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In magic angle twisted bilayer graphene (TBG), electron-electron interactions play a central role,
resulting in correlated insulating states at certain integer fillings. Identifying the nature of these insulators is
a central question, and it is potentially linked to the relatively high-temperature superconductivity observed
in the same devices. Here, we address this question using a combination of analytical strong-coupling
arguments and a comprehensive Hartree-Fock numerical calculation, which includes the effect of remote
bands. The ground state we obtain at charge neutrality is an unusual ordered state, which we call the
Kramers intervalley-coherent (K-IVC) insulator. In its simplest form, the K-IVC order exhibits a pattern of
alternating circulating currents that triples the graphene unit cell, leading to an “orbital magnetization
density wave.” Although translation and time-reversal symmetry are broken, a combined “Kramers” time-
reversal symmetry is preserved. Our analytic arguments are built on first identifying an approximate
Uð4Þ × Uð4Þ symmetry, resulting from the remarkable properties of the TBG band structure, which helps
select a low-energy manifold of states that are further split to favor the K-IVC state. This low-energy
manifold is also found in the Hartree-Fock numerical calculation. We show that symmetry-lowering
perturbations can stabilize other insulators and the semimetallic state, and we discuss the ground state at
half-filling and give a comparison with experiments.
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I. INTRODUCTION

In twisted bilayer graphene (TBG), two sheets of
graphene twisted by a small angle θ create a moiré lattice,
resulting in electronic minibands. For a particular “magic”
twist angle θ ∼ 1.05°, theory predicts that the minibands
near charge neutrality (CN) will have minimal dispersion
[1,2], and electron-electron interactions play a dominant
role. Indeed, when the electron filling ν of these nearly flat
bands is varied (completely full or empty bands corre-
sponding to ν ¼ �4 electrons per moiré unit cell relative to
charge neutrality), insulating states appear at various
integer fillings [3–5]. The nature of these insulators con-
tinue to be debated [6–13]. Furthermore, superconductivity
is observed on introducing charge carries into the insulating
state [4,5,14].
Several aspects of the physics of TBG are reminiscent of

multicomponent quantum Hall (QH) systems (e.g., with
spin, valley, or layer), where correlated insulators also arise

at integer fillings. The driving force in this case is the
exchange interaction that spontaneously polarizes the elec-
trons into a subset of the components. TheLandau-level form
of the single-particle wave functions, which quenches the
kinetic energy while preserving their spatial overlap, plays a
key role in stabilizing these ferromagnets. However, the
addition of the time-reversal symmetry present in TBG,
particularly when combined with 180-degree in-plane rota-
tion symmetry (C2) that effectively enforces time reversal in
each valley, opens the door to different orders (including
superconductivity) that are absent in the quantum Hall
setting. Indeed, TBG is one of the few moiré materials that
retains C2 symmetry, which leads to special properties such
as unremovable band touchings that double the number of
low-energy modes. Symmetry-lowering perturbations such
as an aligned h-BN substrate or weak magnetic fields are
known to induce an integer quantum Hall (IQH) insulator in
certain cases [15,16].
In the other canonical model of strong-coupling physics,

the Mott-Hubbard model, symmetry breaking in the corre-
lated (Mott) insulator is governed by antiferromagnetic
superexchange. A pivotal question is whether the single-
particle subspace defined by TBG leads to insulators that
parallel the quantum Hall case, with a cascade of polarized
states, or more closely resembles that in the Hubbard
model. We answer this question by considering the struc-
ture of Coulomb interactions projected directly into the
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k-space continuum model of TBG, including several of the
remote bands [10,12,13]. While Mott-Hubbard representa-
tions [7,8,17,18] are complicated by the topology of the
nearly flat bands [6,11,19–22], one can work directly in the
space of the continuum wave functions. Here, careful
analysis reveals some generic features of the Coulomb
matrix elements that arise from the symmetry and topology
of the flat bands. This analysis allows us to identify both an
enlarged Uð4Þ × Uð4Þ approximate symmetry group and an
intervalley-coherent (IVC) order at neutrality, which were
missed in previous approaches.
This “hidden” symmetry of the model has important

phenomenological consequences. Experimentally, many of
the basic phenomena—such as the existence of correlated
insulators at integer fillings, the location of superconduct-
ing domes, and the presence of anomalous Hall effects—
differ from sample to sample. Since the energetics may
depend on parameters like the precise twist angle, align-
ment with the h-BN substrate, and strain, the search for a
“unified” theory of TBG may become mired in a swamp of
microscopic details. However, in this work, we identify a
hierarchy of energy scales in TBG that can naturally unify
many of these findings. Because of the remarkable properties
of the TBG band structure, we show that the largest energy
scales (15–30 meV) preserve the approximate Uð4Þ × Uð4Þ
symmetry, which relates a small number of competing
symmetry-breaking orders. Smaller effects (0.2–5meV) then
choose between these orders, and we identify several con-
crete mechanisms, such as strain or substrate alignment,
which can tilt the balance between them.
The primary focus of this work is to understand the

implications of this hierarchy at charge neutrality (ν ¼ 0).
In certain samples with low twist-angle disorder, an
insulating state is observed in transport at ν ¼ 0, even in
the absence of apparent hBN alignment [5]. Scanning
tunneling microscopy also finds that the density of states
(DOS) is reconstructed at ν ¼ 0, where a gap of about
15–30 meVopens up [11,23–25]. We identify this phase as
a new Kramers intervalley-coherent (K-IVC) state. In the
K-IVC phase (Fig. 1), time reversal is spontaneously
broken in each spin component, and a pattern of alternating
circulating currents develop which triple the graphene unit
cell (the moiré unit cell is unchanged). See Fig. 1 for a
graphical illustration of this alternating current order. The
K-IVC order does not have a net magnetization; rather, it is
a “magnetization density wave” at the wave vector K of
graphene’s Dirac point. Like an antiferromagnet, the K-
IVC preserves a modified time-reversal symmetry T 0
combining the regular (spinless) time reversal T with a
π shift in the IVC phase. The new time reversal has the
remarkable property that ðT 0Þ2 ¼ −1; i.e., it is a Kramers
time-reversal symmetry arising from the valley rather than
spin. The presence of T 0 leads to Kramers pairing in the
spectrum, independent of spin, and may have important
implications for the nature of superconductivity when the

K-IVC insulator at ν ¼ 0 is doped. Furthermore, restricting

to each spin, the K-IVC state is a topological insulator,

though the protecting T 0 symmetry may be strongly broken
by the edge (due to broken translation symmetry).
Before detailing the Hamiltonian, let us briefly summa-

rize the origin of the approximate Uð4Þ × Uð4Þ symmetry.
The eight flat bands are labeled by spin s, valley τ, and a
twofold “band” index σ. Since the bands are quite flat, there
is no particular reason that σ should label the single-particle
eigenbasis. Instead, it turns out that the two bands can be
decomposed into a Chern C ¼ 1 band and a C ¼ −1 band
related by C2T symmetry, leading to a total of four C ¼ 1
and four C ¼ −1 bands. Remarkably, the wave functions in
the Chern basis have a substantial sublattice polarization;
i.e., they have a larger projection on one sublattice
compared to the other. Thus, we can label them by σz ¼
A=B ¼ �1 with the Chern number C ¼ σzτz. Because of
this sublattice polarization, the slowly varying part of the
charge density decouples, to a good approximation, into the
two Chern components: nðrÞ ¼ nC¼1ðrÞ þ nC¼−1ðrÞ (oth-
erwise, there would be large cross terms). The four C ¼ 1
(C ¼ −1) wave functions are almost identical up to a
permutation of the spin and sublattice, so nðrÞ, and hence
the interaction, is invariant under separate U(4) rotations
acting on the C ¼ 1= − 1 components. The single-particle
dispersion and other perturbations then weakly break this
symmetry down to the physical one.
This case is, in fact, highly reminiscent of the QH effect

in the zeroth Landau level (ZLL) of monolayer graphene,
which also has a sublattice-valley locking σzτz ¼ sgnðBÞ,

FIG. 1. Circulating currents and magnetization of the K-IVC
state. Similar to a Kekule distortion, spontaneous intervalley
coherence between the K − K0 points of the graphene triples the
graphene unit cell. The amplitude of the circulating current slowly
modulates over themoiré unit cell, shownhere as themagnetization
densitymðrÞ, while preserving the moiré superlattice translations.
We show the contribution from a single spin species summed over
the two layers; the other spin carries either identical or reversed
currents if the K-IVC state is a spin singlet or spin “triplet,”
respectively. The lower-left inset shows an example of the circulat-
ing current pattern that retains C2T symmetry, at the scale of the
graphene lattice, in the AA region of the moiré unit cell.
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which leads to an approximate U(4) symmetry. Indeed,
TBG is, in essence, two time-reversed copies of the ZLL of
MLG: σzτz ¼ C ¼ �1, with the TBG flat-band dispersion
mapping ontoweak tunneling between the two copies. Thus,
in the absence of dispersion and with full sublattice polari-
zation, there is then a Uð4Þ × Uð4Þ symmetry coming from
each “ZLL.” Therefore, much intuition from the theory of
U(4) quantum-Hall ferromagnetism in MLG [26] can be
translated to TBG, albeit with the novel twist of time-reversal
symmetry: Unlike a single ZLL, unfrustrated Cooper pairs
can form from one electron in each copy.
This doubled-ZLL picture also brings us back to the

tension between the QH andHubbard paradigms. In the end,
TBG is a novel hybrid of both:Within each copy of the ZLL,
the electrons prefer to polarize into a subset of the four
components by direct analogy to U(4) QH ferromagnetism.
However, the tunneling-induced coupling between the two
ZLLs couples their order parameters via an antiferromagnetic
“t2=U” superexchange, which picks out a submanifold of
states comprised of theK-IVCand thevalley-Hall (VH) state.
Finally, taking into account the finite sublattice polarization,
the K-IVC state that remains a “generalized ferromagnet” is
favored relative to the valley-Hall state.

II. HAMILTONIAN AND SYMMETRIES

Our starting point is the Bistritzer-MacDonald (BM)
[1,2] model of twisted bilayer graphene, which considers
two graphene layers with a relative twist angle θ coupled
via a slowly varying moiré potential. The interlayer moiré
potential is specified by two parameters, w0 and w1,
denoting intra- and intersublattice coupling, respectively.
The ratio w0=w1, which was taken to be 1 in the original
BMmodel, is reduced in realistic samples to about 0.75 due
to lattice relaxation effects, which shrink the AA stacking
regions relative to the AB regions [27,28]. In the extreme
limit where w0 ¼ 0, an extra chiral symmetry is present,
which leads to several interesting features including per-
fectly flat bands at the magic angle [29].
Let us now define an extended BM Hamiltonian,

which includes interactions. The interaction is taken to be
a double-gate screened Coulomb interaction with Vq ¼
2π tanhðjqjdÞ=ϵjqj, where d is the distance to the gate and
ϵ a dielectric constant (similar results are also obtained for the
single-gate screened case).Next,we choose a subset of bands
of theBMHamiltonianhBM near charge neutrality labeled by
the band indexN− ≤ n ≤ Nþ and assume that all states with
n > Nþ (n < N−) are empty (full). The projected
Hamiltonian has the form

Heff ¼
X
k∈BZ

c†khðkÞck þ
1

2A

X
q

Vq∶ρqρ−q∶; ð1Þ

ρq ¼
X
k∈BZ

c†kΛqðkÞckþq; ½ΛqðkÞ�α;β ¼huα;kjuβ;kþqi; ð2Þ

where cðkÞ is a vector of annihilation operators in the
combined index α; β;… containing spin s ¼ ↑;↓, valley
τ ¼ K;K0, and band n ¼ N−;…; Nþ indices, and uαðkÞ are
the eigenstates of the BM Hamiltonian. Note that A is the
area, and hðkÞ is the single-particle Hamiltonian, which
includes the BM Hamiltonian as well as band renormaliza-
tion effects due to the exchange interaction with the filled
remote bands (see Supplemental Material for details [30])
[10,12,35]. We neglect electron-phonon interactions as well
as the short-distance Coulomb scatteringVK−K0 between the
Dirac points, both of which are suppressed by powers of the
lattice-to-moiré scale a=LM ≪ 1.We refer to these neglected
terms as the “intervalley-Hunds” terms.
Since the competing ν ¼ 0 states are distinguished by

their broken symmetries, let us review the symmetries of
the extended BM Hamiltonian. Letting σz, τz denote
sublattice (A=B) and valley (K=K0), Heff has the following
symmetries: (i) C2 ¼ σxτx and (ii) T ¼ τxK, which relate
the two valleys, (iii) C3 ¼ e−ð2πi=3Þσzτz , which acts within
each valley, and (iv) Uð2ÞK ×Uð2ÞK0 ≃UCð1Þ×UVð1Þ×
SUð2ÞK ×SUð2ÞK0 , where UCð1Þ and UVð1Þ denote
charge conservation and valley charge conservation, and
SUð2ÞK;K0 represent independent spin rotations in theK and
K0 valleys. In addition, the BM Hamiltonian has an
approximate (v) particle-hole symmetry P ¼ iσxμyK at
small angles, where μi are the Pauli matrices acting on the
layer index [21,36].
The intervalley-Hunds terms, whose magnitude is of the

order JH ∼ 0.2–0.5 meV, break the independent spin rota-
tions in each valley down to the physical global spin
rotation symmetry: SUð2ÞK × SUð2ÞK0 → SUð2Þ. This
effect occurs at order a=LM ∝ θ. Furthermore, umklapp
processes that scatter three electrons between the two
valleys (either due to phonons or higher-order Coulomb
scattering) break UVð1Þ down to Z3 and are suppressed by
a further factor of θ2 [37,38].

III. HARTREE-FOCK MEAN FIELD

In the Hartree-Fock (HF) method, we solve for the set of
self-consistent ground-state Slater determinant states char-
acterized by the one-electron density matrices Pα;βðkÞ ¼
hc†αðkÞcβðkÞi. Similar to Refs. [10,11,13], we take both the
flat bands and a range of remote bands around charge
neutrality into account. However, in contrast to previous
studies [10–13], we allow for coherence between the two
valleys, which spontaneously breaks the UVð1Þ symmetry
(see also Ref. [6] for an early suggestion of a different IVC
order motivated on phenomenological grounds). Further
details of our procedure are provided in the Supplemental
Material [30].
The numerical results at CN (ν ¼ 0) are given in Fig. 2 for

fixed θ ¼ 1.05°, ϵ ¼ 7 and 12, andw0 ¼ 40 and 80meVas a
function of w1. Since the magic-angle condition depends on
the ratio w1=θ [2], changing w1 is approximately equivalent
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to changing θ.We exploit this fact to plot theHF energies as a
function of an “effective” angle θ̃≡1.05°× ð110=w1½meV�Þ,
where w1 ¼ 110 meV is the magic-angle condition for the
parameters we have used. From comparison with ab initio
methods, themagnitudes of the interlayer tunneling terms are
estimated to be w1 ∼ 110 meV and w0 ∼ 80 meV [2,27,28].
Here, we consider a range of values of w0=1 that can be far
from these estimates as this provides valuable information
when comparing numerical results with our analytical
findings below.
Depending on the initial condition or which symmetries

are explicitly enforced, we find several self-consistent
solutions that can be grouped into three categories: (i) a
semimetallic (SM) state that preserves C2, T , and UVð1Þ
but may break C3 (this state can be understood as a
renormalized version of the BM semimetallic band struc-
ture); (ii) a QH insulator with Chern number�4 that breaks
T but preserves C2 and UVð1Þ; and (iii) several insulating
states with Chern number 0, including the VH state, which
breaks C2 but preserves T and UVð1Þ, the valley-polarized
(VP) state [39], which breaks T and C2 but preserves C2T
and UVð1Þ, and an IVC state, which breaks T and UVð1Þ
but preserves the combination T 0 ¼ τyK, which acts as a
spinless Kramers time-reversal symmetry between valleys.
Unlike previously studied IVC states in TBG [40] and
related moiré materials [41,42], this Kramers IVC (K-IVC)
takes place between wave functions that have the same
Chern number, thus evading the energy penalty associated
with vortices in the order parameter [40].
The competition between the VH, VP, QH, and SM

states, which were all found in previous mean-field studies
[10–12], is very sensitive to the values of (w0, w1), which
explains why these studies, all of which assumed unbroken
UVð1Þ symmetry, did not agree on the nature of the ground
state. On the other hand, the UVð1Þ-breaking K-IVC state is
always the lowest-energy state regardless of the values of
w0, w1, and ϵ. Another salient feature is that the competition
between the K-IVC, QH, and VH is closest when w0 → 0,
but it is lifted in favor of the K-IVC order for larger w0. The
reason for this feature will become clear from our analysis
of the approximate symmetries.
The HF numerics shown in Fig. 2 were obtained by

keeping six bands per spin and valley, but more generally,
we find that mixing between the flat and remote bands only
has a quantitative effect over the range of parameters
considered. In particular, the K-IVC insulator remains
the ground state as more bands are included, and the
magnitude of the IVC order parameter remains almost
unchanged (Fig. 3), indicating that the symmetry breaking
occurs predominantly in the flat bands. The charge gap
decreases quantitatively as more bands are included, but it
saturates at a value of about 26 meV when 16 bands per
spin and valley are taken into account, and a value of ϵ ¼ 7
is used. As a result, our numerical results can be reproduced
to a good degree of accuracy within the two-band

projection of Ref. [12], where the effect of the remote
bands is incorporated only via the exchange renormaliza-
tion of hðkÞ.
A better intuition for the symmetry-breaking phases in

Fig. 2 can then be obtained by restricting ourselves to

FIG. 2. Energies per electron at charge neutrality in the K-IVC,
QH, VH, SM, and VP states relative to the average energy of the
K-IVC, QH, VH, and SM (denoted as Ē). Results are obtained at
θ ¼ 1.05° as a function of 100 ≤ w1 ≤ 120 [meV] (x axis) for
w0 ¼ 40 and 80 meV and ϵ ¼ 7 and 12. For convenience, we
define θ̃ ¼ 1.05° × ð110=w1½meV�Þ in order to convert w1 to a
qualitatively equivalent angle. The dashed vertical line shows the
first magic angle. Results were obtained using six moiré bands
per spin and valley, and a 24 × 24 momentum grid. Note that the
energies of the VH and QH states are numerically identical.

(a) (b)

FIG. 3. (a) Energies per electron in the flat bands of the K-IVC,
QH, VH, SM, and VP states relative to the average energy of the
K-IVC,QH,VH,andSM(denoted as Ē), as a functionof thenumber
of bands per spin and valley kept in the Hartree-Fock numerics.
(b) IVC order parameter jΔIVCj ¼

P
k trðPIVCðkÞ2Þ1=2=NM, where

PIVCðkÞ is the UVð1Þ-breaking part of PðkÞ andNM the number of
moiré unit cells (left, blue squares). We show the charge gap (right,
green triangles) at charge neutrality as a function of the number
of bands per spin and valley. The results in both panels (a) and
(b) were obtained on a 12 × 12 momentum grid with θ ¼ 1.05°,
w0 ¼ 80 meV, w1 ¼ 110 meV, and ϵ ¼ 7. Note that the energies
of the VH and QH states are numerically identical.
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the flat bands, where PðkÞ is an 8 × 8 matrix, which we
parametrize as PðkÞ ¼ 1

2
½1þQðkÞ�, with QðkÞ2 ¼ 1 and

trQðkÞ ¼ 2ν. Furthermore, rather than working in the basis
that diagonalizes hBM, it is convenient to work in the
sublattice-polarized basis that diagonalizes the sublattice
operator σmnðkÞ ¼ hunðkÞjσzjumðkÞi, with n;m ∈ f1; 2g
restricted to the two flat bands. This basis is well defined
as long as the eigenvalues of the matrix σðkÞ are nonzero,
indicating finite sublattice polarization. In the Supplemental
Material [30], we check that this is indeed the case. The eight
flat bands are then labeled by sz ¼ ↑=↓, τz ¼ K=K0,
σz ¼ A=B. A crucial feature of this basis is that each band
carries a quantized Chern number C ¼ τzσz [29,40,43,44].
With this basis in hand, we can concisely summarize the

competing insulators: QQH ¼ σzτz ¼ C (which explains its
net Hall conductance); QVP ¼ τz; QVH ¼ σz ¼ τzC (which
explains its valley-Hall conductance); and finally,

QK-IVC ¼ σy½cosðθIVCÞτx þ sinðθIVCÞτy�; ð3Þ

which was found to be the ground state at charge neutrality
for the entire parameter range that was studied. Under
(graphene-scale) lattice translations, theK-IVCorder param-
eter transforms as θIVC → θIVC þ ð2π=3Þ, while under spin-
less T , θIVC → θIVC þ π. In addition to the spin-singlet
variant of the K-IVC state discussed here, there are other
K-IVC states with different spin structures which are all
degenerate on the level ofHeff . These stateswill be discussed
below in the sections containing our analytical results.

IV. APPROXIMATE SYMMETRY AND
HIERARCHY OF ENERGY SCALES

A. Enlarged Uð4Þ × Uð4Þ symmetry

Below, we show how a large Uð4Þ × Uð4Þ symmetry
appears in the pure interaction model (i.e., with no
dispersion) in the chiral limit. We begin by showing that
even away from the chiral limit, the flat-band-projected
interaction term has an enhanced U(4) symmetry. Next, we
show that the chiral model also has a different enhancedU(4)
symmetry, even when dispersion is included. Combining
these symmetries, we obtain a large Uð4Þ × Uð4Þ symmetry
for the chiral model in the absence of dispersion.
Motivated by the numerical result, in the following, we

restrict ourselves to the two flat bands (per spin and valley)
and rewrite the interacting Hamiltonian (1) as

Heff ¼
X
k

c†kh̃ðkÞck þ
1

2A

X
q

Vqδρqδρ−q þ const; ð4Þ

δρq ¼ ρq − ρ̄q; ρ̄q ¼
1

2

X
G;k

δG;qtrΛGðkÞ; ð5Þ

where the interaction term differs from Eq. (1) by an
exchange term due to normal ordering as well as the
subtraction of the average charge density at neutrality

P
q ρ̄q (see Supplemental Material [30] for details).

The resulting density operator δρq is exactly odd under
particle-hole symmetry, and hence h̃ and the interaction are
separately particle-hole symmetric (

P
q ρ̄q is the total charge

density of the flat bands).
Let us first consider the limit where sublattice polariza-

tion is not saturated, i.e., chiral symmetry is not present,
w0 ≠ 0. Now, the particle-hole symmetry of the projected
Hamiltonian (4) has important consequences. This case
follows from the observation that a PT symmetry (which
flips energy but not momentum) is equivalent, within a
perfectly flat band (i.e., on ignoring the single-particle
dispersion), to a single-particle unitary symmetry since it
leaves the space of eigenstates invariant. In our model, the
gauge can be chosen such that the PT symmetry has the
following simple form in the flat-band-projected basis (see
Supplemental Material [30])

iPT ¼ τyσy: ð6Þ
Note that PT acts locally in space and momentum but
exchanges valley and sublattice, relating flat bands with
the same Chern number C ¼ τzσz. Thus, if we neglect the
dispersion term h̃, we find that the Uð2ÞK × Uð2ÞK0 of the
Hamiltonian is enlarged to a Uð4ÞPT symmetry whose
generators are fta; taσyτyg, where ta are the eight (sublattice
and valley diagonal) generators ta ¼ fsμ; τzsμg of Uð2ÞK ×
Uð2ÞK0 and μ ¼∈ f0; 1; 2; 3g. This unitary symmetry is
broken by the dispersion term h̃, which anticommutes with
the extra generators taσyτy.
Another limit where the symmetry of the Hamiltonian is

enhanced is the chiral limit w0 ¼ 0 [29,45], where the BM
Hamiltonian has an extra chiral symmetry S ¼ σz,
fS; HBMg ¼ 0, leading to complete sublattice polarization.
In this case, we can combine PT symmetry with S to
obtain a Z2 unitary symmetry R given by

R ¼ PT S ¼ τyσx: ð7Þ

Similar to PT , R acts locally in space and momentum but
exchanges the valley and sublattice, relating bands with the
same Chern number C ¼ τzσz. Its existence enlarges the
symmetry of the model to Uð4ÞR, whose generators are
fta; taRg. It is important to notice that this Uð4ÞR symmetry
is different from the Uð4ÞPT symmetry discussed earlier. In
addition, the Uð4ÞR symmetry is preserved when including
the dispersion h̃ and does not rely on the flat-band
projection; i.e., it is a symmetry of the full Hamiltonian
in the chiral limit.
Combining the two previous discussions, we find that the

interaction in the chiral limit has a large Uð4Þ × Uð4Þ
symmetry whose generators are fta; taτyσx; taτyσy; taσzg.
An intuitive understanding of this result is obtained by
observing that in the chiral limit, the form factor ΛqðkÞ has
the remarkably simple form
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ΛqðkÞ ¼ FqðkÞeiΦqðkÞσzτz ; ð8Þ

where FqðkÞ and ΦqðkÞ are two real scalars whose proper-
ties are discussed in more detail in the Supplemental
Material [30]. As a result, the interaction is invariant under
any unitary rotation that commutes with σzτz, yielding the
symmetry Uð4Þ × Uð4Þ corresponding to arbitrary unitary
rotations that relate flat bands with the same Chern number,
as illustrated in Fig. 5.

B. Hierarchy of energy scales

In the realistic case where w0 ≠ 0 and h̃ are not
negligible, we can estimate the strength of the Uð4Þ ×
Uð4Þ symmetry breaking by splitting the form factor ΛqðkÞ
into components ΛS=A

q ðkÞ that commute/anticommute with
R. Using the remaining symmetries, one can show (see

Supplemental Material [30]) that ΛS
qðkÞ has the form given

in Eq. (8), while ΛA
q ðkÞ ¼ σxτzFA

q ðkÞeiΦA
q ðkÞσzτz . We can

now write the density as δρq ¼ δρSq þ δρAq , with δρS=Aq

given by

δρS=Aq ¼
X
k

�
c†kΛ

S=A
q ðkÞckþq −

1

2

X
G

δG;qtrΛ
S=A
G ðkÞ

�
: ð9Þ

We notice that the R-symmetric component of the density
δρSq acts within the same sublattice, whereas the R non-
symmetric part δρAq acts between sublattices. This R-break-
ing component induces a splitting of the interaction into an
intrasublattice part HS ¼ ð1=2AÞPq Vqδρ

S
qδρ

S
−q, which

has the full Uð4Þ × Uð4Þ symmetry and an intersublattice
part HA ¼ ð1=2AÞPq Vq½δρSqδρA−q þ δρAq δρ

S
−q þ δρAq δρ

A
−q�

with only a U(4) symmetry. Similarly, the form of the
dispersion h̃ is restricted by symmetries to

h̃ðkÞ ¼ h0ðkÞτz þ hxðkÞσx þ hyðkÞσyτz; ð10Þ

with the R-symmetric (nonsymmetric) part given by hx;yðkÞ
[h0ðkÞ]. Note that, unlike the interaction, the symmetric
part acts between sublattices, and the nonsymmetric part
acts within each sublattice.
Let us denote the typical energy scales associated with

HS, HA, hx;yðkÞ, and h0ðkÞ by US, UA, tS, and tA,
respectively (see Supplemental Material for details [30]).
One crucial observation is that even though the realistic
value of w0=w1 is not small, the R-breaking terms UA and
tA are smaller than their R-symmetric counterparts US and
tS by a factor of 3–5, as shown numerically in the
Supplemental Material [30] and summarized in Fig. 5.
Furthermore, even after accounting for the band renorm-
alization effects, the dispersion tS is, on average, smaller by
a factor of 3–5 compared to the interaction.
The previous discussion points to a hierarchy of energy

scales associated with different symmetries. The largest
scale is associated with the intrasublattice interaction HS,
which has the enlarged symmetry Uð4Þ × Uð4Þ imple-
mented by unitary rotations that commute with σzτz.
This symmetry is broken at lower energy scales by two
different terms. First, the intersublattice hx;y breaks it down
to a single Uð4ÞR that commutes with σx, corresponding to
the symmetry of the chiral model discussed earlier. Second,
the intersublattice interaction HA breaks it down to a
different Uð4ÞPT subgroup that commutes with σxτz.
The presence of both terms thus reduces the symmetry
down to Uð2ÞK × Uð2ÞK0 , which is the intersection of the
two U(4) subgroups. The intrasublattice dispersion h0 is
smaller in magnitude (∼0.5–1 meV) and does not break the
symmetry any further, so it can be neglected. Finally, the
intervalley-Hunds coupling breaks the symmetry down to
UCð1Þ × UVð1Þ × SUð2Þ at smaller scales. Close to the

(a) (b)

FIG. 4. (a) HF band spectrum of the K-IVC state that solves the
self-consistency equations when six bands per spin and valley are
used. The parameters were θ¼1.05°, w0¼78meV, w1¼105meV,
and ϵ ¼ 9.5. The gray dashed lines correspond to the original BM
band spectrum. (b) DOS of the K-IVC state at charge neutrality
(solid blue line) and the self-consistent HF solution with empty
flat bands, i.e., at filling ν ¼ −4 (dashed orange line). Here, AM is
the area of the moiré unit cell.

FIG. 5. Illustration of the Uð4Þ × Uð4Þ symmetry associated
with the symmetric part of the interaction HS. The symmetry
corresponds to arbitrary rotations among bands with the same
Chern number (top panel). A table illustrating the hierarchy of
energy scales and the different symmetries associated with each
scale is shown in the bottom panel. Here, Uð4Þη denote the U(4)
subgroup of unitary matrices in Uð4Þ × Uð4Þ commuting with η.
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magic angle, all the scales are governed by the interaction
and depend crucially on the structure of the wave functions
[via ΛqðkÞ] rather than the detailed q dependence of Vq.

V. GROUND STATE AT EVEN INTEGER FILLING

A. Energetics and ground state
of the spinless model

To understand the competition between different states, it
is instructive to start by considering the simpler problem of
spinless electrons at half-filling, for which we simply need to
replace Uð4Þ → Uð2Þ in the discussion above. Physically,
this process is equivalent to assuming a spin-unpolarized
solution at CN or a spin-polarized solution at half-filling.
We take the strong-coupling limit by assuming that the

intrasublattice interaction scale is much larger than the
other scales, i.e., US ≫ UA, tS, and subsequently solve for
the ground states in this limit. For the realistic parameters,
US is only a factor of 3–5 larger than UA and tS. However,
as we will see, the results of the strong-coupling analysis
agree remarkably well with the Hartree-Fock numerics,
providing an independent justification for the results
beyond mean field. We will comment later on the validity
of our results for intermediate coupling, US ∼ tS.
We start by noting that HS is a non-negative definite

operator for any repulsive interaction Vq > 0, which
implies that any state satisfying δρSqjΨi ¼ 0 for q ≠ 0 is
a ground state [9,35,46]. Next, we note that the diagonal
form of ΛS

qðkÞ in the sublattice and valley implies that δρSq
annihilates any sublattice or valley “ferromagnet” where
two of the four sublattice or valley states shown in Fig. 6 are
completely filled. For the q that is not a reciprocal lattice
vector, this result follows by noting that the action of δρSq
changes an electron’s momentum by q, which is impossible
in a completely filled or empty band. For reciprocal lattice
vector q, the action of the first term in Eq. (9) on a
completely filled or empty band is finite but cancels exactly
against the second term at CN, as shown in the
Supplemental Material [30]. Simple states satisfying this
condition are the QH σzτz, VH σz, and VP τz states. More
general states are obtained by acting with any Uð2Þ × Uð2Þ
rotation that commutes with σzτz on these simple states,
yielding a manifold of Slater determinant states labeled by a
k-independent Q satisfying ½Q; σzτz� ¼ 0. They fall into
two categories: (i) a Uð2Þ × Uð2Þ-invariant QH state with a
total Chern number �2 obtained by filling two bands with
the same Chern number and (ii) a manifold of zero Chern
number states generated by the action of Uð2Þ × Uð2Þ on
the VP state. This manifold includes the VH state as well as
two distinct types of IVC orders that break UVð1Þ: the
Kramers IVC state σyτx;y discussed earlier and a T -
symmetric IVC state with σxτx;y. Both IVC states hybridize
bands with the same Chern number, and as a result, the
order parameter can be uniform in k and evade the energy
penalty due to vortices discussed in earlier works [40–42].

Including the dispersion hx;yðkÞ breaks the Uð2Þ × Uð2Þ
down to Uð2ÞR. It has the form of an intravalley, intersu-
blattice tunneling with amplitude hxðkÞ þ ihyðkÞ connect-
ing pairs of opposite Chern bands, as shown in Fig. 6. Thus,
a state in which all pairs of bands connected by hx;y are
either both full or both empty is annihilated by hx;y since
the tunneling processes are completely blocked. This case
is equivalent to ½Q; σx� ¼ 0. It can be seen by noting that
commutation with both σx and σzτz means that Q is
proportional to the identity in the SUð2Þ pseudospin
variable ðσx; σyτz; σzτzÞ whose z component is the Chern

FIG. 6. Schematic illustration of the symmetry reduction and
ground-state selection in the spinless model (top panel). Begin-
ning with the Uð2Þ × Uð2Þ symmetric intrasublattice interaction
HS, which allows for free rotations within the two C ¼ 1 and two
C ¼ −1 levels, the symmetry is lowered by the dispersion hx;y
(left) and the intersublattice interaction HA (right), which splits
the degenerate states. The K-IVC insulator is the unique state that
is optimal for both perturbations. Table of the low-energy states in
the spinless model, showing how their energy is affected by
dispersion hx;y ∝ σx, σyτz and finite sublattice polarization
ΛA
q ðkÞ ∝ σxτz; σy (bottom panel). Here, J ∼ t2S=US and λ ∼

U2
A=US are of the order 1–2 meV, and ηx ¼ þ=− depending

on whether the commutator/anticommutator of Q and x vanishes,
i.e., ½Q; x�ηx ¼ 0.
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number and whose x, y components correspond to the
tunneling hx;y; i.e., Q describes a state with zero total
pseudospin that is annihilated by the pseudospin flip
operators proportional to hx;y. For the remaining states,
the action of hx;y creates an electron-hole (e − h) excitation
between these pairs of bands. Since the electron and hole
carry opposite Chern numbers, the electron-hole excitations
always have a finite energy of the same order as US, as
shown in the Supplemental Material [30]. This case can be
understood by noting that the condensation of such
electron-hole pairs is equivalent after a particle-hole trans-
formation to superconducting pairing in a �2 Chern band,
which is known to be energetically unfavorable [40]. The
energy due to the tunneling hx;y can be computed within
second-order perturbation theory, leading to an energy
reduction of J ∼ t2S=US ∼ 1–2 meV. This gain, which
resembles antiferromagnetic “superexchange,” is due to
virtual tunneling processes between pairs of bands con-
nected by hx;y, which is maximized if only one band is filled
in each pair. This requirement is equivalent to the condition
fQ; σxg, which is satisfied by two types of states: (i) a U(2)-
invariant QH state with Chern number �2 and (ii) a
manifold of states with vanishing Chern number isomor-
phic to Uð2Þ=Uð1Þ × Uð1Þ ≃ S2 generated by the VH and
K-IVC states, which form a sphere [see Fig. 7(b)].
The intersublattice part of the interaction HA breaks

Uð2Þ × Uð2Þ to a different Uð2ÞPT subgroup. Because the
cross terms δρSqδρA−q þ H:c: inHA are already guaranteed to
vanish on the ground-state manifold of HS, the residual
δρAq δρ

A
−q is positive definite, and HA selects the submani-

fold of ground states annihilated by δρAq . Because of the
structure of the intervalley form factor ΛA

q ðkÞ ∝ σxτz; σy,
these states satisfy the condition ½Q; σxτz� ¼ 0, forming
the manifold Uð2Þ=Uð1Þ × Uð1Þ ≃ S2 generated by the
VP and K-IVC. The energy of the other states is
increased by an amount of the order λ ∼U2

A=US ∼
1 meV (see Supplemental Material [30]).
Thus, in the presence of both hxy and HA, the K-IVC

state, which benefits from both perturbations, has the
lowest energy followed by the VP and QH/VH (the latter
two are degenerate) whose competition is determined by
the relative strength of the intersublattice interaction
U2

A=US and the energy reduction due to superexchange
t2S=US. This case is consistent with the numerical results in
Fig. 2, where the energies of the VP state and the QH/VH
state cross as a function of w1, which controls both hx;y and
HA. At a fixed w1, decreasing w0, whose main effect is
decreasingHA, clearly favors the VH/QH states and makes
them closer in energy to the K-IVC ground state. The T -
IVC state, which was not seen in the numerics, is
disfavored by both and has the highest energy.
In the realistic magic-angle parameter regime, the

dispersion scale tS is only a factor of 3–5 smaller than
the interaction scale US, and some states may become

energetically competitive by optimizing this part first.
Indeed, this result eventually occurs away from the magic
angle when the dispersion becomes comparable to the
interaction scale. The simplest such states are semimetallic
(SM) solutions preserving both C2T and UVð1Þ [12],
which are characterized by

QSMðkÞ ¼ σxeiϕðkÞσzτz ð11Þ

away from the isolated k points at which the gap vanishes
where the phase ϕðkÞ winds by �2π. Such SM states also
break C3 for realistic values of the parameters w0 and w1

[12]. Because of the topology of the bands, the phase ϕðkÞ
winds twice around the Brillouin zone, which means it has
at least two vortices (assuming a smooth gauge choice).
Another way to see this case is by noting that this order
parameter can be obtained by condensing electron-hole
pairs discussed earlier, thus gaining energetically from the
dispersion but paying an energy penalty of about US. In
fact, at any finite value of tS, the insulating order parameters
corresponding to QH, VH, or K-IVC order (those benefit-
ing from the antiferromagnetic coupling) develop a small
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FIG. 7. (a) K-IVC order parameter as a function of the
sublattice potential Δt on the top layer (blue) fitted to
aðΔIVC − Δt;�Þb with Δt;� ¼ 10.35 meV, with the gap across
the transition shown in green. The curve was computed on a
12 × 12 momentum grid using the parameters θ ¼ 1.05°,
w0 ¼ 80 meV, w1 ¼ 98 meV, and ϵ ¼ 12. (b) Schematic illus-
tration of the manifold of low-energy states for finite Δ. Since the
IVC and VH order parameters anticommute, the order parameter
is a vector on S2 that gradually rotates towards the z axis as Δt is
increased. (c) IVC gap as a function of the C3-breaking parameter
β, with the energies of the different states as a function of β given
in panel (d).

NICK BULTINCK et al. PHYS. REV. X 10, 031034 (2020)

031034-8



component of about tS=US parallel to QSM since the
corresponding order parameters anticommute. The SM
component grows with increasing tS, which results in a
gradual reduction of the gap until tS ∼ US, where the
insulating phase disappears [12]. This result has important
implications for the effect of strain on the insulating state as
we discuss later.

B. Charge neutrality: Ground state and spin structure

Upon including spin, we can similarly study the mani-
fold of ground states at CN, starting with the states
minimizing the intrasublattice interaction HS that satisfy
½Q; σzτz�. These states are obtained by completely filling
four of the eight bands in Fig. 5. Here, hxy selects states
satisfying fQ; σxg ¼ 0. These states can be divided into
three classes: (i) a spin-unpolarized QH state with Chern
number�4 obtained by filling all four bands with the same
Chern number, (ii) a manifold of states with Chern number
�2 obtained by filling three bands with the same Chern
number and one band with opposite Chern number, and
(iii) a manifold of states obtained by filling two bands in
each Chern number sector. The states in class (ii) are mixed
states corresponding, for instance, to a QH state in one spin
species and a VH or IVC state in the other, and they form
the manifold Uð4Þ=Uð3Þ × Uð1Þ. States in class (iii) include
the spin-unpolarized versions of the spinless phases dis-
cussed earlier, including the VH and K-IVC states, which
form the manifold Uð4Þ=Uð2Þ × Uð2Þ. In contrast, the
interactionHA selects states satisfying ½Q; σxτz� ¼ 0, which
include spin- or valley-polarized states as well as spin-
unpolarized K-IVC states. However, the spin- or valley-
polarized states do not benefit from the dispersion. Thus,
combining the effect of the dispersion and HA, we are left
with K-IVC order as the unique state that is maximally
stabilized by both perturbations.
Note that the spin-unpolarized K-IVC state is not

invariant under the action of Uð2ÞK × Uð2ÞK0 rotations.
Instead, this action generates a manifold of states that are
degenerate with respect to Heff . This manifold can be
parameterized by a single 2 × 2 unitary matrix V in spin
space with Q ¼ σyðτþV þ τ−V†Þ, τ� ¼ 1

2
ðτx � iτyÞ. To

understand the structure of these states, we write the
manifold as Uð2Þ ≃ Uð1Þ × SUð2Þ, which can be para-
metrized as V ¼ eiϕeiðθ=2Þn·s. Thus, a given K-IVC state is
specified by choosing a spin quantization axis n on S2 and
specifying two U(1) K-IVC phases ϕ� ðθ=2Þ for the up
and down spins along n. However, note that the spin axis n
loses meaning for the spin-singlet state θ ¼ 0. The inter-
valley-Hunds coupling fixes the value of the relative phase
θ between the K-IVC states for up and down spins. An
antiferromagnetic coupling, perhaps driven by phonons
[47], leads to θ ¼ 0. As expected, this is the spin-singlet
K-IVC state, where the orbital currents from opposite spins
are added. On the other hand, ferromagnetic Hunds
coupling leads to θ ¼ π, i.e., a spin triplet K-IVC state.

At this special value, the orbital currents of the oppositely
directed spins cancel, leaving behind circulating spin
currents (see Fig. 1).

C. Half-filling: Ground state
and spin structure

While we have largely focused on charge neutrality
ν ¼ 0, let us now briefly discuss half-filling, i.e., ν ¼ �2,
leaving a more thorough discussion for the future. At half-
filling ν ¼ −2 (the case of ν ¼ 2 can be deduced by
performing a particle-hole transformation in the conclu-
sions below), the ground states ofHS are obtained by filling
two out of the eight bands encoded by the condition
½Q; σzτz� ¼ 0. In contrast to CN, these states are not
completely annihilated by the operator δρSG for reciprocal
lattice vectors G. Instead, the action of HS on these states
yields a constant energy that does not affect their energy
competition. However, such a contribution may affect the
competition between the ν ¼ �2 insulating states and
metallic or superconducting phases emerging from the
ν ¼ 0 state. We leave investigating such competition to
future works. Within the manifold of ground states of HS,
states can gain energetically from tunneling if at most one
out of each pair of bands coupled through hx;y is filled. The
resulting states either have (i) Chern number �2 such as
valley- and sublattice-polarized or spin-polarized QH states
[forming the manifold Uð4Þ=Uð2Þ × Uð2Þ] or (ii) Chern
number 0 such as the spin-polarized VH or K-IVC states
[forming the manifold Uð4Þ=Uð2Þ × Uð1Þ × Uð1Þ]. Again,
the interaction HA instead selects states satisfying
½Q; σxτz� ¼ 0, which include spin- and valley-polarized
states and spin-polarized K-IVC order. The ground-state
manifold in the presence of both band dispersion andHA is
the K-IVC state. The set of nearly degenerate K-IVC states
is obtained by acting with UKð2Þ × UK0 ð2Þ on the spin-
polarized K-IVC state. The resulting manifold is isomor-
phic to Uð1Þ × S2 × S2, denoting the K-IVC phase and the
direction of the spin in each valley, which can be chosen
independently. Intervalley-Hunds coupling locks the spin
in the two valleys to be either parallel (J < 0 ferromagnetic
Hunds coupling) or antiparallel (J > 0 antiferromagnetic
Hunds coupling). In both cases, spatially varying orbital
magnetization currents are present. A full Hartree-Fock
numerical analysis of this case is left to future work, but it is
worth noting that band renormalization effects at half-
filling are expected to be larger than at CN, resulting in
smaller gaps.

VI. PHENOMENOLOGY AND RESPONSE

A. Phenomenology of the K-IVC

We now comment on the phenomenological conse-
quences of the K-IVC order.

(i) Circulating currents. Fixing a spin species, the
lattice-scale current jij in the K-IVC ground state
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manifests a pattern of circulating currents which
triples the unit cell, as shown in Fig. 1. The typical
current (or, equivalently, the typical magnetization
density) is of the order of microamperes, i.e.,
j ∼ μA. This finding is consistent with the estimate
j ∼ eðvF=aÞða=LMÞ2 ∼ 0.7 μA obtained by assum-
ing that each electron in the flat band is circulating at
velocity vF. In the spin-singlet K-IVC state, the two
spin species carry the same current, and the state is
thus an orbital-magnetization density wave. How-
ever, the spin-triplet K-IVC Q ¼ n · sτx=yσy is
invariant under the usual spinful time-reversal oper-
ation TR ¼ isyτxK. Hence, the two spin species
carry opposite current, and the magnetization can-
cels—instead, there are circulating spin currents.
Nevertheless, both cases triple the unit cell. In the

presence of umklapp scattering, this tripling will
manifest as small bond distortions or topographic
changes reminiscent of a Kekule pattern, which
may be observable in atomically resolved STM
spectroscopy.

(ii) Landau fan. Because of the T 0 Kramers degeneracy,
the conduction (valence) bands of the K-IVC in-
sulator (Fig. 4) have a doubly degenerate band
minimum (maxima) at the mini-Γ point. Per spin,
they consist of a pair of bands, which we label
Z ¼ �1, which disperse quadratically. Both bands
carry trivial C3 quantum number, and thus, to
leading order within a k:p approach, the Hamilto-
nian for the conduction band minima is

HΓ ¼ ðp −AÞ2
2m� þ B

�
mΓẐ þ gsμBℏ

sz
2

�
þOðp3Þ;

ð12Þ
where m� is the effective mass, ∇ ×A ¼ B is the
external magnetic field, mΓ is the orbital magnetiza-
tion of the bands at the Γ point (which is odd under
T 0), and gs is the g factor for the spin. The low-field
Landau-level spectrum is thus ϵN ¼ B½ðℏe=m�Þ
ðN þ 1

2
Þ þmΓZ þ gsμBℏðsz=2Þ� þ � � �, with an

analogous result for the valence band. Neglecting
gs and the magnetization mΓ, the Landau fan would
thus have a ν ¼ �0; 4; 8;… degeneracy arising from
spin and T 0-Kramers degeneracy.WithmΓ, however,
this degeneracy splits, ν ¼ �0; 2; 4;…, with the
relative strength of the splitting depending on the
ratio of ℏðe=m�Þ to mΓ. Experiments reporting a
charge gap at neutrality find oscillations at ν ¼
�0; 2; 4; 8;… [5], which seemingly combine the
two, perhaps because at higher N or B, the Oðp3Þ
terms become important. Also, one important caveat
is that we find the K-IVC band structure around the Γ
point to be sensitive to the twist angle, so the above
analysis may not always apply. A full quantitative

calculation of the quantum oscillations therefore
remains as a useful direction for future work.

(iii) Z2 topology. Remarkably, when restricting to a spin
species, the K-IVC state is a topological insulator
protected by Kramers time reversal T 0 and U(1)
charge conservation. This result is expected since it
consists of two IVCs with opposite Chern number
(jKAi þ jK0Bi and jKBi þ jK0Ai) related by T 0.
However, note that this case does not automatically
imply edge states since the fractional translation τz
involved in T 0 may be broken by a rough edge.

(iv) Phase transitions. Finally, on breaking various sym-
metries, the K-IVC order can be weakened or
destroyed as discussed below.

B. Effect of single-particle perturbations

Because of the presence of an enlarged Uð4Þ × Uð4Þ
symmetry that is only broken by relatively small terms that
settle the energy competition among a few low-energy
states, we expect the ground state to be sensitive to
symmetry-lowering perturbations such as sublattice poten-
tial, strain, and magnetic field. The presence of a sublattice
potential Δσz is associated with alignment with the hBN
substrate, which explicitly favors the VH state (Q ¼ σz)
over the K-IVC state. Assuming a fixed spin structure
(Q ∝ s0 or n · s), the two order parameters anticommute,
forming an O(3) vector living on S2 as shown in Fig. 7. As
Δ is increased, this vector rotates towards the z axis (VH)
until it points completely along the z direction, restoring
UVð1Þ symmetry as shown in Fig. 7. As a result, we do not
expect this phase transition to be associated with a gap
closing in the fermionic sector, which is verified numeri-
cally in Fig. 7.
Next, we consider the effect of strain, which influences

the noninteracting band structure in two distinct ways [48].
First, it renormalizes the bandwidth, leading to an increase
in the magnitude of the single-particle dispersion tS. As
discussed earlier, this process favors the semimetallic
solution and has the effect of gradually reducing the gap
in the K-IVC solution by increasing the SM component.
The second effect of strain is the explicit breaking of C3

symmetry. This effect can be taken into account phenom-
enologically following Refs. [12,49] by rescaling one of the
moiré hopping parameters by 1þ β. This rescaling intro-
duces explicit C3 symmetry breaking in the dispersion hx;y,
resulting in a linear coupling to the energy of the C3-
breaking SM as shown in Fig. 7(d). The VH and K-IVC
states will respond to β by increasing their SM component,
leading to a quadratic decrease of the VH and K-IVC
energies and gaps as a function of β, as seen in Fig. 7. With
increasing β, the energies of the three orders approach each
other, whereas other states such as VP are not affected. It is
worth noting that semimetallic behavior in transport can
also emerge purely from disorder, even when the ground
state of the clean system is insulating [50].
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Finally, let us comment briefly on the effect of magnetic
field. The Zeeman coupling depends on the spin structure,
and its effect on the gap depends nontrivially on the type of
low-lying excitations [47]. On the other hand, the orbital
effect of the magnetic field can be understood as follows.
For an in-plane field, its main effect is to break C3

symmetry, shifting the Dirac points away from the moiré
K and K0 points. In this regard, the effect is similar to the
C3-breaking perturbation discussed above, yielding a
quadratic decrease of the gap with an in-plane field, which
is consistent with the observation of Ref. [4]. On the other
hand, an out-of-plane field is associated with a relatively
large Chern-Zeeman effect of about σzτz, which shifts the
energies of the opposite Chern bands relative to each other.
As a result, it is expected to drive a transition to a QH state
with Chern number �4 at neutrality and �2 at half-filling.
We leave a more quantitative discussion for the effect of the
magnetic field to future works.

VII. CONCLUSIONS

To summarize, based on both numerical and analytical
arguments, we propose that the insulating state observed at
charge neutrality in pristine MATBG (magic angle twisted
bilayer graphene) [5] is the K-IVC state, i.e., an intervalley-
coherent state with an emergent spinless Kramers
time-reversal symmetry T 0. Interestingly, modulo spin
degeneracy, the K-IVC state is a nontrivial topological
insulator protected by T 0. As a result, it does not admit a
real-space strong-coupling “Mott” description as long as
the locality of time-reversal and valley U(1) symmetries is
preserved. In turn, this result suggests that the momentum-
space description employed here, which closely parallels
multilayer quantum Hall problems, is more suited to
MATBG than real-space descriptions [7,8,17,18], at least
when restricted to the space of flat bands at integer fillings.
It is worth noting that despite some similarities to a
previously proposed intervalley-coherent order [9], our
state differs in several crucial aspects, such as the absence
of time-reversal symmetry and the presence of nontrivial
band topology, which forbids a localized Mott description.
Spontaneous-magnetization density wave states have been
discussed in other settings, notably in the context of the
cuprates as the staggered flux [51] and d-density wave
states [52] and loop current states [53] (for a recent
discussion of loop current states motivated by TBG, see
Ref. [54]), and in untwisted bilayer graphene [55,56].
While reminiscent of the state discussed here, an important
difference is that the K-IVC order is very weakly coupled to
the underlying lattice. Thus, the spontaneously breaking of
the enlarged Uð1Þvalley symmetry leads to new conse-
quences, including gapless Goldstone modes and emergent
Kramers time-reversal symmetry.
One important issue that is worth highlighting is that we

do not expect a finite-temperature phase transition into the
K-IVC state, even though it breaks the discrete time-

reversal symmetry T . The reason is that the time-reversal
symmetry breaking is nontrivially intertwined with the
breaking of the continuous-valley charge-conservation
symmetry. This case can be seen by noting that the presence
of the Kramers time-reversal symmetry T 0 ¼ τyK implies
that there is no order parameter with nonvanishing expect-
ation value in the K-IVC state that breaks T without
breaking U(1) valley charge conservation.
The analytical arguments in favor of the K-IVC state are

based on the presence of an approximate Uð4Þ × Uð4Þ
symmetry. One consequence of this approximate symmetry
is that small perturbations to the BM band spectrum coming
from, e.g., h-BN alignment or strain can destroy the K-IVC
state and instead give rise to a valley-Hall or semimetallic
state at charge neutrality. It is therefore important to have an
estimate of the magnitude of these effects in different
devices. Our analysis has a natural generalization to doped
systems with two additional electrons or holes per moiré
unit cell (ν ¼ �2), so we expect a spin-polarized version of
the K-IVC state to occur at those fillings. At odd integer
fillings, the situation is different. Applying our construction
to odd filling inevitably leads to anomalous Hall insulators,
which is at odds with the present experimental data in TBG
devices that are unaligned with the h-BN substrate. In fact,
our analysis points to the possibility of different types of
states at odd filling since, unlike the K-IVC states at even
filling, no translationally symmetric Slater determinant
state takes advantage of all the terms in the Hamiltonian.
In addition, band renormalization effects are expected to
play a bigger role, particularly at ν ¼ �3 where mixing
with remote bands is more likely [10].
The K-IVC state exhibits a very subtle type of symmetry-

breaking order, leading to an interesting phenomenology.
Depending on the spin texture of the K-IVC state, which is
only determined by the small intervalley-Hunds terms, we
have put forward a physical interpretation of the K-IVC
state as either an “orbital-magnetization density wave” on
the atomic scale or a state with circulating spin currents.
These types of order are presumably hard to directly detect
experimentally, but they leave their imprint on the elec-
tronic structure. Proposals for a smoking-gun experiment to
identify the K-IVC state is left to future work.
Finally, let us comment briefly on the implications of our

findings for superconductivity. The presence of the
Kramers time-reversal symmetry T 0 has important impli-
cations for the nature of superconducting states that are
proximate to the K-IVC order. Recall that in conventional
superconductors with spin-orbit coupling, the Anderson
theorem [57] protects pairing between Kramers time-
reversal partners, even in the presence of nonmagnetic
impurities. Similarly, superconductivity is expected to
remain robust in the presence of K-IVC order, as long
as electrons related by the T 0 symmetry are being uni-
formly paired. The K-IVC mean-field band structure
indicates that small electron or hole doping will lead to

GROUND STATE AND HIDDEN SYMMETRY OF MAGIC-ANGLE … PHYS. REV. X 10, 031034 (2020)

031034-11



concentric Fermi surfaces around the Γ point, which are
related to one another by T 0 symmetry. Hence, a Fermi
surface coexisting with K-IVC order can be destabilized by
coupling to phonons and/or order parameter fluctuations
giving rise to the superconducting state. We leave a more
detailed analysis of the nature of the superconducting states
and their connection to the K-IVC order for future work.
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Phys. Rev. B 99, 075127 (2019).

[42] J. Y. Lee, E. Khalaf, S. Liu, X. Liu, Z. Hao, P. Kim, and A.
Vishwanath, Theory of Correlated Insulating Behaviour
and Spin-Triplet Superconductivity in Twisted Double
Bilayer Graphene, Nat. Commun. 10, 5333 (2019).

[43] L. Zou, H. C. Po, A. Vishwanath, and T. Senthil, Band
Structure of Twisted Bilayer Graphene: Emergent
Symmetries, Commensurate Approximants, and Wannier
Obstructions, Phys. Rev. B 98, 085435 (2018).

[44] J. Liu, J. Liu, and X. Dai, Pseudo Landau Level Repre-
sentation of Twisted Bilayer Graphene: Band Topology and
Implications on the Correlated Insulating Phase, Phys. Rev.
B 99, 155415 (2019).

[45] P. San-Jose, J. González, and F. Guinea, Non-Abelian
Gauge Potentials in Graphene Bilayers, Phys. Rev. Lett.
108, 216802 (2012).

[46] Y. Alavirad and J. D. Sau, Ferromagnetism and Its Stability
from the One-Magnon Spectrum in Twisted Bilayer
Graphene, arXiv:1907.13633.

[47] S. Chatterjee, N. Bultinck, and M. P. Zaletel, Symmetry
Breaking and Skyrmionic Transport in Twisted Bilayer
Graphene, Phys. Rev. B 101, 165141 (2020).

[48] Z. Bi, N. F. Q. Yuan, and L. Fu, Designing Flat Band by
Strain, Phys. Rev. B 100, 035448 (2019).

[49] Y.-H. Zhang, H. C. Po, and T. Senthil, Landau Level
Degeneracy in Twisted Bilayer Graphene: Role of Sym-
metry Breaking, Phys. Rev. B 100, 125104 (2019).

[50] A. Thomson and J. Alicea, Recovery of Massless Dirac
Fermions at Charge Neutrality in Strongly Interacting
Twisted Bilayer Graphene with Disorder, arXiv:1910.11348.

[51] P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a Mott
Insulator: Physics of High-Temperature Superconductivity,
Rev. Mod. Phys. 78, 17 (2006).

[52] S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak,
Hidden Order in the Cuprates, Phys. Rev. B 63, 094503
(2001).

[53] C. M. Varma, Non-Fermi-Liquid States and Pairing Insta-
bility of a General Model of Copper Oxide Metals, Phys.
Rev. B 55, 14554 (1997).

[54] Yu.-P. Lin and R. M. Nandkishore, Chiral Twist on the
High-Tc Phase Diagram in Moiré Heterostructures, Phys.
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