘é;ﬁ in the
X operator Eq. (197) of the standard F move. The 4-
cochains @, and f, are defined in Egs. (194) and (195).
If we have f, = 0 (for example, s; = 0 or n; = 0), we
need only to insert the dangling Majorana fermion operator

yg%fl; in the standard X operator. The expressions of the

standard /' move Eq. (189) and X operator Eq. (197) are
similar to the special case of s; = w, =0 [53]. Using
dny = a4 + f4 = a4, the symmetry sign Eq. (211) is
reduced to

)]dns(01234)

(212)

|
D. Superfusion hexagon and twisted cocycle equations
Just as the 2D F move should satisfy the superpentagon

equation of the superfusion category, the 3D F move
should satisfy a superhexagon equation of the superfusion
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FIG. 11. Standard superfusion hexagon equation. Algebraically, this standard superhexagon condition corresponds to Eq. (213). The

colored numbers i and j in the subscript of F indicate that the link (ij) with the same color is added after this F move. Since the group

element label of the first vertex is e € Gy, all the fermionic F moves are standard except 0l 12345- We use a simpler notation Fj,, =

F(e, ij.jk, kl, 7m) for the standard F move. We also omit all the fermion layers in the figure.

2-category. One should distinguish it from the hexagon
equation of the braided tensor category, for the former is in
the fusion level rather than the braided level. Our 3D FSPT
states constructed correspond to some kind of pointed

superfusion 2-categories with a given symmetry group.
It is enough to merely consider the standard super-
hexagon equations with first vertex label e € G, as
|

F(e,02,03,04,05)- F(e,01,02,04,05)- F(e,01,02,03,04) =

where we again use ij to denote g;y'g;. In the above
equation, only the last ' symbol is nonstandard. It can be
obtained from the standard one by a U(gy'g,) symmetry
action [see Eq. (203)].

Using the explicit expression of the standard F move
Eq. (189), we can unfold the standard superhexagon
equation [Eq. (213)]. By eliminating all complex fermions

coherence conditions, because all other nonstandard
ones can be obtained from it by a U(gy) symmetry
action. The standard superhexagon equation is shown in
Fig. 11 for the triangulation lattice and Fig. 12 for the
dual lattice. Algebraically, we have the following
equation:

F(e,01,02,03,05)- F(e,01,03,04,05)- F(01,02,03,04,05)
F(e,01,02,03,05)- F(e,01,03,04,05)-0'F(e,12,13,14,15),

(213)

|

and Majorana fermions, we can obtain a twisted cocycle
equation for the inhomogeneous 3-cochain vz in the
standard F move. In general, the twisted cocycle equation
reads

dvy = Os|ns], (214)
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FIG. 12. Superfusion hexagon equation on the lattice dual to triangulation in Fig. 11. Each meeting point of four red links should be
resolved to a small tetrahedron as in Fig. 9(b).

where Os[n;] is a functional of n3 only (as well as w, and s, parametrizing the given symmetry group). The n, dependence
of Os is through dns by Eq. (201). With nonzero @, and s, the obstruction function Os[n3] is more complicated than the

special result for unitary G, = Zg x Gy, [53,62,63].
Similar to the 2D case, the obstruction function Os[n3] consists of four terms from general considerations:

Osns] = Ogymm[”ﬂ - 05 [n3] - Ogy[dnﬂ ) Og [dnj]. (215)

The explicit expressions of these four terms are summarized, respectively, as

O;yrnm [HS} (01 2345) — (_1 )(a}zvnngs] —ay)(012345)+w, (013)ay (12345)+w, (012)5,(12345) , (2] 6)
Og[n3] _ (_1)113v1n3+dn3v2n3’ (217)
OF [dns] = (=1)4s =, (218)

Og [dn3] (0 1 2345) |/14:0 — (_ 1 )dn3 (02345)dn3(01235) 4w, (023) [dn3(01245)+dn3 (01235)+dn3 (01234)]

5 4n3(01245)dn3(01234)  (mod 2) o (_l')[drz3(12345)+dn3(02345)+dn3(01345)]dn3(01235) (mod 2) (219)

We note that the expression of the last term O%[dn;] is obtained under the assumption of , = 0 [see Eq. (195)]. This
assumption is true for s; = 0 (unitary G,) or n; = 0. The calculation of generic O% with nonzero f, is much more
complicated (but the procedures are the same), so we leave it for the future. By adding a coboundary (—1)4(s1=73+m—3dm) 1o
the obstruction function and shifting v, — v4(—1)*~"%"-39" we can simplify the above obstruction function to
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(95 [”3](012345>|ﬁ 0= (_1)(0)2\/"3+n3\/1Vl3+H3Vzdng)(012345)+wZ(013>dVl3(12345)
5 (—1)dn(02343)dns (01235)-+,(023) dns (01245)-+dns (01235) +dn3 (01234)]

x 3 (01245)dny(01234)  (mod 2) 5 () [dns (12345)+dins (02345) -y (01345)]dns (01235)(mod 2) - (22())

If we consider the special case of w, = s; = 0, then we have dn; = n,~—n, from Eq. (201). And the above obstruction
reduces to the known result for G = Z-; x Gy, [53,62,63].

Before calculating the obstruction function Os[ns] in detail, we note that we check numerically that Os[ns3] [Eq. (220)]
satisfies dOs = 1. It should be true, because the superhexagon equation [Eq. (213)] implies a one-higher-dimensional
equation involving one more vertex.

1. Calculations of obstruction function Os[n;]

In this subsection, we give explicit calculations of the four terms of the obstruction function Os[n3] in Eq. (215), with the
assumption of B, = 0.

The first term O™ [n3] comes from the U(01) symmetry action on F(e, 12,13, 14, 15) in the last term of Eq. (213).
Since the homogeneous v, of the nonstandard F move is obtained from the standard one by a symmetry action
[Eq. (210)], there 1s a sign difference O™ between them. Using the replacement (go. 1. 92, 93.94) =

(95" 91, 95" 92+ 95" 93- 95 94 g5 ' g5) in the explicit expression [Eq. (211)], we have

Ogymm[n?’] ((_)1 ’ (‘)2’ (‘)3’ (_)4’ (_)5) ( 1)(a17vn;+s|v(z4)(01 12,23,34,45) 4w, (01,13) a4 (12345)+a, (01, 12)/34(12345)

where a4 and p, are defined in Eqgs. (194) and (195). This result is exactly Eq. (216) claimed above. If we consider the
special case of f, = 0, the result is reduced to

O;ymm [l’l3] ((—)1 ’ (_)2, (‘)3’ (‘)4’ (_)5) |/}4:0 _ (_1)(w2vn3+s]vdn;)(0] 12,23,34,45)+m, (01, l%)dn3(l2345)

96] g; }'l';(l]kl)

The second term O%[n;] is the complex fermion sign from reordering the fermion operators (c; ki ) in Eq. (213). To

compare the complex fermion operators on the two sides of the superhexagon equation, we have to rearrange these
operators. The reordering give us the complex fermion sign

Oc [HS](012345) — ( 1) (n3—1n3+dny—,n3)(01234)

= (—1)(0345)n5 (0123)13(0145)n5 (1234)-+15 (0125) 5 (2345)
(=

1)@ (01234)1(0145)-+dns (023455 (0125) iy (01234)15(1245)-+dns (013455 (1235)+ s (01234) 3 (2345) s (01245)m3(2345),

(221)

_1)542("3) = (_1)”3‘/1"3 in the
special group supercohomology theory in Ref. [52]. The general group supercohomology theory for unitary G, = Z; x Gy,
also has this complex fermion sign [53].

The third obstruction function term Oy [dn,] originates from reordering the complex fermion and the Majorana fermions.
It is also present in Ref. [53] and has the form

This result is claimed in Eq. (217). It is a generalization of the sign Os[n3]

|s|:w2:n|:nz:0 - (

Ogy [dl’l3]
_ (_ 1 )dn3 —3dny

(—1)dns(01245)dns(01234) iy (01235)diny (01345) -+ (02345)ds (01234)-+dns (02345) dns (01245)+ i (01235) s (12345 - (01345) i (12345)

(222)

This result is exactly claimed previously in Eq. (218). This In the rest of this subsection, we deal with the most
obstruction function is a functional of dn; (rather than n; ~ complicated part O%[dns], with the assumption f; = 0.
directly), because the fermion parities of the X operator and ~ Similar to the Majorana fermion phase factor in Ref. [53],
the complex fermion operator ¢'c’cc depend only on dns.  this obstruction function takes value in {1, &i}. Since the
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presence of the dangling Majorana fermions in X depends
on dnj, we expect that O% dn;] is a functional of dn; only.

Let us denote the six X operators in the standard
superhexagon equation [Eq. (213)] by X5 =
Py(r53s5) ™ 139, Xopsas = Pa(rise) ™), Xopas =

03 \dnsy(01345 _ 02 \dns(01245 _
P3(r%s5)mOB%) 1 X 1045 = Ps(13355) M O125) ) X135 =

P4(yg%53)dn3(01235)’ and Xopo = Pg(72,5) (01239 Here,
the operator P; is the Majorana pairing projection operator of
the corresponding ith figure (1 < i < 6) in the superhexagon
equation shown in Figs. 11 and 12. We use the convention
that the rightmost figure is the first one with projection
operator P, and the other five figures are counted counter-
clockwise. (Note that this labeling convention is different

t oyt
Og [dn3] = <XJ1r2345X01345X01235X02345X01245X01234>

= (P1(r5355) "™ O Pa(r53s5) ™ 2 P3 (13355) " PP (riss) ™V Ps (r3isp) ™V P (15345) " O Py).

The average is taken over the Majorana fermion pairing state
of the rightmost figure (with projection operator P;) in
Figs. 11 and 12. We also insert P, which is 1 acting on the
rightmost state, at the first and the last places of the operator
string in Eq. (225).

We can calculate Eq. (225) separately for different
Majorana fermion configurations specified by n,.
Among the six dangling Majorana fermions of the six X
operators in Eq. (225), only four of them are different:

(7’(3)431537 7’(2)42153’ 7(2%537 7’(2)%43)- (226)

We can use the quadruple of their number,

[dns(0)+dny(1)+dns(2).dns(3).dnsy(4).dns(5)] (mod2),
(227)

to indicate the presence or absence of the four Majorana
fermions in Eq. (225), respectively. Each element of the
quadruple corresponds to the Majorana fermion parity
change of one or several F moves. In total, there are 2*/2 =
8 different possibilities for the Majorana fermion parity
changes (see the first column in Table V), for the total
Majorana fermion parity of the six F moves should be even.
For the eight different cases, we can calculate O%[dn;]
separately.

Let us consider the third case (the fourth row in Table V) as
an example. The Majorana fermion parity change quadruple
[dns (0) +dny(1) +dns(2).dns(3).dnsy(4).dns(5)] (mod 2)
corresponds to (1,0,1,0). So the dangling Majorana fermions
present in Eq. (225) are y%3, and y935;. We can expand the
projection operators P; to Majorana fermion operators. Since

y93s , and Y02, are paired inside the tetrahedron (2345) of the

from Ref. [53].) We also use the simpler notations for the
Majorana fermion operators

9" 9i

}’?;kB =7ijkB - (223)

Since the superhexagon equation involves only vertices from
(0) to (5), we can simplify the argument of dns as

dns(1) = dn;(01...1...45), (224)
where the number i is removed in the argument. The

obstruction function O% coming from Majorana fermions
can be calculated from the X operators as

(225)

lower right figure (with projection operator Ps) in Figs. 11
and 12, we can consider only their pairing projection operator
in Ps [recall Eq. (98)]:

. 1 _ A _
P (2)5’501;,3453 =3 [1- (_1)w2<02‘23)17(2%537(3)43153]' (228)

We can choose the second term in the above equation and all
other projection operators P; with i # 5 to be 1. Then, the
obstruction function Eq. (225) can be expressed as

O%[dns](012345)

(1.0.1,0)
= (%) Oy B (r5isp) ™D Ps)  (229)
= <(Ygiss)dn3(0)+d'13(2)}’%53(7(;)43153)dn}ﬂ)
X (=1)22023) (—iy B prSiss) (230)
_ (_i)(_l)dn3(i)+(u2((_)2,i3). (231)

In such a way, Eq. (230) contains all Majorana fermions even
times. After reordering these Majorana fermion operators,
they all square to one. Finally, we obtain Eq. (231) as the
obstruction function for this case.

We can similarly calculate O%[dn;] for all eight cases of
Majorana fermion parity changes. The information we need
in the calculation is shown in Table V. Sometimes, we need
not only Ps but also P,. And in P, or P5, we may need
several nontrivial Majorana pairing projection operators
Eq. (98) (such as in the case of the last row in Table V).
They are shown in the fourth and fifth columns in Table V.
The final results of O% are shown in the last column in
Table V. They can be summarized into two equivalent
expressions as (O% is a functional of dns only)
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TABLE V. Calculations of O%[dn;] for all possible Kitaev chain configurations in the superhexagon equation shown in Figs. 11 and
12. The first column is the Majorana fermion parity change quadruple [dny(0) + dny(1) + dn;(2). dns(3). dns(4), dnsy(5)] (mod 2).
There are in total eight different cases. The second column is a simplified version of Eq. (225). The third and fourth columns are the
Majorana pairing projection operators we use in the calculation. The last column is the final result of O% [dns], which can be summarized

by Eq. (232).
P’ changes Expression of O%[dn;] Py Ps O%[dn;]
(0,0,0,0) ] <(},3258)dn?(0)+dni(2)+dn3(lA)> _ _ _1 _ _1 1 N
(1,0.0.1) <(7(3)43175B)dn3<0>fd”3(2)!3 4F7g353?dn3(1>P 5]’%4B> P 234%2343 P 823%234/4 (_l)wz(?2,23) o
(1,0,1,0) (7B )2 O ns 02 (03 ans(D) .y 1 PR (=i)(=1)m (D) n(0223)
0.0.1.1) <(7(3)z315§)dn3(0>+j1"3(2>7f2)%53P 47(7’(3)353)‘173(1)}) §Vg%4B> p %2&%2343 P 25’5%23% (_1>dnf<{>
(1,1,0,0) <_(}’(3)43153)d73<0)+d113(2)P 4_(7243153)dfl3<1>P _5734215{3> P 225?2453 P gié(_g‘msA (=1)«(029
©.10.1) ((r3sp) O 2Py (15355 PsySissr3un) P %2&2343 P %2842.245A !

po2.02

i A o i . ] 2454.245B o A

(0.1,1,0) <_(7(3)ZSB)di”(O)eri”(z_)Yg%SBP 4_(7(3)253)[173“)]3 _57842;559 P 8_421’5(2_4%2453 P g_%é(g,245A (_1?%(])_ )
(LLLD <(72253)dn3(0)+d"3(Z)V%SBP 4(?’8253)‘1"3(1)13 573421537’(2)§4B> P (2)_%210,4?‘2343 P ggé()g.3453 (_1)dn3(l)+w2(02’23)

P()2.62 P()z,()z

245A4,245B 234A 2454

O [dn5)(012345) ‘/}4:0 = (-1 )dn3(i)dn3 (4)+w,(02.23)[dn; (3) +dn (4) +dn (5)]

x jdn3(3)[1=dn3(3)]dns(5)  (mod 2) (_l-)[1—dn3(3)]dn3(21>[1—dn3(§)] (mod 2)

_ (_1)dn3(f)dn3(Zl)+a;2((_)2.23)[dn3(§)+dn3(21)+dn3(§)]

% ldn;(ﬁ)dn;(é) (mod 2) 5 (_i)[dn3(6)+dn3(i)+dn3(§)]dn3(fl) (mod 2)

Note that the dny terms in the exponent of (i) should be
understood as taking mod 2 values (can be only O or 1).
They correspond to the third and sixth cases in Table V. The
term (—1 )d’”(i) appears in the last column in Table V if and
only if dny(4) =1. And the term (—1)*2223) appears
whenever dn;(3) + dny(4) + dnsy(5) = 1 (mod 2). That is
the origin of the (—1) terms in Eq. (232). Note that the
exponent of i for the first (second) expression of O%[dn;]
is a cubic (quadratic) Z,-valued function of n;. The
expression of O%[dnj] is the same as the claimed Eq. (219).

If we consider the unitary symmetry group G, = Z]; X
G, (w, =s; =0), the Majorana obstruction function
Eq. (232) is reduced to an expression as a functional of
n3 (because of dny = ny—n, in this case). Although the
expression is different from the result in Ref. [53] in
appearance, one can show that they are exactly the same
after some calculations. It is also the same as the (3 4+ 1)D
spin cobordism result [62,63].

E. Boundary ASPT states

In the above discussions in this section, we construct 3D
FSPT states by decorating several layers of fermion modes

(232)

to the BSPT states. The decorations of Kitaev chains and
complex fermions are specified by two Z,-valued cochains
n, and ns.

In this section, we show that some of the n, and n5 data,
in fact, correspond to FSPT states belonging to the trivial
FSPT phase. This data trivialization can be understood by
investigating the boundary ASPT states on the 2D boun-
dary of the 3D FSPT bulk.

1. Boundary ASPT states in I with p +ip
superconductors

Similar to the 2D case, we show in this section that the
3D FSPT data n, = w, are trivialized by the boundary
ASPT state. The 2D boundary is, in fact, a state with (one
layer) p + ip chiral superconductor decorations.

Since there is no fixed-point wave function construction
for 2D p + ip superconductor on a discrete lattice [80], its
decoration is very different from the Kitaev chains and
complex fermions. In the boundary ASPT state construc-
tion, we put p + ip superconductor domains around each
vertex i of the triangulation lattice and use symmetric mass
terms to gap out the edge modes and glue them together. In
the following, we first discuss the procedure of decorating
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p + ip superconductors. Then, we propose a field theory
description of symmetrically gapping out the chiral
Majorana modes along the edge.

The detailed decorations are as follows. For an arbitrary
triangulation of the 2D boundary of a 3D FSPT state, we
put p + ip superconductors on a disk centered at each
vertex i. The 2D disks of the superconductors are always
gapped. And on the boundary, there are right-moving chiral
Majorana modes [see the green arrows in Eq. (233)]. We
denote these chiral Majorana modes by y/?fR. A picture of
the chiral Majorana modes in a triangle of the 2D boundary
of 3D FSPT bulk is

g2

,90
Yo.r

(233)

g0 o g1

Y1,R

The decorated state should be symmetric under G,
action. If the chiral Majorana modes around vertex i with
g; = e are yip, then, for generic g; € G, the decorated
p +ip superconductors should have chiral Majorana
modes y/g"g[ (R):a according to the symmetry transformation

rules:

U(gwirU(9)" = (=1)"yl% . (234)

Ulgly, Ulg)t = (~1ylsn syt (235)
Here, we denote g;(R) = R if s;(g;) = 0 (g; is unitary) and
g;(R) =L if s,(g;) =1 (g; is antiunitary). The physical
meaning is that the unitary symmetry U(g) changes only
the group element label of chiral modes from g; to gg;.
However, time-reversal symmetry transforms p +ip
superconductors to p — ip superconductors, and vice versa.
So the right-moving and left-moving chiral Majorana
modes on the edge are switched.

The next step in our construction is to gap out all the
chiral Majorana modes to obtain a fully gapped boundary
state. Consider the interface between two p + ip domains
labeled by g, and g; shown below:

effective Kitaev chain

(236)

90
Y0, R;a Y1, R

g1

There is a necessary condition for gapping out the chiral
Majorana modes z//g?R /L and yr{ ' /L shown by green arrows

above: The number of net chiral modes along the direction
dual to (01) is zero. If 5,(gy'g;) = 1, then one of the two
right-moving chiral Majorana modes is reversed. There are
two chiral modes moving in the same direction along the
link dual to (01). This result is illegal, for we want the
boundary to be a gapped state. So we conclude that
the boundary ASPT state with p + ip superconductors is
impossible if there are some antiunitary symmetries in G,.
In the following discussions of the ASPT state with p + ip
superconductors, we always assume G, is unitary.

Let us introduce explicitly the symmetric mass terms to
gap out the chiral Majorana modes. Similar to the previous
discussions, we can first assume the group element labels of
link (01) are e and g;'g;. The standard mass terms along
the edge dual to link (01) are

HY = im [ doy (w0, (237)

The nonstandard mass terms are obtained from the above
standard ones by a symmetry action:

Hiws = Ulgo)HS U(go)!

= (v alin [ dvp (i), (238)

where we use the symmetry transformation rule Eq. (234)
of Majorana modes. Note that there is no minus sign from
the imaginary unit i, for G, should be unitary according to
the previous discussions. The mass terms constructed
above are, of course, G, symmetric, since they are all
obtained from the standard mass terms by a symmetry
action.

It is well known that changing the sign of the mass m of
two counterpropagating chiral Majorana modes induces a
phase transition from a nontopological superconductor to a
topological superconductor [81]. If the resulting gapped
edge is a 1D topological superconductor, there is effectively
a Kitaev chain going along the direction of the chiral modes
[see the dashed red line in Eq. (236)]. We can assume the
standard mass terms Eq. (237) with m > 0 correspond to
the trivial gapped phase. Then, the true mass terms
Eq. (238) induce effective Kitaev chains going through
the link (01). The number of effective Kitaev chains equals
the number of negative mass terms:

(90 95" 91)- (239)

If we consider the triangle (012) with mass terms Hﬁ,@s,

Hﬁr?fgs, and HSSJQS on the boundary, the (mod 2) number of

effective Kitaev chains going through the three links is
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(95191, 97" 92) = 2(91. 97" 92) + @2(90. 95" 92)

+ @2(90 95" 91)- (240)
where we use (dw;) (90, 9591, 97" 92) = 0 (mod 2).

If w, is nontrivial in Eq. (240), there may be an odd
number of Kitaev chains going into the triangle (012).
Since our state is on the boundary of a 3D FSPT bulk, we
can connect the Kitaev chain to the 3D bulk FSPT state [see
Eq. (173)]. The number of Kitaev chains going through a
triangle of a 3D FSPT state is exactly the n, data which are
discussed in detail in Sec. VIB 1. So we have n, = w, to
have a gapped state (including both the boundary and the
bulk). Since we construct a gapped symmetric (ASPT) state
without topological order on the boundary of the 3D FSPT
state, we conclude that the bulk FSPT with n, = @, is
trivial. This result is the origin of the trivialization group
[? = {0, —ng € H*(G,, Z,)|ng € H*(Gy, Z7)}  (241)
for 3D FSPT phases claimed in Eq. (19). We note that the
p + ip superconductor is incompatible with time-reversal
symmetry. So there is no I'? trivialization if G, contains
antiunitary symmetry. In other words, Eq. (241) is equiv-
alent to

FZ B { {602 S HZ(G;,, Zz)}, Gb is unitary,
N 0, G, contains antiunitary,
(242)

because H(G,,Z;)=7 if G, is unitary and
H°(G,,Z;) = 0 if G, contains antiunitary symmetries.

2. Boundary ASPT states in T with p +ip
superconductors

The ASPT state in Eq. (241) is realized as one layer of a
2D p + ip superconductor [ny = 1 € H°(G,, Z;)] on the
boundary of 3D FSPT states with n, = @, Majorana chain
decorations. The fluctuating Majorana chains (the n, data)
in the 3D bulk become the effective Majorana chains along
the 1D domain walls of 2D boundary p + ip supercon-
ductors. Therefore, there is a gapped symmetric boundary
without topological order, and the 3D bulk is trivialized.

In this section, we consider the ASPT state with
two layers of 2D p +ip superconductor decoration
[ny =2 € H(Gy, Z)]. So, according to Eq. (241), there
is no I'? trivialization. However, we show below that there
is a I'® trivialization of the 3D FSPT state with n; =
w,—1®, complex fermion decorations. This result is
related to the fact that the F move of nyg=2 p+ip
superconductors on the 2D boundary changes fermion
parity by APY(F) = (=1)“>7'“2. This result is similar to
the I'? trivialization related to n; (2D boundary Majorana
chain decorations) discussed in the next section.

The setup of the ny = 2 ASPT state is similar to the state
discussed in Sec. VIE 1. Near the vertex i of the space
triangulation, we put a disk of two layers of p+ip
superconductors labeled by g;. Along the boundary, we
have two chiral Majorana modes indicated by green curves
in, for example, Egs. (233) and (236). After adding
symmetric mass terms along the line dual to link (ij),
we can gap out the chiral Majorana modes. If the sign of
mass (—1)*2 (9197'9)) [see the discussions above Eq. (239)]is
negative, there are ny = 2 effective Majorana chains going
through the link (ij). Since we want to analyze the fermion
parities, we have to pair up the Majorana fermions in the
effective Majorana chains. If w,(g;, g7'g;) = 1, there are
ny = 2 effective Majorana chains, leaving two Majorana
fermions on each side of link (ij). We can pair them up as
shown in Fig. 13(b) (always from @ = 1 to @ = 2 on each
side). Note that the vacuum pairings for ,(g;. g7'g;) =0
are the standard A to B pairings [see Fig. 13(a)]. So the
fermion parity of the nontrivial pairings is always odd
(compared to the vacuum pairings), as the small loop with
length four is non-Kasteleyn oriented.

Now we can consider the p 4 ip superconductor con-
figurations in one triangle (012). The three mass term signs
w,(g;. g7'g;) for the three links are independent of each
other. So we have in total 2°> = 8 configurations, which can
be divided into four cases. (i) All three w,’s are zero. Then
all the effective Majorana fermions near the three links are
in the vacuum pairings shown in Fig. 13(a). And the
fermion parity of this configuration is P"; = +1. (ii) One of
the three w,’s is one [see Fig. 14(a) of w,(g;,g7'g,) = 1,
for example]. Then there is only one length-4 loop with
non-Kasteleyn orientation. And the fermion parity is
P‘]’('. = (=1)! = —1. (iii) Two of the three w,’s are one
[see Fig. 14(b) of w,(g0.95'92) = @2(g1, 97" 92) = 1, for
example]. We connect the effective Majorana chains going
through the two links (according to the Kasteleyn orienta-
tion rules in Fig. 2). So the total fermion parity of this
configuration is P = (=1)? = —1. (iv) All three w,’s are
one [see Fig. 14(c), for example]. We again connect the
effective Majorana chains going through two (arbitrary)

a=1_a=2
YijA YVijA
— 3>

9i T 1 9i gi 9i
s o=l a=2

YijB VijB

(a) (b)

FIG. 13. There are n, = 2 effective Majorana chains (a = 1, 2)
going through link (ij) iff w,(g;.g7'g;) = 1. The vacuum and
nontrivial pairing directions are shown in (a) and (b), respectively.
We note that @ =1, 2 effective Majorana chains should be
understood as the stacking in the direction perpendicular to the
paper. They are not related to the branching structure (black
arrows).
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(a)

(©)

FIG. 14. Different effective Majorana chain configurations and their total fermion parities P;’f'». The fermion parity can be easily
calculated by counting the number of length-4 (non-Kasteleyn-oriented) loops in the figures. (a) w,(g;, g7 g;) = 1 for one link with
fermion parity P = (—1)". (b) 1(g;, g;'g;) = 1 for two links with fermion parity P = (—1)*. (c) @,(g;, g7 'g;) = 1 for three links

with fermion parity P} = (—1)*,

links [for example, links (02) and (12) in Fig. 14(c)]
and leave the third link Majorana chain unchanged.
Then, the total fermion parity of this configuration is
P‘; = (=1)* = +1. The total fermion parity is independent
of the choice we make to connect the effective Majorana
|

P;l[/(<012>) _ (_1)u)z((_)l,12)+(u2(0,(_)1)u)2(0.02)+a)2(0.(_)1)mz(1,12)+a}2(0.(32)mz(1j2)’

where we use (dw,)(0,01,12) =w,(01,12)+w,(1,12)+
@,(0,02) +@,(0,01) =0 (mod 2).

With the fermion parity formula for one triangle, we can
derive the fermion parity change of the standard F' move
Eq. (111). Since all w,(g;,g;7'g;) for link (ij) are, in
general, independent of each other, there are in total 2° =
64 possible configurations for the F move. The fermion
parity change of the F move is obtained from the fermion
parities of the four relevant triangles on the two sides.
However, the small dimer cover loop crossing links (02)
and (13) are counted twice by the two adjacent tri-
angles. Therefore, the fermion parity change of the F
move is the product of four triangle fermion parities [see
Eq. (243) for triangle (012)] with a modification factor
(=1)®2(002)+02(L13) - After some tedious calculations, one
can show that the final result is the cup-1 product of w,:

= (244)

If the exponent in Eq. (244) is a nontrivial cocycle in
H3(Gy, Z,), then the 2D F move necessarily breaks the
fermion parity of the p 4+ ip superconductor system.
However, if we introduce a 3D FSPT bulk with complex
fermion decoration n; = w,—®,, the total fermion parity
is preserved. This preservation is simply because the 2D

chains. We can choose arbitrary two links of the triangle
and connect the Majorana fermions through them. This
result is why we choose the conventions in Fig. 13. For all
the configurations, one can check easily that the fermion
parity can be summarized as

(243)

|

boundary F move also changes the bulk complex fermion
number by n3(g9, 91,92, 93). Therefore, two layers of
p + ip superconductors can be viewed as a 2D ASPT
state which trivializes the 3D FSPT state with complex
fermion decoration n; = w,—w,. So we have a triviali-
zation group I3 as

22 {(wy—10,) [ no/2] €H (G, Z,)Ing € HY(G), Z7) }.
(245)

Note that we introduce ny € H°(G,,Z;) in the above
expression. Only unitary G, is compatible with p + ip chiral
superconductors. And odd n, (with nontrivial m,) already
leads to nontrivial trivialization group I'> Eq. (241) in a lower
level. Only n, = 2 produces nontrivial I'* and a nontrivial
ASPT state on the boundary of 3D FSPTwith n; = @, — ;.
An explicit example of this I'? trivialization Eq. (245) with
ny = 2 is the FSPT state with G, = Q‘é (see Appendix E 3).

3. Boundary ASPT states in I3 with Kitaev chains

There is another layer of boundary ASPT state for the
3D FSPT state. This boundary ASPT state has Kitaev
chain decorations and trivializes the complex fermion
decoration data

n3 = Wy —ny + S —~n;—ny, (246)
for some n; € H'(G),, Z,). The second part s,—n;—n, is
discussed in detail in Ref. [66]. It is used to construct a 2D
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ASPT state on the boundary of 3D FSPT state with time-
reversal symmetry 7% = 1.

The generic boundary ASPT state with Kitaev chains can
be constructed similar to the 2D FSPT state with Kitaev
chain decorations in Sec. VB 1. We put (at most) one
Kitaev chain along the (red) dual link on the 2D boundary
according to the decoration data n, € H'(G,, Z,). The
fermion parity change of the Majorana fermions under the
boundary 2D F move is again given by [see Eq. (117)]

AP;(F) — <_1>(012V"1+‘Y1V”1\-’”1)(!Ial.lll ’!11_]92-!151!13)_ (247)

If the exponent of (—1) is not a Z,-valued coboundary, we
cannot preserve the boundary fermion parity even if we
introduce complex fermion decorations on the boundary.
However, since the ASPT state is on the boundary of a 3D
FSPT bulk, we can simply choose the bulk complex
fermion decoration data ny with Eq. (246). Therefore,
the total system (including both the boundary and the
bulk) has definite total fermion parity.

Since we construct a gapped symmetric ASPT state
without topological order on the boundary of the 3D FSPT
state, we conclude that the bulk FSPT with n; = w,—n; +
§;~—n—n, is trivialized. This conclusion is the origin of
the n, part of the trivialization group I'*:

F3 D {a)zvnl +S1anvnl (S HS(Gb,Zz)|n1

€ H'(G,.Z,)}. (248)

Combine it with Eq. (245), and we obtain the trivialization
group

% = {wy—ny + s;—ny—n; + (03— 0,)|ny/2]
€ H*(Gy. Z,)|ny € H'(G), Z,),ny € H*(Gy,. Z7) },
(249)

which is claimed in Eq. (19).

F. An additional layer of p +ip SC decorations

Apart from the Kitaev chain and complex fermion layers,
there is an additional layer of 2D p 4+ ip chiral SC
decorations specified by n, € H'(G,, Z;) for 3D FSPT
states. The decoration of this layer is possible only when G,
is not unitary. Since there are no fixed-point wave function
constructions of chiral states on a discrete lattice [80], we
discuss it after all the other layers in this section. However,
we can put a 2D continuum (infinite number of degrees of
freedom) free-fermion p + ip SC state on the decoration
plane with the bulk mass approaching positive infinity. As
shown below, the obstruction function for the p + ip chiral
superconductor decoration is w,~—n; + s;~—n;—n;,. For the
3D topological superconductor with time-reversal symmetry
T? = —1, the obstruction function equals zero identically.

So this p + ip layer does not twist the obstruction functions
of other higher layers. In this way, we can fully classify 3D
T? = —1 topological superconductors.

1. Consistency condition

We use n,(g;.9;) € Z to indicate the number of deco-
rated p + ip chiral superconductor layers on the plane dual
to link (ij) (see Fig. 15). If n;(g;,;) <0, we decorate
inverse p + ip, i.e., p — ip, chiral superconductors. So the
number of chiral Majorana modes on the boundary of the
plane is |n;(g;, g;)|. The direction of the chiral Majorana
modes (see red arc arrows in Fig. 15) forms a right-hand
(left-hand) rule with respect to the oriented link (ij) if
ny(gi,j) > 0 [ny(g;,;) < O]. For a triangle (ijk), there are
three p + ip superconductor planes intersecting at the link
dual to the triangle (see the red link in Fig. 15). Since we are
constructing a gapped state, there should be no chiral
Majorana mode along this link. So we have the gappable
condition:

(dny)(90.91.92) ="n1(g1.92) =11 (90-92) +11(g0.91) =0,
(250)

which merely states that the number of left-moving and
right-moving chiral Majorana modes along the (red) link
dual to triangle (012) equal each other.

We explain the physical meaning of the g, symmetry
action in the first term of Eq. (250). To be more precise, the
first step of our p + ip superconductor decoration is to put
n1(gy'g1) (we use inhomogeneous notation for 1-cochain)
layers of p + ip superconductors to the plane dual to the
standard link (e, gy'g;), which has an identity group

Effective Kitaev chain

i/

é;\ )
-
FIG. 15. Decorations of p + ip chiral superconductors for a
triangle (012) [see Fig. 8(b) for a tetrahedron]. The 2D chiral
superconductors are decorated on the (green) planes dual to the
three links (01), (12), and (02). The direction of the chiral
Majorana mode along the boundary of the (green) plane dual to
link (ij) is indicated by a (red) arc arrow (right-hand rule with
respect to the link direction) if n; > 0. So there are three different
kinds of chiral Majorana modes along the (red) link dual to the

triangle (012). After gapping out these chiral modes symmetri-
cally, there may be an effective Kitaev chain along the (red) link.

O
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element label for the first vertex. By applying a U(g)
symmetry action on this state, the group element label of
the link becomes (gy, g;). At the same time, if g, is time
reversal, the decorated p + ip superconductors should
become p —ip under the U(gy) action; i.e., ni(gy'g;)
becomes —ny(gy 'g1). After using the homogeneous nota-
tion and counting the directions of the left and right
directions of the chiral Majorana modes, we obtain the
cocycle equation of n; with mathematically correct sym-
metry action in Eq. (250).

If g € G, is unitary, then one can show n,(¢*) = kn,(g)
for all k € Z from Eq. (250). Since we consider only finite
G,,, we must have n,;(g) = 0 for all unitary g € G,. So
H'(Gy, Zy) is trivial if G,, is a finite unitary group, and
there is no p + ip chiral superconductor decoration layer.
For symmetry group G, with antiunitary elements, one can
show

0, g is unitary,
mig ={ | Oni (251)
1, g is antiunitary

by adding some coboundaries. So we have H'(G,, Z;) =
Z, for G, with antiunitary elements.

2. Symmetry transformations

The chiral Majorana modes along the boundary of the
plane dual to link (ij) are denoted by w?;’R;a or wii ;.
(@=1,2,...,|n(ij)]) for n;(ij) > 0orn,(ij) < 0, respec-
tively. As discussed in Sec. VI A, the symmetry trans-
formation rules for the chiral Majorana modes are given by
Egs. (171) and (172). The w, part is the usual projective
representation factor for G, (such that it is a linear
representation of G). The s; part is more subtle, which
needs some explanation.

To be more specific, the time-reversal symmetry acts on
the chiral Majorana modes as

U(T)wl: g U(T)T = (1) Ty 8 (252)

U(T)ys 1 U(T) = —(=1)m=Todylo - (253)
Basically, it changes w to y; and y; to —yi (forgetting
the @, factor). So the left-moving and right-moving
chiral Majorana modes form a time-reversal Kramers
doublet with 72 = —1. The reason to choose this symmetry
transformation convention is as follows. If we fold the three
(green) planes in Fig. 15 into one plane, we should obtain a
symmetric state on the pure 2D plane. The system consists
of several copies of p +ip and p —ip chiral supercon-
ductors. However, it is known that we have only nontrivial
2D topological superconductors for time-reversal sym-
metry T2 = —1 [76]. The T? =1 case corresponds to
the ASPT state, which can exist only on the boundary
of a 3D bulk [66] (see also the FSPT classification

examples in Appendix E2). Therefore, we choose the
chiral Majorana modes to form Kramers doublet under
time-reversal symmetry.

3. Symmetric mass terms

To obtain a symmetric gapped state, we should add
symmetric mass terms to the three kinds of chiral Majorana
modes along the link dual to each triangle (ijk). The
strategy is again first considering the standard mass term
for the standard triangle with first vertex label e € G,,. The
standard mass term has the following form:

9" 9i

lmwoutl//m or lmll/g(l)ltgl Wm’ (254)

where at least one of the two chiral Majorana modes is
labeled by the identity element e of G,,. The subscripts
“out” and “in” indicate the actual direction of the chiral
Majorana modes along the (red) link dual to the triangle,
i.e., going outside or inside the triangle (using the right-
hand rule). This direction is not locked with the sign of n,
for the three links of the triangle have different right-hand
rule directions (see the red arc arrows in Fig. 15). We
always put an outgoing mode in front of an ingoing mode,
because we have to set a rule to know whether there is an
effective Kitaev chain compared to the “trivial” gapped
edge by checking simply the sign of the mass.

Other nonstandard mass terms are obtained from the
standard one by a symmetry action. There is an additional
minus sign for the mass from the symmetry action. The
negative mass induces an effective Kitaev chain along the
gapped edge (see Fig. 15). In the following, we consider
separately the symmetric mass terms for nontrivial @,
and s;.

(a) Mass term signs from w,.—We first consider the
standard mass terms for the standard triangle (012) with
group element labels e, g5'g;, and gy'g, for three vertices.
According to Eq. (250), the number of left-moving and
right-moving modes along the (red) link dual to the triangle
should be the same. For simplicity, we assume all of
ni(01) = ny(e,g5'g1), m(12) = ni (95" 91, 95" 92), and
n,(02) = ny(e, gy'g,) are positive integers and satisfy
n,(02) = n;(01) + n,(12). Then, we need two types of
standard mass terms to gap out these modes (assume
m > 0):

ny(01)

7012
std Z ’m/dx'//mRa( )WozRa( x)

+ Z ’m/dx‘//?%gla Worral¥).  (255)

~1
We note that the chiral modes ¢, ., and Wi R, are going
outside the triangle, while y¢, 5., is inside (see the red arc
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arrows in Fig. 15). So it satisfies the standard mass term
rule Eq. (254).

For the nonstandard triangle with vertex label gy, g,
and g,, we should use a symmetry action to obtain the
mass terms:

012 012
I'Ignass> =U gO)Hitd >U(90)T
n,(01)
=2 im
a=1
n(12)

(-

a=1

/ A8 W )

w2 (“o- % g])lm/dxwl2R{1( )WOZR(I( )

(256)

where the sign (—1)?2(90-%"9) of the second type of mass
term comes from the symmetry transformation rule for

—1
w?%.,ge';a. The total number of effective Kitaev chain going

through the triangle (012) is then

@2(90 95" 91)m1 (97" 92), (257)
which is just the number of negative mass terms
in Eq. (256).

If the three n; are not all positive, the mass terms are
different from Eq. (256). In general, there are three types of
mass terms which gap out different pairs of chiral Majorana
modes. The standard forms of these three types are

N—=|ni (12)]
Hgt{ioz - z im/dxwgl;a(x)WSZ;a(x)’ (258)
a=1
N—|n,(01)]
HE® =Y i [ v, (259
a=1
01,12 _ e %'9
Hst({ - Z lm/dx‘/’m a Wl%al< )’ (260)
where we define N = max [|n;(01)|, |n;(12)],|n;(02)]].

Note that (at most) only two types of mass terms appear
for a given n; configuration. We should choose the mass
terms which involve the chiral modes corresponding to the
biggest |n;|. For example, the two types of mass terms in
Eq. (255) both involve y,, because n;(02) > 0 is the
biggest and N —|n;(02)] =0 for the summation in
Eq. (260). The order of the two Majorana modes in a
mass term should follow the rule Eq. (254) that the
outgoing mode appears in the front. It depends on the
configuration of n,. The above three equations are only one
example. (We also omit the R/L label of the chiral modes,
for the sign of n; is indefinite.)

Independent of the signs of nj, the effective Kitaev
chain number is always Eq. (257). The minus signs of the

masses all come from the symmetry sign (—1)22(%%'9) of

—1
W?%Igel/ L.« Independent of the signs of n,, there are always

|n1(12)| mass terms associated with this chiral modes [see
Egs. (259) and (260)]. Under a U(gy) action from the
standard mass term to the actual mass term, all the terms in
Egs. (259) and (260) have negative masses. So the (mod 2)
number of effective Kitaev chains is always Eq. (257).

(b) Mass term signs from s;.—There are additional signs
for the mass terms related to time-reversal symmetry. In
general, our standard mass term has the form (we omit the
group element labels)

m / Y (I (), (261)

where the outgoing mode (going up in Fig. 15) is in front of
the ingoing mode (going down in Fig. 15). The labels s and
s" denote R or L, depending on n; > 0 or n; < 0. Note that
the outgoing or ingoing is not locked with R/L (see the red
arc arrows in Fig. 15).

Under a unitary symmetry action U(g,), the mass term is
transformed to

m/dxvlout,s(x)l//i/n.s’(x)

unitary

_>(—1)wzim/dxt//outs(x)l//;ns,(x), (262)
U(go) ’ ’

where the sign (—1)*2 is exactly the transformation sign of

o ‘91 discussed previously. So we can obtain the effective
Kitaev chain number Eq. (257) in a simple way.

On the other hand, if the symmetry U(g,) is antiunitary,
it reverses the directions of all the chiral modes. The action
on the standard mass term Eq. (261) is

m/dxl”Out,s(x)y/;n.s/(x)
anliu_nit)af}’(_l)wz( 1)l+l+l 0.
U(go)

/ A (Wi ().
(263)

Apart from the @, term, there are three additional signs.
One minus sign comes from the antiunitary action on the
imaginary unit i. The second is the sign of switching two
chiral modes y and y’, because time reversal changes the
outgoing modes to ingoing modes, and vice versa.
According to the rule Eq. (254), we should change their
orders. The third sign (—1)'=%." appears only when s and s’
are different; i.e., the two modes are of different R/L types.
This sign is a consequence of the symmetry transformation
rules Egs. (252) and (253): R - L and L — —R. The only
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mass term between R- and L-type modes is Eq. (260) for
worr/e and o /g Using the “canonical” I-cocycle
Eq. (251), we conclude that the only mass term with a
(time-reversal-related) minus sign is —imy{yy§} with anti-
unitary go. This case corresponds to s;(gy) = 1 —s,(¢g1) =
s1(g2) =1 and n;(12) = —n(01) =1 —=n,(02) = 1. We
can summarize this (time-reversal-related) sign for the mass
term by (—1)*1)mOUm(12) So the (mod 2) number of
effective Kitaev chain going through the triangle related to
time-reversal symmetry is
s1(90)mi (95" 91)m (97" 9a)- (264)
In summary, we can use symmetric mass terms to gap out
all the chiral Majorana modes along the (red) link dual to
the triangle (012). There are effective Kitaev chains left
along the link, with (mod 2) number

(wy—ny + sy—ny—n)(90. 95" 91. 97" 92)
= w2(90- 95" 91)n1 (97" 92) + 51(90)n1 (95" 91)n1 (97" 92).
(265)

which is a combination of Egs. (257) and (264).

4. Obstruction function

If we consider a tetrahedron (0123) of the 3D triangu-
lation lattice of the spatial manifold, there are four triangles

on the boundary and four (red) links with chiral Majorana

modes [see Fig. 8(b)]. We should add mass terms Hfﬁfg?

HYZ) HOY and HO for all the triangles, following the
discussions above. The total number of effective Kitaev
chains crossing the boundary of the tetrahedron can be
calculated as the summation of four terms similar to
Eq. (265). Using the cocycle equations for w,, s, and
ny, we have d(wy—ny+sy—ny—ny)(g0. 95" 91,97 92
¢'93) =0. So the total (mod 2) number of effective
Kitaev chains for the tetrahedron is
(0y—ny +sp—ny—n1)(g5' 91,97 02, 65 93).  (266)
To make sure that there are no dangling Majorana
fermion inside any tetrahedron of the lattice, the number
of effective Kitaev chains should equal the number of
decorated Kitaev chains specified by n,. So we have the
consistency equation
di’lz = Wyr~n, + Si~ny~ny. (267)
If the right-hand side of the above equation is not a
Z,-valued 3-coboundary, there is no solution for n, on
the left-hand side. We note that the above equation is the
same as the 1D consistency equation [Eq. (119)], although
the physical meanings are totally different.

G. Classification of 3D FSPT phases

The general classification of 3D FSPT phases is as follows.
We first calculate the cohomology groups H'(G,, Z;),
H?*(G,,Z,), H*(Gy,Z,), and H*(G,,U(1);). For each
n, € H'(G,,, Z;), we solve the twisted cocycle equation
Eq. (18) for n,. For each solution n,, we solve the twisted
cocycle equation [Eq. (18)] for n;. And for each solution n5,
we solve the twisted cocycle equation [Eq. (18)] for vy. If n,,
ns, and v, are in the trivialization subgroup I'>, I'3, and I'* in
Eq. (19), then they are trivialized by boundary ASPT states.
(Similar to the 1D and 2D case, we can define I'* to describe
those 3D BSPT states trivialized by fermions.) So the
obstruction-free and trivialization-free (n, n,, n3,vy) fully
classify the 3D FSPT phases.

We can also use the 3D FSLU transformations to
construct the commuting-projector parent Hamiltonians.
The procedure is again tedious but straightforward. Each
term of the Hamiltonian is a sequence of 3D fermionic F
moves that changes the group element label of a vertex
from g, to ¢,. Different terms commute with each other, for
the 3D FSPT wave function is at the fixed point.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we construct gapped fermionic state with
symmetry G, by decorating fermionic degrees of freedom.
In d spatial dimensions, they are constructed using several
layers of data (..., ng_y,ny4, V4, 1), Which is an element in
. X CTY(Gy,, Z,) x C4(Gy, Zy) x CHVG,, U(1);] (see
Table I). There are several consistency conditions for them.
Basically, the coboundary of one layer data should equal a
functional of the data of lower layers (see Table II). We can
summarize them as a system of twisted cocycle equations:

d(...ongy,ng, Vag1) = (.04, Ogr1. Ogya). - (268)
Note that the obstruction function O, is a U(1)-valued
(d + 2)-cocycle. And all other obstruction functions O,
(i <d+1) are in H (G, Z,) with Z, coefficients. The
data (..., n4_y,ng, vy, ) correspond to a valid FSPT state if
and only if all the obstruction functions are coboundaries.
Otherwise, there are no solutions for data of the next layer.

There are two related questions about the constructed
FSPT states. The first is whether the states with different
(...,ng_1,ng,vgyp) data represent distinct FSPT phases. If
we have a path of FSLU transformations to connect them,
they are, in fact, in the same phase. So the FSPT
classification data should quotient these cases. The
second question is what happens to the state that is
obstructed by some nontrivial cocycle O;. There are some
physical inconsistencies for these states, because all the
obstruction functions have physical meanings such as
fermion parity conservation (see the last column in
Table II). But is it possible to construct such a state on
the boundary of a one-higher-dimensional state? If it is
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possible, we need to understand the physical properties of
the bulk, such as whether it is long-range entangled or
short-range entangled.

The answers of the above two questions are related to
the concept of anomalous SPT states [66]. If one of the
obstruction functions on the right-hand side of Eq. (268) is
not a coboundary, the state is obstructed, for it violates

|

(..., nd—l?”d’”d—‘rl) ~ (, nd_l,nd,l/d+1) + d(, nd_z,nd_l,vd)

= (...,nd_l,l’ld,l/d+1) + (, Od—l’ Od,od+l)-

some physical consistency constraints (see the last column
in Table IT). However, this state can exist as an ASPT state
on the boundary of an FSPT state in (d+ 1) spatial
dimension. The ASPT states in (d — 1) spatial dimensions
induces new kinds of coboundaries for the classification
data of FSPT phases in d dimensions [52,53,66]. Formally,
we can write the new coboundaries as

(269)

(270)

In the first line of the above equation, we identify the FSPT state with (..., n,_y, ng4, v4, 1) with another state by stacking the
coboundary of one lower dimension state with data (..., ny_,, n4_;,v,). The coboundary of the latter data, by Eq. (268), are
exactly the obstruction functions for the FSPT in one lower dimensions. Therefore, the lower-dimensional FSPT obstruction
functions will trivialize the higher-dimensional FSPT data.

Mathematically, the obstruction functions O; for FSPT states in (d — 1) spatial dimensions form a subgroup of the

cohomology group H (G, Z,) (or H[G,, U(1)4]):

I = {O,[n;_s]Ini_» € C72(G,, Z,) is a classification data for FSPT in(d — 1)dimensions}.

If O;n,_,] is a nontrivial cocycle in I, the (d—1)-
dimensional state with classification data n;_, is obstructed.
On the other hand, if the classification data n; (or v;) for d-
dimensional FSPT state belong to the subgroup I', it is
trivialized because of the boundary ASPT state. Therefore,
the distinct classification data for a d-dimensional FSPT
state is, in fact, n; € C'(Gy,,-)/B!(G,,-)/T" [the coefficient
is Z, or U(1)].

For each solution of Eq. (268), we can use the classi-
fication data to construct an FSPT state by decorating
several layers of fermionic degrees of freedom to the BSPT
state. These states belong to different FSPT phases if the
data are different in C'(G,,)/B'(G,,-)/T". We can also
use the FSPT moves to construct commuting-projector
parent Hamiltonians. The Hamiltonian consists of a local
operator which corresponds to a sequence of ' moves that
changes one vertex label from g, to ¢,. Different terms
commute with each other, because the F moves satisfy the
coherence conditions.

We conjecture that, in principle, our classification
scheme for FSPT phases can also be applied to point
and space group symmetry, so long as the crystalline
principle and spin statistics relations [82] are carefully
considered. For example, the mirror symmetry with ¢ = 1
(Z’zr x Z%) should be regarded as a time-reversal symmetry

with 72 = P, @z =7} Xy, Z%), while the mirror sym-
metry with ¢* = P z" f = Z; Xy, Z5) should be
regarded as a time-reversal symmetry with 72 =1
(Z’; x Z%) [83]. The full details for the classification and
construction of point and space group protected FSPT
phases will be presented in our future work. Moreover, we

(271)

also believe that our construction and classification scheme
can be applied for continuum Lie group symmetry by using
the Borel cohomology. However, it is very difficult to
compute the obstruction functions for the general Lie
group, and we will develop special tools to handle this
problem in the future. Finally, how to generalize our
framework into FSPT phases protected by supersymmetry
will be an extremely interesting future direction.
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APPENDIX A: FIXED-POINT WAVE FUNCTION
AND CLASSIFICATION OF FSPT STATES IN 0D

In this appendix, we discuss the FSPT states in zero
spatial dimensions, which are classified by the one-
dimensional representations of G, ie., H'[G;, U(1)7).
As shown below, we can choose equivalently the classifica-
tion data to be ny € H(G,, Z,) and v, € C'[G,,, U(1)4]/
B'[G,, U(1);] with some consistency equations. Although
the 0D case is rather degenerate, it shows the layer structure of
the FSPT classifications, which is also true but more
complicated in higher dimensions.
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1. Classification

It is known that the OD BSPT states with symmetry
group G, are classified by the one-dimensional linear
representations of G,, i.e., H'[G,,U(1);] [4]. This
classification is because the SPT state should be both
symmetric and nondegenerate. In zero spatial dimen-
sions, there is essentially no difference between bosonic
and fermionic systems, except that there is an additional
Z-; symmetry for the fermionic system. We can treat a
fermionic system with total fermionic symmetry group
Gr= Z’; X, Gp, as a bosonic system with total bosonic
symmetry group Gy. Therefore, we have the following
conclusion:

(i) OD FSPT phases with symmetry group G, = Z{ X,
G, are classified by the one-dimensional irreducible
representations of Gy, i.e., H'[G;, U(1)y].

Equivalently, we can unpack the above result and
show that

(i) OD FSPT phases with symmetry group G, = 22 oy
G, are classified by a 0-cocycle n and a 1-cochain
V1, with some symmetry conditions and consistency
equations.

The second version of classification is more physical.
The first data ny € H°(G,, Z,) is related to the fermion
parity of the state: P, = (—1)". The second data v; €
C'[G,, U(1);]/B'[G,,U(1)7] is the usual OD BSPT
classification.

To get a sense of the classification, we first consider the
simpler case of Gy = Zg x Gy,. Using the Kiinneth for-
mula, we can split the one-dimensional representation
of G, =27,xG, into two parts: H'[G., U(l);] =
H'[Z, U(1);] x H'[Gy, U(1)7] = Z, x H'[G,, U(1)y].
The first Z, part corresponds to the one-dimensional
representation of ZJZC , indicating the bosonic or fermionic
nature of the state. We can use the value of fermion parity
Py = (=1)™ (ny € Z, = {0, 1}) to represent this Z, clas-
sification. The second part is the same as the bosonic
counterpart, which is the one-dimensional irreducible
representation of G,.

Now let us consider the generic case Gy = Z’; X, Gy
obtained by Eq. (1). In general, for a given one-
dimensional representation U of Gy, we can always
separate U(P}g) [with g € G, and P}g = (P}, g) € G/]
into three parts:

U(P}g) =

where v;(g) is a U(1) phase factor and K is the complex
conjugation operator depending on whether g contains
time reversal or not. Using the multiplication rule [Eq. (2)]
of Gy, the representation condition U(P}g)U(P}h) =
U(P;lcg - P'h) becomes

Py (g)K91@), (A1)

vi(g)v (h)'=210) = PRy, (gh). (A2)
When acting on a state with fixed fermion parity (—1)"
[we can again think of ny € H(G,,Z,) =27, as a
0-cocycle], the above equation can be summarized as

v (h)1—2S1 (9>1/1 (g) _ (_1)(a)2vn(,)(g,h)
vi(gh) ,

which means that the cocycle equation of vy is
twisted by w,—ng If we define the homogeneous
vy by the inhomogeneous one as v (g,ga) =% (a)=
vi(a)-(=1)@=m)99) (we omit the superscript g of the
inhomogeneous %/ if g = e is the identity element of G,,),
we obtain the symmetry conditions and consistency
equations for ny and v,. It is easy to see that, under the
condition @w, =0, the classification is reduced to the
previous discussed case Gy = ZJZC X G, where ng and v,
are decoupled cocycles.

(dv1)(g. ) = (A3)

2. Fixed-point wave functions

The above discussion on the OD FSPT state is from the
perspective of symmetry representation . We can also
construct fixed-point wave functions.

For ng = 0, the wave function is fermion parity even.
Using the basis state |¢) with symmetry transformation

U(P}g)lo) = |go), (A4)
we can construct the fixed-point wave function as
Z vy (o) o). (A5)

oeGy,

It is easy to check that the wave function supports a one-
dimensional representation of Gy:
U(Ppg)|¥) = vi(g)|¥). (A6)

For ny = 1, the wave function is a fermionic state. The
basis state is created by a fermion creation operator as
(6 € Gyp)

o) = ¢310). (A7)
The symmetry transformation of the basis state under G is

U(Ppg)lo) = (-

The fixed-point wave function is also a superposition of all
basis states:

1)"|go). (A8)

(A9)

- Su

o€Gy,
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with odd fermion parity. One can check the one-dimen-
sional representation of G on this fixed-point wave
function:

U(Ppg)¥) = (=1)"v1(g)|¥). (A10)

3. Trivialization of some 1D BSPT states
in fermionic system

The obstruction function (—1)“>~" on the right-hand
side of Eq. (A3) comes from the projective representation
Eq. (A2) of G, on OD fermions. Although the OD fermion
state forms a projective representation of Gy, it is a one-
dimensional linear representation of G.

On the other hand, it is well known that the classification
datav, € H?|G,, U(1)] of 1D BSPT states also correspond
to the projective representation of the bosonic symmetry
group. The physical meaning is that the 0D edge mode of
this 1D BSPT open chain is a projective representation of
G,. Since the edge degeneracy cannot be lifted by
symmetric terms, we conclude that the 1D bulk is a
nontrivial BSPT.

Now let us consider the problem of embedding the 1D
BSPT state with v, into a fermionic system. We want to
know that whether this BSPT state is still nontrivial as an
FSPT state. From the perspective of edge states, we can
couple a 0D fermionic state with projective representation
(=1)»>=" of G, to the boundary of this 1D BSPT state.
Then, the total projective representation of the edge is
vy X (=1)=m0 If v, €T? = {(=1)*""™|ny € Z,}, the
projective representation of the edge is, in fact, a linear
representation by choosing appropriate n,. So there is
no nontrivial edge state in this fermionic system. We
conclude that the BSPT states in I'? are trivialized as a
fermionic state.

The trivialization of some d-dimensional BSPT states
in a fermionic system is also known even for the case
of Gy = sz X G, [52]. In this case, the trivialization
subgroup is T4+ ={(=1)5¢(-1|n,_ € H"Y(G,. Z,)} C
H'G,,U(1)]. There are more terms if we consider
groups with nontrivial @, and s;. But it is still exactly
the obstruction function for FSPT states in one lower
dimensions.

There is another way of obtaining the trivialization
subgroup of the BSPT states from the perspective of
FSLU. We can construct an explicit FSLU for an FSPT
state [see Eqgs. (46) and (47) in Ref. [53]]. The final result is
that the U(1) coefficient of the wave function is modified
by an element of the trivialization subgroup I'“*!. Since the
two FSPT states should be considered as in the same phase
(they are connected by FSLU), we conclude that the BSPT
states in ['**! are trivialized in fermionic system.
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FIG. 16. All possible 2D (2-2) and (3-1) moves that admit a
branching structure.
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APPENDIX B: 2D AND 3D MOVES THAT ADMIT
A BRANCHING STRUCTURE

In this appendix, we list all possible 2D (2-2) and (3-1)
moves that admit a branching structure (see Fig. 16). The
3D (2-3) and (4-1) moves that admit a branching structure
are shown in Figs. 17 and 18. The arrow on the left-hand
side of the figures indicates the time direction.

APPENDIX C: KASTELEYN ORIENTATIONS

To decorate Majorana fermions on the 2D or 3D
triangulation lattices, we need (local) Kasteleyn orienta-
tions to design the pairing directions between the Majorana
fermions. In the following, we discuss briefly how to
construct (local) Kasteleyn orientations from arbitrary
triangulation of the spatial manifold. We refer the interested
reader to Ref. [53] for more details.

The (local) Kasteleyn orientations are constructed
for arbitrary triangulation 7 of a spin manifold (spatial
manifold with dimension d) with vanishing second Stiefel-
Whitney cohomology class [w?] = [0]. Using the math-
ematical result of Ref. [84], we know the representative on
arbitrary triangulation of the Stiefel-Whitney homology
class w,_,, which is the Poincaré dual of w?. Then, we can
construct a resolved dual lattice P with (local) Kasteleyn
oriented links.

The procedure of constructing (local) Kasteleyn orien-
tations is as follows [53]:

(1) Given a (black) triangulation lattice 7 with branch-
ing structure for a d-dimensional spatial spin
manifold,

(2) construct the (red) resolved dual lattice P, which is
merely the lattice of Majorana fermions. The (red)
link orientations are constructed rules related to the
Stiefel-Whitney homology class w,_, in Ref. [84].

(3) Find the expression of w,_, as a formal summation
of singular (d — 2)-simplices (i.e., non-Kasteleyn-
oriented simplices) of 7 by Ref. [84].

(4) Connect singular (d — 2)-simplices in 7 by (blue)
(d — 1)-simplices S (i.e., IS = wy_,).

(5) Reverse the orientations of (red) links dual to (blue)
(d — 1)-simplices belonging to S.

(vi) Now, all the (d — 2)-simplices in 7 are Kasteleyn
oriented.

After all the above steps, the resolved dual lattice P now
has (local) Kasteleyn orientations, meaning that the small-
est (red) loop in P around each (d — 2)-simplex in 7 is
Kasteleyn oriented.

Using the above procedure for the special 2D and 3D
triangulations, we obtain the (local) Kasteleyn orientation
assignment for links inside a triangle and a tetrahedron
shown in Figs. 2 and 9, respectively. All the Majorana
fermions inside the standard triangle or tetrahedron are
paired according to these (local) Kasteleyn orientations.

APPENDIX D: CHECKING U(1) COEFFICIENT
OBSTRUCTIONS BY BOCKSTEIN
HOMOMORPHISM

In solving the classification equations of FSPT states, we

encounter an equation of the last layer such as

dvi_y = (=1)1x = e27ilfi/2) (D1)

where f, € H*(G,,Z,) is a Z,-valued k-cocycle. This

equation has no solution for v,_,, iff ¢>"/(/+/2) is a nontrivial
U(1)-valued cocycle in H¥[G,, U(1)].

It is well known that H*(G,,R/Z) =~ H*''(G,, Z),

which comes from the short exact sequence 0 — Z —

R™'R/Z >0 and the condition H(G, R) =0 for
finite discrete or compact Lie group G,. The isomorphism
is given by the connecting homomorphism of the long exact
sequence, which is basically the differential operator d
acting on the R/Z-valued cocycles. According to this
isomorphism, (—1)/ = ¢>#(//2) is a nontrivial U(1)-
valued k-cocycle iff pS(fy):=df;/2 is a nontrivial
U(1)-valued (k + 1)-cocycle. Here, f is the Bockstein

homomorphism, which is the connecting homomorphism

2_mod 2
from the short exact sequence 0 — 7575 Z, - 0. It

maps a Z,-valued k-cocycle to a Z-valued (k + 1)-cocycle.

In summary, in order to check the last layer obstruction,
we can investigate the Bockstein homomorphism of the Z,-
valued obstruction functions:

(=1)/x € BX[G,. U(1)] & B(fi) € B1(Gy. Z). (D2)
In many cases, the Bockstein homomorphism of f is easy
to check with the identity

df i

B(fr) =

The mod 2 value of Bockstein homomorphism is also
related to the Steenrod square as

(D3)

Sq' (fx) = fe—i-1fi = B(f) (mod 2). (D4)
All the above discussions can be easily generalized to the
obstruction functions such as i/* = ¢27(/t/4) and the Z;
rather than Z coefficient.

The above result can be also understood from the
perspective of the universal coefficient theorem. We can
use this theorem to obtain the Z, coefficient cohomology
groups from the Z coefficient ones:

HYGy. Z,) = [H(G}. Z) @7 7]

@ TOI'IZ [Hk+l (Gb’ Z), Zz] (DS)

The above equation splits H*(G,,, Z,) into two types of
cocycles: The first type is obtained from a Z-valued
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k-cocycle by mod 2; the second type is obtained from a Z-
valued (k + 1)-cocycle by basically the inverse of
Bockstein homomorphism. So (—1)7* is a trivial U(1)-
valued cocycle iff f; is the first type Z,-valued cocycle (or,

equivalently, [3(f;)] = [0)]).

APPENDIX E: FSPT EXAMPLES

In this appendix, we give the classifications for FSPT
phases for some symmetry groups. Some simple results are
summarized in Table III.

1. 2D FSPT phases for arbitrary unitary
finite Abelian group

Let us consider the arbitrary unitary finite Abelian
symmetry group:

K
Gy =2hy, < [[ 2v.- (E1)
i=1

We show below that our general group supercohomology
theory gives the same classification result as Ref. [13].

The symmetry group G is a central extension of the
bosonic unitary finite Abelian group G, = [[X, Zy by Z’;
with the nontrivial (N, > 2) 2-cocycle

b
or(ant) = [ 00, (E2)
Ny
where we use a = (ag, ay, ...,ag) with0 < a; <N;—1to

denote the elements in the additive Abelian group G,. The
notation |x| means the greatest integer less than or equal
to x. If Ny is odd, we have |[w,] = [0] in H*(G,, Z,), and
the fermionic symmetry group Gf is merely the direct
product of Z-’; and G, = [[XZy. We can treat both N,
odd and N even at one time in the following. Note that we
use a different notation for Ny compared to Ref. [13],
where the fermionic symmetry group is chosen to be
Gy =z}, x 1K, Zy,.

Before calculating the classifications, we first list the
relevant cohomology groups for G, with different

coefficients:
Gb’ ZZ H chd 2,N;) (E3)
0<i<K
Gba ZZ H chd 2,N;) H chd(2,N,_,-)v (E4)
0<i<K 0<i<j<K
[Gb’ H Zy, H ZN:/ H ZN:‘./k’
0<i<K 0<i<j<K 0<i<j<k<K
(ES)

HY[G,. U(1)]

H levij H Z12Vijk H ZN:/kI

0<i<j<K 0<i<j<k<K 0<i<j<k<I<K

(E6)

Here, gcd(x, y) denotes the greatest common divisor of x
and y. And N;; ; means the greatest common divisor of
Ni,Nj, ..., and N;. One can show the above results using
the Kiinneth formula and the universal coefficient theorem
for group cohomology. Note that N; should be even (which
we assume in the following calculations); otherwise, there
is no nontrivial Z,-valued cocycle associated with the
subgroup Zy..

There are also “canonical” forms for the cocycles in the
cohomology groups above. To calculate the obstructions,
we consider the Z,-valued cocycles:

(i)

ny’(a) =a; (mod 2), (E7)
ng)(a,b) = {ai;‘biJ, (E8)
n$(a,b) = (n\'—n)(a,b) = a;p; (mod 2), (E9)

where 0 < i < K for the first two cocycles and 0 <i <
Jj < K for the last cocycle. They exhaust all nontrivial
cocycles in H'(Gy, Z,) and H*(G,,, Z,). We note that the
2-cocycle Eq. (E2) is merely w, = néo)
above notations.

in terms of the

a. Obstructions
Different from the Abelian symmetry group G, =

Zg x G, not all Kitaev chain and complex fermion
decorations are possible for the symmetry group
Eq. (E1). We should calculate the obstructions for each
layers, using the consistency equations shown in Eq. (14)
(see also Table II). Since we do not consider the invertible
topological order p + ip superconductors as FSPT states,
we need only to calculate the obstructions for n; and n,.
We use frequently the Z, and U(1)-valued cocycle invar-
iants in Refs. [16,85,86] to check whether a cocycle is
trivial or not for finite Abelian groups.

(1) Obstructions for n.—From Eq. (14), the obstruction
function for ny is Os[n;] = w,~n, because of s; = 0.
If we choose n; = ng') (0<i<K),
function is

the obstruction

)

Os[ny] = wy—ny = ny —n;".

(E10)

It is known for finite Abelian groups that the above

equation is always a nontrivial cocycle if both ngo) and
n<1'> are nontrivial cocycles.
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Therefore, if N is odd, all n; in Eq. (E3) are obstruction-
free, and the Kitaev chain decorations are possible. If N,
is even (G is a nontrivial central extension of G,), all
nontrivial n; in Eq. (E3) are obstructed, and the Kitaev
chain decorations are illegal. The (cohomology class)
number of obstruction-free n; is

H gcd (2,N;)
ged(2,Ny;)

1<i<K

#(obstruction-free n;) (E11)

(2) Obstructions for n,.—From Eq. (14) [see also
Eq. (136)], the obstruction function for n, is

O4lno] =

(_l)nzvn2+(u2vn2 ,

(E12)

which is a cocycle in H*(G,, U(1)7). Note that, if N, is
odd, we can choose @w, = 0, and the equation for n, is
always dn, = 0. So many terms in Eq. (136) vanish,
including the (%i) terms. Since there are many different
types of n, in Eq. (E4), we discuss them separately.

(2.1) n, = ngo).—Since Wy = n<20), the obstruction func-
tion Eq. (E12) is always 1. So this n, is obstruction-free.

(2.2) ny=n{"(1 <i<K).—Using the U(1)-valued
cocycle invariants, it is easy to check that both
(=1)"2=" and (—1)®>"2 are U(1)-valued coboundaries.
So this n, is also obstruction-free.

(2.3) ny = n2 (1 <i< K).—In this case, the cocycle
(1)@ = (—1)"(20)V”501) = (—1)"50)"”50)V”(1> is nontri-
0) _,(0)

vial. And the other part (—1)"="" = (=1) " is
still a 4-coboundary. So these nontrivial n, are always
obstructed.

24) n,=nS"(1<i<j<K)—In this case, the
obstruction function is

O4n;]

(_ 1 )nzvn2+w2vn2

) _p ( D 4,0, G)
(—l)nZ +n, " —n,

_ (_1)”(1” oD@ D +n® o n) (E13)
By calculating the U(1)-valued cocycle invariants, the first
part (_1)n<z>v”§ @

second part (— 1)”(2 )V”(IK)V”E) is a 4-coboundary if and only

if N;;/Ny;; is even. So n (1 <i < j < K) is obstruction-
free if and only if N; /Nol ; is even.

Summarizing the above results for 7,, the total number
of obstruction-free n, is

is always a 4-coboundary. The

#(obstruction-free n,)

— H ged(2,N;) H ged (2,]1\;]1'/)_ (E14)

0<i<K 1<i<j<K 0ij

b. Trivializations

(1) Trivializations of n,.—According to the trivialized
subgroups Eq. (15) for 2D FSPT states, the 2-cocycle n,
in the I'? is trivialized by 1D ASPT states on the boundary.
It is discussed in detail in Sec. V E. For the 2-cocycle
W) = ngo), we have I? = {wy,—ny € H* (G, Z,)|ny €
H°(G,,Z,)} = (n2 ). The complex fermion decoration
data n, = ngo) are trivialized. (Note that this n, is not
obstructed as discussed above.) So the first subgroup
Zyeaan,) Of H*(G), Z,) in Eq. (E4) does not correspond
to a nontrivial 2D FSPT state.

Combining the trivializations of n, with obstruction-free
n, number Eq. (E14), the number of trivialization-free
obstruction-free n, is

#(trivialization-free obstruction-free n,)

= H gcd(2,N;) H gcd(

1<i<K 1<i<j<K

). (E15)

(2) Trivializations of v3.—For the bosonic U(1) phase
factor vs, the trivialized subgroup in Eq. (15) can be
calculated as

[P = {(-1)>"" € H*[G,, U(1);]In, € H'(G,. Z,)}

= (=110 < i <K,ged(2,N;) =2).  (E16)
For the cocycles in the subgroup Zy, X [[i<i<x Zoi of
H?[G,, U(1)7] in Eq. (ES), they have a “canonical” form

expressed as lower-dimensional Z,-valued cocycles ni”

(0<i<K)and n<20) as (only for even N;; otherwise, the

cocycle nY) is trivial)

0 i

vy = RN (0.1, .. Nyy—1).  (E17)
The generating cocycle of I'* in Eq. (E16) can be expressed
as (=1) =" = 2sN/2/Nw” <n - Comparing it with
the above equation, we see that if N; is odd, or N;/2 is an
integral multiplier of N, then the part of I'? related to
Zy,CG, (0<i<K) is trivial in H[G,, U(l)/].
Otherwise, the 3-cocycle v3 in Eq. (E17) with k = N;/2
(mod Ny,) is trivialized by the 2D ASPT state. The results
calculated above can also be obtained from calculating the
cocycle invariants for v3 [16,85,86].

In summary, (1) if N is even, one nontrivial v3 in Zy, C
H3[G,, U(1);] is trivialized. Otherwise, all elements in
Zy, C H*[G,, U(1);] are nontrivial. (2) For 1 <i <K,
and the subgroup Zy C H?[G,, U(1);], we also have two
possibilities. If N; is even and N;/N; is odd [87], then one
nontrivial w3 in Zy, C H[G,, U(1)7] is trivialized.
Otherwise, all elements in Zy, C H3[G,, U(1);] are
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nontrivial. So the number of trivialization-free cocycles in
the subgroup Zy, X [[i<j<x Zoi C H*[G,. U(1)7] in
Eq. (ES) is

Ny ged(2Ny, N;)
ged(2,Ny) |5 ged(2,N;)

(E18)

1<i<
The total number of v5 that is not trivialized in Eq. (ES) is

#(trivialization—free v3)

N;
gcd 2 ,No) | <i<k
gcd 2Ny, N
Nl Nl k- (Elg)
ng 2 N 1<11;j[<1( ]0<lgk<K !

c. Full classification

From the above calculations of obstructions and trivial-
izations, we can obtain the number of 2D FSPT phases with
symmetry group Eq. (E1) by combining Eqgs. (E11), (E15),
and (E19):

#(FSPT) = — 0 T W, - 242:N0) ed2No. Ny
ged(2, No) 1<i<K ged(2, No;)
X H Nl] ng < ) Nijk'
1<i<j<K 0ij/ 0<i<j<k<K

(E20)

If Ny is even, the above equation is reduced to

N
#(FSPT) |Noeven :70 H N;-gcd(2Ny.N;)
1<i<K
X H N;j-ged| 2, H Nij-
1<i<j<K Nojj 0<i<j<k<K
(E21)
On the other hand, if N is odd, we have
#(FSPT) |y j0aa = No H N;-ged(2,N;)
1<i<k
- ged(2Ny, N H Njj
l<l<j<K
cged 2Ny [] N (E22)
0<i<j<k<K

After some calculations [88], one can show that the above
two equations for the number of 2D FSPT phases are
exactly the same as Eqgs. (42) and (43) of Ref. [13], which
are obtained from a totally different approach of the

braiding statistics data of the gauge flux. Furthermore,
one can show that the group structure of general group
supercohomology classification [89] also agrees with
Ref. [13]. We note again that we use a different convention
of N definition compared to Ref. [13].

2. Four symmetry groups with G, = 7,
and different s; and w,

If we focus on the bosonic symmetry group G, that is
isomorphic to Z, = {0, 1}, there are in total four different
G with different choices of cocycles s, and w,. Itis already
discussed briefly at the end of Sec. IB. The nontrivial

cocycles in H'(Z,,7,) = Z, and H*(Z,,7,) = Z, are
1, a=1,
sita) = { (£23)
0, others,
1, a=b=1,
wy(a,b) = E24
2(a.b) {0, others. (E24)

The classifications of FSPT phases for these groups are given
in Table III. For convenience, we resummarize them in
Table VI.

We note that we do not consider the invertible topologi-
cal order (such as a Kitaev chain in 1D) as a FSPT state,
since they do not need any bosonic symmetry protection

(Z]; can never be broken). If we include them to consider
invertible phases, the classification results are given in
Table VII. There is an additional Z, subgroup for
Gy =274%x2, and G; =2, x Z% in 1D (obstructed if
@, 1is nontrivial). It corresponds to the n, data of 1D
invertible topological order of Kitaev chain. There is an
additional

Z’; x Z, and
Gr= Zf: in 2D. It corresponds to the several layers of 2D
p +ip chiral superconductors as fermionic invertible
topological orders (the root states of the two Z classifica-
tions are different). It is not possible if there is time-reversal
symmetry in G, [for H*(G,,Z;) = 0]. We note that all
the results are consistent with the spin cobordism calcu-
lations [10].

Z classification for symmetry group G, =

TABLE VI. Classification of FSPT phases with G, =~ Z, and
different choices of s; and w,.

G,\ dim 0 I 2 3

Z-; x Z; 2y X 7 Z, Zs Z,
7, =7 %,, 7, Z, Z, Z, Z,
7l x 7t Z, Zy Z, Z,
7)) =7} x , 7} Z, Z, Z, VAL
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TABLE VII. Classification of fermionic invertible phases with
G, = Z, and different choices of s; and w,. The differences
compared to Table VI (with fermionic invertible topological
orders included) are emphasized by bold.

G\ dim 0 I 2 3

ngzz Zy X 7, Zy) X 7, 7 x Zg Z,
7}, =7 %,, 7, z, z, z z,
7l x 7t Z, Z3 Z, Z
7y =7} x, 7} Z, Z, Z, VAT

a. Gy = Z’; X 7,

(1) OD.—The classification data are (ng,v) €
H(Gy, Z,) x H'[G},,U(1);] = Z, x Z,. There are no
obstructions and trivializations for these data. In another
approach, the classification of one-dimensional irreducible
representations for G, is H'[Z} x Z,,U(1);] = Z, x Z,.
So the two approaches agree with each other, and the 0D
FSPT phases are classified by Z, x Z,.

(2) 1D.—The classification data are (n;,1,) €
H'(Gy,Z,) x H*[G,,,U(1);] = Z, x Z,. There are no
obstructions or trivializations.

(3) 2D.—The classification data are (n,n,,u3)€
HY(Gy,Z,) x H*(Gy,, Z,) x H3 |G, U(1) 7] = Z, X Z, X 7.
There are no obstructions or trivializations. And the group
structure of the classification [89] can be shown to be Zg.
So two copies of Kitaev chain decoration states give the
complex fermion decoration state. Two copies of complex
fermion decoration states give the nontrivial BSPT state.
And, finally, two copies of BSPT states are trivial. This
classification of 2D topological superconductors with Z,
Ising symmetry is first obtained in Ref. [47].

(4) 3D.—The classification data are (ny,n,,ns,v,) €
H'(Gy. Z) x H*(G, Z,) x H* (G, Z,) x H*[G,,, U(1);] =
Zy X2y XZyxZ;. One can show that the nontrivial
cocycles satisfy ny—n, & B*(Gy, Z,) and (—1)"—1% ¢
B%[G,, U(1)7]. According to the consistency equations in
Table II, all states are obstructed. There is only one
trivial phase.

b. G =Z,=7} %, Z,

(1) OD.—In terms of our classification data, we have
(ng,v1) € H(Gy, Z,) x H'[G,, U(1)y] = Z, x Z,. And
both data are obstruction-free. In another way, the
one-dimensional irreducible representation for G, is

classified by Hl[Zﬁ, U(l);] = Z4. So the classification
is Z4.

(2) ID.—The classification data are (n,1,) €
H'(Gy, Z,) x H*[G,,,U(1);] = Z, x Z,. However, the
nontrivial n; is obstructed. So there is only one trivial
phase.

(3) 2D.—The classification data are (n;,n,,v3)€
HY(Gy,Z,y) x H* (G}, Z,) x H3 |Gy, U(1) 7] = Z, x Z, X 7.
The nontrivial n; is obstructed. As discussed in detail in
Sec. V E, the nontrivial n, is trivialized by the boundary 1D
ASPT (recall the obstruction of Kitaev chain layer n; in
1D). And the nontrivial cocycle v5 is also trivialized (recall
the obstruction of n; in 1D). So the classification is Z,,
which is consistent with Refs. [13,56].

(4) 3D.—The classification data are (ny,n,,ns,v,) €
H'(Gy. Z) x H*(Gy, Z,) x H* (G, Z,) x H*[G),, U(1)7] =
7| X Zy X Zyx Z,. The nontrivial n, is trivialized (recall
the obstruction of 7, in 2D). And the nontrivial n5 is also
trivialized (recall the obstruction of n; in 2D). So there is
only one trivial phase.

c. Gr= Z’; x 7¥

(I) OD.—The classification data are (ng,v) €
H(Gy, Z,) x H'[G,,, U(1);] = Z, x Z,. The cocycle ny
is obstruction-free. In another approach, the classification
of one-dimensional irreducible representations for G is
H'[Z] x 7%, U(1)4] = Z,. So the classification is Z,.

(2) ID.—The classification data are (nj,u,) €
H' (G, Z,) x H*[G,,,U(1);] = Z, x Z,. There is neither
obstruction nor trivialization. The classification is Z4. If
we include the invertible topological order Kitaev chain,
then the classification is Zg. This classification of 1D
T?> = 1 topological superconductors is first obtained in
Refs. [42,43].

(3) 2D.—The classification data are (nj,n,,v3)€
H'(Gy,Z,) x H*(Gy,, Z,) x H3 |G, U(1) 7] = Z, x Z, X Z,.
The nontrivial n; obstructed for s,~—n;—n; is nontrivial
in H*(G,,Z,). This obstruction is the fermion parity
obstruction for 72 =1 2D topological superconductors
considered in Refs. [66,76]. The nontrivial n, is obstructed
for (=1)=~™ & B*[G,,U(1);]. So there is only one
trivial phase.

(4) 3D.—The classification data are (ny,n,,ns,v,) €
HY(Gy Z) x HX(Gyp Zo) x H (G}, Z,) x H[G,, U(1);] =
Zy X Zy X ZyxZ,. The nontrivial cocycle data n; of
p + ip chiral superconductor decoration is obstructed
for s;—n;—n, & B}(G,, Z,). The nontrivial n, is also
obstructed, by calculating the cocycle invariants for the
obstruction function ny~n, +s,—(ny,—n,) € B*(G,.Z,).
The nontrivial ny is trivialized by the 2D ASPT state (recall
the obstruction of n; in 2D). And the nontrivial v, is also
trivialized by another layer of the 2D ASPT state (recall the
obstruction of 7, in 2D). In summary, there is only one
trivial FSPT phase.

d. G =2y =7, %, 7%
(1) OD.—The classification data are (ng,v) €
H(Gy,Z,) x H'[G,,,U(1);] = Z, x Z,. Since the co-
cycle (=1)*~" € H?[G,,U(1);] is nontrivial, the
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nontrivial ng is obstructed. In another approach, the
classification of one-dimensional irreducible representa-
tions for G is H'[Z} x,,, Z, U(1);] = Z,. So the clas-
sification is Z;. The physical meaning is that a nontrivial
fermionic mode with 72 = —1 must be in a Kramers
doublet, which is twofold degenerate. So there is only
one trivial class.

(2) 1D.—The classification data are (n;,u,) €
H'(Gy,Z,) x H*|G,,,U(1);] = Z, x Z,. The nontrivial
n; is obstruction-free. The nontrivial v, is trivialized by
the OD ASPT state (recall the obstruction of ng in 0D). So
the classification is Z, corresponding to the complex
fermion decorations.

(3) 2D.—The classification data are (n,n,,13)€
H'Y(Gy,Z,) x H*(G},, Z,) x H3 |G, U(1) 7] = Z, x Z, X Z,.
The first cocycle n; is obstruction-free, for the obstruction
function is zero: w,~—n; + s;~—~n;~—n; = 0. The nontrivial
cocycle data n, is trivialized (recall the obstruction of ng in
1D). In summary, there is only one nontrivial topological
superconductor with 7> = —1. It is exactly the Kitaev chain
decoration state constructed in Ref. [76].

(4) 3D.—The classification data are (n,n,,nsz,v,) €
H'(Gy. Z) x H*(Gy, Z,) x H¥ (G, Z,) x HY[G),, U(1)7] =
Zy X Zy X Zyx Z,. The nontrivial cocycle n; is obstruc-
tion-free, for the obstruction function is w,—n; + s, —
n;~—n; = 0. The nontrivial cocycle n, is also obstruction-
free, since the obstruction function w,—n, + ny,—n, +
s1\/(n2v1n2) = Sl\/(nz\/lnz) is in B4(Gb, Zz) Since
H3[G,, U(1);] = 0, the classification data ns are always
obstruction-free. In summary, all four layers of classifica-
tion data are obstruction-free and trivialization-free. So the
classification of 3D T? = —1 topological superconductors
is Z4, which is first shown by Kitaev and Morgan [90].

3. FSPT states with quaternion group
Gf=Q§ = Zj; X, (Zy % Z5)
The quaternion group Qg is defined as Qg = (i, j, k|i* =
j? = k* = ijk) with order 8. Usually, we denote ijk as —1.
Other useful relations are ij = k, jk = i, and ki = j, which

can be easily derived from the definition of Qg. Since the
center of Qg is {£1}, we can unambiguously identify it with
the fermion parity group Zé Then, the bosonic symmetry
group (as a quotient group) G, = G/ Z{ = Q{; / Z’; is
generated by [i] and [j] and has relations [i]* = [j]*> =
[i]][j] = [1]. So G, is isomorphic to Z, x Z,. In terms of the
short exact sequence, we have

15750 -72,x7, > 1. (E25)

The nontrivial 2-cocycle of the central extension is given by

(1) ) M (2)

w,=ny +ny +n'n"’, (E26)

which is the most nontrivial element in H*(Z, x Z,,7Z,) =
73 = (ngl>,n(22),n§1)n§2>>. Here, n(l') and n(zl) = ngl)vn(l')
are the nontrivial 1- and 2-cocycles, respectively, for the ith
(i=1, 2) Z, subgroup of G, = Zg) X Z?. The three
terms of @, in Eq. (E26) indicate i = —1, j> = —1, and
ij = —ji, respectively, in Q‘g .

We show below that there is a 3D anomaly-free FSPT
state for Gy = Q{; with complex fermion decoration

n3 = ngl)vn(lz) + n(lmvn?. However, this state is trivi-

aiized by w,— @, € I [see Eq. (19)], which is related to
the boundary 2D ASPT state with ny = 2 copies of p + ip

superconductors.

The relevant cohomology groups of G, = ng X Zéz)

with Z, a coefficient are
HO(Zz X Zz,Zz) = Zz = <1>, (E27)
I‘I1 (ZZ X Zz,Zz) = Z% = <I’l(]1),l’l$2)>, (E28)
HXZ, % 2,,2,) = 73 = (n) . nPn?), (E29)
H (25 x 25, 25) = 24 = (n 0 a0,
(E30)

H4(ZZ X ZZ’ ZZ)
=275 = <nil),ngwn(lz),ngl)néz),n(ll)ng), nf‘z)>. (E31)

And the cohomology groups with U(1) a coefficient are

H'[Z, x Z,,U(1)] = Z2, (E32)
H[Z, x Z,,U(1)] = Z,, (E33)
H3[Z, x Z,,U(1)] = Z3, (E34)
HY[Z, x Z,,U(1)] = 22, (E35)
H3[Z, x Z,,U(1)] = Z3. (E36)

a. 0D

The classification data are (ng,v;)€H(G,,Z,) x
H'[G,,U(1)]=Z,xZ3. From the equation dv; =

(=1)®2" we see that ny = 1 is obstructed, as [(—1)*2] =

[(—1)"(11)”<12)] is the nontrivial cocycle in H*[Z, x Z,,U(1)]=

Z,. So the classification is Z3, which is the same as BSPT
phases.

031055-61



QING-RUI WANG and ZHENG-CHENG GU

PHYS. REV. X 10, 031055 (2020)

b. 1D

The classification data are (ng,n;,v,) € H(Gy,, Z,)x
HY(Gy, Z,) x H*[G,,, U(1)] = Z, x Z3 x Z,. The equa-
tion dn; = w,—ny implies that ny =1 is obstructed.
From the equation dv, = (—1)*", we see that n; = n(ll)
is obstructed: [(—1)'] = [(=1)""%] & BY[G,. U(1)].
The nontrivial BSPT v, = (=1)"" is trivialized by 0D
obstruction function (—1)®2" with ny = 1. Therefore, there
is only one trivial FSPT phase in 1D.

c. 2D

The classification data are  (ng,ny,ny,13) €
H(G,,Z) x H'(Gy, Z,) x H*(G,,, Z,) x H*|G,,, U(1)] =
ZxZ3xZ3xZ3. The ng=1 (p+ip superconductor)
state is obstructed by the equation dn; = w,~ny. And all
the n; are obstructed by the equation dn, = w,—n;. The
data n, = w, are trivialized by 1D ASPT state w,—n, with

ny = 1. So we need only to consider n, € 73 = (ném, n§2)>.

Since [(—1)»2mtmm] = [(—1)”51>"§2)"(2i)] if n, = ng), we

conclude that all n, are obstructed or trivialized. For the
BSPT state v5, two of the three root states are trivialized by

ID ASPT (—1)“’2”(li). Therefore, the 2D FSPT phases
(invertible phases excluded) are classified by Z,, which
is generated by one of the BSPT root phases.

d. 3D

The classification data are (n,n,,n3,v4) € H' (G, Z)x
Hz(Gb,Zz> XH3<Gb,Zz> XH4[Gb, U(l)] :Zl X Z% X ng
Z3. The data n, = w, are trivialized by w,—n, with
ny = 1. And all other n, are obstructed by the equation
dns = won, + nyn,. For the ny data, the 1D ASPT
with @,n!” trivializes the n; data from Z3 to Z2,
which can be chosen to be <ng1)n(12),n§1)n§2)>. For the
two root n3, one can show that [dy,] = [(—1)®2"Hmm] =
[(—1)"9)”?)““"9) . So the only obstruction-free and trivi-
alization-free nj is n3 = ngl)n(lz) + ngl)néz). However, from
the ny = 2 trivialization Eq. (245), this n5 is the same as

)

and trivialized by w,— 0, = Sq'(w,) = Sq' [ngl)ngz)]. For
the BSPT v, they are all trivialized by the 2D ASPT with
(=1)@2mtmm In conclusion, there is only one 3D FSPT
trivial phase.
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