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In the study of quantum limits to parameter estimation, the high dimensionality of the density operator
and that of the unknown parameters have long been two of the most difficult challenges. Here, we propose a
theory of quantum semiparametric estimation that can circumvent both challenges and produce simple
analytic bounds for a class of problems in which the dimensions are arbitrarily high, few prior assumptions
about the density operator are made, but only a finite number of the unknown parameters are of interest.
We also relate our bounds to Holevo’s version of the quantum Cramér-Rao bound, so that they can inherit
the asymptotic attainability of the latter in many cases of interest. The theory is especially relevant to the
estimation of a parameter that can be expressed as a function of the density operator, such as the expectation
value of an observable, the fidelity to a pure state, the purity, or the von Neumann entropy. Potential
applications include quantum state characterization for many-body systems, optical imaging, and
interferometry, where full tomography of the quantum state is often infeasible and only a few select

properties of the system are of interest.

DOI: 10.1103/PhysRevX.10.031023

I. INTRODUCTION

The random nature of quantum mechanics has practical
implications for the noise in sensing, imaging, and quan-
tum-information applications [1-6]. To derive their funda-
mental quantum limits, one standard approach is to
compute quantum versions of the Cramér-Rao bound
[1-5,7-9]. In addition to serving as rigorous limits to
parameter estimation, the quantum bounds have inspired
new sensing and imaging paradigms that go beyond
conventional methods [3-5].

The study of quantum limits has grown into an active
research field called quantum metrology in recent years,
building on the pioneering work of Helstrom [1] and
Holevo [7]. A major current challenge is the computation
of quantum bounds for high-dimensional density operators
and high-dimensional parameters, as the brute-force
method quickly becomes intractable for increasing dimen-
sions; see Refs. [10,11] for a sample of recent efforts to
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combat the so-called curse of dimensionality. Most of the
existing methods, however, ultimately have to resort to
numerics for high dimensions. While numerical methods
are no doubt valuable, analytic solutions should be prized
more highly—as with any study in physics—for their
simplicity and offer of insights. Unfortunately, except for
a few cases where one can exploit the special structures of
the density-operator family [1,7,12-15], analytic results
for high-dimensional problems remain rare in quantum
metrology.

Here, we propose a theory of quantum semiparametric
estimation that can turn the problem on its head and deal
with density operators with arbitrarily high dimensions and
little assumed structure. The theory is especially relevant to
the estimation of a parameter that can be expressed as a
function of the density operator, such as the expectation
value of an observable, the fidelity to a given pure state, the
purity, or the von Neumann entropy. The density operator is
assumed to come from an enormous family, its dimension
can be arbitrarily high and possibly infinite, and the
unknown “nuisance” parameters have a similar dimension
to that of the density operator. Despite the seemingly bleak
situation, our theory can yield surprisingly simple analytic
results, precisely because of the absence of structure.
Our results are ideally suited to scientific applications,
such as quantum state characterization [16—18], optical
imaging [1,5,6,14,15], and interferometry [1-3,7], where
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the dimensions can be high, the density operator is
difficult to specify fully, and it is prudent to assume little
prior information.

The theory set forth generalizes the deep and exquisite
theory of semiparametric estimation in classical statistics
[19-21], which has seen wide applications in fields such as
biostatistics [21], econometrics [22], astrostatistics [23],
and, most recently, optical superresolution [24]. By neces-
sity, the classical theory involves infinite-dimensional
spaces for random variables and makes extensive use of
geometric and Hilbert-space concepts. As seen later, the
operator Hilbert space introduced by Holevo [7,25] turns
out to be the right arena for the quantum case, and the
geometric picture of quantum states [8,9,26,27] can provide
illuminating insights.

Our formalism is primarily based on Helstrom’s version
of the quantum Cramér-Rao bound [1]. While this approach
allows us to adapt the classical methods more easily,
it is unable to account for the increased errors due to the
incompatibility of quantum observables when multiple
parameters are involved [7,28]. We address this issue by
studying also Holevo’s version of the quantum Cramér-Rao
bound [7] in the semiparametric setting and proving that the
two versions turn out to be close. This result enables our
bounds to inherit the asymptotic attainability of Holevo’s
bound [28-30] in many cases of interest.

II. PREVIEW OF TYPICAL RESULTS

Before going into the formalism, we present some
typical results of the theory to offer motivation.

Suppose that an experimenter receives N quantum
objects, such as atoms, electrons, photons, or optical pulses,
each with the same quantum state p. The experimenter
would like to estimate a parameter f as a function of p.
Without any knowledge or assumption about p, what is the
best measurement to perform for the estimation of £, and
what is the fundamental limit to the precision for any
measurement?

The quantum semiparametric theory can provide simple
answers to the above questions. For the simplest example,
let p = trpY, where Y is a given observable, and assume
that the estimator is required to be unbiased. For example,
one may wish to estimate

(1) the mean position of photons or electrons in optical

or electron microscopy,

(2) the mean photon number in an optical mode in

optical sensing, imaging, and communication [1],
(3) the mean energy, momentum, or field of quantum

particles in particle-physics, condensed-matter, or

quantum-chemistry experiments, or

(4) a density-matrix element, the fidelity (y|p|y) to a

target pure state |y), or an entanglement witness in
quantum information experiments [16,17].
This problem appears in all areas of quantum mechanics
[31], as most quantum calculations offer predictions in

terms of expectation values only, and experiments that aim
to estimate the expectation values and verify the predictions
with few assumptions about the density operator are, in
essence, semiparametric estimation. The theory here shows
that the optimal measurement is simply a von Neumann
measurement of the observable Y of each copy of the
objects, followed by an average of the outcomes. For any
measurement, the mean-square error of the estimation,
denoted by the sans serif E, has a quantum limit given by

1
E Zﬁtrp(Y—ﬁ)z. (2.1)

Absent any information about p, the separate measurements
and the sample mean seem to be the most obvious procedure,
but it is not at all obvious that it is optimal, given the infinite
possibilities allowed by quantum mechanics.

While Eq. (2.1) has been derived before via a more
conventional method for a finite-dimensional p [32], our
theory can also deal with infinite dimensions as well as
more advanced examples in quantum information and
quantum thermodynamics. For example, if the parameter
of interest is the purity B = tr p?, the bound is

4
E>Stwplp=p), (2.2)

and if the parameter is the relative entropy = trp(Inp —
In o) with respect to a target state o, the bound is

E Z%trp(lnp—lna—ﬁ)z. (2.3)

For these two examples, the bounds are asymptotically
attainable in principle, at least when p is finite dimensional
[28-30].

The semiparametric theory is relevant to experiments on
many-body quantum systems and quantum simulation [33],
because often there is no simple model for p, full tomog-
raphy of p is infeasible, and only a few select properties
of the system may be of interest. Although significant
literature in quantum information has been devoted to such
semiparametric problems [16—18], their connections to the
classical theory have not yet been recognized. By general-
izing the classical theory, this work establishes fundamental
limits to the task, indicating the minimum amount of
resources needed to achieve a desired precision and also
offering a rigorous yardstick for experimental design.
This work thus addresses a foundational question by
Horodecki [18]: “What kind of information (whatever it
means) can be extracted from an unknown quantum state
at a small measurement cost?” Our work shows that
quantum metrology—and quantum semiparametric estima-
tion, in particular—offers a viable attack on the question via
a statistical notion of efficiency.
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An extension of the above scenario is the estimation of
given a constraint on p. For example, suppose that the
quantum state is known to possess a mean energy
trpH = E, where H is the Hamiltonian, or attain a fidelity
of (¢p|p|¢p) = F with respect to another pure state |¢). How
may this new information affect the estimation? Write the
constraint as tr pZ = {, where Z is an observable and { is a
given constant. The quantum bound for the f =trpY
example turns out to be

E> ( CzYZ) Vy = trp(Y =), (2.4)
= 57 -, | == /) - ) -
N\ v, Y

Cyz=trp(Y =f)o(Z=(), Vz=tp(Z-{)

where Ao B = (AB + BA)/2 denotes the Jordan product.
The bound is reduced by the correlation between Y and Z.

Another paradigmatic problem in quantum metrology is
displacement estimation [1-3,7], which can be modeled by

(2.5)

p = exp(—iH B)po exp(iH p). (2.6)
where p, is the initial state, H is a generator, such as the
photon-number operator in optical interferometry, and f is
the displacement parameter to be estimated. Applications
range from optical and atomic interferometry to atomic
clocks, magnetometry, laser ranging, and localization
microscopy [2,3,6]. If nothing is known about p, other than
a constraint tr ppZ = 0, the quantum bound turns out to be

trp0Z2
~ N{-itrp[Z, H]}*

(2.7)

where [Z,H|=ZH — HZ. Our theory can, in fact, give
similarly simple results for a class of such semiparametric
problems.

It must be stressed that, apart from the underlying Hilbert
space and the constraints discussed above, the experimenter
is assumed to know nothing about the density operator,
and the bounds here are valid regardless of its dimension.
The existing method of deriving such quantum limits is to
model p with many parameters [8,9,29,32], compute a
quantum version of the Fisher information matrix, and then
invert it. This brute-force method is rarely feasible for
problems with high or infinite dimensions. A new philoso-
phy is needed.

In the next sections, we present the theory of quantum
semiparametric estimation in increasing sophistication.
Sections III and IV generalize the quantum Cramér-Rao
bound proposed by Helstrom [1] in a geometric picture.
While the picture is not new [9,26], it has so far remained an
intellectual curiosity only. Sections III and IV show that it
can, in fact, give simple solutions, such as Egs. (2.1)—(2.3),
to a class of semiparametric problems with arbitrary dimen-
sions. Section III establishes the general formalism and also

proves results that are valid for finite dimensions, while
Sec. IV deals with the infinite-dimensional case via an
elegant concept called parametric submodels. In the classical
theory, the concept was first adumbrated by Stein [34] and
developed by Levit and many others [19-21]. Section V
further develops the formalism to account for constraints on
the density-operator family, in order to produce results such
as Eq. (2.4). An example of entropy estimation in quantum
thermodynamics is also discussed there. Section VI dis-
cusses some practical problems in optics and summarizes
existing results on incoherent optical imaging [5] in the
language of quantum semiparametrics, in order to provide a
more concrete context for the formalism. Section VII con-
siders semiparametric estimation in the presence of explicit
nuisance parameters and studies, in particular, the problem
of displacement estimation with a poorly characterized initial
state, in order to produce results such as Eq. (2.7). To
complete the formalism, Sec. VIII considers a vectoral
parameter of interest and Holevo’s version of the quantum
Cramér-Rao bound [7]. There, we prove that the Helstrom
and Holevo bounds are equal if the parameter of interest is a
scalar, and they remain within a factor of 2 of each other in
the vectoral case. The latter fact generalizes a recent result
in the parametric setting [35]. Thus, the Helstrom version
can inherit the asymptotic attainability of the latter [28-30]
to within a factor of 2.

III. GEOMETRIC PICTURE OF QUANTUM
ESTIMATION THEORY

This section is organized as follows. Section III A
introduces the Helstrom bound in the conventional
formulation. Section IIIB introduces some important
Hilbert-space concepts, including the tangent space and
the influence operators. Section IIIC generalizes the
Helstrom bound in terms of a projection of an influence
operator into the tangent space. Section III D shows how an
influence operator can be derived for a given parameter of
interest, while Sec. III E proves that the tangent space is
simple if the density operator is assumed to be finite
dimensional but otherwise arbitrary. The projection is then
straightforward, and Sec. IIl E demonstrates the derivation
of Egs. (2.1)—(2.3) as examples.

A. Helstrom bound
Let

F={p0):0€0 CR"} (3.1)
be a family of density operators parametrized by 6 =
(6y.....0,)", where the superscript T denotes the matrix
transpose and p denotes the dimension of the parameter
space ®. The operators are assumed to operate on a
common Hilbert space H, with an orthonormal basis
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{lj):j € Q.{jlk) = 6} (3.2)
that does not depend on 4. Let
d=dimH = |Q)| (3.3)

be the dimension of 7, which may be infinite. The family is
assumed to be smooth enough so that any 9; = /06, can
be interchanged with the operator trace tr in any operation
on p(6). Define & = (9;,....0,)", and define a vector of

operators S = (Sy,...,5,)" as solutions to

Op=poS, (3.4)
which is shorthand for the system of equations
,0(0)l)y = P($)0S,(#). j=1iop. (35)

¢ is the true parameter value, and all functions of € in
this section are assumed to be evaluated implicitly at the
same 6 = ¢. Each §; is called a symmetric logarithmic
derivative in the quantum metrology literature, but here we
call it a score, in accordance with the statistics terminology
[19-21]. All vectors are assumed to be column vectors in
this paper.

To model a measurement, define a positive operator-
valued measure (POVM) E on a measurable space (X, Zy),
where X, is the sigma algebra on the set X. Let the
parameter of interest be a scalar $(6) € R; generalization
for a vectoral 8 is done in Sec. VIII. Assume an estimator
,B : X - R that satisfies

/ B trdE(A)p=p, / P wdE(W)op=0p. (3.6)

(E.p) is called a locally unbiased measurement, as we
require Egs. (3.6) to hold only at the true & = ¢. Only local
unbiasedness conditions are needed in this paper, and for
brevity we no longer explicitly describe them as local.
Define the mean-square estimation error as

E= / 1B(2) = p)*tr dE(A)p. (3.7)

If p < o0, aquantum version of the Cramér-Rao bound due
to Helstrom [1], denoted by the sans serif H, applies to any
unbiased measurement and can be expressed as

E>H= (8ﬁ)TK‘18ﬂ, (3.8)
where the Helstrom information matrix K is defined as

The Helstrom bound sets a lower bound on the estimation
error for any quantum measurement and any unbiased
estimator [1,7-9]. The estimation of f with an infinite-
dimensional @ (p = o) is called semiparametric estimation
in statistics [19-21], although the methodology applies to
arbitrary dimensions. If @ is partitioned into (5,7, 17, ...) ",
then # is called nuisance parameters [21,36].

B. Hilbert spaces for operators

We now follow Holevo [7,25] and introduce operator
Hilbert spaces in order to generalize the Helstrom bound
for semiparametric estimation. The formalism may seem
daunting at first sight, but the payoff is substantial, as it
simplifies proofs, treats the infinite-dimensional case rig-
orously, and also enables one to avoid the explicit compu-
tation of S and K~! for a large class of problems. In the
following, we assume familiarity with the basic theory of
Hilbert spaces and the mathematical treatment of quantum
mechanics; see, for example, Refs. [7,37,38].

All operators considered in this paper are self-adjoint.
Consider p in the diagonal form p =}, 4;le;)(e;| with
A; > 0. The support of p is supp(p) = span{|e;)} C H,
where span denotes the closed linear span. p is called full
rank if supp(p) = H. Define the weighted inner product
between two operators z and g as

(h.g)=twp(hog) (3.10)
and a norm as
Al = v/ (A, h), (3.11)

not to be confused with the operator norm ||A||,, =

supp,yer / (w|h*lw) = ||h||. An operator is called bounded
if [|A]|,, < oo and square summable with respect to p if
||| < o0, although all operators are bounded by definition
if d < co. For two vectors of operators A and B, it is
convenient to use (A, B) to denote a matrix with entries
(A.B)j = (4,.B,). (3.12)
such as K = (S, S) as a Gram matrix.
Define the real Hilbert space for square-summable
operators with respect to the true p as [7,25]
Y={h:|h| < oo}. (3.13)
To be precise, each Hilbert-space element is an equivalence
class of operators with zero distance between them, viz.,
{fzj : ||ilj —hy|| =0V j, k}. The distinction between an
element and its operators is important only if p is not full

rank; we put a hat on an operator if the distinction is called
for. Two important Hilbert-space elements are the identity
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element / and the zero element 0; sometimes, we substitute
I =1 for brevity.
Define a subspace of zero-mean operators as

Z={he)Y:twrph=(hI) =0} (3.14)
and the orthocomplement of Z in ) as
Zt={heY:(gh) =0V ge Z} = span{[}.
(3.15)

In particular, the projection of any h € ) into Zt is
simply I1(h|Z+) = (h,I), where I denotes the projection
map, and
H(h|Z) =h-T(h|Z+) = h— (h,1). (3.16)
The most important Hilbert space in estimation theory is
the tangent space spanned by the set of scores {S} =
{81, ...,8,} [19-21], generalized here as
7 =span{S} C Z. (3.17)
{S} is also known as the tangent set. The condition 7 C Z
requires the assumption K;; = (S;,S;) < oo for all j; the
zero-mean requirement is satisfied because (S,1) =
trdp =0trp =0. A useful relation for any bounded
operator A is
via Eq. (2.8.88) in Ref. [7]. Denote also the orthocomple-
ment of 7 in Z as
T+t={he Z:(S,h) =0}, (3.19)
which is useful if a projection of 4 € Z into 7 is desired
and T1(h|7+) is easier to compute, since
(A|T) = h—-T(h|TH). (3.20)
Another important concept in the classical theory is the
influence functions [19-21], which we generalize by
defining the set of influence operators as
D={6e€ Z:(S,6) = Ip}. (3.21)
These operators play a major role in Holevo’s formulation
of quantum Cramér-Rao bounds [7,39], although their

connection to the classical concept did not seem to be
appreciated before.

C. Generalized Helstrom bound

Let the error operator with respect to an unbiased
measurement be

5= / B(A)E(2) - p. (3.22)
It can be shown (see Sec. 6.2 in Ref. [7]) that 6 € D (as
long as ||5|| < o0) and also that ||5]|> bounds the estimation
error as

E > ||6]]% (3.23)

A generalized Helstrom bound (GHB) for any unbiased
measurement, denoted by H, can then be expressed as

E > |6]]> > inf||5]> = H. (3.24)
s€D

We call an unbiased measurement efficient if it has an error
that achieves the GHB, following the common statistics
terminology [19-21].

Proofs that Eq. (3.24) is equal to Eq. (3.8) if p < oo and
K" exists can be found in Refs. [26,39,40]. The following
theorem gives a more general expression that is the
cornerstone of quantum semiparametric estimation.

Theorem 1.—

H = min||6]> = ||8.¢ ]| 2
min|[5]|* = | ese*, (3.25)

where J.¢, henceforth called the efficient influence, is the
unique element in the influence-operator set D given by

S = TI(8[T) (3.26)
and TI(6|7) denotes the projection of any influence
operator 6 € D into the tangent space 7 .

Proof.-—The proof is similar to the classical one [20,21].
First note that, since DC Z=7T @ 7+, any 6 € D can
always be decomposed into
0 = Oc + h,

St =T(3|T),  h=TI(8|TH).

(3.27)

This fact implies (S,6)=(S.6—h)=(S,8)=0p, and,
therefore, 6.y € D. Now the Pythagorean theorem gives

18117 = et 1> + [1A[I> > [ Sere|

2, (3.28)

which results in Eq. (3.25).

To prove the uniqueness of d. in D, suppose that there
exists another & € D that gives ||§'|| = ||8es¢|. Define
g=08 —6.5. Since (S,g)=(S,8)—(S,8) =0p—0p=0,
g€ T, and the Pythagorean theorem yields [|§]|> =
|6esell> + llgl*>. This fact implies that ||g|| =0 and
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Tt D
Z
|7+) )
5,
7' S1 Soff = H(6|7')/,,-

Ve

FIG. 1. The whole space in the picture represents Z, the space
of zero-mean operators. 7 is the tangent space spanned by the
tangent set {S}. 7= is the orthocomplement, which contains
elements orthogonal to all the scores. D is the set of influence
operators, which all have a fixed projection in 7 determined by
Op. & is an influence operator in D. The projection of § into 7°
gives the efficient influence J., which has the smallest norm
among all the influence operators. T1(5|7 ) is the projection of &
into 7.

g = 0, contradicting the assumption that § # 5. Hence,
Segr must be unique, and I1(5|7) for any § € D results in the
same Oy [

Figure 1 illustrates all the Hilbert-space concepts
involved in Theorem 1.

Before we apply the theorem to examples, we list a
couple of important corollaries. The first corollary repro-
duces the original Helstrom bound given by Eq. (3.8) and
is expected from earlier derivations; see, for example,
Eq. (20) in Chap. 18 in Ref. [9] and Eq. (7.93) in
Ref. [26]. Here, we simply clarify that it is a special case
of Theorem 1.

Corollary 1.—If p < oo and K=' = (S, S)~! exists, the
GHB is equal to the original Helstrom bound given
by Eq. (3.8).

Proof.—The proof is delegated to the Appendix A.

Note that, unlike Eq. (3.8), which assumes that S consists
of linearly independent operators and K is invertible,
Theorem 1 works with no regard for any linear dependence
in S. This generalization is, in fact, indispensable to the
semiparametric theory, especially when the concept of
parametric submodels is introduced in Sec. IV.

The second corollary, which gives a scaling of the
bound with the number of object copies and is easy to
prove via K~!, requires more effort to prove if K~! is to be
avoided.

Corollary 2.—For a family of density operators that
model N independent and identical quantum objects in the
form of

FV) = {p(6)®" : 0 € ® C R"}, (3.29)

where the tensor power is defined as the tensor product

PEN=p®---®p, (3.30)
| S ————
N terms
the efficient influence and the GHB are given by
(1) C1(1)
U ~ H

e (3.31)

VN N

respectively, where U is a map defined as

1
N

Uh

Bl

N
d PN @ h@ I8N, (3.32)
n=1

Proof.—The proof is delegated to Appendix B.

D. Influence operator via a functional gradient

Theorem 1 is useful if an influence operator 6 € D can
be found and TI(5|7) is tractable. One way of deriving an
influence operator is to assume that the parameter of
interest is a functional f[p| and consider a derivative of
Blp] in the “direction” of an operator & given by

_ i Plp+epoh] - plp]
Dh/}[ﬂ]le_I}é c :

(3.33)

Assume that the directional derivative can be expressed as

Diflpl =t(po)=(hB) Y hey (334)

in terms of a # € ), hereafter called a gradient of $[p]. Any
ordinary partial derivative of 8 becomes

Blp + €0;p] — Blp]

ajﬁLO] = 11_1}(} = Ds,ﬂV’] = <SJB>

(3.35)

Projecting the gradient into Z then gives an influence
operator, Viz.,

§=T(p|2) =p-TI(B|Z+) =p— (B.I) €D,  (3.36)
as it is straightforward to check that (5,I) =0 and
(S,6) = 0p. The top flowchart in Fig. 2 illustrates the
steps to obtain & from f[p]. B, 6, and S are all gradients
that satisfy Eq. (3.34); the difference lies in the set of
directions to which each is restricted. &, for instance, is
restricted to Z and orthogonal to Z+, while 8 is restricted
to 7 and orthogonal to 7+ [41].

Now consider some examples. The first is f = trpY
for a given (i.e., f-independent) observable Y, which
leads to

D,f=tr(poh)Y = (h,Y),

s=Y—-p  (337)
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Influence

(0)—@)- D" @

Parameter of Directional Gradient in ) Gradientin Z
interest derivative
Antiscore
Constraint Directional Gradientin )/ Gradient in Z

derivative

FIG. 2. Top (for Sec. I D): Steps to obtain an influence
operator § from the functional B[p] via Egs. (3.33), (3.34), and
(3.36). Bottom (for Sec. VA): Steps to obtain the antiscore
operators that span 7+ via Egs. (5.2) and (5.3).

The second example is the purity § = tr p?, which leads to

Dy =t[(poh)p +p(poh)] = (h.2p),
(3.38)

The final example is the relative entropy S = trp(lnp —
Ino) [8,42], whereInp =} .(In4;)[e;)(e;| and & is a given
density operator with supp(o) 2 supp(p). The differenti-
ability of f is not a trivial question when d = oo [42], but
for d < oo it can be done to give

D,p = (h,Inp —Ino), S=Inp—1Inoc—p, (3.39)
where D,/ uses the fact that trp[In(p + epoh) —Inp] is
second order in ¢ for any & € Z (see Theorem 6.3 in
Ref. [8]). The von Neumann entropy is a simple variation
of this example.

E. Projection into the tangent space

The next step is II(6|7). If the family of density
operators is large enough, 7 can fill the entire Z, and
the projection becomes trivial. We call a family full
dimensional if its tangent space at each p satisfies

T=2Z (3.40)
For a specific example, consider the orthonormal basis of H

given by Eq. (3.2) and the most general parametrization of
p for d < oo given by [29]

Fo= {P(g) :Zeujaj+ Z (Qhkbk+9c-kck)}’ (3.41)

ky<ky
where
a; = [j){l, (3.42)
1
by = §(|k1><k2| + [ka) (ki ), ki <k, (3.43)

§=2(p-p).

ky < ko,

=5 ()l = o)), (3.44)

and a special entry 6, is removed from the parameters and
setas @0 = 1 =, 0, such that trp(0) = >, 60,; = 1
and

p=d—1. (3.45)

Jp is then given by

Oajp = a;j — ay. Opp = by, Oap = ¢ (3.46)
The next theorem is a key step in deriving simple analytic
results.
Theorem 2.—The F, family is full dimensional.
Proof—Consider the solution to (S,4) =0 for an
h € Z. All operators are bounded if d < co. We can then

use Egs. (3.18) and (3.46) to obtain

w(9uip)h = (jlhlj) = (0[R0) =0, (3.47)
tr((?bkp)iz = Re(k1|f1|k2> = 0, kl < kz, (348)
tr((?ckp)iz = Im<k1|il|k2> = 0, kl < kz, (349)

where /1 is any operator in the equivalence class of 4. Thus,
all the diagonal entries of / are equal to (0|4|0), and all the
off-diagonal entries are zero. In other words, i = (0|h|0)],
where 7 is the identity operator. But 2 € Z also means that
tr ph = (0|h|0) = 0, resulting in & = 0 as the only solution.
Hence, 7+ = {0} contains only the zero element, and
T=2Z L]

F, implies that the experimenter knows nothing about
the density operator, apart from the Hilbert space H on
which it operates. Despite the high dimension of the family,
Theorems 1 and 2 turn the problem into a trivial exercise
once an influence operator is found, since a0 € D C Z is
already in Z =7 and, hence, efficient. Corollary 2 can
then be used to extend the result for N copies. For
p =trpY, Eq. (3.37) leads to

HW%J@E—lu(Y—mz (3.50)
=N P . .

N

This result implies that a von Neumann measurement of Y
of each copy and taking the sample mean of the outcomes
are already efficient; no other measurement can do better in
terms of unbiased estimation. For # = trp?, Eq. (3.38)
leads to

- s> 4
Aon =100 _ 2 - gy,

SN (3.51)
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and, for f = trp(Inp —Ino), Eq. (3.39) leads to

o I8P 1 o an
HY = N = Ntrp(lnp Ino —f)*.  (3.52)
Intriguingly, this expression coincides with the information
variance that has found uses in other contexts of quantum
information theory, such as quantum hypothesis testing [43].

Deriving Egs. (3.50)—(3.52) via the conventional brute-
force method would entail the following steps:

(1) Assume the F, family of density operators given by

Eq. (3.41), with p = d* — 1 parameters.

(2) Compute the p score operators via Eq. (3.4).

(3) Compute the p-by-p Helstrom information matrix K
via Eq. (3.9).

(4) Compute the inverse K.

(5) Compute f(6) via Eq. (3.41), 0p(6), and the
Helstrom bound via Eq. (3.8).

While this method has been used before to produce
Eq. (3.50) [32], it is less clear whether it can easily give
Eq. (3.51) or (3.52). Contrast the brute-force method with
the proposal here:

(1) Compute the influence operator § via a functional
derivative of f[p] according to Sec. I D.

(2) Find the tangent space 7 of the density-operator
family or the orthocomplement 7. For example,
Theorem 2 shows that 7 is full dimensional for the
family of arbitrary density operators, while Sec. V
later shows that 7+ may remain tractable for smaller
families.

(3) Compute S5 =I(6|7) =6-T1(5|7+)  and
H = [|6et¢]|* = tr p&Ge-

Each step is tractable for all the examples here, regardless
of the dimensions.

Equations (3.50)—(3.52) are the quantum bounds prom-
ised in Sec. II, although they are merely the simplest
examples of what the semiparametric methodology can
offer, as Secs. V-VII later show.

IV. PARAMETRIC SUBMODELS

The proof of Theorem 2 works only in the finite-
dimensional case (p =d?>—1 < o). For infinite-
dimensional problems, the beautiful concept of parametric
submodels [19-21,34] offers a more rigorous approach. Let

G={p(g): g€} (4.1)
be a “mother” density-operator family, where G may be an
infinite-dimensional space. The density operators are still
assumed to operate on a common separable Hilbert space
‘H. Denote the true density operator in the family as p. A
parametric submodel F? is defined as any subset of G that
contains the true p and has the parametric form of Eq. (3.1).
To wit,

FIG. 3. The space represents G, a mother family of density
operators. The true density operator is denoted as p. Parametric
submodels are represented by curves in G that intersect at p. Each
score S° is a tangent vector that quantifies the “velocity” of a
density-operator trajectory in a certain direction.

F={06(0):0€0’° CR, 6(p) =p} CG, (4.2)
where s denotes the dimension of the parameter and ¢
denotes the parameter value at which 6(¢) = p is the truth;
both may be specific to the submodel. In the language of
geometry [8,9,27], each F° is an s-dimensional surface
in G, and all the surfaces are required to intersect at p.
Figure 3 illustrates the concept.

Each submodel F° is assumed to be smooth enough for
scores to be defined in the same way as before by

(90)g_y = poS". (43)
which denotes a system of s equations given by
9;0(0)|y_y = 0(h) o S5(#) = poSi(#).  (4.4)

As everything is evaluated at the true p, the scores of all
submodels, in fact, live in the same Hilbert space Z with
respect to p. Let the set of all parametric submodels of G
with respect to the truth be
F={F°:0€S}, (4.5)
where S denotes the set of indices that label all the

submodels. Define the tangent set as the set of the scores
from all such parametric submodels of G, viz.,

{st=U{s7}. (4.6)
oS
and the tangent space as the span of the set, viz.,
7 =span{S} C Z. (4.7)
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An influence operator is now defined as any operator that
satisfies the unbiasedness condition for all submodels with
respect to {S}. The condition can be expressed as
(87,0) = (0P)g—y ¥ ¥ € F, (4.8)
where (9p),_ is specific to each submodel. If (S, 6) = Jp
in Eq. (3.21) is taken to mean Eq. (4.8), then the influence-
operator set D is still defined by Eq. (3.21). The error
operator given by Eq. (3.22) for an unbiased measurement
still satisfies Eq. (4.8) by the generic arguments in Sec. 6.2 in
Ref. [7], which apply to any submodel, so the error operator
remains in D, and Eq. (3.24) still holds. Theorem 1 can now
be extended for the mother family.
Theorem 3.—The GHB in Eq. (3.24) for the mother
family G is given by

N 2 _ 2
H = min||5][* = [|dere |, (4.9)

where the efficient influence . is the unique element in
the influence-operator set D given by
S = T1(3/T). (4.10)
4 is any influence operator in D, and 7 is the tangent space
spanned by the scores of all parametric submodels of G.
Proof-—The proof is identical to that of Theorem 1 if
one takes {S} to be the tangent set containing the scores of
all parametric submodels. u
Corollary 2 can also be generalized in an almost identical
way, although the proof requires more careful thought.
Corollary 3.—For a family of density operators that
model N independent and identical quantum objects in the
form of

G = {p(9)®" : g€ g}, (4.11)
the efficient influence and the GHB are given by
(1) ~1(1)
Us ~ H
s = Zoell A = (4.12)
VN N

respectively, where 532 and H are those for the N = 1
family according to Theorem 3 and U is the map given
by Eq. (3.32).

Proof—The proof is delegated to Appendix C.

We now generalize Theorem 2 for infinite-dimensional
systems. The following theorem is also a more precise
generalization of a classic result in semiparametric theory
(Example 1 in Sec. 3.2 in Ref. [20]).

Theorem 4.—G,, defined as the family of arbitrary
density operators, is full dimensional.

Proof.—We call a Hilbert-space element in )) bounded
and denote it by ||A|,, < oo ifits equivalence class contains

a bounded operator . Denote the set of all bounded
elements in Z as
B={he Z:|h|, < o} (4.13)

Take any /# € B and its bounded operator h. Construct a
scalar-parameter exponential family as [8,9]

<(6) = exp(0h/2)p exp(6h/2).
(4.14)

where 6 € R and the truth is at 6(0) = p. As / is bounded,
exp(6h/2) is bounded and strictly positive. As p is non-
negative and unit trace, x(#) is non-negative and trace class
(see Theorem 2.7.2 in Ref. [7]). Moreover, tr k(0) satisfies
the properties
0 > trk(8) = trpexp(0h) > 0, (4.15)
because k(6) is trace class and exp(#h) is strictly positive.
Hence, ¢(6) is a valid density operator at any 6. Since G,
contains arbitrary density operators, F° = {¢(0):60 €
R,0(0) = p} is a parametric submodel of Gg. It is
straightforward to show that
(06)y_y = 0(0) o h=poh, (4.16)
so the score for this model can be taken as S° = h.
Define a submodel in the same way for every h € I3, such
that all of the 3 elements are in the tangent set {S}, leading
to B C {S} C 7. As 7 is closed, the limit points of 3 must
also be in 7, and B C 7, where B is the closure of B.
Lemma 2 in Appendix D states that B is a dense subset
of Z, so
Z=BCT. (4.17)
Together with the fact 7 C Z, this result implies 7 = Z,
and the theorem is proved. m
A comparison of the proofs of Theorems 2 and 4 shows
how the parametric-submodel concept works. Instead of
dealing with one large family such as Eq. (3.41), here, one
exploits the freedom offered by G, to specify many ad hoc
and elementary submodels. Each submodel in the proof
cannot be simpler—the exponential family is simply a type
of geodesics through p in density-operator space [8]. In
fact, we do not have to use the exponential family, and other
families may also be used as long as they fit the purpose of
the proof. An enormous number of submodels are intro-
duced, one for each B element in the proof, leading to an
extremely overcomplete tangent set. But that presents no
trouble for the geometric approach; only the resultant
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FIG. 4. For any h € B, one can associate with it an
exponential family (a straight line in the density-operator
space) that passes through p. Since G contains arbitrary
density operators, every line must be contained in Gg. It
follows that each line is a parametric submodel for G(, and
each & should be put in the tangent set. The dots represent
the fact that the proof involves lines in all directions and, on
each line, scores with all possible norms.

tangent space matters at the end. Figure 4 illustrates
the idea.

By virtue of Theorem 4, an influence operator 6 € D C
Z =T found for a parameter of interest is the efficient
one for Gy. The examples in Secs. IIID and I E work
for G in the same way they work for F. If § is given by
Blp], an influence operator that satisfies Eq. (4.8) can be
found via a gradient of f[p|, as shown in Sec. Il D and
Fig. 2. In particular, the influence operators given by
Egs. (3.37)-(3.39) and the bounds given by Egs. (3.50)—
(3.52) for the various examples should still hold for Gy,
although the entropy example may require a more rigorous
treatment when d = oo [42].

V. CONSTRAINED BOUNDS

A. Antiscore operators

Consider a constrained family of density operators
defined as

G, = {p(9) € Gy : 7[p(g)] = 0}.

where y[p(g)] =0 denotes a finite set of equality con-
straints {y,[p(¢)]=0:k=1,...,r}. Such constraints appear
often in quantum thermodynamics [44,45]. If there exist
gradient operators {7, € Y} such that, for any & € ),

(5.1)

Dyyilp] = (h.71). (5.2)
then each operator given by
Ry =T(#|2) =7 — (. 1) € 2 (5.3)

satisfies

Dyyilp) = (h,Ry) ¥ h € Z, (5.4)
and the constraint y[p(g)] =0 implies that Jy[p] =
(89, R;) = 0 for all submodels and k. In short, we write

Iylp] = (8

Thus, {R} is orthogonal to the tangent set {S}, and
span{R} must be a subset of 7. We call R the antiscore
operators, as the following theorem shows that they span
T+ in the same way the scores span 7.

Theorem 5.—If (R, R)™! exists, 7+ = span{R} for the
G, family.

Proof.—The proof again follows the classical case (see
Example 3 in Sec. 3.2 in Ref. [20]). Let

,R) =0. (5.5)

R = span{R}, Rt={he€e Z:(R,h)=0}. (5.6
In view of Eq. (5.5),
T C R (5.7)

Now construct a parametric submodel F? in terms of each
he R as

a(0) =

k(0) = f(0h + 0g)pf(0h + 0g),
(5.8)

where # € R, g = w'R € R is an operator to be specified
later, and f(u) is defined with respect to the spectral
representation of u = [ AdE, (1) as

Fu) = / {1 + tanh<§>}dEu(/1).

f(u) is bounded and positive even if u is unbounded,
s0 6(0) is a valid density operator. Since p € G,, y[p] = 0.
For a ¢(0) away from p with 6 # 0,

(5.9)

vlo(0)] = rlpl + 60Dy grlp] + 0(6) (5.10)
=0(R.h+ g) + 0(0) (5.11)
=0(R.g) + 0(0), (5.12)

where Eq. (5.11) uses Eq. (5.4) and the last step uses
the fact h € R*. To make o(6) satisfy the constraint
y[6(0)] =0, g(6) = w(0) "R can be set as a function of
0 to cancel the o(6) term, with
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1+ tanh(A\/2)

1.5¢

0.5+F

-4 -2 0 2 4
A

FIG. 5. A plotof f(4) = 1 + tanh(4/2) to illustrate its bound-
edness and positivity.

w(0) = —(R,R)"'0(0)/0. (5.13)
Then, y[o(0)] = 0 and F? is a valid parametric submodel of
G,. Equation (5.13) also implies that 0g(6) = o(6) is
negligible relative to @h for infinitesimal 6, so the score
for F° is h, which should be put in the tangent set {S}.
As this procedure can be done for any h € R™,
R+ C {S} C T. Together with Eq. (5.7), this result leads
to 7 = R+, giving 7+ = R. "

The family given by Egs. (5.8) and (5.9) is more
convenient to use here than the exponential family used
in the proof of Theorem 4. The f(u) defined by Eq. (5.9) is
a generalization of the classical version in Example 1 in
Sec. 3.2 in Ref. [20] and plotted in Fig. 5. It is designed to
give a valid density operator via Egs. (5.8)—even if the
argument is an unbounded operator—yet produce the
desired score when linearized at 8 = 0. An adjustable
operator ¢g(0) is included in the submodel to make o(6)
satisfy the constraint away from p. Figure 6 further
illustrates the idea of the proof.

o (0)] =0

p

oOh
0g(0)

FIG. 6. Each R is a vector normal to the surface defined by
vlp(9)] = 0 in density-operator space. For any i € R, a para-
metric submodel ¢(6) can be constructed to satisfy the constraint
7[6(0)] = 0. Away from p, a correction 6g(6) = 0(0) in R is
needed to make o(6) stay with the constraint. The tangent
vector of the submodel at p is still &, since the correction is
higher order in 6.

Given an influence operator 9, such as those derived
in Sec. III D, the efficient influence and the GHB can be
computed in terms of 7+ instead of 7 via

Suir = TI(8|T) = 6 — TI(S|T L), (5.14)

18eatl* = (1811 = [TI(3] 7). (5.15)
The same projection formula that gives d 5 in Appendix A
can be adapted to give

(8|74) = (R.8)T(R,R)™'R. (5.16)

INGITHIP = (R.8)T(RR)(R.).  (5.17)
Equations (5.16) and (5.17) remain tractable if the con-
straints are few. The gradients of y[p] can be derived in the
same way as those of f#[p|, as shown in Fig. 2, and R can be
computed analytically for linear constraints, the purity
constraint, and the entropy constraint by following the
same type of calculations shown in Eqs. (3.37)-(3.39).
Equation (2.4) is a special example of the constrained GHB
when f=trpY and y = trp(Z—-¢) = 0.

B. Entropy estimation in quantum thermodynamics

In quantum thermodynamics, conserved quantities of
a dynamical system, such as the energy and the particle
number, are expressed as moment constraints on the density
operator with respect to a vector of observables Z and a
vector of constants £, viz.,

tepZy=C, k=1,...,r. (5.18)
Given such constraints, the density operator is often
assumed to be the one with the maximum entropy [44],
known as the generalized Gibbs ensemble [45]. Such an
assumption, however, requires verification and does not
hold out of equilibrium. Experiments on Bose gases have
been performed to study the quantum states at different
times and the validity of the maximum-entropy principle at
steady state [46—48].

When the maximum-entropy principle is in question
for those experiments, it is prudent to make no prior
assumption about the density operator other than the
constraints. Thus, one should consider a family of density
operators given by Eq. (5.1), where the vectoral constraint
is y[p] = trp(Z — {) = 0. Suppose that the von Neumann
entropy = —trplnp is the parameter of interest. The
estimation of f is then a problem of quantum semipara-
metric estimation.

As the experiments typically involve high-dimensional
systems, quantum state tomography is impractical. A more
efficient estimation of f should exist. The formalism here
leads to a quantum limit given by
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1

E>—(|l6]* - (R.6)"(R.R)"(R.5)).  (5.19)

2|

6=—-Inp-—p, R=Z-¢. (5.20)
This bound is equivalent to the Holevo bound, as shown in
Sec. VIII, so it is asymptotically attainable in principle,
at least for finite-dimensional systems [28-30], although
the experimental implementation of efficient measurements
remains an open question.

As entropy is an excellent measure of randomness
and a central quantity in information theory, entropy
estimation has many applications beyond thermodynamics.
In classical statistics, the semiparametric estimation of
entropic quantities is a well-studied problem with known
near-efficient estimators and applications in universal
coding, statistical tests, random-number generation, econo-
metrics, spectroscopy, and even neuroscience [49]. In the
quantum domain, one application is universal quantum-
information compression [50]: Knowing just the von
Neumann entropy and nothing else about p allows the
quantum information to be compressed in accordance with
the entropy. Another application is the estimation of an
entropic measure of entanglement, which allows one to
demonstrate entanglement without full tomography [16].
The quantum limit here quantifies the minimum amount of
resources needed to achieve a desired precision. Its asymp-
totic attainability suggests that it is a lofty but fair yardstick
for experimental design.

C. Philosophy

The proposed approach to quantum semiparametric
bounds is the polar opposite of the usual approach in
quantum metrology. In the usual bottom-up approach, one
assumes a small family of density operators with a few
parameters and computes ||TI(5|7)||? that is determined by
the overlap between 6 and the scores S. Here, one starts
with a large family with almost full dimension, computes
||5||? for an amenable &, and then reduces it by ||[TI(5|74)||?
that is determined by the overlap between & and the
antiscores R, as illustrated by Fig. 7. The complexity of
the problem, thus, depends on the dimension of the family,
and the essential insight of this work is that the problem can
become simple again when the dimension is close to being
full. Of course, if the dimension of 7+ is high, the top-
down approach may also suffer from the curse of dimen-
sionality. The medium families with both 7 and 7 * in high
dimensions are the most difficult to deal with, as they may
be impregnable from either end.

D. Looser bounds

It may often be the case that, despite one’s best efforts,
the exact . for a problem remains intractable. Then, a
standard strategy in statistics and quantum metrology is to

I61? |
LI
6 4
IT(s|7)
0

FIG. 7. Anillustration of the conventional bottom-up approach
to quantum bounds and the top-down approach to semiparametric
bounds, as discussed in Sec. V C.

sandwich ||S||> between upper and lower bounds. ||5]|? is
an obvious upper bound and can be obtained from the
gradient method in Sec. III D if § can be expressed as a
functional f[p|. Another way is to use Eq. (3.23) if an
unbiased measurement and its error are known. The
evaluation of lower bounds, on the other hand, can be
facilitated by the following proposition.

Proposition 1.—Let V C T be a closed subspace of 7
and V' be the orthocomplement of V in Z. Then

H = [|8el> > [TV I” = [l6]1” = I8V H)[I>. (5.21)

In particular, if

V = span{S“} (5.22)
is taken as the tangent space for a particular parametric
submodel F?, then
IV = Ao (5.23)

is the GHB for that submodel.

Proof-—The proof is delegated to Appendix E.

A tight lower bound on ||S/|? can be sought by devising
a submodel that is as unfavorable to the estimation of
p as possible. Another approach is to devise an overcon-
strained model with V*+ D 7+ and evaluate a lower bound

on ||8.||> from the top by overshooting, as illustrated
by Fig. 8.

VI. EXAMPLES IN OPTICS

A. Quadrature estimation

Here, we further illustrate the theory with examples in
optics, where quantum measurement theory has found the
most experimental success [51]. For the first and simplest
example, let p be a density operator of an optical mode
and assume the G, family of arbitrary density operators.
Consider the estimation of the mean of a quadrature
operator Y, with p=trpY. This problem appears
often in optical state characterization, communication,
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FIG. 8. One can obtain a lower bound on ||5.||> by either
undershooting from the bottom via a more amenable subspace
VY C T or overshooting from the top via an overconstrained
model with Y+ 2 T+

and sensing, where f is a displacement parameter [17]. The
GHB is given by Eq. (3.50), and homodyne detection of Y
is efficient. Note that this example is different from all
previous studies of quadrature estimation [1,7], which
assume Gaussian states or similarly low-dimensional para-
metric models. The semiparametric scenario here allows p
to be arbitrary and possibly non-Gaussian.

Now suppose that side information tr pZ = { concerning
another quadrature Z is available. It follows from Sec. V
that the efficient influence is now

6.1)

where Cy, and V; are given by Eqs. (2.5). The GHB is then
given by Eq. (2.4), which is lowered by any correlation
between Y and Z. From the efficient influence, one may use
Eq. (3.22) to find an efficient measurement, which obeys

/ﬂ VAE( fy_%@ 0. (62)

This equation can be satisfied if the POVM measures
the quadrature Y — (Cy,/V,)Z instead of the obvious Y.
Notice, however, that Cy,/V, depends on the unknown p.
Whether adaptive measurements [51] can implement this
POVM approximately and whether asymptotic attainability
is possible for this infinite-dimensional problem are inter-
esting open questions. One approach may be to form rough
estimates of the covariances Cy, and V, via heterodyne
detection of a portion of the light first and then measure the
desired quadrature via homodyne detection based on the
approximate Cy,/V .

B. Family of classical states

For a more nontrivial example, consider a density-
operator family in the form

G, = {p(P) - /dZaP(a)a><a| Pe g}, (6.3)

G = all positive probability densities, (6.4)

where a = o + id” € C, d*a = dd/dd”, |a) is a coherent
state, and P is the Glauber-Sudarshan function [52]. As P is
assumed to be positive, G, is a family of classical states
[52] and a strict subset of G. The assumption of G, instead
of G is more appropriate for practical applications with
significant decoherence, as nonclassical states are unlikely
to survive in such an environment.
Consider a moment parameter of the form

B(P) = /dZaP(a)f(a,a*), (6.5)

where f(a,a*) is a real polynomial of a and a*. For
example, one may be interested in the mean of a quadrature,
in which case f = aexp(—if) + a*exp(i0), or the mean
energy, in which case f = |a|*>. The optical equivalence
theorem [52] gives

p=trpY, Y= :f(a,a):, (6.6)

where : f(a,a’): denotes the normal ordering [52].
It follows from Sec. IIID that an influence operator
isé6=Y—-p.

The next step is to find the tangent space of G,.. Although
G, is a smaller family than Gy, its dimension turns out to be
just as high.

Proposition 2—G, is full dimensional.

Proof—The proof is delegated to Appendix F.

With the full-dimensional tangent space, the GHB is also
given by Eq. (3.50). This result shows that the obvious von
Neumann measurement of Y remains efficient in estimating
p, and no alternative measurements can do better, despite
restricting the family to classical states. For example, if
f(a, a*) is a quadrature, then the homodyne measurement is
efficient, and if f(a, ) = |a|?, then : f(a,a'): =a'a,
and the photon-number measurement is efficient.

g, the space of positive densities, is infinite dimensional.
The estimation of P is a nonparametric problem [53], in
contrast with the semiparametric problems studied here.
In classical statistics, it is known that a nonparametric
estimation of the probability density cannot achieve a
parametric convergence rate [E = O(1/N)] [19,20,54],
and this difficulty is expected to translate to the quantum
domain. Semiparametric estimation, on the other hand,
can achieve the parametric rate and is the more feasible
task if one is interested in only a few parameters of the
system.

A further restriction on the family of P can give very
different results, as shown in the next section in the context
of incoherent imaging.
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C. Incoherent imaging
1. The mother model

Here, we summarize existing results concerning the
problem of incoherent imaging [5] using the language of
semiparametrics. Unlike previous sections, this section
presents no new results essentially. Rather, the goal is to
use this very important but equally difficult problem to
illustrate the concepts and current limitations of the
quantum semiparametric theory.

The basic setup of an imaging system is depicted in
Fig. 9. The object is assumed to emit spatially incoherent
light at an optical frequency. For simplicity, the imaging
system is assumed to be one dimensional, paraxial, and
diffraction limited. A model of each photon on the image
plane is [5,15,55]

6 ={plF) = [ axFOWl P eGi ) (67

wwz/wmhmmzwm%mmx (6.8)

where F is the unknown source density, G, is a set of
probability densities on R, X € R is the object-plane
coordinate, y (x) is the point-spread function of the imaging
system, x € R is the image-plane coordinate normalized
with respect to the magnification factor [56], |x) is the
Dirac position ket that satisfies (x|x’) = §(x — x), and k is
the canonical momentum operator. X and x are further
assumed to be normalized with respect to the width of y(x)
so that they are dimensionless. y(x) is assumed here to be

w(x) = (ZTI)Wexp (— ’9

such that |wy) = |@ = X/2) is a coherent state. Various
generalizations can be found in Refs. [5,15,24,55], and
references therein. Besides imaging, the model can
also be used to describe a quantum particle under random
displacements [13,57].

The problem is semiparametric if G, is infinite dimen-
sional, such as

(6.9)

bla - X)
F(X) N
At P l|5
Spatially RN
incoherent p . = N—
source . Estimator
I;T:r?: Measurement

FIG. 9. A far-field incoherent optical imaging system.

G, = all probability densities on R, (6.10)
and the parameter of interest is a functional of F, such as
the object moment

Bu(F) = / AXF(X)X*, (6.11)

where u € N; denotes the order of the moment of interest.
Notice that the family indicated by Eq. (6.10) is much
smaller than the one given by Eq. (6.4) in the previous
example, as the Glauber-Sudarshan function is now sepa-
rable in terms of (o/,a”) and confined to the real axis
of a, viz.,

P(a) =2F(2d)8(a"). (6.12)
In fact, the dimension of 71 is now infinite, as shown
in Appendix G, so this problem is the most difficult type
described in Sec. V C.

The errors and their bounds are all functionals of the true
density F, and we focus on their values for subdiffraction
distributions, which are defined as those with a width A
around X = 0 much smaller than the point-spread-function
width or, in other words, A < 1 [5].

2. Semiparametric measurements and estimators

Two globally unbiased measurements for semiparamet-
ric moment estimation are known [24]. For N detected
photons [58], both are separable measurements and sample
means in the form of [59]

EM (AL Ay Ay = ® E(A), A€y, (6.13)

n=1

BN (24, s, ...

A=Y BG). eX (614)

The first measurement is direct imaging, which measures
the intensity on the image plane and is equivalent to the
projection of each photon in the position basis as

dEree) (x) = dx|x)(x

., xeX=R. (615

An unbiased semiparametric estimator is given by the
sample mean of

u

Y(direc - v
P () =D (07 0

v=0

(6.16)

Go= (1) [ astwopw 617
12
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1, if proposition is true,

Loroposiion = { 0, otherwise, (6.18)
and the error is
i o(1)
E(dlrect) _ 6.19
. ot (6.19)

where O(1) denotes a prefactor that does not scale with A
in the first order. The second measurement is the so-called
spatial-mode demultiplexing (SPADE) [4,5,15,24,55],
which demultiplexes the image-plane light in the
Hermite-Gaussian basis given by

b) = [ dxpol). meNo  (620)
_ He,(x) x?
Pnu(x) = mexp <— I) (6.21)

where He,,(x) is a Hermite polynomial [60]. For the
estimation of an even moment with u = 2j, the POVM
for each photon is

ESPAYE) 1) = |, b

an unbiased semiparametric estimator is given by the
sample mean of

. meX=N, (622

“(SPADE) , | 4m!
and the error is
O(A%) o(A*
J N N

which is much lower than that of direct imaging in
the subdiffraction regime for the second and higher
moments. For the estimation of odd moments with
SPADE, only approximate results have been obtained so
far [14,55,61,62] and are not elaborated here.

Both estimators are efficient for their respective mea-
surements in the classical sense [24]. In the quantum case,
the question is whether SPADE is efficient or there exist
even better measurements. Computing the GHB, or at least
bounding it, would answer the question and establish the
fundamental quantum efficiency for incoherent imaging.

3. Lower bounds via parametric submodels

Both Egs. (6.19) and (6.24) are upper bounds on the
GHB. By virtue of Proposition 1, all earlier quantum lower
bounds derived for incoherent imaging via parametric
models are, in fact, lower bounds on the GHB for the
mother family given by Eq. (6.7), with the true p being

evaluated at certain special cases of F. References [4,63],
for example, assume discrete point sources, but exact
results become difficult to obtain for a large number of
sources. Here, we highlight two methods that work for any
F but can give only looser bounds.

The first method is the culmination of Sec. 6 in Ref. [55]
and Appendix C in Ref. [15]. Assume that

0
0= < 9) (6.25)
O
consists of two sets of parameters 6, = (6,,,6,....)" and
0, = (040,041, ...) 7. Define a submodel given by
o(0) = [ axFexiolw el (626)
F(X|0) = / dYS(X — h(Y|6,))G(Y10,).  (627)
[1 4 tanh g(Y|6,)|F(Y)
G(Yle,) = . 6.28
(¥16,) JdY[1 +tanhg(Y|6,)]F(Y) (6.28)
The truth is at
a(0) = p, F(X|0) = G(X|0) = F(X), (6.29)
h(Y|0) =Y, g(Y10) =0. (6.30)
6(0) can be rewritten as
o(0) = [ YGYIO) o) waagl- (631

In other words, we introduce parameters to both the
mixing density and the displacement in the model by
rewriting the mixture. Appendix H shows how the extended
convexity of the Helstrom information [13,64] can be used
on Eq. (6.31) to give

5 He _ 2 2 8 0 AZM—Z
ALY > iy P =Pyt P OA™T) (6.32)
N N N

A more careful calculation shows that the SPADE error
is exactly equal to this bound for y = 2 [24]. For higher
moments, however, Eq. (6.32) remains much lower than
that achievable by SPADE.

The second method, as reported in Ref. [15], considers
the formal expansion exp(—ikX) =) % (-ikX)?/p!,
which leads to

c(0) = 200: iﬁpﬁpz#hﬁoﬂyﬂ%-

6.33
p1=0 pr=0 p ( )
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Consider this expression as a parametric submodel with
only one scalar parameter € = f3, for a given p, while all the
other moments /3, with v # y are fixed. Then, the Helstrom
bound for this submodel is simply H} = 1/K,, where K,
is the Helstrom information with respect to 6 = f,.
Reference [15] finds via a purification technique that this
Helstrom bound is, in turn, bounded by

Ho —

H c
12

> O(A2H/2]),

(6.34)
By virtue of Corollary 3 and Proposition 1, we obtain

(6.35)

This lower bound does match the performance of SPADE
in order of magnitude, but it does not have a simple closed-
form expression, and the question of whether SPADE
is exactly efficient for moments higher than the second
remains open.

VII. SEMIPARAMETRIC ESTIMATION WITH
EXPLICIT NUISANCE PARAMETERS

A. The efficient score operator

We now consider problems where there is an explicit
partition of the parameters into a scalar # and nuisance
parameters 7 that may be infinite dimensional, viz.,

G=A{p(p.n):pEB; CR,neG} (7.1)
An example is the displacement model given by Eq. (2.6),
where £ is the displacement parameter and the initial state
po depends on the nuisance parameters. All previous
studies of the problem assume that p, is known exactly.
In practice, however, p, may be poorly characterized, and
the estimation performance in the presence of unknown
nuisance parameters may suffer as a result.

With the explicit partition of the parameters, the scores
can be partitioned similarly. Let S” be the score with respect
to the parameter of interest, as defined by

dp(B.n)
op

where 7 is fixed at the truth. To define the nuisance scores,
consider the subfamily

:/}OSﬂ’

(7.2)

G, ={p(p.n) :n€ gy, (7.3)
which holds f fixed at the truth instead. Define the nuisance
tangent set {S"} as the set of scores from all parametric
submodels of G, and the nuisance tangent space as

A =span{S"}. (7.4)
The unbiasedness condition for an influence operator
becomes

(F.8)=C=1,  (S1.8) =0. (7.5)

The second of Egs. (7.5) implies that 5_LA, so if S € A,
(8#,8) =0, and no influence operator that obeys both
Egs. (7.5) can exist. In that case, we assume the GHB to be
infinite. Provided that S” ¢ A, however, the following
theorem provides another method of computing the effi-
cient influence and the GHB.

Theorem 6.—Assuming S ¢ A and the unbiasedness
condition given by Egs. (7.5), the efficient influence and
the GHB are given by

Seff ™ 1
Seff = , H=——, (7.6)
HSeff|2 ||Seff|2

respectively, where S, henceforth called the efficient
score, is given by

Seff = Sﬂ - H(Sﬂ|A) (77)

Proof-—The proof is delegated to Appendix I.

Figure 10 illustrates the Hilbert-space concepts involved
in Theorem 6. We note that Sec. V in Ref. [36] also arrives
at conclusions similar to Theorem 6 in the parametric case,
but the crucial point here is the Hilbert-space approach,
which enables us to derive closed-form solutions to semi-
parametric problems, as shown in the next section.

B. Displacement estimation with a constrained
family of initial states

Consider the displacement model given by Eq. (2.6) and
illustrated by Fig. 11. For high-dimensional systems, only a

T
Seft Sh
Y
sy TI(S%|A)

FIG. 10. The whole space in the picture represents the tangent
space 7. A is the nuisance tangent space spanned by the nuisance
tangent set {S7}. S# is the score with respect to the parameter of
interest. The efficient score S, is S/ minus its projection
T1(SP|A). The result is orthogonal to A.
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B

E
po :v[po] =0 B ef/‘H/ije’LHfB
FIG. 11. A schematic of the semiparametric displacement

model given by Eq. (7.8).

few moments of the initial state p, may be known in
practice, and it is prudent to assume that p, is in the
constrained family G, defined by Eq. (5.1). The density-
operator family for the problem can be expressed as

G ={p(B.po) =Uspo: PE O CR,py €G,}, (7.8)
where the unitary map Uy is defined as
Uppo = exp(—iHP)pyexpliHp).  (7.9)

Generalization for more complicated generators is possible
[12] but outside the scope of this paper.

Define an inner product and a norm with respect to the
true p, as

(h1,ha)o = trpohy o hy, [hllo = v/ (h, h)o.
Define also the operator Hilbert space Z, with respect to py,
the tangent space 7 at p, with respect to G,, and the
orthocomplement 73 that gives Zy =7, @® 7, in the
same way as how the spaces Z, 7, and 7+ are defined with
respect to p. Noting the unitarity of U/, and following the
method in Appendix C, it can be shown that the nuisance
tangent space is given by

(7.10)

Define the map adjoint to U, by Ush =exp(iH f)h
exp(—iH f3). Exploiting the isomorphism between A and
Ty, we can compute the efficient score as follows:

Setg = SV =TU(SP|A) = P = UTI(U;S | T,)  (7.12)
= SV — Uyl S" — (US| T)] (7.13)
= UII(USP | T ) (7.14)
= (R,U;S’) [ (R, R)§'UyR, (7.15)

where R is the vector of antiscores with respect to p,
as defined by Eq. (5.4) but with p, and (,-), instead.
Equation (7.15) can be further simplified, with

(R.USP), = (UsR. ) (7.16)
— —itr p[UyR, H] (7.17)
= —itrpo[R. H] = [R. H),. (7.18)

where [A, B];; = A;B — B}A; and [, ], is shorthand for
—itrpg-,:]. Equation (7.17) comes from the fact that
S# = DH for the model given by Eq. (7.9), where D is
the so-called commutation superoperator defined by [7,25]

(h,DH) = —itrplh, H| Y h € ). (7.19)
The final result is
Serr = [R. H]j (R. R)g"UyR. (7.20)
1Sesell® = [R. Hlg (R.R)G'[R. H]y. ~ (7:21)
qv -1 (7.22)
N||Sere®

In particular, if the constraint is linear and a scalar given by

trppZ=0, R=2Z, (7.23)

then

(N I1Z113
HW) = N[TH]%’ (7.24)

which gives Eq. (2.7). ||Z||3 is the variance of Z, while

. 9.
[Z, H]O = —ltrpO[Z, H] = tr/)oa—ﬁuﬁz (725)
p=0

is a measure of how sensitive the Heisenberg-picture Z is to
the displacement. An intuitive explanation of this result
is as follows. A displacement can be estimated only with
respect to a known reference. If only the mean of Z is
known about the initial state, then it is the only reference in
the quantum object that is available to the observer. It is
therefore not surprising—in hindsight—that the statistics of
Z determine the fundamental limit.

If H is the momentum operator and Z is the position
operator satisfying [Z, H] =i, the Heisenberg picture
of Z is

UZ =p+Z, (7.26)
which is a quantum additive-noise model with no known
statistics about the noise operator Z other than its mean.
Measurements of Z and the sample mean of the outcomes
are efficient. This problem then becomes equivalent to the
p = tr pY example, but note that Eqgs. (7.21) and (7.22) are
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more general, as they can deal with any generator, a  that
cannot be easily expressed as a functional of p, and more
general constraints.

Another example is optical phase estimation with

(7.27)

and constraint tr ppZ = { on the mean of the quadrature
operators Z = (Z,,Z,)" with [Z,,Z,] =i. There is no
phase observable [52], so expressing # as a functional of p
is difficult, if not impossible. Equations (7.21) and (7.22),
on the other hand, are simple expressions in terms of the
generator and the antiscores. In Egs. (7.20)—(7.22),
R=7-¢,

(Rj.Rp)g=trpo(Z; =)o (Zi = &) (7.28)

is simply the covariance matrix of the quadratures, while

[Ry. H]y = [Z.H]y = trpoZy = (5. (7.29)

[Ry, H]y = [Z, H]y = —trpyZy = =, (7.30)
are the mean quadrature values. The efficient influence
Octf ¢ Segr 1S a linear combination of the quadratures
according to Eq. (7.20), indicating the ideal, though
parameter-dependent, quadrature to be measured. An
adaptive measurement can then aim to measure the ideal
quadrature to approach the quantum limit.

When p, is exactly known, the Helstrom bound for
displacement estimation has been computed exactly only if
po 1s pure or Gaussian. Only looser bounds have been found
otherwise [1,2,7]. The Mandelstam-Tamm inequality, for
example, is looser than the Helstrom bound for mixed states
[7]. S is determined by DH, and if p, is a high-dimen-
sional non-Gaussian mixed state, S” is intractable. With the
infinitely many nuisance parameters and infinitely many
scores assumed here, the problem is hopeless under the
conventional bottom-up approach. The top-down geo-
metric approach, on the other hand, is able to avoid the
computation of the scores altogether and give a simple
result in terms of the more tractable antiscores.

VIII. VECTORAL PARAMETER OF INTEREST

To complete the formalism, here, we generalize the
core results in this paper for a vectoral parameter of
interest f# € RY with g > 1 entries. p, the dimension of
the parameter space, should be at least as large as ¢ and
may be infinite. Define the error matrix as

x= [ - AP -

AT dEQ)p.  (8.1)

where 1 X — RY is an estimator. An influence operator
should then be a vector of g operators. The inner product
between two vectoral operators and the norm are now
defined as

Ztrp jog). =

w (i h).  (8.2)

The Hilbert spaces ) and Z for the vectoral operators are
still expressed as Eqs. (3.13) and (3.14), while the tangent
space is now defined as the replicating space [21]

T = (span{s})® = span{S} @ - -- & span(s}.

q terms

(8.3)

The set of influence operators is still given by Eq. (3.21) if
(S,6) = Op is interpreted as (S°,6;) = 0p; for all sub-
models and k = 1, ..., g. For an unbiased measurement, the
error operator given by Eq. (3.22) remains an element of D,
and it can be shown (see Sec. 6.2 in Ref. [7]) that

> (6,6), (8.4)
where the matrix inequality A > B means that A — B is
positive semidefinite. The GHB can then be expressed as

E=tWI>uW(5.)> infurW(5,6) = H  (8.3)
S

where W >0 is a real cost matrix [8]. Generalizing
Theorems 1 and 3, we have the following theorem.

Theorem 7.—The GHB for a vectoral parameter of
interest is given by

H= réré%ltr W(5,8) = tr W(Ses, Sest)» (8.6)

where the efficient influence d. is the unique element in D
given by
St = T1(3|T). (8.7)

Proof—The proof is delegated to Appendix J.

It is straightforward to generalize the methods introduced
in this paper to compute the GHB for the vectoral case.

Holevo proposed another bound, denoted in the follow-
ing by the sans-serif X, that can account for the quantum
effect of observable incompatibility in multiparameter
estimation [7,40]. Before we prove the bound and related
results, we need the following lemma.

Lemma [—(Belavkin and Grishanin [65]).—For any
complex positive-semidefinite matrix A,

trRe

(8.8)
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where ReA and ImA denote the entrywise real and
imaginary parts of A, respectively, and || - ||; denotes the
trace norm, defined as the sum of the singular values.

Proof—The proof is provided in Appendix K for
completeness.

We can now present the Holevo bound. It requires little
modification to be applied to semiparametric estimation;
only the definition of D needs to be generalized to
Eq. (3.21) here. Otherwise, the proof is standard
[7,28,40]; we provide it here simply to demonstrate that
it remains valid in the semiparametric setting.

Theorem 8.—

E > X = inf[tr WReT'(6) + [VWImT(S)VW|,], (8.9)
S
where I'(5) is a complex matrix given by

Proof—Holevo proved [see Eq. (6.6.55) in Ref. [7]]
that the error matrix and the error operator of any unbiased
measurement obey

s > I(5). (8.11)

Thus, A = vVW(Z —T')v/W > 0. Applying Lemma 1 and
noting that X is real, we obtain

trReA = tr VW(Z —ReT)VW = tr W(Z — ReT)
> [Im[vW(E -T)VW]|; = [VWImTVWI;.

(8.12)

Hence,
tr WE > tr WRe T + |[VWImIVW|, > X.  (8.13)
|

The asymptotic attainability of the Holevo bound for
d < oo is shown in Refs. [28-30]. The rough idea there is to

consider a two-step method: First, find an estimate 0 of
using some of the object copies, and then perform a
measurement based on the influence operators obtained
from the minimization in Eq. (8.9), assuming 0 to be the
truth. In the limit of N — oo, the overhead for finding @ is
benign, and it can be shown that the error approaches X by
local asymptotic normality.

For all the examples studied in previous sections, f is a
scalar, and it is straightforward to prove that the Holevo
bound is equal to the GHB in that case.

Corollary 4—If f is a scalar (¢ = 1),

X =H, (8.14)

Proof—For g = 1,T(5) = tr ps* and ImT'(§) = 0, lead-
ing to

X = inftr WReT'(5) = inftr W(5,5) = H.

seD seD (8.15)

The scalar GHB hence inherits all the properties of the
Holevo bound, including its asymptotic attainability. In
fact, for any ¢, the Holevo bound turns out to be a marginal
improvement over the GHB only.

Theorem 9.—
H < X <2H. (8.16)
Proof—For all 6 € D,
tr WReT'(8) + ||[VWImT(8)VW||,  (8.17)
> tr WReI'(6) = tr W(5,6) > H. (8.18)

As X is the infimum of Eq. (8.17), we obtain X > H, the
first inequality of the theorem. The second inequality is
proved as follows:

X < tr WRe T (81) + ||[VWImT(6)VW||, =D (8.19)
< tr WRe T (8er) + tr VWRe T (8o ) VW (8.20)
= 2tr WRe I'(6.¢) = 2H., (8.21)

where Eq. (8.20) is obtained by applying Lemma 1 to
A = VW (6.)VW. n

The first inequality H < X is well known [7,39,40].
A special case X <2H of the second inequality—when
p < oo, K71 exists, and H=H is the original Helstrom
bound—was proved recently in Ref. [35]. X = 2H can be
attained in special cases [28-30].

Theorem 9 implies that the effect of incompatibility is
surprisingly benign in the context of asymptotic statistics,
the GHB can be approached to within a factor of 2 if the
Holevo bound is attainable, and the GHB is a serviceable
alternative to the Holevo bound, especially when the latter
is more difficult to compute. See Ref. [28] for further
interesting discussions regarding this result.

As an aside, we remark that the D in Eq. (8.19) is called
the D-invariant bound and coincides with X if 7 = D7,
where D is given by Eq. (7.19) [7,66]. In general, D offers a
tighter upper bound on X than 2H but may not be much
more difficult to compute, as it also depends on J., which
can be found via the methods introduced in this work.

We present a few other interesting results concerning
multiparameter estimation with p < co in Appendix L.
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Finally, we generalize the concept of efficient score in
Theorem 6 for a vectoral f.

Theorem 10.—Assume a density-operator
given by

family

G={p(pn): €0 CRI.neG) (8.22)
Let S# = (Sf e Sg)T be the scores with respect to 8 and
{8"} be the nuisance tangent set. Assume the unbiasedness
condition for influence operators 6 € D given by

(§/.8) =1, (S".8) =0, (8.23)
where [ is the identity matrix. The efficient influence and
the GHB are given by
H=tr W (Sefr. Serr) ™"

Setr = (Sefrs Sefr) ™" Sefr (8.24)

respectively, where the efficient score S is given by

Sert =" —TI(S|A). A= (span{$"})®7, (8.25)
and (S, Serr) ™! is assumed to exist.
Proof.-—The proof is almost identical to that of Theorem

6 in Appendix I and omitted here for brevity.

IX. CONCLUSION

We have founded a theory of quantum semiparametric
estimation and showcased its power by producing simple
quantum bounds for a large class of problems with high
dimensions and few assumptions about the density oper-
ator. The theory establishes the notion of quantum semi-
parametric efficiency, which should inform and inspire the
design of more efficient measurements in many areas of
quantum physics.

While the experimental design of efficient semiparamet-
ric measurements is only touched upon here and awaits
further research, the importance of the quantum limits set
forth should not be underestimated. As more experiments
are now being performed on complex quantum systems and
advantages of such systems for metrology and information
processing, in general, are being claimed, the precision
limits serve as ultimate yardsticks as well as “no-go”
theorems that guard against spurious proposals and fruitless
endeavors, in the same way the laws of thermodynamics
impose limits to engines and rule out perpetual-motion
machines. Deriving precision limits for highly complex or
poorly modeled quantum systems was a daunting task
under the curse of dimensionality; the semiparametric
theory offers a new way forward.

Many open problems still remain. More extensions and
applications of the theory remain to be worked out. The
asymptotic attainability of efficiency [8,9,28-30] is a thorny
issue for infinite-dimensional problems. The assumption of
unbiased estimation is a drawback; generalizations to the

Bayesian or minimax paradigm [67] should help but await
further research. These problems should benefit from studies
of alternative quantum bounds beyond the Cramér-Rao
type [68]. In view of Eq. (3.52) and Figs. 3 and 4, the
connections of quantum semiparametrics to other domains
of quantum information [43] and quantum state geometry
[8,9,26] are also interesting future directions.

In light of the richness and wide applications of the
classical semiparametric theory [19-24], this work has only
scratched the surface of the full potential of quantum
semiparametrics. It should open doors to further useful
results.
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APPENDIX A: PROOF OF COROLLARY 1

If p < oo and K~! exists, the solution to I1(§|7) can be
found, for example, in Ref. [20] [Eq. (15) in Appendix
A.2]. Here, we give a simple proof for completeness. By
definition of the projection [37],

I1(8|7) = arg min||5 — A||.
heT

(A1)

Any h € T can be expressed as the linear combination w'S
with respect to a certain vector w € R”. Then

|6 =h|> = (6.8) —wT(S,8) — (S.8)Tw+wT(S,S)w.

(A2)
The solution to the least-squares problem is
Winin = (S, 5)71(S.5), (A3)
M(GIT) = wh,S = (5.8)7(S.5)71S. (Ad)
Hence,
ITI(S|T)||* = (S.8)T(S.5)7'(S. ). (AS)
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which is equal to Eq. (3.8), since (S,8) = dp for an
influence operator. u

APPENDIX B: PROOF OF COROLLARY 2

Denote any concept discussed so far with the superscript
(N) if it is associated with FV), but omit the superscript
(1) for brevity if N = 1. From Z, we generate a subspace
UZ c ZW) such that

UZ={Uh:heZ}. (B1)

U is a surjective map to UZ by definition of the space. It
can be shown that
(Uhy, Uhy)™) = (hy.hy) ¥ hy.h, € Z,  (B2)

so UZ is isomorphic to Z, and U is a unitary map from Z
to UZ [38]. It can also be shown that
SN = V/NUS, (B3)

so 7W) =span{S™)} € UZ, and 7" is isomorphic to 7.
For any Uh € UZ, it is not difficult to prove that

(UA|T™) = UNI(h|T), (B4)
given the isomorphisms. Now, let
Us
W =—=e€euz, (B5)
VN

(N)

where 0 is an influence operator. 5V is also an influence

operator, since

(SV), 5N (V) — <\/1VUS,5%>(N) = (85.6) = 0p. (B6)

(N)

The efficient influence for F\“Y) becomes

(USIT™))  UN(S|T)  Udey

N
S =T(EMTN) =

VN VN /N’
(B7)
the norm becomes
(M (N) [[Bes [
1) = , B8
|| eff H \/ﬁ ( )
and the corollary ensues. u

APPENDIX C: PROOF OF COROLLARY 3

Let {S™)} be the tangent set for G, For each para-
metric submodel {5(0)} of G, let

{z(6) = o(0)®"}

be a parametric submodel of G("). The score of the
submodel is given by

(C1)

§* = /NUS°. (C2)
In other words, each S € {S} can be used to generate a
score in {S™M} via Eq. (C2). The set of scores generated
this way is therefore a subset of {SV)}, viz.,

{VNUS} = {VNUS° : 87 € {S}} C {sS™}.  (C3)
Conversely, any parametric submodel of G*) must be in
the form of Eq. (Cl), with {6(@)} being a certain para-
metric submodel of G. The score of the former is then
related to the score of the latter via Eq. (C2). Since {S}
includes the scores of all parametric submodels of G,
any S° € {S™} must be in {V/NUS}. Thus, {SV} C
{\/N US}, and equality holds, viz.,

{s™M1 = {(VNUS}. (C4)

It follows that

TW) =5pan{S™)} = span{V/NUS} (C5)
is isomorphic to 7 = span{S}. Hence, projecting an
influence operator of the form §") = Us/+/N into T™)
gives the efficient influence 5%) = Ub./\/N, by the same
argument as Appendix B. ]

APPENDIX D: THE SET OF BOUNDED
OPERATORS IS DENSE IN Z

To generalize Theorem 2 for the infinite-dimensional
case and prove Theorem 4, we need to be mindful of the
unbounded operators in Z. The good news is that they are
well defined as limits of bounded-operator sequences in )/,
thanks to Holevo [7,25]; just a minor modification is
needed to make his result work for Z.

Consider the set B of bounded elements defined by
Eq. (4.13). If d < 00, B = B = Z, since all operators are
bounded in the finite-dimensional case, but if d = oo,
B C Z is a strict subset. A useful lemma is as follows.

Lemma 2.—B = Z.

Proof—Theorem 2.8.1 in Ref. [7] implies that, for any
h € Z C ), there exists a Cauchy sequence {4, } with each
h, € Y satisfying ||h,||,, < co such that

lim ||h = h,|| = 0. (D1)
n—oo
To derive a similar convergent sequence in Z, consider the
projection of each A, into Z, written as
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hy :H(hnlz) :hn_<hn71> €z (D2)

Denote a bounded operator in the equivalence class of 4,
as h,. An operator for &), can be expressed as

i:l/n = iln - <hn’1>j' (DS)
Since ||/, o, < 00 and || (. D)I|loy = |{hy I)] < e,
1llop < Wallop + | (s Doy < 00 (D4)

by the triangle inequality, leading to A}, € B. The
Pythagorean theorem leads to

NAn = hnll 2 (1B} = B || ¥ 1, m, (Ds)
A = hyll > (|7 = Ayl (D6)

which can be combined with Eq. (D1) to give
lim || — K| = 0. (D7)

In other words, {4}, }, with each ), € B, is also Cauchy and
converges to /. As the argument applies to any 1 € Z, B is
dense in Z, and the closure of B gives Z. ]

APPENDIX E: PROOF OF PROPOSITION 1

Let the orthocomplement of V in 7 be Vz. Then the
Pythagorean theorem yields

18ete 1 = T(Beqe[ VI + [ITT(See [ V)12 (E1)
> 13| V)|> = [ITI(I(8]T) V)| (E2)
= V)%, (E3)

where the last step uses Proposition 3B in Appendix A.2 in
Ref. [20]. |[TI(8|V)||* = ||6]|> = ||T1(8]V*)]|? follows again
from the Pythagorean theorem for a € Z =V @ V*.
Equation (5.23) comes from Theorem 1. [

APPENDIX F: PROOF OF PROPOSITION 2

Let P be the true density. For real functions on C,
define an inner product and a norm with respect to P as,
respectively,

1£llp =V A{F. e

(F1)

(f.)p = / PaP(a)f(@)g(a).

Define the Hilbert space of zero-mean functions as

Zp={f1llfllp < o0 (f.1)p =0} (F2)

For each f € Zp, construct the parametric submodel

o(6) = / PaP(a)o)|a) (al. (F3)

{1 + tanh[f(2)0]} P(a)
P(al0) = [ d*a{1 + tanh[f(a)0]} P(a)’ (7

with the truth at 6(0) = p and P(a|0) = P(a). f(a) is the
score function with respect to P(a|@). The score with
respect to o is then given by

poS=po(Ef) = / PaP(a)f(@)a)(al.  (FS)

where the map £ : Zp — Z is a quantum version of the
conditional expectation [8]. Hence,

{&f - feZp} {5} (F6)

Consider the inner product between £f andanh € B C Z
given by

(&f.n) =upl(Ef)oh]=t[pe(Ef)Ih=(f.E h)p, (FT)

where Eq. (3.18) is used and £* is the adjoint map given by
the Husimi representation

(E°h)(a) = (alhla). (F8)

Since h € Z,
ttph = / LaP(@)(alhla) = (E7, 1), =0, (F9)

and &h € Zp. The map £ : B — Zp is obviously linear.
It is also bounded, because

1E*RI3 = /dZO!P(Ot)(<06|h|06>)2 (F10)

< /dzaP(a)<a|h2|a> A (F11)

Thus, £ is a continuous linear map (see Theorem 1.5.7 in
Ref. [37]). As B is a dense subset of Z by virtue of Lemma 2,
&* can be uniquely extended to a continuous linear map on
the whole Z (see Theorem 1.5.10 in Ref. [37]).
Any h € T+ must obey

(Ef h)y =(f,Eh)p=0V feZp. (F12)
The only solution is £*h = (. In other words, 7L is in
the null space of £". As the Husimi representation is
injective [69], the only solution to &*h =0 is h=0.
Hence, 7+ = {0}, and 7 = Z. n
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APPENDIX G: 7+ FOR DIFFRACTION-LIMITED
INCOHERENT IMAGING IS INFINITE
DIMENSIONAL

Following Appendix F, it can be shown that 7 € T+ if

(wx|hlwx) =0V X €supp F (G1)

for the incoherent-imaging problem in Sec. VI C. Consider,
forexample, h = [ dkh(k)|k)(k|, where |k) is a momentum
eigenket. Then, Eq. (G1) is satisfied if

ralhlo) o [ akT(h) exp(-26%) =0, (G2)

Let {a;(k): j € Ny} be the set of Hermite polynomials
that are orthogonal with respect to the weight function
exp(—2k?). Then, any a,(k) with j > 0 satisfies Eq. (G2).
Define the set

{a} = {aj = /dezj(k)|k>(k| 1j € N,}. (G3)
Each a; obeys Eq. (G2) and

(aj, ap) /dk&j(k)izk(k) exp(—2k%) «x 8, (G4)

so {a} is an orthogonal set with respect to the inner product
given by Eq. (3.10). As span{a} C 7+,

dim 7+ > [{a}| = Ny, (Gs)

which means that the dimension of 7+ must be infinite.

APPENDIX H: DERIVATION OF EQ. (6.32)

For the density-operator family given by Eq. (6.31), the
extended convexity of the Helstrom information [13,64]
implies that

K <K =K%+ K", (H1)
99(X16,) 99(X|6,)
K = / dXF(X) g 21, (H2)
Jk 89} aek 0=0
Oh(X|6)) Oh(X|64)
h __ 2
K, = 4(AR) / axr(x) AL )

where (AK?) = (wolk*|wo) — ((wolklwo))* = 1/4 is the
variance of k. With the explicit partition of 6 into 6, and

0,, K can be expressed as

(H4)

) )

and 8]1 = (8/,,0,8;,1, )T Let

(o «)
~\ 0 K"

_ / dXF(X) < :9)(@9)" !
0 (9,h)(9,h)"

where 9, = (0,1.9,0....)"

0y =S e

(Ho)

hXI0) = X+ 0%, (17)
=0

where {a;(X):j€Ny} is a set of orthogonal poly-
nomials with respect to the true F that satisfy
JdXF(X)a;(X)ap(X) = 6. ag(X) =1 is omitted from
g(X16,), because g is a score function with respect to F and
J dXF(X)g(X|0,) = 0 implies that g(X|6,) cannot contain
aop(X) in its expansion. The orthonormality of {a} leads to

K=1, K'=1I (H8)

Now, consider
5.(6) = / AXF(X|0)X" (HO)
_ / dYG(¥16,)[h(Y0,))". (H10)
%a_o _ / dXF(X)a,(X)X*,  (HI1)
% = / IXF(X)X1a;(X).  (HI2)

Then,

p,)TK'op, = ,Z: (aﬁ"> + ]io: (%)2 (H13)
= Poy = P + W Poyua, (H14)

where the completeness property

[Se]

a;j(X)a;(X') =
j=0

Zoo:aj(X)aj(X’) =6(X-X)
| (H15)

is assumed. With
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HZ = (aﬁﬂ)TK_laﬂﬂ 2 (aﬂﬂ)Tk_laﬁﬂ’ <H16)

and using Corollary 3 and Proposition 1, Eq. (6.32) is
obtained.

APPENDIX I: PROOF OF THEOREM 6

The proof follows the classical case [21]. As S¥ & A, the
Ser given by Eq. (7.7) is not zero. Let

_ Seff
||Seff||2

(1)

Notice that Eq. (7.7) is a projection of S# into a space
orthogonal to A, so S.LA and 6_LA. Then,

1
(89,8) = W<Scff +TI(SPIA), Sere) = 1, (12)
eff
($7,6) =0, (13)

because T1(S?|A) € A and each S} € A. Thus, § satisfies
Eqgs. (7.5) and is an influence operator. Notice also that S
and & are in 7, because S € 7 and II(SP|A) e ACT.
Hence, by Theorem 3,

Serr = T1(8]T) = 6. (14)
and Eq. (I1) is the efficient influence. [

APPENDIX J: PROOF OF THEOREM 7

We again follow Ref. [21]. Decompose any 6 € D C
Z=T @ 7T+ into

6= 5eff + h7 5eff = H(5|T>, h = H(5|TL> (Jl)

It is straightforward to prove that o, € D. As h is
orthogonal to any element in 7 = (span{S})®9, it must
be orthogonal to g = (0, ...,0,¢,0,...,0)" with any e €
span{S} in any entry of g, say, the jth entry. Then,

tr(h,g) = (hj.e) =0, J2)

meaning that each entry of A is orthogonal to Span{S}. This
condition leads to a stronger matrix form of the orthogon-
ality between . € 7 and h € T+ given by

(Betr- h) =0 (J3)
and a matrix form of the Pythagorean theorem given by
(6,8) = (etr: Oetr) + (1. h) = (Besr Gerr).  (J4)

resulting in Eq. (8.6). To prove the uniqueness of .y
in D, suppose that there exists another §' € D that gives

(8',0") = (Ocfi, Ocir). Define g=68 —65. As (S.g) =
(8,8') = (S,6.4) = Op—0p =0, g€ T+, and the matrix
Pythagorean theorem gives (&,8) = (e, Setr) + (9, g)-
This fact implies that (g, g) =0, ||g|*> =t {g,g) =0,
and g =0, contradicting the assumption that & # S..
Hence, J.; must be unique. m

APPENDIX K: PROOF OF LEMMA 1

Let the superscript * denote the entrywise conjugation of
a matrix and the superscript ¥ = % T denote the conjugate
transpose. A > 0 means that z'Az > 0 for any z € CY. We
also have A* > 0, since 7'A*z = (z"TAz*)* = 7*TAz"* > 0
for any z € CY. Thus, for any z € C¥9,

z'(ReA +ilmA)z > 0, z"(ReA)z > |z7(ilm A)z|.

(K1)

Let {A;,z,:5=1,...,q} be the eigenvalues and eigen-
vectors of the Hermitian iIm A. As the singular values of
iIm A are {|4,|}, we obtain

trRed = > zl(ReA)z, > > |l (ilmA)z,|

= 4| = [limA[, = [[ImA]|,. (K2)

APPENDIX L: SOME RESULTS CONCERNING
QUANTUM MULTIPARAMETER ESTIMATION

This Appendix presents some interesting results con-
cerning quantum multiparameter estimation, following
Sec. VIII and assuming 1 < ¢ < p < .

A crucial assumption in this paper is that D, the set of
influence operators, is not empty. While this assumption is
not a problem for all the examples studied in this paper, the
following theorem, generalizing a classical result by Stoica
and Marzetta [70], can be used to verify the assumption.

Theorem 11.—D 1is not empty if and only if all the
columns of Jf are in the range of the Helstrom information
matrix K, viz.,

KK*0p = op, (L1)

where the superscript + denotes the Moore-Penrose pseu-
doinverse [71].

Proof.—We prove the “only if” part first. Assume that a
6 € D exists. It satisfies (S,5) = 9f, and, therefore,

u™(S,8)v = (u"S,v"8) = u"(9B)v, (L2)

for any u € R? and v € RY. The Cauchy-Schwarz inequal-
ity gives
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W (@B < TKu) (0T (B.5)0). (L)
Now, suppose that u is in the null space of K, such that
Ku = 0, and pick v = (9f) "u. We obtain
|u™(9p)(0p) Tul* <0, (L4)
which implies (98) "u = 0. As this condition must hold for
any u in the null space of K, each column of Jf must be
orthogonal to the null space and, therefore, in the range of
K. KK™ is the projection matrix into the range of K [71],
so Eq. (L1) holds.
The “if” part comes from the fact that, as long as Eq. (L1)
holds,
5= (0B)TK*S (L5)
satisfies (6,1I) =0 and (S,8) = KKT0f = 0f and is,
therefore, an influence operator. [
For an illustrative example, consider

() ()

with the geometry depicted in Fig. 12. §{ =0 and K;; =
(S1,S51) = 0 at the singular point § = ¢, meaning that

(L6)

FIG. 12. The lines denote the Cartesian grid of 8, and 6,. The
distortion of the grid represents the geometry of p(0,,6,). For
example, the distance from one grid point (,, 6,) to a neighbor-
ing (60, + A, 6,) in the figure represents the distance between
p(01,60,) and p(0; + A,0,). S, and S, are tangent vectors, and
K = (S,S) is a metric that governs the infinitesimal distance
between two neighboring p’s. At the singular point p(¢),
K, = 0, the tangent space becomes a line in the S, direction,
which forbids the existence of influence operators for certain 9.

k1= (o (5,5, ) (L7)

The tangent space there becomes a line in the S, direction,
and it is impossible for a § to satisfy

\5.) = (<Szo,6>> B (D
if a #0.

If Eq. (L1) does not hold at certain values of 8, Theorem
11 implies that an unbiased estimator of f cannot exist
there, and the GHB can be assumed to be infinite. Note,
however, that a biased estimator may still be able to achieve
a finite error.

Provided that Eq. (L1) holds, a pseudoinverse form of
the Helstrom bound can be obtained.

Corollary 5.—If Eq. (L1) holds,

(L8)

Seit = (OP)TKS, (L9)
<66t'f"5eff> = (aﬁ)TK+aﬂv (LIO)
H=tw(p)TKap. (L11)

Proof—Equation (L5) is an influence operator and
also a linear combination of §, so it is in the tangent
space 7. By Theorem 1, it must be efficient. The other
results follow from the fact Kt KK+ = K+ [71] and the
definition of H. [

The original Helstrom bound is a simple consequence,
generalizing the scalar version in Corollary 1.

Corollary 6.—If K > 0,

et = (OP) K!8, (L12)
(Betrr Oetr) = (OP) T K~ OP, (L13)
H=uw(@p) K 'op=H. (L14)

Proof—IfK > 0, K~ exists, K™ = K~!, Eq. (L1) always
holds, and the results follow from Corollary 5. [

Finally, we mention that the semidefinite program
presented in Ref. [11] to evaluate the Holevo bound for
p =06 and a nonsingular K can be straightforwardly
extended to the more general setup considered in this
Appendix.
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