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In the study of quantum limits to parameter estimation, the high dimensionality of the density operator
and that of the unknown parameters have long been two of the most difficult challenges. Here, we propose a
theory of quantum semiparametric estimation that can circumvent both challenges and produce simple
analytic bounds for a class of problems in which the dimensions are arbitrarily high, few prior assumptions
about the density operator are made, but only a finite number of the unknown parameters are of interest.
We also relate our bounds to Holevo’s version of the quantum Cramér-Rao bound, so that they can inherit
the asymptotic attainability of the latter in many cases of interest. The theory is especially relevant to the
estimation of a parameter that can be expressed as a function of the density operator, such as the expectation
value of an observable, the fidelity to a pure state, the purity, or the von Neumann entropy. Potential
applications include quantum state characterization for many-body systems, optical imaging, and
interferometry, where full tomography of the quantum state is often infeasible and only a few select
properties of the system are of interest.
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I. INTRODUCTION

The random nature of quantum mechanics has practical
implications for the noise in sensing, imaging, and quan-
tum-information applications [1–6]. To derive their funda-
mental quantum limits, one standard approach is to
compute quantum versions of the Cramér-Rao bound
[1–5,7–9]. In addition to serving as rigorous limits to
parameter estimation, the quantum bounds have inspired
new sensing and imaging paradigms that go beyond
conventional methods [3–5].
The study of quantum limits has grown into an active

research field called quantum metrology in recent years,
building on the pioneering work of Helstrom [1] and
Holevo [7]. A major current challenge is the computation
of quantum bounds for high-dimensional density operators
and high-dimensional parameters, as the brute-force
method quickly becomes intractable for increasing dimen-
sions; see Refs. [10,11] for a sample of recent efforts to

combat the so-called curse of dimensionality. Most of the
existing methods, however, ultimately have to resort to
numerics for high dimensions. While numerical methods
are no doubt valuable, analytic solutions should be prized
more highly—as with any study in physics—for their
simplicity and offer of insights. Unfortunately, except for
a few cases where one can exploit the special structures of
the density-operator family [1,7,12–15], analytic results
for high-dimensional problems remain rare in quantum
metrology.
Here, we propose a theory of quantum semiparametric

estimation that can turn the problem on its head and deal
with density operators with arbitrarily high dimensions and
little assumed structure. The theory is especially relevant to
the estimation of a parameter that can be expressed as a
function of the density operator, such as the expectation
value of an observable, the fidelity to a given pure state, the
purity, or the von Neumann entropy. The density operator is
assumed to come from an enormous family, its dimension
can be arbitrarily high and possibly infinite, and the
unknown “nuisance” parameters have a similar dimension
to that of the density operator. Despite the seemingly bleak
situation, our theory can yield surprisingly simple analytic
results, precisely because of the absence of structure.
Our results are ideally suited to scientific applications,
such as quantum state characterization [16–18], optical
imaging [1,5,6,14,15], and interferometry [1–3,7], where
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the dimensions can be high, the density operator is
difficult to specify fully, and it is prudent to assume little
prior information.
The theory set forth generalizes the deep and exquisite

theory of semiparametric estimation in classical statistics
[19–21], which has seen wide applications in fields such as
biostatistics [21], econometrics [22], astrostatistics [23],
and, most recently, optical superresolution [24]. By neces-
sity, the classical theory involves infinite-dimensional
spaces for random variables and makes extensive use of
geometric and Hilbert-space concepts. As seen later, the
operator Hilbert space introduced by Holevo [7,25] turns
out to be the right arena for the quantum case, and the
geometric picture of quantum states [8,9,26,27] can provide
illuminating insights.
Our formalism is primarily based on Helstrom’s version

of the quantum Cramér-Rao bound [1]. While this approach
allows us to adapt the classical methods more easily,
it is unable to account for the increased errors due to the
incompatibility of quantum observables when multiple
parameters are involved [7,28]. We address this issue by
studying also Holevo’s version of the quantum Cramér-Rao
bound [7] in the semiparametric setting and proving that the
two versions turn out to be close. This result enables our
bounds to inherit the asymptotic attainability of Holevo’s
bound [28–30] in many cases of interest.

II. PREVIEW OF TYPICAL RESULTS

Before going into the formalism, we present some
typical results of the theory to offer motivation.
Suppose that an experimenter receives N quantum

objects, such as atoms, electrons, photons, or optical pulses,
each with the same quantum state ρ. The experimenter
would like to estimate a parameter β as a function of ρ.
Without any knowledge or assumption about ρ, what is the
best measurement to perform for the estimation of β, and
what is the fundamental limit to the precision for any
measurement?
The quantum semiparametric theory can provide simple

answers to the above questions. For the simplest example,
let β ¼ tr ρY, where Y is a given observable, and assume
that the estimator is required to be unbiased. For example,
one may wish to estimate
(1) the mean position of photons or electrons in optical

or electron microscopy,
(2) the mean photon number in an optical mode in

optical sensing, imaging, and communication [1],
(3) the mean energy, momentum, or field of quantum

particles in particle-physics, condensed-matter, or
quantum-chemistry experiments, or

(4) a density-matrix element, the fidelity hψ jρjψi to a
target pure state jψi, or an entanglement witness in
quantum information experiments [16,17].

This problem appears in all areas of quantum mechanics
[31], as most quantum calculations offer predictions in

terms of expectation values only, and experiments that aim
to estimate the expectation values and verify the predictions
with few assumptions about the density operator are, in
essence, semiparametric estimation. The theory here shows
that the optimal measurement is simply a von Neumann
measurement of the observable Y of each copy of the
objects, followed by an average of the outcomes. For any
measurement, the mean-square error of the estimation,
denoted by the sans serif E, has a quantum limit given by

E ≥
1

N
tr ρðY − βÞ2: ð2:1Þ

Absent any information about ρ, the separate measurements
and the sample mean seem to be the most obvious procedure,
but it is not at all obvious that it is optimal, given the infinite
possibilities allowed by quantum mechanics.
While Eq. (2.1) has been derived before via a more

conventional method for a finite-dimensional ρ [32], our
theory can also deal with infinite dimensions as well as
more advanced examples in quantum information and
quantum thermodynamics. For example, if the parameter
of interest is the purity β ¼ tr ρ2, the bound is

E ≥
4

N
tr ρðρ − βÞ2; ð2:2Þ

and if the parameter is the relative entropy β ¼ tr ρðln ρ −
ln σÞ with respect to a target state σ, the bound is

E ≥
1

N
tr ρðln ρ − ln σ − βÞ2: ð2:3Þ

For these two examples, the bounds are asymptotically
attainable in principle, at least when ρ is finite dimensional
[28–30].
The semiparametric theory is relevant to experiments on

many-body quantum systems and quantum simulation [33],
because often there is no simple model for ρ, full tomog-
raphy of ρ is infeasible, and only a few select properties
of the system may be of interest. Although significant
literature in quantum information has been devoted to such
semiparametric problems [16–18], their connections to the
classical theory have not yet been recognized. By general-
izing the classical theory, this work establishes fundamental
limits to the task, indicating the minimum amount of
resources needed to achieve a desired precision and also
offering a rigorous yardstick for experimental design.
This work thus addresses a foundational question by
Horodecki [18]: “What kind of information (whatever it
means) can be extracted from an unknown quantum state
at a small measurement cost?” Our work shows that
quantum metrology—and quantum semiparametric estima-
tion, in particular—offers a viable attack on the question via
a statistical notion of efficiency.

TSANG, ALBARELLI, and DATTA PHYS. REV. X 10, 031023 (2020)

031023-2



An extension of the above scenario is the estimation of β
given a constraint on ρ. For example, suppose that the
quantum state is known to possess a mean energy
tr ρH ¼ E, where H is the Hamiltonian, or attain a fidelity
of hϕjρjϕi ¼ F with respect to another pure state jϕi. How
may this new information affect the estimation? Write the
constraint as tr ρZ ¼ ζ, where Z is an observable and ζ is a
given constant. The quantum bound for the β ¼ tr ρY
example turns out to be

E ≥
1

N

�
VY −

C2
YZ

VZ

�
; VY ¼ tr ρðY − βÞ2; ð2:4Þ

CYZ ¼ tr ρðY − βÞ ∘ ðZ − ζÞ; VZ ¼ tr ρðZ − ζÞ2; ð2:5Þ

where A ∘B ¼ ðABþ BAÞ=2 denotes the Jordan product.
The bound is reduced by the correlation between Y and Z.
Another paradigmatic problem in quantum metrology is

displacement estimation [1–3,7], which can be modeled by

ρ ¼ expð−iH βÞρ0 expðiH βÞ; ð2:6Þ

where ρ0 is the initial state, H is a generator, such as the
photon-number operator in optical interferometry, and β is
the displacement parameter to be estimated. Applications
range from optical and atomic interferometry to atomic
clocks, magnetometry, laser ranging, and localization
microscopy [2,3,6]. If nothing is known about ρ0 other than
a constraint tr ρ0Z ¼ 0, the quantum bound turns out to be

E ≥
tr ρ0Z2

Nf−i tr ρ0½Z;H�g2 ; ð2:7Þ

where ½Z;H�≡ ZH −HZ. Our theory can, in fact, give
similarly simple results for a class of such semiparametric
problems.
It must be stressed that, apart from the underlying Hilbert

space and the constraints discussed above, the experimenter
is assumed to know nothing about the density operator,
and the bounds here are valid regardless of its dimension.
The existing method of deriving such quantum limits is to
model ρ with many parameters [8,9,29,32], compute a
quantum version of the Fisher information matrix, and then
invert it. This brute-force method is rarely feasible for
problems with high or infinite dimensions. A new philoso-
phy is needed.
In the next sections, we present the theory of quantum

semiparametric estimation in increasing sophistication.
Sections III and IV generalize the quantum Cramér-Rao
bound proposed by Helstrom [1] in a geometric picture.
While the picture is not new [9,26], it has so far remained an
intellectual curiosity only. Sections III and IV show that it
can, in fact, give simple solutions, such as Eqs. (2.1)–(2.3),
to a class of semiparametric problems with arbitrary dimen-
sions. Section III establishes the general formalism and also

proves results that are valid for finite dimensions, while
Sec. IV deals with the infinite-dimensional case via an
elegant concept called parametric submodels. In the classical
theory, the concept was first adumbrated by Stein [34] and
developed by Levit and many others [19–21]. Section V
further develops the formalism to account for constraints on
the density-operator family, in order to produce results such
as Eq. (2.4). An example of entropy estimation in quantum
thermodynamics is also discussed there. Section VI dis-
cusses some practical problems in optics and summarizes
existing results on incoherent optical imaging [5] in the
language of quantum semiparametrics, in order to provide a
more concrete context for the formalism. Section VII con-
siders semiparametric estimation in the presence of explicit
nuisance parameters and studies, in particular, the problem
of displacement estimation with a poorly characterized initial
state, in order to produce results such as Eq. (2.7). To
complete the formalism, Sec. VIII considers a vectoral
parameter of interest and Holevo’s version of the quantum
Cramér-Rao bound [7]. There, we prove that the Helstrom
and Holevo bounds are equal if the parameter of interest is a
scalar, and they remain within a factor of 2 of each other in
the vectoral case. The latter fact generalizes a recent result
in the parametric setting [35]. Thus, the Helstrom version
can inherit the asymptotic attainability of the latter [28–30]
to within a factor of 2.

III. GEOMETRIC PICTURE OF QUANTUM
ESTIMATION THEORY

This section is organized as follows. Section III A
introduces the Helstrom bound in the conventional
formulation. Section III B introduces some important
Hilbert-space concepts, including the tangent space and
the influence operators. Section III C generalizes the
Helstrom bound in terms of a projection of an influence
operator into the tangent space. Section III D shows how an
influence operator can be derived for a given parameter of
interest, while Sec. III E proves that the tangent space is
simple if the density operator is assumed to be finite
dimensional but otherwise arbitrary. The projection is then
straightforward, and Sec. III E demonstrates the derivation
of Eqs. (2.1)–(2.3) as examples.

A. Helstrom bound

Let

F≡ fρðθÞ ∶ θ ∈ Θ ⊆ Rpg ð3:1Þ

be a family of density operators parametrized by θ ¼
ðθ1;…; θpÞ⊤, where the superscript ⊤ denotes the matrix
transpose and p denotes the dimension of the parameter
space Θ. The operators are assumed to operate on a
common Hilbert space H, with an orthonormal basis
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fjji ∶ j ∈ Q; hjjki ¼ δjkg ð3:2Þ

that does not depend on θ. Let

d≡ dimH ¼ jQj ð3:3Þ

be the dimension ofH, which may be infinite. The family is
assumed to be smooth enough so that any ∂j ≡ ∂=∂θj can
be interchanged with the operator trace tr in any operation
on ρðθÞ. Define ∂ ≡ ð∂1;…; ∂pÞ⊤, and define a vector of
operators S≡ ðS1;…; SpÞ⊤ as solutions to

∂ρ ¼ ρ ∘ S; ð3:4Þ

which is shorthand for the system of equations

∂jρðθÞjθ¼ϕ ¼ ρðϕÞ ∘ SjðϕÞ; j ¼ 1;…; p: ð3:5Þ

ϕ is the true parameter value, and all functions of θ in
this section are assumed to be evaluated implicitly at the
same θ ¼ ϕ. Each Sj is called a symmetric logarithmic
derivative in the quantum metrology literature, but here we
call it a score, in accordance with the statistics terminology
[19–21]. All vectors are assumed to be column vectors in
this paper.
To model a measurement, define a positive operator-

valued measure (POVM) E on a measurable space ðX ;ΣX Þ,
where ΣX is the sigma algebra on the set X . Let the
parameter of interest be a scalar βðθÞ ∈ R; generalization
for a vectoral β is done in Sec. VIII. Assume an estimator
β̌ ∶X → R that satisfies

Z
β̌ðλÞtrdEðλÞρ¼β;

Z
β̌ðλÞtrdEðλÞ∂ρ¼∂β: ð3:6Þ

ðE; β̌Þ is called a locally unbiased measurement, as we
require Eqs. (3.6) to hold only at the true θ ¼ ϕ. Only local
unbiasedness conditions are needed in this paper, and for
brevity we no longer explicitly describe them as local.
Define the mean-square estimation error as

E≡
Z

½β̌ðλÞ − β�2tr dEðλÞρ: ð3:7Þ

If p < ∞, a quantum version of the Cramér-Rao bound due
to Helstrom [1], denoted by the sans serif H, applies to any
unbiased measurement and can be expressed as

E ≥ H≡ ð∂βÞ⊤K−1∂β; ð3:8Þ

where the Helstrom information matrix K is defined as

Kjk ≡ tr ρðSj ∘ SkÞ: ð3:9Þ

The Helstrom bound sets a lower bound on the estimation
error for any quantum measurement and any unbiased
estimator [1,7–9]. The estimation of β with an infinite-
dimensional θ (p ¼ ∞) is called semiparametric estimation
in statistics [19–21], although the methodology applies to
arbitrary dimensions. If θ is partitioned into ðβ; η1; η2;…Þ⊤,
then η is called nuisance parameters [21,36].

B. Hilbert spaces for operators

We now follow Holevo [7,25] and introduce operator
Hilbert spaces in order to generalize the Helstrom bound
for semiparametric estimation. The formalism may seem
daunting at first sight, but the payoff is substantial, as it
simplifies proofs, treats the infinite-dimensional case rig-
orously, and also enables one to avoid the explicit compu-
tation of S and K−1 for a large class of problems. In the
following, we assume familiarity with the basic theory of
Hilbert spaces and the mathematical treatment of quantum
mechanics; see, for example, Refs. [7,37,38].
All operators considered in this paper are self-adjoint.

Consider ρ in the diagonal form ρ ¼ P
j λjjejihejj with

λj > 0. The support of ρ is suppðρÞ ¼ spanfjejig ⊆ H,
where span denotes the closed linear span. ρ is called full
rank if suppðρÞ ¼ H. Define the weighted inner product
between two operators h and g as

hh; gi≡ tr ρðh ∘ gÞ ð3:10Þ

and a norm as

khk≡ ffiffiffiffiffiffiffiffiffiffiffiffi
hh; hi

p
; ð3:11Þ

not to be confused with the operator norm khkop ¼
supjψi∈H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ jh2jψi

p
≥ khk. An operator is called bounded

if khkop < ∞ and square summable with respect to ρ if
khk < ∞, although all operators are bounded by definition
if d < ∞. For two vectors of operators A and B, it is
convenient to use hA; Bi to denote a matrix with entries

hA;Bijk ¼ hAj; Bki; ð3:12Þ

such as K ¼ hS; Si as a Gram matrix.
Define the real Hilbert space for square-summable

operators with respect to the true ρ as [7,25]

Y ≡ fh ∶ khk < ∞g: ð3:13Þ

To be precise, each Hilbert-space element is an equivalence
class of operators with zero distance between them, viz.,
fĥj ∶ kĥj − ĥkk ¼ 0 ∀ j; kg. The distinction between an
element and its operators is important only if ρ is not full
rank; we put a hat on an operator if the distinction is called
for. Two important Hilbert-space elements are the identity
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element I and the zero element 0; sometimes, we substitute
I ¼ 1 for brevity.
Define a subspace of zero-mean operators as

Z ≡ fh ∈ Y ∶ tr ρh ¼ hh; Ii ¼ 0g ð3:14Þ

and the orthocomplement of Z in Y as

Z⊥ ≡ fh ∈ Y ∶ hg; hi ¼ 0 ∀ g ∈ Zg ¼ spanfIg:
ð3:15Þ

In particular, the projection of any h ∈ Y into Z⊥ is
simply ΠðhjZ⊥Þ ¼ hh; Ii, where Π denotes the projection
map, and

ΠðhjZÞ ¼ h − ΠðhjZ⊥Þ ¼ h − hh; Ii: ð3:16Þ

The most important Hilbert space in estimation theory is
the tangent space spanned by the set of scores fSg≡
fS1;…; Spg [19–21], generalized here as

T ≡ spanfSg ⊆ Z: ð3:17Þ

fSg is also known as the tangent set. The condition T ⊆ Z
requires the assumption Kjj ¼ hSj; Sji < ∞ for all j; the
zero-mean requirement is satisfied because hS; Ii ¼
tr ∂ρ ¼ ∂ tr ρ ¼ 0. A useful relation for any bounded
operator h is

hSj; hi ¼ tr ρðSj ∘ hÞ ¼ tr ðρ ∘ SjÞh ¼ tr ð∂jρÞh; ð3:18Þ

via Eq. (2.8.88) in Ref. [7]. Denote also the orthocomple-
ment of T in Z as

T ⊥ ≡ fh ∈ Z ∶ hS; hi ¼ 0g; ð3:19Þ

which is useful if a projection of h ∈ Z into T is desired
and ΠðhjT ⊥Þ is easier to compute, since

ΠðhjT Þ ¼ h − ΠðhjT ⊥Þ: ð3:20Þ

Another important concept in the classical theory is the
influence functions [19–21], which we generalize by
defining the set of influence operators as

D≡ fδ ∈ Z ∶ hS; δi ¼ ∂βg: ð3:21Þ

These operators play a major role in Holevo’s formulation
of quantum Cramér-Rao bounds [7,39], although their
connection to the classical concept did not seem to be
appreciated before.

C. Generalized Helstrom bound

Let the error operator with respect to an unbiased
measurement be

δ ¼
Z

β̌ðλÞdEðλÞ − β: ð3:22Þ

It can be shown (see Sec. 6.2 in Ref. [7]) that δ ∈ D (as
long as kδk < ∞) and also that kδk2 bounds the estimation
error as

E ≥ kδk2: ð3:23Þ

A generalized Helstrom bound (GHB) for any unbiased
measurement, denoted by H̃, can then be expressed as

E ≥ kδk2 ≥ inf
δ∈D

kδk2 ≡ H̃: ð3:24Þ

We call an unbiased measurement efficient if it has an error
that achieves the GHB, following the common statistics
terminology [19–21].
Proofs that Eq. (3.24) is equal to Eq. (3.8) if p < ∞ and

K−1 exists can be found in Refs. [26,39,40]. The following
theorem gives a more general expression that is the
cornerstone of quantum semiparametric estimation.
Theorem 1.—

H̃ ¼ min
δ∈D

kδk2 ¼ kδeffk2; ð3:25Þ

where δeff , henceforth called the efficient influence, is the
unique element in the influence-operator set D given by

δeff ¼ ΠðδjT Þ ð3:26Þ

and ΠðδjT Þ denotes the projection of any influence
operator δ ∈ D into the tangent space T .
Proof.—The proof is similar to the classical one [20,21].

First note that, since D ⊆ Z ¼ T ⊕ T ⊥, any δ ∈ D can
always be decomposed into

δ ¼ δeff þ h; δeff ¼ ΠðδjT Þ; h ¼ ΠðδjT ⊥Þ:
ð3:27Þ

This fact implies hS;δeffi¼hS;δ−hi¼hS;δi¼∂β, and,
therefore, δeff ∈ D. Now the Pythagorean theorem gives

kδk2 ¼ kδeffk2 þ khk2 ≥ kδeffk2; ð3:28Þ

which results in Eq. (3.25).
To prove the uniqueness of δeff in D, suppose that there

exists another δ0 ∈ D that gives kδ0k ¼ kδeffk. Define
g¼δ0−δeff . Since hS;gi¼hS;δ0i−hS;δeffi¼∂β−∂β¼0,
g ∈ T ⊥, and the Pythagorean theorem yields kδ0k2 ¼
kδeffk2 þ kgk2. This fact implies that kgk ¼ 0 and
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g ¼ 0, contradicting the assumption that δ0 ≠ δeff . Hence,
δeff must be unique, andΠðδjT Þ for any δ ∈ D results in the
same δeff . ▪
Figure 1 illustrates all the Hilbert-space concepts

involved in Theorem 1.
Before we apply the theorem to examples, we list a

couple of important corollaries. The first corollary repro-
duces the original Helstrom bound given by Eq. (3.8) and
is expected from earlier derivations; see, for example,
Eq. (20) in Chap. 18 in Ref. [9] and Eq. (7.93) in
Ref. [26]. Here, we simply clarify that it is a special case
of Theorem 1.
Corollary 1.—If p < ∞ and K−1 ¼ hS; Si−1 exists, the

GHB is equal to the original Helstrom bound given
by Eq. (3.8).
Proof.—The proof is delegated to the Appendix A.
Note that, unlike Eq. (3.8), which assumes that S consists

of linearly independent operators and K is invertible,
Theorem 1 works with no regard for any linear dependence
in S. This generalization is, in fact, indispensable to the
semiparametric theory, especially when the concept of
parametric submodels is introduced in Sec. IV.
The second corollary, which gives a scaling of the

bound with the number of object copies and is easy to
prove via K−1, requires more effort to prove if K−1 is to be
avoided.
Corollary 2.—For a family of density operators that

model N independent and identical quantum objects in the
form of

FðNÞ ≡ fρðθÞ⊗N ∶ θ ∈ Θ ⊆ Rpg; ð3:29Þ

where the tensor power is defined as the tensor product

ρ⊗N ≡ ρ ⊗ � � � ⊗ ρ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
N terms

; ð3:30Þ

the efficient influence and the GHB are given by

δðNÞ
eff ¼ Uδð1Þeffffiffiffiffi

N
p ; H̃ðNÞ ¼ H̃ð1Þ

N
; ð3:31Þ

respectively, where U is a map defined as

Uh≡ 1ffiffiffiffi
N

p
XN
n¼1

I⊗ðn−1Þ ⊗ h ⊗ I⊗ðN−nÞ: ð3:32Þ

Proof.—The proof is delegated to Appendix B.

D. Influence operator via a functional gradient

Theorem 1 is useful if an influence operator δ ∈ D can
be found and ΠðδjT Þ is tractable. One way of deriving an
influence operator is to assume that the parameter of
interest is a functional β½ρ� and consider a derivative of
β½ρ� in the “direction” of an operator h given by

Dhβ½ρ�≡ lim
ϵ→0

β½ρþ ϵρ ∘ h� − β½ρ�
ϵ

: ð3:33Þ

Assume that the directional derivative can be expressed as

Dhβ½ρ� ¼ tr ðρ ∘ hÞβ̃ ¼ hh; β̃i ∀ h ∈ Y ð3:34Þ

in terms of a β̃ ∈ Y, hereafter called a gradient of β½ρ�. Any
ordinary partial derivative of β becomes

∂jβ½ρ� ¼ lim
ϵ→0

β½ρþ ϵ∂jρ� − β½ρ�
ϵ

¼ DSjβ½ρ� ¼ hSj; β̃i:
ð3:35Þ

Projecting the gradient into Z then gives an influence
operator, viz.,

δ ¼ Πðβ̃jZÞ ¼ β̃ − Πðβ̃jZ⊥Þ ¼ β̃ − hβ̃; Ii ∈ D; ð3:36Þ

as it is straightforward to check that hδ; Ii ¼ 0 and
hS; δi ¼ ∂β. The top flowchart in Fig. 2 illustrates the
steps to obtain δ from β½ρ�. β̃, δ, and δeff are all gradients
that satisfy Eq. (3.34); the difference lies in the set of
directions to which each is restricted. δ, for instance, is
restricted to Z and orthogonal to Z⊥, while δeff is restricted
to T and orthogonal to T ⊥ [41].
Now consider some examples. The first is β ¼ tr ρY

for a given (i.e., θ-independent) observable Y, which
leads to

Dhβ ¼ trðρ ∘ hÞY ¼ hh; Yi; δ ¼ Y − β: ð3:37Þ

FIG. 1. The whole space in the picture represents Z, the space
of zero-mean operators. T is the tangent space spanned by the
tangent set fSg. T ⊥ is the orthocomplement, which contains
elements orthogonal to all the scores. D is the set of influence
operators, which all have a fixed projection in T determined by
∂β. δ is an influence operator in D. The projection of δ into T
gives the efficient influence δeff , which has the smallest norm
among all the influence operators. ΠðδjT ⊥Þ is the projection of δ
into T ⊥.
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The second example is the purity β ¼ tr ρ2, which leads to

Dhβ ¼ tr½ðρ ∘ hÞρþ ρðρ ∘ hÞ� ¼ hh; 2ρi; δ ¼ 2ðρ − βÞ:
ð3:38Þ

The final example is the relative entropy β ¼ tr ρðln ρ −
ln σÞ [8,42], where ln ρ ¼ P

jðln λjÞjejihejj and σ is a given
density operator with suppðσÞ ⊇ suppðρÞ. The differenti-
ability of β is not a trivial question when d ¼ ∞ [42], but
for d < ∞ it can be done to give

Dhβ ¼ hh; ln ρ − ln σi; δ ¼ ln ρ − ln σ − β; ð3:39Þ

where Dhβ uses the fact that tr ρ½lnðρþ ϵρ ∘ hÞ − ln ρ� is
second order in ϵ for any h ∈ Z (see Theorem 6.3 in
Ref. [8]). The von Neumann entropy is a simple variation
of this example.

E. Projection into the tangent space

The next step is ΠðδjT Þ. If the family of density
operators is large enough, T can fill the entire Z, and
the projection becomes trivial. We call a family full
dimensional if its tangent space at each ρ satisfies

T ¼ Z: ð3:40Þ

For a specific example, consider the orthonormal basis ofH
given by Eq. (3.2) and the most general parametrization of
ρ for d < ∞ given by [29]

F0≡
�
ρðθÞ¼

X
j

θajajþ
X
k1<k2

ðθbkbkþθckckÞ
�
; ð3:41Þ

where

aj ¼ jjihjj; ð3:42Þ

bk ¼
1

2
ðjk1ihk2j þ jk2ihk1jÞ; k1 < k2; ð3:43Þ

ck ¼
i
2
ðjk1ihk2j − jk2ihk1jÞ; k1 < k2; ð3:44Þ

and a special entry θa0 is removed from the parameters and
set as θa0 ¼ 1 −

P
j≠0 θaj, such that tr ρðθÞ ¼ P

j θaj ¼ 1

and

p ¼ d2 − 1: ð3:45Þ

∂ρ is then given by

∂ajρ ¼ aj − a0; ∂bkρ ¼ bk; ∂ckρ ¼ ck: ð3:46Þ

The next theorem is a key step in deriving simple analytic
results.
Theorem 2.—The F0 family is full dimensional.
Proof.—Consider the solution to hS; hi ¼ 0 for an

h ∈ Z. All operators are bounded if d < ∞. We can then
use Eqs. (3.18) and (3.46) to obtain

trð∂ajρÞĥ ¼ hjjĥjji − h0jĥj0i ¼ 0; ð3:47Þ

trð∂bkρÞĥ ¼ Rehk1jĥjk2i ¼ 0; k1 < k2; ð3:48Þ

trð∂ckρÞĥ ¼ Imhk1jĥjk2i ¼ 0; k1 < k2; ð3:49Þ

where ĥ is any operator in the equivalence class of h. Thus,
all the diagonal entries of ĥ are equal to h0jĥj0i, and all the
off-diagonal entries are zero. In other words, ĥ ¼ h0jhj0iÎ,
where Î is the identity operator. But h ∈ Z also means that
tr ρĥ ¼ h0jĥj0i ¼ 0, resulting in ĥ ¼ 0 as the only solution.
Hence, T ⊥ ¼ f0g contains only the zero element, and
T ¼ Z. ▪
F0 implies that the experimenter knows nothing about

the density operator, apart from the Hilbert space H on
which it operates. Despite the high dimension of the family,
Theorems 1 and 2 turn the problem into a trivial exercise
once an influence operator is found, since a δ ∈ D ⊆ Z is
already in Z ¼ T and, hence, efficient. Corollary 2 can
then be used to extend the result for N copies. For
β ¼ tr ρY, Eq. (3.37) leads to

H̃ðNÞ ¼ kδk2
N

¼ 1

N
tr ρðY − βÞ2: ð3:50Þ

This result implies that a von Neumann measurement of Y
of each copy and taking the sample mean of the outcomes
are already efficient; no other measurement can do better in
terms of unbiased estimation. For β ¼ tr ρ2, Eq. (3.38)
leads to

H̃ðNÞ ¼ kδk2
N

¼ 4

N
tr ρðρ − βÞ2; ð3:51Þ

Parameter of 
interest

Directional 
derivative

Gradient

Gradient Gradient

Gradient

Directional 
derivative

Constraint

Antiscore

FIG. 2. Top (for Sec. III D): Steps to obtain an influence
operator δ from the functional β½ρ� via Eqs. (3.33), (3.34), and
(3.36). Bottom (for Sec. VA): Steps to obtain the antiscore
operators that span T ⊥ via Eqs. (5.2) and (5.3).

QUANTUM SEMIPARAMETRIC ESTIMATION PHYS. REV. X 10, 031023 (2020)

031023-7



and, for β ¼ tr ρðln ρ − ln σÞ, Eq. (3.39) leads to

H̃ðNÞ ¼ kδk2
N

¼ 1

N
tr ρðln ρ − ln σ − βÞ2: ð3:52Þ

Intriguingly, this expression coincides with the information
variance that has found uses in other contexts of quantum
information theory, such as quantum hypothesis testing [43].
Deriving Eqs. (3.50)–(3.52) via the conventional brute-

force method would entail the following steps:
(1) Assume the F0 family of density operators given by

Eq. (3.41), with p ¼ d2 − 1 parameters.
(2) Compute the p score operators via Eq. (3.4).
(3) Compute the p-by-p Helstrom information matrix K

via Eq. (3.9).
(4) Compute the inverse K−1.
(5) Compute βðθÞ via Eq. (3.41), ∂βðθÞ, and the

Helstrom bound via Eq. (3.8).
While this method has been used before to produce
Eq. (3.50) [32], it is less clear whether it can easily give
Eq. (3.51) or (3.52). Contrast the brute-force method with
the proposal here:
(1) Compute the influence operator δ via a functional

derivative of β½ρ� according to Sec. III D.
(2) Find the tangent space T of the density-operator

family or the orthocomplement T ⊥. For example,
Theorem 2 shows that T is full dimensional for the
family of arbitrary density operators, while Sec. V
later shows that T ⊥ may remain tractable for smaller
families.

(3) Compute δeff ¼ ΠðδjT Þ ¼ δ − ΠðδjT ⊥Þ and
H̃ ¼ kδeffk2 ¼ tr ρδ2eff .

Each step is tractable for all the examples here, regardless
of the dimensions.
Equations (3.50)–(3.52) are the quantum bounds prom-

ised in Sec. II, although they are merely the simplest
examples of what the semiparametric methodology can
offer, as Secs. V–VII later show.

IV. PARAMETRIC SUBMODELS

The proof of Theorem 2 works only in the finite-
dimensional case (p ¼ d2 − 1 < ∞). For infinite-
dimensional problems, the beautiful concept of parametric
submodels [19–21,34] offers a more rigorous approach. Let

G≡ fρðgÞ ∶ g ∈ Gg ð4:1Þ

be a “mother” density-operator family, where G may be an
infinite-dimensional space. The density operators are still
assumed to operate on a common separable Hilbert space
H. Denote the true density operator in the family as ρ. A
parametric submodel Fσ is defined as any subset of G that
contains the true ρ and has the parametric form of Eq. (3.1).
To wit,

Fσ ≡ fσðθÞ ∶ θ ∈ Θσ ⊆ Rs; σðϕÞ ¼ ρg ⊆ G; ð4:2Þ

where s denotes the dimension of the parameter and ϕ
denotes the parameter value at which σðϕÞ ¼ ρ is the truth;
both may be specific to the submodel. In the language of
geometry [8,9,27], each Fσ is an s-dimensional surface
in G, and all the surfaces are required to intersect at ρ.
Figure 3 illustrates the concept.
Each submodel Fσ is assumed to be smooth enough for

scores to be defined in the same way as before by

ð∂σÞθ¼ϕ ¼ ρ ∘ Sσ; ð4:3Þ

which denotes a system of s equations given by

∂jσðθÞjθ¼ϕ ¼ σðϕÞ ∘ Sσj ðϕÞ ¼ ρ ∘ Sσj ðϕÞ: ð4:4Þ

As everything is evaluated at the true ρ, the scores of all
submodels, in fact, live in the same Hilbert space Z with
respect to ρ. Let the set of all parametric submodels of G
with respect to the truth be

F ≡ fFσ ∶ σ ∈ Sg; ð4:5Þ

where S denotes the set of indices that label all the
submodels. Define the tangent set as the set of the scores
from all such parametric submodels of G, viz.,

fSg≡ ⋃
σ∈S

fSσg; ð4:6Þ

and the tangent space as the span of the set, viz.,

T ≡ spanfSg ⊆ Z: ð4:7Þ

FIG. 3. The space represents G, a mother family of density
operators. The true density operator is denoted as ρ. Parametric
submodels are represented by curves inG that intersect at ρ. Each
score Sσ is a tangent vector that quantifies the “velocity” of a
density-operator trajectory in a certain direction.
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An influence operator is now defined as any operator that
satisfies the unbiasedness condition for all submodels with
respect to fSg. The condition can be expressed as

hSσ; δi ¼ ð∂βÞθ¼ϕ ∀ Fσ ∈ F ; ð4:8Þ

where ð∂βÞθ¼ϕ is specific to each submodel. If hS; δi ¼ ∂β
in Eq. (3.21) is taken to mean Eq. (4.8), then the influence-
operator set D is still defined by Eq. (3.21). The error
operator given by Eq. (3.22) for an unbiased measurement
still satisfies Eq. (4.8) by the generic arguments in Sec. 6.2 in
Ref. [7], which apply to any submodel, so the error operator
remains in D, and Eq. (3.24) still holds. Theorem 1 can now
be extended for the mother family.
Theorem 3.—The GHB in Eq. (3.24) for the mother

family G is given by

H̃ ¼ min
δ∈D

kδk2 ¼ kδeffk2; ð4:9Þ

where the efficient influence δeff is the unique element in
the influence-operator set D given by

δeff ¼ ΠðδjT Þ; ð4:10Þ

δ is any influence operator in D, and T is the tangent space
spanned by the scores of all parametric submodels of G.
Proof.—The proof is identical to that of Theorem 1 if

one takes fSg to be the tangent set containing the scores of
all parametric submodels. ▪
Corollary 2 can also be generalized in an almost identical

way, although the proof requires more careful thought.
Corollary 3.—For a family of density operators that

model N independent and identical quantum objects in the
form of

GðNÞ ≡ fρðgÞ⊗N ∶ g ∈ Gg; ð4:11Þ

the efficient influence and the GHB are given by

δðNÞ
eff ¼ Uδð1Þeffffiffiffiffi

N
p ; H̃ðNÞ ¼ H̃ð1Þ

N
; ð4:12Þ

respectively, where δð1Þeff and H̃ð1Þ are those for the N ¼ 1

family according to Theorem 3 and U is the map given
by Eq. (3.32).
Proof.—The proof is delegated to Appendix C.
We now generalize Theorem 2 for infinite-dimensional

systems. The following theorem is also a more precise
generalization of a classic result in semiparametric theory
(Example 1 in Sec. 3.2 in Ref. [20]).
Theorem 4.—G0, defined as the family of arbitrary

density operators, is full dimensional.
Proof.—We call a Hilbert-space element in Y bounded

and denote it by khkop < ∞ if its equivalence class contains

a bounded operator ĥ. Denote the set of all bounded
elements in Z as

B≡ fh ∈ Z ∶ khkop < ∞g: ð4:13Þ

Take any h ∈ B and its bounded operator ĥ. Construct a
scalar-parameter exponential family as [8,9]

σðθÞ ¼ κðθÞ
tr κðθÞ ; κðθÞ ¼ expðθĥ=2Þρ expðθĥ=2Þ;

ð4:14Þ

where θ ∈ R and the truth is at σð0Þ ¼ ρ. As ĥ is bounded,
expðθĥ=2Þ is bounded and strictly positive. As ρ is non-
negative and unit trace, κðθÞ is non-negative and trace class
(see Theorem 2.7.2 in Ref. [7]). Moreover, tr κðθÞ satisfies
the properties

∞ > tr κðθÞ ¼ tr ρ expðθĥÞ > 0; ð4:15Þ

because κðθÞ is trace class and expðθĥÞ is strictly positive.
Hence, σðθÞ is a valid density operator at any θ. Since G0

contains arbitrary density operators, Fσ ¼ fσðθÞ ∶ θ ∈
R; σð0Þ ¼ ρg is a parametric submodel of G0. It is
straightforward to show that

ð∂σÞθ¼0 ¼ σð0Þ ∘ ĥ ¼ ρ ∘ ĥ; ð4:16Þ

so the score for this model can be taken as Sσ ¼ h.
Define a submodel in the sameway for every h ∈ B, such

that all of the B elements are in the tangent set fSg, leading
to B ⊆ fSg ⊆ T . As T is closed, the limit points of B must
also be in T , and B̄ ⊆ T , where B̄ is the closure of B.
Lemma 2 in Appendix D states that B is a dense subset
of Z, so

Z ¼ B̄ ⊆ T : ð4:17Þ

Together with the fact T ⊆ Z, this result implies T ¼ Z,
and the theorem is proved. ▪
A comparison of the proofs of Theorems 2 and 4 shows

how the parametric-submodel concept works. Instead of
dealing with one large family such as Eq. (3.41), here, one
exploits the freedom offered by G0 to specify many ad hoc
and elementary submodels. Each submodel in the proof
cannot be simpler—the exponential family is simply a type
of geodesics through ρ in density-operator space [8]. In
fact, we do not have to use the exponential family, and other
families may also be used as long as they fit the purpose of
the proof. An enormous number of submodels are intro-
duced, one for each B element in the proof, leading to an
extremely overcomplete tangent set. But that presents no
trouble for the geometric approach; only the resultant
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tangent space matters at the end. Figure 4 illustrates
the idea.
By virtue of Theorem 4, an influence operator δ ∈ D ⊆

Z ¼ T found for a parameter of interest is the efficient
one for G0. The examples in Secs. III D and III E work
for G0 in the same way they work for F0. If β is given by
β½ρ�, an influence operator that satisfies Eq. (4.8) can be
found via a gradient of β½ρ�, as shown in Sec. III D and
Fig. 2. In particular, the influence operators given by
Eqs. (3.37)–(3.39) and the bounds given by Eqs. (3.50)–
(3.52) for the various examples should still hold for G0,
although the entropy example may require a more rigorous
treatment when d ¼ ∞ [42].

V. CONSTRAINED BOUNDS

A. Antiscore operators

Consider a constrained family of density operators
defined as

Gγ ≡ fρðgÞ ∈ G0 ∶ γ½ρðgÞ� ¼ 0g; ð5:1Þ

where γ½ρðgÞ� ¼ 0 denotes a finite set of equality con-
straints fγk½ρðgÞ�¼0∶k¼1;…;rg. Such constraints appear
often in quantum thermodynamics [44,45]. If there exist
gradient operators fγ̃k ∈ Yg such that, for any h ∈ Y,

Dhγk½ρ� ¼ hh; γ̃ki; ð5:2Þ

then each operator given by

Rk ≡ Πðγ̃kjZÞ ¼ γ̃k − hγ̃k; Ii ∈ Z ð5:3Þ

satisfies

Dhγk½ρ� ¼ hh; Rki ∀ h ∈ Z; ð5:4Þ

and the constraint γ½ρðgÞ� ¼ 0 implies that ∂γk½ρ� ¼
hSσ; Rki ¼ 0 for all submodels and k. In short, we write

∂γ½ρ� ¼ hS; Ri ¼ 0: ð5:5Þ

Thus, fRg is orthogonal to the tangent set fSg, and
spanfRg must be a subset of T ⊥. We call R the antiscore
operators, as the following theorem shows that they span
T ⊥ in the same way the scores span T .
Theorem 5.—If hR;Ri−1 exists, T ⊥ ¼ spanfRg for the

Gγ family.
Proof.—The proof again follows the classical case (see

Example 3 in Sec. 3.2 in Ref. [20]). Let

R≡ spanfRg; R⊥ ≡ fh ∈ Z ∶ hR; hi ¼ 0g: ð5:6Þ

In view of Eq. (5.5),

T ⊆ R⊥: ð5:7Þ

Now construct a parametric submodel Fσ in terms of each
h ∈ R⊥ as

σðθÞ ¼ κðθÞ
tr κðθÞ ; κðθÞ ¼ fðθhþ θgÞρfðθhþ θgÞ;

ð5:8Þ

where θ ∈ R, g ¼ w⊤R ∈ R is an operator to be specified
later, and fðuÞ is defined with respect to the spectral
representation of u ¼ R

λdEuðλÞ as

fðuÞ ¼
Z �

1þ tanh

�
λ

2

�	
dEuðλÞ: ð5:9Þ

fðuÞ is bounded and positive even if u is unbounded,
so σðθÞ is a valid density operator. Since ρ ∈ Gγ , γ½ρ� ¼ 0.
For a σðθÞ away from ρ with θ ≠ 0,

γ½σðθÞ� ¼ γ½ρ� þ θDhþgγ½ρ� þ oðθÞ ð5:10Þ

¼ θhR; hþ gi þ oðθÞ ð5:11Þ

¼ θhR; gi þ oðθÞ; ð5:12Þ

where Eq. (5.11) uses Eq. (5.4) and the last step uses
the fact h ∈ R⊥. To make σðθÞ satisfy the constraint
γ½σðθÞ� ¼ 0, gðθÞ ¼ wðθÞ⊤R can be set as a function of
θ to cancel the oðθÞ term, with

FIG. 4. For any h ∈ B, one can associate with it an
exponential family (a straight line in the density-operator
space) that passes through ρ. Since G0 contains arbitrary
density operators, every line must be contained in G0. It
follows that each line is a parametric submodel for G0, and
each h should be put in the tangent set. The dots represent
the fact that the proof involves lines in all directions and, on
each line, scores with all possible norms.
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wðθÞ ¼ −hR;Ri−1oðθÞ=θ: ð5:13Þ

Then, γ½σðθÞ� ¼ 0 and Fσ is a valid parametric submodel of
Gγ . Equation (5.13) also implies that θgðθÞ ¼ oðθÞ is
negligible relative to θh for infinitesimal θ, so the score
for Fσ is h, which should be put in the tangent set fSg.
As this procedure can be done for any h ∈ R⊥,
R⊥ ⊆ fSg ⊆ T . Together with Eq. (5.7), this result leads
to T ¼ R⊥, giving T ⊥ ¼ R. ▪
The family given by Eqs. (5.8) and (5.9) is more

convenient to use here than the exponential family used
in the proof of Theorem 4. The fðuÞ defined by Eq. (5.9) is
a generalization of the classical version in Example 1 in
Sec. 3.2 in Ref. [20] and plotted in Fig. 5. It is designed to
give a valid density operator via Eqs. (5.8)—even if the
argument is an unbounded operator—yet produce the
desired score when linearized at θ ¼ 0. An adjustable
operator gðθÞ is included in the submodel to make σðθÞ
satisfy the constraint away from ρ. Figure 6 further
illustrates the idea of the proof.

Given an influence operator δ, such as those derived
in Sec. III D, the efficient influence and the GHB can be
computed in terms of T ⊥ instead of T via

δeff ¼ ΠðδjT Þ ¼ δ − ΠðδjT ⊥Þ; ð5:14Þ

kδeffk2 ¼ kδk2 − kΠðδjT ⊥Þk2: ð5:15Þ

The same projection formula that gives δeff in Appendix A
can be adapted to give

ΠðδjT ⊥Þ ¼ hR; δi⊤hR;Ri−1R; ð5:16Þ

kΠðδjT ⊥Þk2 ¼ hR; δi⊤hR;Ri−1hR; δi: ð5:17Þ

Equations (5.16) and (5.17) remain tractable if the con-
straints are few. The gradients of γ½ρ� can be derived in the
same way as those of β½ρ�, as shown in Fig. 2, and R can be
computed analytically for linear constraints, the purity
constraint, and the entropy constraint by following the
same type of calculations shown in Eqs. (3.37)–(3.39).
Equation (2.4) is a special example of the constrained GHB
when β ¼ tr ρY and γ ¼ tr ρðZ − ζÞ ¼ 0.

B. Entropy estimation in quantum thermodynamics

In quantum thermodynamics, conserved quantities of
a dynamical system, such as the energy and the particle
number, are expressed as moment constraints on the density
operator with respect to a vector of observables Z and a
vector of constants ζ, viz.,

tr ρZk ¼ ζk; k ¼ 1;…; r: ð5:18Þ

Given such constraints, the density operator is often
assumed to be the one with the maximum entropy [44],
known as the generalized Gibbs ensemble [45]. Such an
assumption, however, requires verification and does not
hold out of equilibrium. Experiments on Bose gases have
been performed to study the quantum states at different
times and the validity of the maximum-entropy principle at
steady state [46–48].
When the maximum-entropy principle is in question

for those experiments, it is prudent to make no prior
assumption about the density operator other than the
constraints. Thus, one should consider a family of density
operators given by Eq. (5.1), where the vectoral constraint
is γ½ρ� ¼ tr ρðZ − ζÞ ¼ 0. Suppose that the von Neumann
entropy β ¼ −tr ρ ln ρ is the parameter of interest. The
estimation of β is then a problem of quantum semipara-
metric estimation.
As the experiments typically involve high-dimensional

systems, quantum state tomography is impractical. A more
efficient estimation of β should exist. The formalism here
leads to a quantum limit given by

FIG. 5. A plot of fðλÞ ¼ 1þ tanhðλ=2Þ to illustrate its bound-
edness and positivity.

FIG. 6. Each R is a vector normal to the surface defined by
γ½ρðgÞ� ¼ 0 in density-operator space. For any h ∈ R⊥, a para-
metric submodel σðθÞ can be constructed to satisfy the constraint
γ½σðθÞ� ¼ 0. Away from ρ, a correction θgðθÞ ¼ oðθÞ in R is
needed to make σðθÞ stay with the constraint. The tangent
vector of the submodel at ρ is still h, since the correction is
higher order in θ.
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E ≥
1

N
ðkδk2 − hR; δi⊤hR;Ri−1hR; δiÞ; ð5:19Þ

δ ¼ − ln ρ − β; R ¼ Z − ζ: ð5:20Þ

This bound is equivalent to the Holevo bound, as shown in
Sec. VIII, so it is asymptotically attainable in principle,
at least for finite-dimensional systems [28–30], although
the experimental implementation of efficient measurements
remains an open question.
As entropy is an excellent measure of randomness

and a central quantity in information theory, entropy
estimation has many applications beyond thermodynamics.
In classical statistics, the semiparametric estimation of
entropic quantities is a well-studied problem with known
near-efficient estimators and applications in universal
coding, statistical tests, random-number generation, econo-
metrics, spectroscopy, and even neuroscience [49]. In the
quantum domain, one application is universal quantum-
information compression [50]: Knowing just the von
Neumann entropy and nothing else about ρ allows the
quantum information to be compressed in accordance with
the entropy. Another application is the estimation of an
entropic measure of entanglement, which allows one to
demonstrate entanglement without full tomography [16].
The quantum limit here quantifies the minimum amount of
resources needed to achieve a desired precision. Its asymp-
totic attainability suggests that it is a lofty but fair yardstick
for experimental design.

C. Philosophy

The proposed approach to quantum semiparametric
bounds is the polar opposite of the usual approach in
quantum metrology. In the usual bottom-up approach, one
assumes a small family of density operators with a few
parameters and computes kΠðδjT Þk2 that is determined by
the overlap between δ and the scores S. Here, one starts
with a large family with almost full dimension, computes
kδk2 for an amenable δ, and then reduces it by kΠðδjT ⊥Þk2
that is determined by the overlap between δ and the
antiscores R, as illustrated by Fig. 7. The complexity of
the problem, thus, depends on the dimension of the family,
and the essential insight of this work is that the problem can
become simple again when the dimension is close to being
full. Of course, if the dimension of T ⊥ is high, the top-
down approach may also suffer from the curse of dimen-
sionality. The medium families with both T and T ⊥ in high
dimensions are the most difficult to deal with, as they may
be impregnable from either end.

D. Looser bounds

It may often be the case that, despite one’s best efforts,
the exact δeff for a problem remains intractable. Then, a
standard strategy in statistics and quantum metrology is to

sandwich kδeffk2 between upper and lower bounds. kδk2 is
an obvious upper bound and can be obtained from the
gradient method in Sec. III D if β can be expressed as a
functional β½ρ�. Another way is to use Eq. (3.23) if an
unbiased measurement and its error are known. The
evaluation of lower bounds, on the other hand, can be
facilitated by the following proposition.
Proposition 1.—Let V ⊆ T be a closed subspace of T

and V⊥ be the orthocomplement of V in Z. Then

H̃ ¼ kδeffk2 ≥ kΠðδjVÞk2 ¼ kδk2 − kΠðδjV⊥Þk2: ð5:21Þ

In particular, if

V ¼ spanfSσg ð5:22Þ

is taken as the tangent space for a particular parametric
submodel Fσ , then

kΠðδjVÞk2 ¼ H̃σ ð5:23Þ

is the GHB for that submodel.
Proof.—The proof is delegated to Appendix E.
A tight lower bound on kδeffk2 can be sought by devising

a submodel that is as unfavorable to the estimation of
β as possible. Another approach is to devise an overcon-
strained model with V⊥ ⊇ T ⊥ and evaluate a lower bound
on kδeffk2 from the top by overshooting, as illustrated
by Fig. 8.

VI. EXAMPLES IN OPTICS

A. Quadrature estimation

Here, we further illustrate the theory with examples in
optics, where quantum measurement theory has found the
most experimental success [51]. For the first and simplest
example, let ρ be a density operator of an optical mode
and assume the G0 family of arbitrary density operators.
Consider the estimation of the mean of a quadrature
operator Y, with β ¼ tr ρY. This problem appears
often in optical state characterization, communication,

FIG. 7. An illustration of the conventional bottom-up approach
to quantum bounds and the top-down approach to semiparametric
bounds, as discussed in Sec. V C.
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and sensing, where β is a displacement parameter [17]. The
GHB is given by Eq. (3.50), and homodyne detection of Y
is efficient. Note that this example is different from all
previous studies of quadrature estimation [1,7], which
assume Gaussian states or similarly low-dimensional para-
metric models. The semiparametric scenario here allows ρ
to be arbitrary and possibly non-Gaussian.
Now suppose that side information tr ρZ ¼ ζ concerning

another quadrature Z is available. It follows from Sec. V
that the efficient influence is now

δeff ¼ Y − β −
CYZ

VZ
ðZ − ζÞ; ð6:1Þ

whereCYZ and VZ are given by Eqs. (2.5). The GHB is then
given by Eq. (2.4), which is lowered by any correlation
between Y and Z. From the efficient influence, one may use
Eq. (3.22) to find an efficient measurement, which obeys

Z
β̌ðλÞdEðλÞ ¼ Y −

CYZ

VZ
ðZ − ζÞ: ð6:2Þ

This equation can be satisfied if the POVM measures
the quadrature Y − ðCYZ=VZÞZ instead of the obvious Y.
Notice, however, that CYZ=VZ depends on the unknown ρ.
Whether adaptive measurements [51] can implement this
POVM approximately and whether asymptotic attainability
is possible for this infinite-dimensional problem are inter-
esting open questions. One approach may be to form rough
estimates of the covariances CYZ and VZ via heterodyne
detection of a portion of the light first and then measure the
desired quadrature via homodyne detection based on the
approximate CYZ=VZ.

B. Family of classical states

For a more nontrivial example, consider a density-
operator family in the form

Gc ≡
�
ρðPÞ ¼

Z
d2αPðαÞjαihαj ∶P ∈ G

�
; ð6:3Þ

G ¼ all positive probability densities; ð6:4Þ

where α ¼ α0 þ iα00 ∈ C, d2α ¼ dα0dα00, jαi is a coherent
state, and P is the Glauber-Sudarshan function [52]. As P is
assumed to be positive, Gc is a family of classical states
[52] and a strict subset ofG0. The assumption ofGc instead
of G0 is more appropriate for practical applications with
significant decoherence, as nonclassical states are unlikely
to survive in such an environment.
Consider a moment parameter of the form

βðPÞ ¼
Z

d2αPðαÞfðα; α�Þ; ð6:5Þ

where fðα; α�Þ is a real polynomial of α and α�. For
example, one may be interested in the mean of a quadrature,
in which case f ¼ α expð−iθÞ þ α� expðiθÞ, or the mean
energy, in which case f ¼ jαj2. The optical equivalence
theorem [52] gives

β ¼ tr ρY; Y ¼ ∶ fða; a†Þ ∶ ; ð6:6Þ

where ∶ fða; a†Þ ∶ denotes the normal ordering [52].
It follows from Sec. III D that an influence operator
is δ ¼ Y − β.
The next step is to find the tangent space ofGc. Although

Gc is a smaller family thanG0, its dimension turns out to be
just as high.
Proposition 2.—Gc is full dimensional.
Proof.—The proof is delegated to Appendix F.
With the full-dimensional tangent space, the GHB is also

given by Eq. (3.50). This result shows that the obvious von
Neumann measurement of Y remains efficient in estimating
β, and no alternative measurements can do better, despite
restricting the family to classical states. For example, if
fðα; α�Þ is a quadrature, then the homodyne measurement is
efficient, and if fðα; α�Þ ¼ jαj2, then ∶ fða; a†Þ ∶ ¼ a†a,
and the photon-number measurement is efficient.
G, the space of positive densities, is infinite dimensional.

The estimation of P is a nonparametric problem [53], in
contrast with the semiparametric problems studied here.
In classical statistics, it is known that a nonparametric
estimation of the probability density cannot achieve a
parametric convergence rate [E ¼ Oð1=NÞ] [19,20,54],
and this difficulty is expected to translate to the quantum
domain. Semiparametric estimation, on the other hand,
can achieve the parametric rate and is the more feasible
task if one is interested in only a few parameters of the
system.
A further restriction on the family of P can give very

different results, as shown in the next section in the context
of incoherent imaging.

FIG. 8. One can obtain a lower bound on kδeffk2 by either
undershooting from the bottom via a more amenable subspace
V ⊆ T or overshooting from the top via an overconstrained
model with V⊥ ⊇ T ⊥.
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C. Incoherent imaging

1. The mother model

Here, we summarize existing results concerning the
problem of incoherent imaging [5] using the language of
semiparametrics. Unlike previous sections, this section
presents no new results essentially. Rather, the goal is to
use this very important but equally difficult problem to
illustrate the concepts and current limitations of the
quantum semiparametric theory.
The basic setup of an imaging system is depicted in

Fig. 9. The object is assumed to emit spatially incoherent
light at an optical frequency. For simplicity, the imaging
system is assumed to be one dimensional, paraxial, and
diffraction limited. A model of each photon on the image
plane is [5,15,55]

G ¼
�
ρðFÞ ¼

Z
dXFðXÞjψXihψXj ∶F ∈ G1

�
; ð6:7Þ

jψXi ¼
Z

dxψðx − XÞjxi ¼ expð−ikXÞjψ0i; ð6:8Þ

where F is the unknown source density, G1 is a set of
probability densities on R, X ∈ R is the object-plane
coordinate, ψðxÞ is the point-spread function of the imaging
system, x ∈ R is the image-plane coordinate normalized
with respect to the magnification factor [56], jxi is the
Dirac position ket that satisfies hxjx0i ¼ δðx − x0Þ, and k is
the canonical momentum operator. X and x are further
assumed to be normalized with respect to the width of ψðxÞ
so that they are dimensionless. ψðxÞ is assumed here to be

ψðxÞ ¼ 1

ð2πÞ1=4 exp
�
−
x2

4

�
; ð6:9Þ

such that jψXi ¼ jα ¼ X=2i is a coherent state. Various
generalizations can be found in Refs. [5,15,24,55], and
references therein. Besides imaging, the model can
also be used to describe a quantum particle under random
displacements [13,57].
The problem is semiparametric if G1 is infinite dimen-

sional, such as

G1 ¼ all probability densities on R; ð6:10Þ

and the parameter of interest is a functional of F, such as
the object moment

βμðFÞ ¼
Z

dXFðXÞXμ; ð6:11Þ

where μ ∈ N1 denotes the order of the moment of interest.
Notice that the family indicated by Eq. (6.10) is much
smaller than the one given by Eq. (6.4) in the previous
example, as the Glauber-Sudarshan function is now sepa-
rable in terms of ðα0; α00Þ and confined to the real axis
of α, viz.,

PðαÞ ¼ 2Fð2α0Þδðα00Þ: ð6:12Þ

In fact, the dimension of T ⊥ is now infinite, as shown
in Appendix G, so this problem is the most difficult type
described in Sec. V C.
The errors and their bounds are all functionals of the true

density F, and we focus on their values for subdiffraction
distributions, which are defined as those with a width Δ
around X ¼ 0 much smaller than the point-spread-function
width or, in other words, Δ ≪ 1 [5].

2. Semiparametric measurements and estimators

Two globally unbiased measurements for semiparamet-
ric moment estimation are known [24]. For N detected
photons [58], both are separable measurements and sample
means in the form of [59]

EðNÞðA1;A1;…;ANÞ¼ ⊗
N

n¼1
EðAnÞ; An∈ΣX ; ð6:13Þ

β̌ðNÞðλ1; λ2;…; λNÞ ¼
1

N

XN
n¼1

β̌ðλnÞ; λn ∈ X : ð6:14Þ

The first measurement is direct imaging, which measures
the intensity on the image plane and is equivalent to the
projection of each photon in the position basis as

dEðdirectÞðxÞ ¼ dxjxihxj; x ∈ X ¼ R: ð6:15Þ

An unbiased semiparametric estimator is given by the
sample mean of

β̌ðdirectÞμ ðxÞ ¼
Xμ
ν¼0

ðC−1Þμνxν; ð6:16Þ

Cμν ¼ 1μ≥ν

�
μ

ν

�Z
dxjψðxÞj2xμ−ν; ð6:17Þ

Spatially
 incoherent

 source

Measurement

Estimator

FIG. 9. A far-field incoherent optical imaging system.
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1proposition ¼
�
1; if proposition is true;

0; otherwise;
ð6:18Þ

and the error is

EðdirectÞ
μ ¼ Oð1Þ

N
; ð6:19Þ

where Oð1Þ denotes a prefactor that does not scale with Δ
in the first order. The second measurement is the so-called
spatial-mode demultiplexing (SPADE) [4,5,15,24,55],
which demultiplexes the image-plane light in the
Hermite-Gaussian basis given by

jϕmi ¼
Z

dxϕmðxÞjxi; m ∈ N0; ð6:20Þ

ϕmðxÞ ¼
HemðxÞ

ð2πÞ1=4 ffiffiffiffiffiffi
m!

p exp

�
−
x2

4

�
; ð6:21Þ

where HemðxÞ is a Hermite polynomial [60]. For the
estimation of an even moment with μ ¼ 2j, the POVM
for each photon is

EðSPADEÞðmÞ ¼ jϕmihϕmj; m ∈ X ¼ N0; ð6:22Þ

an unbiased semiparametric estimator is given by the
sample mean of

β̌ðSPADEÞ2j ðmÞ ¼ 1m≥j
4jm!

ðm − jÞ! ; ð6:23Þ

and the error is

EðSPADEÞ
2j ¼ OðΔ2jÞ

N
¼ OðΔμÞ

N
; ð6:24Þ

which is much lower than that of direct imaging in
the subdiffraction regime for the second and higher
moments. For the estimation of odd moments with
SPADE, only approximate results have been obtained so
far [14,55,61,62] and are not elaborated here.
Both estimators are efficient for their respective mea-

surements in the classical sense [24]. In the quantum case,
the question is whether SPADE is efficient or there exist
even better measurements. Computing the GHB, or at least
bounding it, would answer the question and establish the
fundamental quantum efficiency for incoherent imaging.

3. Lower bounds via parametric submodels

Both Eqs. (6.19) and (6.24) are upper bounds on the
GHB. By virtue of Proposition 1, all earlier quantum lower
bounds derived for incoherent imaging via parametric
models are, in fact, lower bounds on the GHB for the
mother family given by Eq. (6.7), with the true ρ being

evaluated at certain special cases of F. References [4,63],
for example, assume discrete point sources, but exact
results become difficult to obtain for a large number of
sources. Here, we highlight two methods that work for any
F but can give only looser bounds.
The first method is the culmination of Sec. 6 in Ref. [55]

and Appendix C in Ref. [15]. Assume that

θ ¼
�
θg

θh

�
ð6:25Þ

consists of two sets of parameters θg ¼ ðθg1; θg2;…Þ⊤ and
θh ¼ ðθh0; θh1;…Þ⊤. Define a submodel given by

σðθÞ ¼
Z

dXFðXjθÞjψXihψXj; ð6:26Þ

FðXjθÞ ¼
Z

dYδ(X − hðYjθhÞ)GðYjθgÞ; ð6:27Þ

GðYjθgÞ ¼
½1þ tanh gðYjθgÞ�FðYÞR
dY½1þ tanh gðYjθgÞ�FðYÞ

: ð6:28Þ

The truth is at

σð0Þ ¼ ρ; FðXj0Þ ¼ GðXj0Þ ¼ FðXÞ; ð6:29Þ

hðYj0Þ ¼ Y; gðYj0Þ ¼ 0: ð6:30Þ

σðθÞ can be rewritten as

σðθÞ ¼
Z

dYGðYjθgÞjψhðYjθhÞihψhðYjθhÞj: ð6:31Þ

In other words, we introduce parameters to both the
mixing density and the displacement in the model by
rewriting the mixture. Appendix H shows how the extended
convexity of the Helstrom information [13,64] can be used
on Eq. (6.31) to give

H̃ðNÞ
μ ≥

Hσ
μ

N
≥
β2μ − β2μ þ μ2β2μ−2

N
¼ OðΔ2μ−2Þ

N
: ð6:32Þ

A more careful calculation shows that the SPADE error
is exactly equal to this bound for μ ¼ 2 [24]. For higher
moments, however, Eq. (6.32) remains much lower than
that achievable by SPADE.
The second method, as reported in Ref. [15], considers

the formal expansion expð−ikXÞ ¼ P∞
p¼0ð−ikXÞp=p!,

which leads to

σðθÞ ¼
X∞
p1¼0

X∞
p2¼0

βp1þp2

ð−ikÞp1

p1!
jψ0ihψ0j

ðikÞp2

p2!
: ð6:33Þ
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Consider this expression as a parametric submodel with
only one scalar parameter θ ¼ βμ for a given μ, while all the
other moments βν with ν ≠ μ are fixed. Then, the Helstrom
bound for this submodel is simply Hσ

μ ¼ 1=Kσ
μμ, where Kσ

μμ

is the Helstrom information with respect to θ ¼ βμ.
Reference [15] finds via a purification technique that this
Helstrom bound is, in turn, bounded by

Hσ
μ ¼

1

Kσ
μμ

≥ OðΔ2bμ=2cÞ: ð6:34Þ

By virtue of Corollary 3 and Proposition 1, we obtain

H̃ðNÞ
μ ≥

Hσ
μ

N
≥
OðΔ2bμ=2cÞ

N
: ð6:35Þ

This lower bound does match the performance of SPADE
in order of magnitude, but it does not have a simple closed-
form expression, and the question of whether SPADE
is exactly efficient for moments higher than the second
remains open.

VII. SEMIPARAMETRIC ESTIMATION WITH
EXPLICIT NUISANCE PARAMETERS

A. The efficient score operator

We now consider problems where there is an explicit
partition of the parameters into a scalar β and nuisance
parameters η that may be infinite dimensional, viz.,

G ¼ fρðβ; ηÞ ∶ β ∈ Θβ ⊆ R; η ∈ Gg: ð7:1Þ

An example is the displacement model given by Eq. (2.6),
where β is the displacement parameter and the initial state
ρ0 depends on the nuisance parameters. All previous
studies of the problem assume that ρ0 is known exactly.
In practice, however, ρ0 may be poorly characterized, and
the estimation performance in the presence of unknown
nuisance parameters may suffer as a result.
With the explicit partition of the parameters, the scores

can be partitioned similarly. Let Sβ be the score with respect
to the parameter of interest, as defined by

∂ρðβ; ηÞ
∂β ¼ ρ ∘ Sβ; ð7:2Þ

where η is fixed at the truth. To define the nuisance scores,
consider the subfamily

Gη ≡ fρðβ; ηÞ ∶ η ∈ Gg; ð7:3Þ

which holds β fixed at the truth instead. Define the nuisance
tangent set fSηg as the set of scores from all parametric
submodels of Gη and the nuisance tangent space as

Λ≡ spanfSηg: ð7:4Þ

The unbiasedness condition for an influence operator
becomes

hSβ; δi ¼ ∂β
∂β ¼ 1; hSη; δi ¼ 0: ð7:5Þ

The second of Eqs. (7.5) implies that δ⊥Λ, so if Sβ ∈ Λ,
hSβ; δi ¼ 0, and no influence operator that obeys both
Eqs. (7.5) can exist. In that case, we assume the GHB to be
infinite. Provided that Sβ ∉ Λ, however, the following
theorem provides another method of computing the effi-
cient influence and the GHB.
Theorem 6.—Assuming Sβ ∉ Λ and the unbiasedness

condition given by Eqs. (7.5), the efficient influence and
the GHB are given by

δeff ¼
Seff

kSeffk2
; H̃ ¼ 1

kSeffk2
; ð7:6Þ

respectively, where Seff , henceforth called the efficient
score, is given by

Seff ¼ Sβ − ΠðSβjΛÞ: ð7:7Þ

Proof.—The proof is delegated to Appendix I.
Figure 10 illustrates the Hilbert-space concepts involved

in Theorem 6. We note that Sec. V in Ref. [36] also arrives
at conclusions similar to Theorem 6 in the parametric case,
but the crucial point here is the Hilbert-space approach,
which enables us to derive closed-form solutions to semi-
parametric problems, as shown in the next section.

B. Displacement estimation with a constrained
family of initial states

Consider the displacement model given by Eq. (2.6) and
illustrated by Fig. 11. For high-dimensional systems, only a

FIG. 10. The whole space in the picture represents the tangent
space T . Λ is the nuisance tangent space spanned by the nuisance
tangent set fSηg. Sβ is the score with respect to the parameter of
interest. The efficient score Seff is Sβ minus its projection
ΠðSβjΛÞ. The result is orthogonal to Λ.
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few moments of the initial state ρ0 may be known in
practice, and it is prudent to assume that ρ0 is in the
constrained family Gγ defined by Eq. (5.1). The density-
operator family for the problem can be expressed as

G ¼ fρðβ; ρ0Þ ¼ Uβρ0 ∶ β ∈ Θβ ⊆ R; ρ0 ∈ Gγg; ð7:8Þ

where the unitary map Uβ is defined as

Uβρ0 ≡ expð−iHβÞρ0 expðiHβÞ: ð7:9Þ

Generalization for more complicated generators is possible
[12] but outside the scope of this paper.
Define an inner product and a norm with respect to the

true ρ0 as

hh1; h2i0 ≡ tr ρ0h1 ∘ h2; khk0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hh; hi0

p
: ð7:10Þ

Define also the operator Hilbert spaceZ0 with respect to ρ0,
the tangent space T 0 at ρ0 with respect to Gγ, and the
orthocomplement T ⊥

0 that gives Z0 ¼ T 0 ⊕ T ⊥
0 , in the

same way as how the spacesZ, T , and T ⊥ are defined with
respect to ρ. Noting the unitarity of Uβ and following the
method in Appendix C, it can be shown that the nuisance
tangent space is given by

Λ ¼ UβT 0 ≡ fUβh ∶ h ∈ T 0g: ð7:11Þ

Define the map adjoint to Uβ by U�
βh≡ expðiH βÞh

expð−iH βÞ. Exploiting the isomorphism between Λ and
T 0, we can compute the efficient score as follows:

Seff ¼ Sβ − ΠðSβjΛÞ ¼ Sβ − UβΠðU�
βS

βjT 0Þ ð7:12Þ

¼ Sβ − Uβ½U�
βS

β − ΠðU�
βS

βjT ⊥
0 Þ� ð7:13Þ

¼ UβΠðU�
βS

βjT ⊥
0 Þ ð7:14Þ

¼ hR;U�
βS

βi⊤
0
hR;Ri−10 UβR; ð7:15Þ

where R is the vector of antiscores with respect to ρ0,
as defined by Eq. (5.4) but with ρ0 and h·; ·i0 instead.
Equation (7.15) can be further simplified, with

hR;U�
βS

βi
0
¼ hUβR; Sβi ð7:16Þ

¼ −itr ρ½UβR;H� ð7:17Þ

¼ −itr ρ0½R;H� ¼ ½R;H�0; ð7:18Þ

where ½A;B�jk ≡ AjBk − BkAj and ½·; ·�0 is shorthand for
−itr ρ0½·; ·�. Equation (7.17) comes from the fact that
Sβ ¼ DH for the model given by Eq. (7.9), where D is
the so-called commutation superoperator defined by [7,25]

hh;DHi ¼ −itr ρ½h;H� ∀ h ∈ Y: ð7:19Þ

The final result is

Seff ¼ ½R;H�⊤0 hR;Ri−10 UβR; ð7:20Þ

kSeffk2 ¼ ½R;H�⊤0 hR;Ri−10 ½R;H�0; ð7:21Þ

H̃ðNÞ ¼ 1

NkSeffk2
: ð7:22Þ

In particular, if the constraint is linear and a scalar given by

tr ρ0Z ¼ 0; R ¼ Z; ð7:23Þ

then

H̃ðNÞ ¼ kZk20
N½Z;H�20

; ð7:24Þ

which gives Eq. (2.7). kZk20 is the variance of Z, while

½Z;H�0 ¼ −itr ρ0½Z;H� ¼ tr ρ0
∂
∂βU

�
βZ






β¼0

ð7:25Þ

is a measure of how sensitive the Heisenberg-picture Z is to
the displacement. An intuitive explanation of this result
is as follows. A displacement can be estimated only with
respect to a known reference. If only the mean of Z is
known about the initial state, then it is the only reference in
the quantum object that is available to the observer. It is
therefore not surprising—in hindsight—that the statistics of
Z determine the fundamental limit.
If H is the momentum operator and Z is the position

operator satisfying ½Z;H� ¼ i, the Heisenberg picture
of Z is

U�
βZ ¼ β þ Z; ð7:26Þ

which is a quantum additive-noise model with no known
statistics about the noise operator Z other than its mean.
Measurements of Z and the sample mean of the outcomes
are efficient. This problem then becomes equivalent to the
β ¼ tr ρY example, but note that Eqs. (7.21) and (7.22) are

FIG. 11. A schematic of the semiparametric displacement
model given by Eq. (7.8).
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more general, as they can deal with any generator, a β that
cannot be easily expressed as a functional of ρ, and more
general constraints.
Another example is optical phase estimation with

H ¼ a†a ¼ 1

2
ðZ2

1 þ Z2
2Þ ð7:27Þ

and constraint tr ρ0Z ¼ ζ on the mean of the quadrature
operators Z ¼ ðZ1; Z2Þ⊤ with ½Z1; Z2� ¼ i. There is no
phase observable [52], so expressing β as a functional of ρ
is difficult, if not impossible. Equations (7.21) and (7.22),
on the other hand, are simple expressions in terms of the
generator and the antiscores. In Eqs. (7.20)–(7.22),
R ¼ Z − ζ,

hRj; Rki0 ¼ tr ρ0ðZj − ζjÞ ∘ ðZk − ζkÞ ð7:28Þ

is simply the covariance matrix of the quadratures, while

½R1; H�0 ¼ ½Z1; H�0 ¼ tr ρ0Z2 ¼ ζ2; ð7:29Þ

½R2; H�0 ¼ ½Z2; H�0 ¼ −tr ρ0Z1 ¼ −ζ1 ð7:30Þ

are the mean quadrature values. The efficient influence
δeff ∝ Seff is a linear combination of the quadratures
according to Eq. (7.20), indicating the ideal, though
parameter-dependent, quadrature to be measured. An
adaptive measurement can then aim to measure the ideal
quadrature to approach the quantum limit.
When ρ0 is exactly known, the Helstrom bound for

displacement estimation has been computed exactly only if
ρ0 is pure or Gaussian. Only looser bounds have been found
otherwise [1,2,7]. The Mandelstam-Tamm inequality, for
example, is looser than the Helstrom bound for mixed states
[7]. Sβ is determined by DH, and if ρ0 is a high-dimen-
sional non-Gaussian mixed state, Sβ is intractable. With the
infinitely many nuisance parameters and infinitely many
scores assumed here, the problem is hopeless under the
conventional bottom-up approach. The top-down geo-
metric approach, on the other hand, is able to avoid the
computation of the scores altogether and give a simple
result in terms of the more tractable antiscores.

VIII. VECTORAL PARAMETER OF INTEREST

To complete the formalism, here, we generalize the
core results in this paper for a vectoral parameter of
interest β ∈ Rq with q ≥ 1 entries. p, the dimension of
the parameter space, should be at least as large as q and
may be infinite. Define the error matrix as

Σ≡
Z

½β̌ðλÞ − β�½β̌ðλÞ − β�⊤tr dEðλÞρ; ð8:1Þ

where β̌ ∶X → Rq is an estimator. An influence operator
should then be a vector of q operators. The inner product
between two vectoral operators and the norm are now
defined as

tr hh; gi ¼
Xq
j¼1

tr ρðhj ∘ gjÞ; khk≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr hh; hi

p
: ð8:2Þ

The Hilbert spaces Y and Z for the vectoral operators are
still expressed as Eqs. (3.13) and (3.14), while the tangent
space is now defined as the replicating space [21]

T ≡ ðspanfSgÞ⊕q ≡ spanfSg ⊕ � � � ⊕ spanfSg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q terms

: ð8:3Þ

The set of influence operators is still given by Eq. (3.21) if
hS; δi ¼ ∂β is interpreted as hSσ; δki ¼ ∂βk for all sub-
models and k ¼ 1;…; q. For an unbiased measurement, the
error operator given by Eq. (3.22) remains an element ofD,
and it can be shown (see Sec. 6.2 in Ref. [7]) that

Σ ≥ hδ; δi; ð8:4Þ

where the matrix inequality A ≥ B means that A − B is
positive semidefinite. The GHB can then be expressed as

E≡ trWΣ ≥ trWhδ; δi ≥ inf
δ∈D

trWhδ; δi≡ H̃; ð8:5Þ

where W ≥ 0 is a real cost matrix [8]. Generalizing
Theorems 1 and 3, we have the following theorem.
Theorem 7.—The GHB for a vectoral parameter of

interest is given by

H̃ ¼ min
δ∈D

trWhδ; δi ¼ trWhδeff ; δeffi; ð8:6Þ

where the efficient influence δeff is the unique element inD
given by

δeff ¼ ΠðδjT Þ: ð8:7Þ

Proof.—The proof is delegated to Appendix J.
It is straightforward to generalize the methods introduced

in this paper to compute the GHB for the vectoral case.
Holevo proposed another bound, denoted in the follow-

ing by the sans-serif X, that can account for the quantum
effect of observable incompatibility in multiparameter
estimation [7,40]. Before we prove the bound and related
results, we need the following lemma.
Lemma 1—(Belavkin and Grishanin [65]).—For any

complex positive-semidefinite matrix A,

tr ReA ≥ kImAk1; ð8:8Þ
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where ReA and ImA denote the entrywise real and
imaginary parts of A, respectively, and k · k1 denotes the
trace norm, defined as the sum of the singular values.
Proof.—The proof is provided in Appendix K for

completeness.
We can now present the Holevo bound. It requires little

modification to be applied to semiparametric estimation;
only the definition of D needs to be generalized to
Eq. (3.21) here. Otherwise, the proof is standard
[7,28,40]; we provide it here simply to demonstrate that
it remains valid in the semiparametric setting.
Theorem 8.—

E ≥ X≡ inf
δ∈D

½trWReΓðδÞ þ k
ffiffiffiffiffi
W

p
ImΓðδÞ

ffiffiffiffiffi
W

p
k1�; ð8:9Þ

where ΓðδÞ is a complex matrix given by

ΓjkðδÞ≡ tr ρδjδk: ð8:10Þ

Proof.—Holevo proved [see Eq. (6.6.55) in Ref. [7] ]
that the error matrix and the error operator of any unbiased
measurement obey

Σ ≥ ΓðδÞ: ð8:11Þ

Thus, A ¼ ffiffiffiffiffi
W

p ðΣ − ΓÞ ffiffiffiffiffi
W

p
≥ 0. Applying Lemma 1 and

noting that Σ is real, we obtain

tr ReA ¼ tr
ffiffiffiffiffi
W

p
ðΣ − ReΓÞ

ffiffiffiffiffi
W

p
¼ trWðΣ − ReΓÞ

≥ kIm½ ffiffiffiffiffi
W

p ðΣ − ΓÞ ffiffiffiffiffi
W

p �k1 ¼ k ffiffiffiffiffi
W

p
ImΓ

ffiffiffiffiffi
W

p k1:
ð8:12Þ

Hence,

trWΣ ≥ trWReΓþ k
ffiffiffiffiffi
W

p
ImΓ

ffiffiffiffiffi
W

p
k1 ≥ X: ð8:13Þ

▪

The asymptotic attainability of the Holevo bound for
d < ∞ is shown in Refs. [28–30]. The rough idea there is to
consider a two-step method: First, find an estimate θ̌ of θ
using some of the object copies, and then perform a
measurement based on the influence operators obtained
from the minimization in Eq. (8.9), assuming θ̌ to be the
truth. In the limit of N → ∞, the overhead for finding θ̌ is
benign, and it can be shown that the error approaches X by
local asymptotic normality.
For all the examples studied in previous sections, β is a

scalar, and it is straightforward to prove that the Holevo
bound is equal to the GHB in that case.
Corollary 4.—If β is a scalar (q ¼ 1),

X ¼ H̃: ð8:14Þ

Proof.—For q ¼ 1, ΓðδÞ ¼ tr ρδ2 and ImΓðδÞ ¼ 0, lead-
ing to

X ¼ inf
δ∈D

trWReΓðδÞ ¼ inf
δ∈D

trWhδ; δi ¼ H̃: ð8:15Þ

▪

The scalar GHB hence inherits all the properties of the
Holevo bound, including its asymptotic attainability. In
fact, for any q, the Holevo bound turns out to be a marginal
improvement over the GHB only.
Theorem 9.—

H̃ ≤ X ≤ 2H̃: ð8:16Þ

Proof.—For all δ ∈ D,

trWReΓðδÞ þ k
ffiffiffiffiffi
W

p
ImΓðδÞ

ffiffiffiffiffi
W

p
k1 ð8:17Þ

≥ trWReΓðδÞ ¼ trWhδ; δi ≥ H̃: ð8:18Þ

As X is the infimum of Eq. (8.17), we obtain X ≥ H̃, the
first inequality of the theorem. The second inequality is
proved as follows:

X ≤ trWReΓðδeffÞ þ k
ffiffiffiffiffi
W

p
ImΓðδeffÞ

ffiffiffiffiffi
W

p
k1 ≡ D ð8:19Þ

≤ trWReΓðδeffÞ þ tr
ffiffiffiffiffi
W

p
ReΓðδeffÞ

ffiffiffiffiffi
W

p
ð8:20Þ

¼ 2trWReΓðδeffÞ ¼ 2H̃; ð8:21Þ

where Eq. (8.20) is obtained by applying Lemma 1 to
A ¼ ffiffiffiffiffi

W
p

ΓðδeffÞ
ffiffiffiffiffi
W

p
. ▪

The first inequality H̃ ≤ X is well known [7,39,40].
A special case X ≤ 2H of the second inequality—when
p < ∞, K−1 exists, and H̃ ¼ H is the original Helstrom
bound—was proved recently in Ref. [35]. X ¼ 2H can be
attained in special cases [28–30].
Theorem 9 implies that the effect of incompatibility is

surprisingly benign in the context of asymptotic statistics,
the GHB can be approached to within a factor of 2 if the
Holevo bound is attainable, and the GHB is a serviceable
alternative to the Holevo bound, especially when the latter
is more difficult to compute. See Ref. [28] for further
interesting discussions regarding this result.
As an aside, we remark that the D in Eq. (8.19) is called

the D-invariant bound and coincides with X if T ¼ DT ,
whereD is given by Eq. (7.19) [7,66]. In general,D offers a
tighter upper bound on X than 2H̃ but may not be much
more difficult to compute, as it also depends on δeff , which
can be found via the methods introduced in this work.
We present a few other interesting results concerning

multiparameter estimation with p < ∞ in Appendix L.
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Finally, we generalize the concept of efficient score in
Theorem 6 for a vectoral β.
Theorem 10.—Assume a density-operator family

given by

G ¼ fρðβ; ηÞ ∶ β ∈ Θβ ⊆ Rq; η ∈ Gg: ð8:22Þ

Let Sβ ¼ ðSβ1;…; SβqÞ⊤ be the scores with respect to β and
fSηg be the nuisance tangent set. Assume the unbiasedness
condition for influence operators δ ∈ D given by

hSβ; δi ¼ I; hSη; δi ¼ 0; ð8:23Þ

where I is the identity matrix. The efficient influence and
the GHB are given by

δeff ¼hSeff ;Seffi−1Seff ; H̃¼ trWhSeff ;Seffi−1; ð8:24Þ

respectively, where the efficient score Seff is given by

Seff ¼ Sβ − ΠðSβjΛÞ; Λ≡ ðspanfSηgÞ⊕q; ð8:25Þ

and hSeff ; Seffi−1 is assumed to exist.
Proof.—The proof is almost identical to that of Theorem

6 in Appendix I and omitted here for brevity.

IX. CONCLUSION

We have founded a theory of quantum semiparametric
estimation and showcased its power by producing simple
quantum bounds for a large class of problems with high
dimensions and few assumptions about the density oper-
ator. The theory establishes the notion of quantum semi-
parametric efficiency, which should inform and inspire the
design of more efficient measurements in many areas of
quantum physics.
While the experimental design of efficient semiparamet-

ric measurements is only touched upon here and awaits
further research, the importance of the quantum limits set
forth should not be underestimated. As more experiments
are now being performed on complex quantum systems and
advantages of such systems for metrology and information
processing, in general, are being claimed, the precision
limits serve as ultimate yardsticks as well as “no-go”
theorems that guard against spurious proposals and fruitless
endeavors, in the same way the laws of thermodynamics
impose limits to engines and rule out perpetual-motion
machines. Deriving precision limits for highly complex or
poorly modeled quantum systems was a daunting task
under the curse of dimensionality; the semiparametric
theory offers a new way forward.
Many open problems still remain. More extensions and

applications of the theory remain to be worked out. The
asymptotic attainability of efficiency [8,9,28–30] is a thorny
issue for infinite-dimensional problems. The assumption of
unbiased estimation is a drawback; generalizations to the

Bayesian or minimax paradigm [67] should help but await
further research. These problems should benefit from studies
of alternative quantum bounds beyond the Cramér-Rao
type [68]. In view of Eq. (3.52) and Figs. 3 and 4, the
connections of quantum semiparametrics to other domains
of quantum information [43] and quantum state geometry
[8,9,26] are also interesting future directions.
In light of the richness and wide applications of the

classical semiparametric theory [19–24], this work has only
scratched the surface of the full potential of quantum
semiparametrics. It should open doors to further useful
results.
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APPENDIX A: PROOF OF COROLLARY 1

If p < ∞ and K−1 exists, the solution to ΠðδjT Þ can be
found, for example, in Ref. [20] [Eq. (15) in Appendix
A.2]. Here, we give a simple proof for completeness. By
definition of the projection [37],

ΠðδjT Þ ¼ arg min
h∈T

kδ − hk: ðA1Þ

Any h ∈ T can be expressed as the linear combination w⊤S
with respect to a certain vector w ∈ Rp. Then

kδ − hk2 ¼ hδ; δi − w⊤hS; δi − hS; δi⊤wþ w⊤hS; Siw:
ðA2Þ

The solution to the least-squares problem is

wmin ¼ hS; Si−1hS; δi; ðA3Þ

ΠðδjT Þ ¼ w⊤
minS ¼ hS; δi⊤hS; Si−1S: ðA4Þ

Hence,

kΠðδjT Þk2 ¼ hS; δi⊤hS; Si−1hS; δi; ðA5Þ
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which is equal to Eq. (3.8), since hS; δi ¼ ∂β for an
influence operator. ▪

APPENDIX B: PROOF OF COROLLARY 2

Denote any concept discussed so far with the superscript
(N) if it is associated with FðNÞ, but omit the superscript
(1) for brevity if N ¼ 1. From Z, we generate a subspace
UZ ⊂ ZðNÞ such that

UZ ≡ fUh ∶ h ∈ Zg: ðB1Þ

U is a surjective map to UZ by definition of the space. It
can be shown that

hUh1; Uh2iðNÞ ¼ hh1; h2i ∀ h1; h2 ∈ Z; ðB2Þ

so UZ is isomorphic to Z, and U is a unitary map from Z
to UZ [38]. It can also be shown that

SðNÞ ¼
ffiffiffiffi
N

p
US; ðB3Þ

so T ðNÞ ¼ spanfSðNÞg ⊆ UZ, and T ðNÞ is isomorphic to T .
For any Uh ∈ UZ, it is not difficult to prove that

ΠðUhjT ðNÞÞ ¼ UΠðhjT Þ; ðB4Þ

given the isomorphisms. Now, let

δðNÞ ¼ Uδffiffiffiffi
N

p ∈ UZ; ðB5Þ

where δ is an influence operator. δðNÞ is also an influence
operator, since

hSðNÞ; δðNÞiðNÞ ¼
� ffiffiffiffi

N
p

US;
Uδffiffiffiffi
N

p
�ðNÞ

¼ hS; δi ¼ ∂β: ðB6Þ

The efficient influence for FðNÞ becomes

δðNÞ
eff ¼ ΠðδðNÞjT ðNÞÞ ¼ ΠðUδjT ðNÞÞffiffiffiffi

N
p ¼ UΠðδjT Þffiffiffiffi

N
p ¼ Uδeffffiffiffiffi

N
p ;

ðB7Þ

the norm becomes

kδðNÞ
eff kðNÞ ¼ kδeffkffiffiffiffi

N
p ; ðB8Þ

and the corollary ensues. ▪

APPENDIX C: PROOF OF COROLLARY 3

Let fSðNÞg be the tangent set for GðNÞ. For each para-
metric submodel fσðθÞg of G, let

fτðθÞ ¼ σðθÞ⊗Ng ðC1Þ

be a parametric submodel of GðNÞ. The score of the
submodel is given by

Sτ ¼
ffiffiffiffi
N

p
USσ: ðC2Þ

In other words, each Sσ ∈ fSg can be used to generate a
score in fSðNÞg via Eq. (C2). The set of scores generated
this way is therefore a subset of fSðNÞg, viz.,

f
ffiffiffiffi
N

p
USg≡ f

ffiffiffiffi
N

p
USσ ∶ Sσ ∈ fSgg ⊆ fSðNÞg: ðC3Þ

Conversely, any parametric submodel of GðNÞ must be in
the form of Eq. (C1), with fσðθÞg being a certain para-
metric submodel of G. The score of the former is then
related to the score of the latter via Eq. (C2). Since fSg
includes the scores of all parametric submodels of G,
any Sτ ∈ fSðNÞg must be in f ffiffiffiffi

N
p

USg. Thus, fSðNÞg ⊆
f ffiffiffiffi

N
p

USg, and equality holds, viz.,

fSðNÞg ¼ f
ffiffiffiffi
N

p
USg: ðC4Þ

It follows that

T ðNÞ ≡ spanfSðNÞg ¼ spanf
ffiffiffiffi
N

p
USg ðC5Þ

is isomorphic to T ¼ spanfSg. Hence, projecting an
influence operator of the form δðNÞ ¼ Uδ=

ffiffiffiffi
N

p
into T ðNÞ

gives the efficient influence δðNÞ
eff ¼ Uδeff=

ffiffiffiffi
N

p
, by the same

argument as Appendix B. ▪

APPENDIX D: THE SET OF BOUNDED
OPERATORS IS DENSE IN Z

To generalize Theorem 2 for the infinite-dimensional
case and prove Theorem 4, we need to be mindful of the
unbounded operators in Z. The good news is that they are
well defined as limits of bounded-operator sequences in Y,
thanks to Holevo [7,25]; just a minor modification is
needed to make his result work for Z.
Consider the set B of bounded elements defined by

Eq. (4.13). If d < ∞, B ¼ B̄ ¼ Z, since all operators are
bounded in the finite-dimensional case, but if d ¼ ∞,
B ⊂ Z is a strict subset. A useful lemma is as follows.
Lemma 2.—B̄ ¼ Z.
Proof.—Theorem 2.8.1 in Ref. [7] implies that, for any

h ∈ Z ⊂ Y, there exists a Cauchy sequence fhngwith each
hn ∈ Y satisfying khnkop < ∞ such that

lim
n→∞

kh − hnk ¼ 0: ðD1Þ

To derive a similar convergent sequence in Z, consider the
projection of each hn into Z, written as
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h0n ¼ ΠðhnjZÞ ¼ hn − hhn; Ii ∈ Z: ðD2Þ

Denote a bounded operator in the equivalence class of hn
as ĥn. An operator for h0n can be expressed as

ĥ0n ¼ ĥn − hhn; IiÎ: ðD3Þ

Since kĥnkop < ∞ and khhn; IiÎkop ¼ jhhn; Iij < ∞,

kĥ0nkop ≤ kĥnkop þ khhn; IiÎkop < ∞ ðD4Þ

by the triangle inequality, leading to h0n ∈ B. The
Pythagorean theorem leads to

khn − hmk ≥ kh0n − h0mk ∀ n;m; ðD5Þ

kh − hnk ≥ kh − h0nk; ðD6Þ

which can be combined with Eq. (D1) to give

lim
n→∞

kh − h0nk ¼ 0: ðD7Þ

In other words, fh0ng, with each h0n ∈ B, is also Cauchy and
converges to h. As the argument applies to any h ∈ Z, B is
dense in Z, and the closure of B gives Z. ▪

APPENDIX E: PROOF OF PROPOSITION 1

Let the orthocomplement of V in T be V⊥
T . Then the

Pythagorean theorem yields

kδeffk2 ¼ kΠðδeff jVÞk2 þ kΠðδeff jV⊥
T Þk2 ðE1Þ

≥ kΠðδeff jVÞk2 ¼ kΠðΠðδjT ÞjVÞk2 ðE2Þ

¼ kΠðδjVÞk2; ðE3Þ

where the last step uses Proposition 3B in Appendix A.2 in
Ref. [20]. kΠðδjVÞk2 ¼ kδk2 − kΠðδjV⊥Þk2 follows again
from the Pythagorean theorem for a δ ∈ Z ¼ V ⊕ V⊥.
Equation (5.23) comes from Theorem 1. ▪

APPENDIX F: PROOF OF PROPOSITION 2

Let P be the true density. For real functions on C,
define an inner product and a norm with respect to P as,
respectively,

hf; giP ≡
Z

d2αPðαÞfðαÞgðαÞ; kfkP ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hf; fiP

p
:

ðF1Þ

Define the Hilbert space of zero-mean functions as

ZP ≡ ff ∶ kfkP < ∞; hf; 1iP ¼ 0g: ðF2Þ

For each f ∈ ZP, construct the parametric submodel

σðθÞ ¼
Z

d2αPðαjθÞjαihαj; ðF3Þ

PðαjθÞ ¼ f1þ tanh½fðαÞθ�gPðαÞR
d2αf1þ tanh½fðαÞθ�gPðαÞ ; ðF4Þ

with the truth at σð0Þ ¼ ρ and Pðαj0Þ ¼ PðαÞ. fðαÞ is the
score function with respect to PðαjθÞ. The score with
respect to σ is then given by

ρ ∘ S ¼ ρ ∘ ðEfÞ ¼
Z

d2αPðαÞfðαÞjαihαj; ðF5Þ

where the map E ∶ZP → Z is a quantum version of the
conditional expectation [8]. Hence,

fEf ∶ f ∈ ZPg ⊆ fSg: ðF6Þ

Consider the inner product between Ef and an h ∈ B ⊂ Z
given by

hEf;hi¼ trρ½ðEfÞ∘h�¼ tr ½ρ∘ðEfÞ�h¼hf;E�hiP; ðF7Þ

where Eq. (3.18) is used and E� is the adjoint map given by
the Husimi representation

ðE�hÞðαÞ ¼ hαjhjαi: ðF8Þ

Since h ∈ Z,

tr ρh ¼
Z

d2αPðαÞhαjhjαi ¼ hE�h; 1iP ¼ 0; ðF9Þ

and E�h ∈ ZP. The map E� ∶B → ZP is obviously linear.
It is also bounded, because

kE�hk2P ¼
Z

d2αPðαÞðhαjhjαiÞ2 ðF10Þ

≤
Z

d2αPðαÞhαjh2jαi ¼ khk2: ðF11Þ

Thus, E� is a continuous linear map (see Theorem 1.5.7 in
Ref. [37]). AsB is a dense subset ofZ by virtue of Lemma 2,
E� can be uniquely extended to a continuous linear map on
the whole Z (see Theorem 1.5.10 in Ref. [37]).
Any h ∈ T ⊥ must obey

hEf; hi ¼ hf; E�hiP ¼ 0 ∀ f ∈ ZP: ðF12Þ

The only solution is E�h ¼ 0. In other words, T ⊥ is in
the null space of E�. As the Husimi representation is
injective [69], the only solution to E�h ¼ 0 is h ¼ 0.
Hence, T ⊥ ¼ f0g, and T ¼ Z. ▪
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APPENDIX G: T ⊥ FOR DIFFRACTION-LIMITED
INCOHERENT IMAGING IS INFINITE

DIMENSIONAL

Following Appendix F, it can be shown that h ∈ T ⊥ if

hψXjhjψXi ¼ 0 ∀ X ∈ suppF ðG1Þ

for the incoherent-imaging problem in Sec. VI C. Consider,
for example, h ¼ R

dkh̃ðkÞjkihkj, where jki is a momentum
eigenket. Then, Eq. (G1) is satisfied if

hψXjhjψXi ∝
Z

dkh̃ðkÞ expð−2k2Þ ¼ 0: ðG2Þ

Let fãjðkÞ ∶ j ∈ N0g be the set of Hermite polynomials
that are orthogonal with respect to the weight function
expð−2k2Þ. Then, any ãjðkÞ with j > 0 satisfies Eq. (G2).
Define the set

fag≡
�
aj ¼

Z
dkãjðkÞjkihkj ∶ j ∈ N1

�
: ðG3Þ

Each aj obeys Eq. (G2) and

haj; aki ∝
Z

dkãjðkÞãkðkÞ expð−2k2Þ ∝ δjk; ðG4Þ

so fag is an orthogonal set with respect to the inner product
given by Eq. (3.10). As spanfag ⊆ T ⊥,

dim T ⊥ ≥ jfagj ¼ jN1j; ðG5Þ

which means that the dimension of T ⊥ must be infinite.

APPENDIX H: DERIVATION OF EQ. (6.32)

For the density-operator family given by Eq. (6.31), the
extended convexity of the Helstrom information [13,64]
implies that

K ≤ K̃ ¼ Kg þ Kh; ðH1Þ

Kg
jk ¼

Z
dXFðXÞ ∂gðXjθgÞ∂θj

∂gðXjθgÞ
∂θk






θ¼0

; ðH2Þ

Kh
jk ¼ 4hΔk2i

Z
dXFðXÞ ∂hðXjθhÞ∂θj

∂hðXjθhÞ
∂θk






θ¼0

; ðH3Þ

where hΔk2i ¼ hψ0jk2jψ0i − ðhψ0jkjψ0iÞ2 ¼ 1=4 is the
variance of k. With the explicit partition of θ into θg and
θh, K̃ can be expressed as

K̃ ¼
�
Kg 0

0 Kh

�
ðH4Þ

¼
Z

dXFðXÞ
� ð∂ggÞð∂ggÞ⊤ 0

0 ð∂hhÞð∂hhÞ⊤
�
; ðH5Þ

where ∂g ¼ ð∂g1; ∂g2;…Þ⊤ and ∂h ¼ ð∂h0; ∂h1;…Þ⊤. Let

gðXjθgÞ ¼
X∞
j¼1

θgjajðXÞ; ðH6Þ

hðXjθhÞ ¼ X þ
X∞
j¼0

θhjajðXÞ; ðH7Þ

where fajðXÞ ∶ j ∈ N0g is a set of orthogonal poly-
nomials with respect to the true F that satisfyR
dXFðXÞajðXÞakðXÞ ¼ δjk. a0ðXÞ ¼ 1 is omitted from

gðXjθgÞ, because g is a score function with respect to F andR
dXFðXÞgðXjθgÞ ¼ 0 implies that gðXjθgÞ cannot contain

a0ðXÞ in its expansion. The orthonormality of fag leads to

K̃ ¼ I; K̃−1 ¼ I: ðH8Þ

Now, consider

βμðθÞ ¼
Z

dXFðXjθÞXμ ðH9Þ

¼
Z

dYGðYjθgÞ½hðYjθhÞ�μ; ðH10Þ

∂βμ
∂θgj






θ¼0

¼
Z

dXFðXÞajðXÞXμ; ðH11Þ

∂βμ
∂θhj






θ¼0

¼ μ

Z
dXFðXÞXμ−1ajðXÞ: ðH12Þ

Then,

ð∂βμÞ⊤K̃−1∂βμ ¼
X∞
j¼1

�∂βμ
∂θgj

�
2

þ
X∞
j¼0

�∂βμ
∂θhj

�
2

ðH13Þ

¼ β2μ − β2μ þ μ2β2μ−2; ðH14Þ

where the completeness property

X∞
j¼0

ajðXÞajðX0Þ ¼ 1þ
X∞
j¼1

ajðXÞajðX0Þ ¼ δðX − X0Þ

ðH15Þ

is assumed. With

QUANTUM SEMIPARAMETRIC ESTIMATION PHYS. REV. X 10, 031023 (2020)

031023-23



Hσ
μ ¼ ð∂βμÞ⊤K−1∂βμ ≥ ð∂βμÞ⊤K̃−1∂βμ; ðH16Þ

and using Corollary 3 and Proposition 1, Eq. (6.32) is
obtained.

APPENDIX I: PROOF OF THEOREM 6

The proof follows the classical case [21]. As Sβ ∉ Λ, the
Seff given by Eq. (7.7) is not zero. Let

δ ¼ Seff
kSeffk2

: ðI1Þ

Notice that Eq. (7.7) is a projection of Sβ into a space
orthogonal to Λ, so Seff⊥Λ and δ⊥Λ. Then,

hSβ; δi ¼ 1

kSeffk2
hSeff þ ΠðSβjΛÞ; Seffi ¼ 1; ðI2Þ

hSηj ; δi ¼ 0; ðI3Þ

because ΠðSβjΛÞ ∈ Λ and each Sηj ∈ Λ. Thus, δ satisfies
Eqs. (7.5) and is an influence operator. Notice also that Seff
and δ are in T , because Sβ ∈ T and ΠðSβjΛÞ ∈ Λ ⊆ T .
Hence, by Theorem 3,

δeff ¼ ΠðδjT Þ ¼ δ; ðI4Þ

and Eq. (I1) is the efficient influence. ▪

APPENDIX J: PROOF OF THEOREM 7

We again follow Ref. [21]. Decompose any δ ∈ D ⊆
Z ¼ T ⊕ T ⊥ into

δ ¼ δeff þ h; δeff ¼ ΠðδjT Þ; h ¼ ΠðδjT ⊥Þ: ðJ1Þ

It is straightforward to prove that δeff ∈ D. As h is
orthogonal to any element in T ≡ ðspanfSgÞ⊕q, it must
be orthogonal to g ¼ ð0;…; 0; e; 0;…; 0Þ⊤ with any e ∈
spanfSg in any entry of g, say, the jth entry. Then,

tr hh; gi ¼ hhj; ei ¼ 0; ðJ2Þ

meaning that each entry of h is orthogonal to spanfSg. This
condition leads to a stronger matrix form of the orthogon-
ality between δeff ∈ T and h ∈ T ⊥ given by

hδeff ; hi ¼ 0 ðJ3Þ

and a matrix form of the Pythagorean theorem given by

hδ; δi ¼ hδeff ; δeffi þ hh; hi ≥ hδeff ; δeffi; ðJ4Þ

resulting in Eq. (8.6). To prove the uniqueness of δeff
in D, suppose that there exists another δ0 ∈ D that gives

hδ0; δ0i ¼ hδeff ; δeffi. Define g ¼ δ0 − δeff . As hS; gi ¼
hS; δ0i − hS; δeffi ¼ ∂β − ∂β ¼ 0, g ∈ T ⊥, and the matrix
Pythagorean theorem gives hδ0; δ0i ¼ hδeff ; δeffi þ hg; gi.
This fact implies that hg; gi ¼ 0, kgk2 ¼ tr hg; gi ¼ 0,
and g ¼ 0, contradicting the assumption that δ0 ≠ δeff .
Hence, δeff must be unique. ▪

APPENDIX K: PROOF OF LEMMA 1

Let the superscript * denote the entrywise conjugation of
a matrix and the superscript † ¼ �⊤ denote the conjugate
transpose. A ≥ 0 means that z†Az ≥ 0 for any z ∈ Cq. We
also have A� ≥ 0, since z†A�z ¼ ðz�†Az�Þ� ¼ z�†Az� ≥ 0
for any z ∈ Cq. Thus, for any z ∈ Cq,

z†ðReA� iImAÞz ≥ 0; z†ðReAÞz ≥ jz†ðiImAÞzj:
ðK1Þ

Let fλs; zs ∶ s ¼ 1;…; qg be the eigenvalues and eigen-
vectors of the Hermitian iImA. As the singular values of
iImA are fjλsjg, we obtain

tr ReA ¼
X
s

z†sðReAÞzs ≥
X
s

jz†sðiImAÞzsj

¼
X
s

jλsj ¼ kiImAk1 ¼ kImAk1: ðK2Þ

▪

APPENDIX L: SOME RESULTS CONCERNING
QUANTUM MULTIPARAMETER ESTIMATION

This Appendix presents some interesting results con-
cerning quantum multiparameter estimation, following
Sec. VIII and assuming 1 ≤ q ≤ p < ∞.
A crucial assumption in this paper is that D, the set of

influence operators, is not empty. While this assumption is
not a problem for all the examples studied in this paper, the
following theorem, generalizing a classical result by Stoica
and Marzetta [70], can be used to verify the assumption.
Theorem 11.—D is not empty if and only if all the

columns of ∂β are in the range of the Helstrom information
matrix K, viz.,

KKþ∂β ¼ ∂β; ðL1Þ

where the superscript þ denotes the Moore-Penrose pseu-
doinverse [71].
Proof.—We prove the “only if” part first. Assume that a

δ ∈ D exists. It satisfies hS; δi ¼ ∂β, and, therefore,
u⊤hS; δiv ¼ hu⊤S; v⊤δi ¼ u⊤ð∂βÞv; ðL2Þ

for any u ∈ Rp and v ∈ Rq. The Cauchy-Schwarz inequal-
ity gives
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ju⊤ð∂βÞvj2 ≤ ðu⊤KuÞðv⊤hδ; δivÞ: ðL3Þ

Now, suppose that u is in the null space of K, such that
Ku ¼ 0, and pick v ¼ ð∂βÞ⊤u. We obtain

ju⊤ð∂βÞð∂βÞ⊤uj2 ≤ 0; ðL4Þ

which implies ð∂βÞ⊤u ¼ 0. As this condition must hold for
any u in the null space of K, each column of ∂β must be
orthogonal to the null space and, therefore, in the range of
K. KKþ is the projection matrix into the range of K [71],
so Eq. (L1) holds.
The “if” part comes from the fact that, as long as Eq. (L1)

holds,

δ ¼ ð∂βÞ⊤KþS ðL5Þ

satisfies hδ; Ii ¼ 0 and hS; δi ¼ KKþ∂β ¼ ∂β and is,
therefore, an influence operator. ▪
For an illustrative example, consider

θ ¼
�
θ1

θ2

�
; ∂β ¼

�
a

b

�
; ðL6Þ

with the geometry depicted in Fig. 12. S1 ¼ 0 and K11 ¼
hS1; S1i ¼ 0 at the singular point θ ¼ φ, meaning that

KðφÞ ¼
�
0 0

0 hS2; S2i

�
: ðL7Þ

The tangent space there becomes a line in the S2 direction,
and it is impossible for a δ to satisfy

hS; δi ¼
�

0

hS2; δi

�
¼

�
a

b

�
; ðL8Þ

if a ≠ 0.
If Eq. (L1) does not hold at certain values of θ, Theorem

11 implies that an unbiased estimator of β cannot exist
there, and the GHB can be assumed to be infinite. Note,
however, that a biased estimator may still be able to achieve
a finite error.
Provided that Eq. (L1) holds, a pseudoinverse form of

the Helstrom bound can be obtained.
Corollary 5.—If Eq. (L1) holds,

δeff ¼ ð∂βÞ⊤KþS; ðL9Þ

hδeff ; δeffi ¼ ð∂βÞ⊤Kþ∂β; ðL10Þ

H̃ ¼ trWð∂βÞ⊤Kþ∂β: ðL11Þ

Proof.—Equation (L5) is an influence operator and
also a linear combination of S, so it is in the tangent
space T . By Theorem 1, it must be efficient. The other
results follow from the fact KþKKþ ¼ Kþ [71] and the
definition of H̃. ▪
The original Helstrom bound is a simple consequence,

generalizing the scalar version in Corollary 1.
Corollary 6.—If K > 0,

δeff ¼ ð∂βÞ⊤K−1S; ðL12Þ

hδeff ; δeffi ¼ ð∂βÞ⊤K−1∂β; ðL13Þ

H̃ ¼ trWð∂βÞ⊤K−1∂β≡ H: ðL14Þ

Proof.—IfK > 0,K−1 exists,Kþ ¼ K−1, Eq. (L1) always
holds, and the results follow from Corollary 5. ▪
Finally, we mention that the semidefinite program

presented in Ref. [11] to evaluate the Holevo bound for
β ¼ θ and a nonsingular K can be straightforwardly
extended to the more general setup considered in this
Appendix.
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