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We investigate the connection between the time evolution of averages of stochastic quantities and the
Fisher information and its induced statistical length. As a consequence of the Cramér-Rao bound, we find
that the rate of change of the average of any observable is bounded from above by its variance times the
temporal Fisher information. As a consequence of this bound, we obtain a speed limit on the evolution of
stochastic observables: Changing the average of an observable requires a minimum amount of time given
by the change in the average squared, divided by the fluctuations of the observable times the
thermodynamic cost of the transformation. In particular, for relaxation dynamics, which do not depend
on time explicitly, we show that the Fisher information is a monotonically decreasing function of time and
that the minimal required time is determined by the initial preparation of the system. We further show that
the monotonicity of the Fisher information can be used to detect hidden variables in the system and
demonstrate our findings for simple examples of continuous and discrete random processes.
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I. INTRODUCTION

Information geometry [1] is a branch of information
theory that describes information in terms of differential
geometry. Applying information geometry to physics can
be motivated by a question central to any physical experi-
ment: Given a system described by a set of parameters, how
much information about the system can we gain by
observing its change under a variation of the parameters?
As it turns out, the effect of smooth parameter variations
defines a metric called the Fisher information metric [2–5].
This metric encodes the maximum amount of information
that can be gained by measuring the change of any
observable due to the parameter change.
The relation between the measurement of observables

and information gained about the physical system is also
central to thermodynamics. Deciding which observables to
measure and which parameters to vary in doing so is
essential for reconstructing the thermodynamic potentials
and thus obtaining complete information about the macro-
scopic state of the system. Thus, it is not surprising that

there exists a strong connection between thermodynamics
and information theory, which, despite dating back all the
way to Gibbs and Boltzmann [6], has recently received
much attention [7–16]. This renewed interest is in part
motivated by improved experimental techniques, allowing
us to probe the relation between information and thermo-
dynamic quantities on a more detailed and microscopic
level [17,18], but also by new theoretical proposals based
on understanding information as a quantity that is just as
physical as matter or energy.
Interpreting thermodynamics in terms of information

relies on relating mathematical measures of information to
measurable physical quantities. A fruitful approach is that
of stochastic thermodynamics, which describes the behav-
ior of thermodynamic quantities like heat, work, and
entropy in small systems, where these quantities fluctuate
due to the presence of noise [19,20]. The probabilistic
nature of the description allows us to explicitly compute
different measures of information, whose mathematical
properties can then be used to make predictions about
physical quantities. For example, a central result of
stochastic thermodynamics is the identification of the
Kullback-Leibler divergence between the path measures
of a stochastic evolution and its time reverse with thermo-
dynamic entropy production [20]. This identification
allows for an immediate proof of the fluctuation theorem
and also guarantees that the entropy production is always
positive. More recently, Ref. [21] found an intimate
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connection between stochastic entropy and statistical
length, relating stochastic thermodynamics and information
geometry. As a consequence of this relation, a universal
speed limit for stochastic dynamics was obtained.
In this work, we focus on the physical interpretation of

Fisher information and its consequences on the time evolu-
tion of stochastic systems and observables. The Fisher
information measures how much information the state of
the system contains about a set of parameters. If the state of
the system does not depend on one of the parameters, then
the associated Fisher information is zero and no informa-
tion about this parameter can be gained from a measure-
ment. On the other hand, if a small variation of a parameter
causes a large change in the system’s state, then the Fisher
information is large and we can obtain a precise estimate
of the parameter using a suitable measurement. In the
typical setting, the state of the system is described by a
set of probabilities or a probability density, which depends
on external parameters like temperature, pressure, or
external fields.
Here, we take an entirely different viewpoint: Instead of

external parameters, we consider time itself as a parameter.
As our first main result, we argue that the Fisher information
can be interpreted as the intrinsic evolution speed of the
system. This intrinsic speed has two important properties:
First, it can be obtained by only measuring the evolution of
the state of the system and does not require any information
about the microscopic details of the dynamics. Second, and
more importantly, the intrinsic speed defined by the Fisher
information limits the evolution speed of arbitrary observ-
ables.More specifically, the rate of change of anyobservable
is smaller than the product of its fluctuations and the Fisher
information. This speed limit is a consequence of the
Cramér-Rao bound [22,23], a central result of estimation
theory. Further interpreting the Fisher information as a
thermodynamic cost [21], this result complements a class
of recently derived steady-state thermodynamic uncertainty
relations [24–29]. In the particular case of an equilibrium
system with quasistatic driving [4], we show that the Fisher
information and thus the intrinsic speed are determined by
the fluctuations of the driving power.
As our second main result, we show that for Markovian

relaxation processes, the Fisher information is a monoton-
ically decreasing function of time. This finding quantifies
the intuitive expectation that the dynamics during a
relaxation process should gradually slow down. Together
with the speed limit, this result implies that any observable
either relaxes monotonically towards its steady-state value,
or, if it exhibits oscillations during the relaxation, the
amplitude of the oscillations has to decay. The monoto-
nicity of the Fisher information for relaxation processes has
two further profound consequences: First, it results in a
lower bound on the time required to relax a stochastic
system from an initial to a final configuration, extending
previously obtained speed limits for stochastic dynamics
[21,30]. Second, it can serve as an indicator for the

presence of hidden variables in the system: If we observe
an increase of the Fisher information during a relaxation
process, this increase necessarily implies that we are
missing some information about the system. We show that
this discrepancy between observed and total information
can be used to detect hidden degrees of freedom.

II. INTRINSIC SPEED OF
STOCHASTIC DYNAMICS

Throughout the paper, we consider a system that can be
described by a set of stochastic, time-dependent quantities
xðtÞ ¼ (x1ðtÞ;…xMðtÞ). We assume that these take con-
tinuous values inR; the case of discrete-valued processes is
explicitly discussed in the Appendix. Then, the dynamics
of the system can be described in terms of a time-dependent
probability density Pðx; tÞ≡ PðxðtÞ ¼ xÞ. Examples for
xðtÞ are the positions and/or velocities of diffusing particles
or the angles of a set of coupled rotors in the presence of
noise. Generally, the probability density Pðx; tÞwill change
as a function of time, either due to the presence of time-
dependent forces in the system or due to relaxation from a
given initial state Pðx; 0Þ. We are further interested in an
observable R(xðtÞ), which is a function of xðtÞ and could
be the center of mass of a particle system or its total energy.
By definition, the average of this observable is expressed in
terms of the probability density as hrit ¼

R
dx rðxÞPðx; tÞ,

which is the expected value of r for all possible realizations
of xðtÞ. However, since the xðtÞ are stochastic quantities,
the observable r(xðtÞ) is generally a fluctuating quantity.
The fluctuations of r can be quantified in terms of its
variance hΔr2it ¼ hr2it − hri2t , which tells us how much
we expect r to deviate from its average for any single
realization of xðtÞ. As the system evolves in time, so will
the average and variance of the observable r. Our first main
result is based on the Cramér-Rao bound [22,23]: The
variance of an estimator of a parameter θ is always larger
than the inverse of the Fisher information. Choosing the
parameter θ as time, the Cramér-Rao bound can be
interpreted as a speed limit on the evolution of an arbitrary
observable,

jdthritj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔr2it

q
vIðtÞ; ð1Þ

where vIðtÞ ¼
ffiffiffiffiffiffiffiffi
IðtÞp

is the square root of the Fisher
information

IðtÞ ¼
Z

dx
(∂tPðx; tÞ)2

Pðx; tÞ : ð2Þ

In the sense of the Cramér-Rao bound, we use a time-
dependent observable hrit as an estimator of t, and thus its
fluctuations are bounded from below by 1=IðtÞ. Crucially,
the speed vIðtÞ is independent of the choice of r and thus
can be interpreted as the intrinsic speed of the evolution.
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Therefore, the speed limit in Eq. (1) can be understood in
the following way: The Fisher information determines the
intrinsic speed vIðtÞ with which the system evolves. This
intrinsic speed also limits the rate at which any observable,
measured in units of its typical fluctuations, can change. We
stress that vIðtÞ depends only on the measurable time
evolution of the probability density; it does not require any
knowledge about the microscopic dynamics. In principle,
once we know the probability density Pðx; tÞ and its time
derivative, we may compute the time evolution hrit of any
observable explicitly. However, the temporal Fisher infor-
mation IðtÞ has the advantage that it offers a simple way of
quantifying the overall speed of the time evolution in terms
of a single number. Once the Fisher information is known,
it provides an upper bound on the evolution speed of any
observable via Eq. (1). We stress that the Fisher information
with respect to a system’s parameters can generally be
measured explicitly [31] and constitutes an important
quantifier of the information content of measurements
[32]. Here, we extend this concept by considering time
as a parameter of the system.
Another way to understand Eq. (1) is in terms of the

typical scales involved in the time evolution of an observ-
able: We require at least two scales to characterize this
evolution. One is the scale on which we measure the
observable itself, e.g., length, energy or momentum,
depending on the observable. The other is the timescale
on which the expectation of the observable changes.
Equation (1) suggests that a natural scale for the observable
is set by its root-mean-square fluctuations r̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
hΔr2i

p
.

When measuring the rate of change of the observable
relative to this scale, we naturally obtain the timescale
τr ¼ r̄=jdthritj. Importantly, these scales can be obtained
solely from a measurement of rðtÞ and do not require any
modeling of the dynamics. Equation (1) then ensures that
the timescale governing the evolution of any observable can
only be larger than the intrinsic timescale set by the Fisher
information.
An obvious question is if, and under what conditions, we

can have equality in Eq. (1), i.e., whether some observable
can change as fast as is allowed by the change of the
probability density. As we show in Appendix A, this
change can only be realized if the probability distribution
can be written as

Pðx; tÞ ¼ eAðtÞrðxÞ

heAðtÞri0
P0ðxÞ; ð3Þ

where the function AðtÞ can be expressed in terms of the
average and variance of r as

AðtÞ ¼
Z

t

0

ds
dshris
hΔr2is

: ð4Þ

This form of the probability distribution means that,
starting from an arbitrary initial distribution, the time

evolution can be described as exponentially tilting the
distribution by the observable rðxÞ. An explicit example for
a probability distribution realizing Eq. (3) is a normal
distribution with a time-independent covariance matrix (see
the discussion in Sec. VI C). For any probability distribu-
tion that cannot be written in the above form, the speed
limit in Eq. (1) is an inequality.
As an example of stochastic dynamics, we consider a

particle system in contact with a heat bath described by the
Langevin equation

_xðtÞ ¼ μf ðxðtÞ; tÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2μkBT

p
ξðtÞ: ð5Þ

Here, μ is the positive definite and symmetric mobility
matrix, f contains the systematic forces (interactions and
external forces) acting on the particles, kB is the Boltzmann
constant, and T is the temperature. The vector ξ is com-
posed of independent Gaussian white noises hξiðtÞξjðsÞi ¼
δijδðt − sÞ. The square root

ffiffiffi
μ

p
of the mobility matrix is

defined as the unique symmetric and positive-definite
matrix satisfying

ffiffiffi
μ

p ffiffiffi
μ

p ¼ μ. Equivalently, we can des-
cribe the system in terms of its probability distribution
Pðx; tÞ, which evolves according to the Fokker-Planck
equation

∂tPðx; tÞ ¼ −∇ · jðx; tÞ; ð6aÞ

jðx; tÞ ¼ μðf ðx; tÞ − kBT∇ÞPðx; tÞ; ð6bÞ

where j is the probability current. Depending on f , the
dynamics can have several timescales: the relaxation
of the particles in an external potential, interactions
between the particles, and explicitly time-dependent forces.
Furthermore, different observables may depend on these
timescales in different ways. For example, the center of
mass position may be insensitive to interactions between
the particles and thus not vary on the corresponding
timescale. On the other hand, the relative distance between
particles is generally sensitive to interactions and may vary
considerably. Nevertheless, both observables obey the
speed limit in Eq. (1), and thus the timescale 1=vIðtÞ set
by the Fisher information dominates all other timescales in
the system.
A bound resembling Eq. (1) may also be obtained in

terms of the entropy production rate [33,34],

σtotðtÞ ¼ 1

kBT

Z
dx

jðx; tÞTμ−1jðx; tÞ
Pðx; tÞ ; ð7Þ

where the superscript T denotes transposition. As shown in
Ref. [35], we then have the inequality

jdthritj ≤
ffiffiffiffiffiffiffiffiffiffi
χrðtÞ

p ffiffiffiffiffiffiffiffiffiffiffiffi
σtotðtÞ

p
with χrðtÞ ¼ kBT

Z
dx∇rðxÞTμ∇rðxÞPðx; tÞ: ð8Þ
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While this inequality shows that any time evolution
necessarily involves a finite entropy production rate and
can be considered as a kind of entropic speed limit, it
does not lend itself to a straightforward interpretation in
terms of an intrinsic speed of the dynamics. First of all, the
quantity χr has dimensions of r2=time, resembling a
diffusion coefficient for r, and thus contains a timescale
by itself. As a consequence, the corresponding speed limit
is a combination of the stochastic change of r over small
length scales (as signified by the appearance of the gradient
in χr) and the rate of entropy production. Second, the
entropy production rate itself depends on the microscopic
dynamics; i.e., we generally need to know the forces and
fluxes in the system to calculate it. By contrast, the speed
vIðtÞ in Eq. (1), which is defined in terms of the Fisher
information, only depends on the time evolution of the
probability density. Both the Fisher information in Eq. (2)
and the entropy production rate in Eq. (7) have quadratic
forms. Specifically, defining _Φðx; tÞ ¼ −∂t ln (Pðx; tÞ) and
νðx; tÞ ¼ jðx; tÞ=Pðx; tÞ, we can write

IðtÞ ¼ h _Φ2it; ð9aÞ

σtotðtÞ ¼ 1

kBT
hνTμ−1νit: ð9bÞ

The local mean velocity νðx; tÞ describes the average
flow at coordinate x and time t. It vanishes in equilibrium
and takes a finite, time-independent value in a nonequili-
brium steady state. By contrast, _Φðx; tÞ, the stochastic rate
of Shannon entropy production, describes the rate of
change of the probability distribution and vanishes in
any steady state. Correspondingly, while the entropy
production measures the magnitude of the local flows,
the Fisher information measures the magnitude of the
change in the ensemble [see also Eq. (1)]. As we discuss
in detail in the next section, the Fisher information can only
decrease during a Markovian relaxation process. This case
is in contrast to the entropy production rate, which may
exhibit a transient increase even during relaxation towards
equilibrium. As remarked above, the entropy production
contains more information about the microscopic dynam-
ics. As a consequence, entropy production generally
dominates the Fisher information, in the sense that we have

IðtÞ2 ≤ kBTh∇ _ΦTμ∇ _ΦiσtotðtÞ; ð10Þ

which follows from Eq. (8) with r ¼ −∂t lnP. Thus, a
vanishing entropy production also implies a vanishing
Fisher information, while the converse is true only for
systems that relax to an equilibrium state. Nevertheless,
either one of the bounds, Eq. (1) or (8), may be tighter.
Finally, let us remark on the connection between Eq. (1)

and the thermodynamic uncertainty relation [24,25],
another inequality that has recently received much attention

[26–28]. While the above discussion focuses on observ-
ables in the usual sense, i.e., those whose average can be
expressed in terms of the probability density, another class
of observables, the so-called time-integrated currents, can
be defined in terms of the local mean velocity as

hqit ≡
Z

t

0

dt0
Z

dx ρðxÞνðx; t0ÞPðx; t0Þ: ð11Þ

In contrast to usual observables, such currents can change
as a function of time even if the probability density does not
change in time, provided that the local mean velocity is
nonzero. In terms of the Fokker-Planck equation (6), this
case occurs if the probability current is nonzero but its
divergence vanishes, and it is referred to as a nonequili-
brium steady state (in contrast to a true equilibrium state,
where the current is zero). For such a nonequilibrium
steady state, the thermodynamic uncertainty relation
[24,25] states that the rate of change of the currents is
bounded from above by the rate of entropy production,

jdthqistt j ≤
ffiffiffiffiffiffi
Dq

p ffiffiffiffiffiffiffiffiffiffi
σtot;st

p
; ð12Þ

where Dq ¼ limt→∞hΔq2it=ð2tÞ is the diffusion coefficient
associated with the current and the superscript “st” denotes
the steady state. Equations (1) and (12) are similar in that
they provide a bound on the rate of change of an observable
in terms of its fluctuations and a positive, information-
theoretic quantity. However, they apply to complementary
physical situations. In the thermodynamic uncertainty
relation (12), the system is in a steady state and the
observable is a current, i.e., depends on transitions in the
system. This nonequilibrium steady state is characterized
by an increase in entropy, which, by Eq. (7), can be
interpreted as the magnitude of the intrinsic currents. On
the other hand, the speed limit in Eq. (1) describes a system
with an explicit time evolution, and the observable depends
only on the current state of the system rather than
transitions. The rate of change of such observables vanishes
in the steady state and is governed by Fisher information
rather than entropy production.

III. MONOTONICITY OF
RELAXATION PROCESSES

From Eq. (1), it is clear that the intrinsic velocity vIðtÞ is
generally a dynamical quantity rather than just a parameter;
in particular, it depends explicitly on time. Thus, it is
natural to ask how this velocity and thus the speed of the
time evolution change over its course. To answer this
question, we note that since dtvIðtÞ ¼ dtIðtÞ=(2

ffiffiffiffiffiffiffiffi
IðtÞp

)
and IðtÞ is positive, the velocity inherits the qualitative
dynamics of the Fisher information. For a Fokker-Planck
dynamics like Eq. (6), we show in Appendix D that the time
derivative of the Fisher information can be decomposed
into two parts,
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dtIðtÞ ¼ dtIdrvðtÞ þ dtIrelðtÞ; ð13Þ

which are explicitly given by

dtIdrvðtÞ ¼ −2
Z

dx _f ðx; tÞTμ∇ _Φðx; tÞPðx; tÞ; ð14aÞ

dtIrelðtÞ ¼ −2kBT
Z

dx∇ _Φðx; tÞTμ∇ _Φðx; tÞPðx; tÞ:

ð14bÞ

Here, we used the notation _f ðx; tÞ ¼ ∂tf ðx; tÞ and
Φðx; tÞ ¼ − ln (Pðx; tÞ) as above. The first term dtIdrvðtÞ
explicitly contains the time derivative of the force. We refer
to this term as the driving term, which only appears when
we apply a time-dependent driving to the system. We note
that this term can be positive or negative. By contrast, the
second term is always negative since the mobility matrix is
positive definite. Thus, this term always decreases the
Fisher information, and we interpret it is as the relaxation of
the system towards the instantaneous steady state. In
particular, if there is no time-dependent driving, then the
Fisher information is a monotonically decreasing function
of time,

dtIðtÞ ¼ dtIrelðtÞ ≤ 0: ð15Þ

As we show in Appendix D, this property is not specific to
dynamics of the form in Eq. (6) but holds for general
Markovian dynamics without explicit time dependence. We
thus have the following general statement: For a Markovian
relaxation process, the Fisher information is a monotoni-
cally decreasing function of time.
Since the same statement holds for the velocity vIðtÞ,

the intrinsic speed of a relaxation process monotonically
decreases with time. Furthermore, as a consequence of the
speed limit in Eq. (1), the rate of change of any observable
is bounded by a monotonically decreasing function of time,
which also implies that the evolution of observables
gradually slows down during a relaxation process. Note
that this result does not imply that the relaxation of arbitrary
observables is monotonic; in the general case, there may be
oscillations even during a purely relaxational dynamics;
however, as a consequence of the speed limit, the amplitude
of these oscillations has to decrease with time.
A general property of the Fisher information (see Sec. V

below) is its additivity under a separation of variables.
Suppose that, as in Eq. (43), the system of interest is
composed of two sets of degrees of freedom, y and ψ.
Physically, we assume that y contains the observable
degrees of freedom, which are accessible to direct obser-
vation, and ψ is composed of hidden degrees of freedom,
which are not directly observable. The Fisher information is
additive under this separation of variables [see Eq. (43)],

IðtÞ ¼ Iψ jyðtÞ þ IyðtÞ; ð16Þ

where IyðtÞ is the Fisher information corresponding to the
probability density of the observable variables Pyðy; tÞ. If
the system is time independent, we then have, for the total
Fisher information from Eq. (15),

dtIðtÞ ¼ dtIψ jyðtÞ þ dtIyðtÞ ≤ 0: ð17Þ

While each individual term may be positive or negative, the
sum of the terms has to be negative. This requirement
means that if we measure IyðtÞ from the probability
distribution of the observable degrees of freedom and find
dtIyðtÞ > 0 at any time, then we have a clear indicator that
hidden degrees of freedom are present in the system. We
can make this precise in the form of the following state-
ment: If, for some stochastic process yðtÞ, we observe
dtIyðtÞ > 0 at any time t, the process cannot be described
in terms of a diffusion process with a time-independent drift
and diffusion coefficient. Thus, either the drift and/or
diffusion coefficient depends explicitly on time, or there
are hidden degrees of freedom in the system that effectively
render the process yðtÞ non-Markovian. We stress that this
criterion relies only on a measurement of the probability
density Pyðy; tÞ of the observable degrees of freedom. It
thus provides a way to detect hidden degrees of freedom
directly from a measurement, without assuming any kind of
model for the dynamics. Furthermore, while a mismatch
between the measured probability density and a given
model generally only implies that the specific model cannot
explain the experiment, a violation of Eq. (15) rules out any
model with the same number (or less) of degrees of
freedom.
For dynamics that are driven by time-dependent forces,

the Fisher information can decrease or increase as a
function of time. Still, the decomposition of its derivative,
Eq. (14), into the negative relaxation and the (positive or
negative) driving part remains valid. Furthermore, the two
contributions are not independent. Rather, applying the
Cauchy-Schwarz inequality to the driving part, we obtain

ðdtIdrvðtÞÞ2 ≤ 4h_f Tμ_f ith∇ _ΦTμ∇ _Φit: ð18Þ

Identifying the second term on the right-hand side as the
relaxation part, this formula can be written as

ðdtIdrvðtÞÞ2 ≤ −
2

kBT
h_f Tμ_f itdtIrelðtÞ: ð19Þ

The first term on the right-hand side only depends on the
time derivative of the applied forces. Thus, the maximal
magnitude of the driving part is bounded by the relaxation
part. Plugging in Eq. (14), we obtain
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ðdtIdrvðtÞÞ2 −
2

kBT
h_f Tμ_f itdtIdrvðtÞ

þ 2

kBT
h_f Tμ_f itdtIðtÞ ≤ 0: ð20Þ

The left-hand side is a parabola in dtIdrvðtÞ with a positive
coefficient in front of the quadratic term. Thus, it can only
be negative if the discriminant is positive, which leads to
the condition

dtIðtÞ ≤
1

2kBT
h_f Tμ_f it: ð21Þ

This result provides an upper bound on the change in Fisher
information in terms of the time derivative of the applied
forces. While this inequality is typically not very sharp,
it allows us to estimate how much the speed of the
dynamics can increase by applying a time-dependent
driving to the system. In particular, if the forces have no
explicit time dependence, the right-hand side is zero, and
we recover Eq. (15).

IV. THERMODYNAMIC INTERPRETATION
OF FISHER INFORMATION

The Fisher information can be explicitly expressed in
terms of the energetics of the system if the probability
density belongs to the exponential family [4],

Pðx; tÞ ¼ e−βHðx;tÞR
dx e−βHðx;tÞ ; ð22Þ

where Hðx; tÞ is the Hamiltonian of the generating dynam-
ics and β ¼ 1=ðkBTÞ. This form is realized, for example,
for f ðx; tÞ ¼ −∇Uðx; tÞ in Eq. (6), where Uðx; tÞ is a
potential that varies slowly in time. In the quasistatic limit,
we then have Eq. (22) with Hðx; tÞ ¼ Uðx; tÞ to leading
order. In this case, a straightforward calculation shows that

IðtÞ ¼ β2ðhð∂tUÞ2i − h∂tUi2Þ: ð23Þ

In the spirit of stochastic thermodynamics [19,20], we write
the change in the total energy of the system as

dtEðtÞ ¼ dthUit ¼
Z

dxUðx; tÞ∂tPðx; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
h _Qit

þ
Z

dx∂tUðx; tÞPðx; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
h _Wit

: ð24Þ

We interpret the first term (i.e., the change in energy due
to the change in the system’s state) as the rate of heat
dissipated into the environment and the second term

(i.e., the change in energy due to the driving) as the rate
of work performed on the system,

_WðtÞ ¼ ∂tUðxðtÞ; tÞ: ð25Þ

We then have

vIðtÞ ¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔ _W2it

q
: ð26Þ

In other words, the intrinsic speed of the time evolution is
set by the typical fluctuations of the input power. At first
glance, it might seem surprising that the fluctuations of the
power rather than the average power determine the speed of
the time evolution. However, for near-equilibrium systems
described by the exponential family, there is a close relation
between averages and fluctuations and the latter determine
the dynamics via the fluctuation-dissipation theorem (see
below). We remark that, in general, the Fisher information
can be related to the stochastic heat exchange between the
system and the heat bath (see Appendix B). We further note
that, plugging the definition of the heat in Eq. (24) into
Eq. (1), we obtain, in the general case,

jh _Qitj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔU2it

q
vIðtÞ ð27Þ

or, specializing to the quasistatic case in Eq. (26),

jh _Qitj ≤ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔU2ithΔ _W2it

q
; ð28Þ

i.e., the rate of heat exchange is bounded by the product of
the fluctuations of the total energy and input power. As a
concrete application of the relation (26) between the
intrinsic velocity and the power fluctuations, we consider
the case where the potential only depends on time via a
slowly varying, spatially homogeneous force fiðtÞ on a
“probe particle” i, i.e., Hðx; tÞ ¼ H0ðxÞ þ fiðtÞxi. In this
case, we have

vIðtÞ ¼ βj _fiðtÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔx2i it

q
: ð29Þ

Thus, the intrinsic speed of the time evolution is set by the
fluctuations of the position of the probe particle. Using the
speed limit in Eq. (1), we then have, for any other particle j,

jdthxjitjffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔx2jit

q ≤ βj _fiðtÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔx2i it

q
: ð30Þ

This surprising result states that, when slowly driving the
probe particle, the maximal effect of this perturbation on
any other particle is determined by the fluctuations of the
probe particle’s position, independent of the type of
interactions between the particles. In particular, by only
measuring the fluctuations of the probe particle, we can
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estimate how strongly other particles will be affected. We
remark that we have equality in Eq. (30) for i ¼ j, in which
case the relation reduces to the fluctuation-dissipation
theorem [36]. This result is in fact a special case of
Eq. (3) since the time-dependent part of the energy is
linear in the observable. In general, the Fisher informa-
tion can be expressed directly in terms of physical
observables when the functional form of the probability
density is known, e.g., for normal distributions as discussed
in Sec. VI C. In this case, the Fisher information can be
expressed in terms of the parameters of the probability
density, such as its mean and covariance matrix.
For general dynamics in which the functional form of the

probability density is not known, the relation between the
Fisher information and other thermodynamic observables is
not so obvious. However, even in the general case, the time
derivative of the Fisher information bears some striking
resemblance to the entropy production rate. Introducing the
local mean velocity νðx; tÞ ¼ μ(f ðx; tÞ − kBT∇ lnðPðx; tÞ)
as above, we can write ∇ _Φðx; tÞ ¼ ðμ−1 _νðx; tÞ − _f ðx; tÞÞ=
ðkBTÞ. Plugging this formula into Eq. (14), we have

IðtÞ≡ 1

kBT
h_νTμ−1 _νit ¼

1

kBT
h_f T _νit −

1

2
dtIðtÞ: ð31Þ

The expression (31) resembles the total entropy production
(7), which can be written as

σtotðtÞ ¼ 1

kBT
hνTμ−1νit ¼

1

kBT
hf Tνit þ dtSsysðtÞ; ð32Þ

where SsysðtÞ ¼ −
R
dx ln (Pðx; tÞ)Pðx; tÞ is the Shannon

entropy with dtSsysðtÞ ¼ σsysðtÞ. In both cases, we have an
explicitly positive quantity, which is decomposed into a
total time derivative plus an additional term. In the case of
Eq. (32), the positive quantity is the rate of total entropy
production, proportional to the square of the local mean
velocity. The total time derivative is the change in Shannon
entropy, and the additional term can be identified with the
rate of heat exchanged with the environment _QðtÞ ¼
−hf Tνit. For Eq. (31), the positive quantity IðtÞ is propor-
tional to the square of the change in local mean velocity,
and the total time derivative is the change in Fisher
information. We conclude that, in contrast to the entropy
production, which describes the local flows in the system,
the Fisher information describes how these flows change in
time. Thus, while the total entropy production is deter-
mined by the magnitude of the local mean velocity ν, the
positive relaxational contribution to the Fisher information
IðtÞ is given by the magnitude of the change in the local
mean velocity _ν.
Integrating Eq. (32) from t ¼ 0 to t ¼ τ, we obtain the

second law of thermodynamics from the positivity of the
total entropy production,

−ΔQ ¼
Z

τ

0

dt hf Tνit ≥ −kBTΔSsys: ð33Þ

In particular, if the state of the system is the same at t ¼ 0
and t ¼ τ (for example, for periodically driven systems),
then the Shannon entropy does not change and heat is
dissipated into the environment, ΔQ ≤ 0. Likewise, since
the left-hand side of Eq. (31) is positive, we findZ

τ

0

dt h_f T _νit ≥
kBT
2

(IðτÞ − Ið0Þ): ð34Þ

If the Fisher information is the same in the initial and final
states, ΔI ¼ 0, then the product of the time derivatives of
the force and the local mean velocity has to be positive on
average, Z

τ

0

dt h_f T _νit ≥ 0: ð35Þ

This result is true, in particular, for any process that
connects two arbitrary steady states since then we have
Ið0Þ ¼ IðτÞ ¼ 0. In terms of the local mean velocity, we
can interpret Eq. (33) as stating that, on average, the scalar
product between the local mean velocity and the external
force should be positive; i.e., a sustained microscopic flow
opposite to the external force is not possible. Equation (35)
demands that the same is true for the time derivatives of the
respective quantities.
Finally, we note that the expression for dtIrelðtÞ in

Eq. (14) is precisely the same as the factor relating the
entropy production rate to the Fisher information in
Eq. (10). Thus, we have the relation between entropy
production and Fisher information for Fokker-Planck
dynamics,

dtIrelðtÞ ≤ −
2IðtÞ2
σtotðtÞ : ð36Þ

For relaxation processes, in particular, we have dtIðtÞ ¼
dtIrelðtÞ and thus

dtIðtÞ ≤ −
2IðtÞ2
σtotðtÞ : ð37Þ

This relation is rather surprising since the Fisher informa-
tion is defined only in terms of the probability density while
the entropy production rate depends on the explicit dynam-
ics, i.e., the forces acting on the system. Nevertheless, the
two quantities are related for relaxation processes: The
Fisher information has to decay at a minimum rate, which is
given by the ratio of the Fisher information and the total
entropy production rate.
Generally, measuring the Fisher information requires

determining the probability density Pðx; tÞ and its time
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derivative, which may be challenging in experimental
situations. However, we can invert the speed limit in
Eq. (1) to give a lower estimate on the Fisher information.
In particular, from the generalized Cramér-Rao bound for
several observables [37], we obtain the inequality

ðdthritÞTΞ−1
r ðtÞðdthritÞ ≤ IðtÞ: ð38Þ

Here, rðxÞ ¼ (r1ðxÞ;…; rKðxÞ) is a vector composed of K
observables, and ΞrðtÞ is their covariance matrix with
entries (ΞrðtÞ)ij ¼ hΔriΔrjit. By measuring more observ-
ables, we can thus obtain a tighter lower bound on the
Fisher information. Consequently, even if the Fisher
information is not directly accessible via measurements,
it nevertheless limits how much information can be
obtained by measuring the time evolution of arbitrary
observables.

V. GEOMETRIC INTERPRETATION

Since the Fisher information is a central quantity in
information geometry [1], it is natural to consider the
geometric interpretation of the previous results. We start by
reviewing some general properties and the geometric
interpretation of Fisher information. Consider a system
described by a probability density Pðx; θÞ, where θ is a
parameter. If θ is equal to the observation time t ∈ ½0; T �,
then Pðx; tÞ describes the time evolution of the probability
density. However, θ may also be some other, more general
parameter; e.g., Pðx; θÞ could be the steady-state proba-
bility density of the system and θ some externally tunable
field. In the following, we assume that Pðx; θÞ depends
smoothly on θ, such that, in particular, the derivative
∂θPðx; θÞ exists and is a continuous function and the
second derivative ∂2

θPðx; θÞ exists. The Fisher information
IðθÞ is defined by [37]

IðθÞ ¼
Z

dx
(∂θPðx; θÞ)2

Pðx; θÞ
¼ hð∂θ lnPÞ2iθ ¼ −h∂2

θ lnPiθ; ð39Þ

where h…iθ denotes an average with respect toPðx; θÞ. The
last equality follows from the normalization of the prob-
ability density ∂θ

R
dxPðx; θÞ ¼ ∂θ1 ¼ 0. We note that, by

definition, the Fisher information is positive and vanishes
only if the probability density is independent of θ. The
Fisher information is related to the Kullback-Leibler
divergence or relative entropy between two distributions
PðxÞ and QðxÞ,

DKLðQkPÞ ¼
Z

dxQðxÞ ln
�
QðxÞ
PðxÞ

�
: ð40Þ

Choosing QðxÞ ¼ Pðx; θ þ dθÞ, i.e., the probability dis-
tribution at an infinitesimally different value of θ, the

corresponding Kullback-Leibler divergence is, to leading
order in dθ, given by

DKL(Pðθ þ dθÞkPðθÞ) ¼ 1

2
IðθÞdθ2 þOðdθ3Þ; ð41Þ

and the Fisher information is thus the curvature of the
Kullback-Leibler divergence. Similar to the Kullback-
Leibler divergence, the Fisher information is additive in
the following sense: Suppose that we subdivide the random
variables into two sets x ¼ ðy;ψÞ. Introducing the condi-
tional probability density Pψ jyðψ; θjyÞ, we can then write

Pðx; θÞ ¼ Pψ jyðψ; θjyÞPyðy; θÞ; ð42Þ

where Py(y; θ) is the marginal density of the random
variables y. Then, a straightforward calculation shows that

IðθÞ ¼ Iψ jyðθÞ þ IyðθÞ

with Iψ jyðθÞ≡
Z

dψ
Z

dy
(∂θPψ jyðψ; θjyÞ)2

Pψ jyðψ; θjyÞ
Pyðy; θÞ

¼ hð∂θ lnPψ jyÞ2iθ
IyðθÞ≡

Z
dy

(∂θPyðy; θÞ)2
Pyðy; θÞ

¼ hð∂θ lnPyÞ2iθ:

ð43Þ

The Fisher information can thus be decomposed into two
positive terms, depending on the conditioned statistics
of the random variables ψ and the statistics of the
random variables y, respectively. In particular, we have
IðθÞ ≥ IyðθÞ; i.e., eliminating variables decreases the
Fisher information. If the random variables ψ and y are
further independent, then we have IðθÞ ¼ IψðθÞ þ IyðθÞ.
The geometric interpretation of the Fisher information
follows from defining a statistical line element ds by

ds2 ¼ IðθÞdθ2: ð44Þ

The quantity ds may be thought of as a dimensionless
distance between the probability densities at two infini-
tesimally different values of θ, i.e., between Pðx; θÞ and
Pðx; θ þ dθÞ. In a natural way, the infinitesimal statistical
line element defines a statistical length,

Lðθ2; θ1Þ ¼
Z

θ2

θ1

ds ¼
Z

θ2

θ1

jdθj
ffiffiffiffiffiffiffiffiffi
IðθÞ

p
: ð45Þ

This length measures the length of the path traced by the
probability density under a change of the parameter from
θ ¼ θ1 to θ ¼ θ2. We remark that the statistical length has
all the properties expected of a path length, in that it
satisfies the triangle inequality and is invariant under
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monotonic reparametrizations of the path. We further
remark that the above notions can be extended to a
higher-dimensional parameter space; however, in what
follows, we take θ to be the evolution time of a stochastic
system and thus will only require the one-dimensional case.
In principle, there are infinitely many possible parametri-
zations of the path from θ1 to θ2, e.g., P̃ðx; θÞ with
P̃ðx; θ1Þ ¼ Pðx; θ1Þ and P̃ðx; θ2Þ ¼ Pðx; θ2Þ but P̃ðx; θÞ ≠
Pðx; θÞ otherwise. However, since any parametrization has
to give a normalized probability density,

R
dxPðx; θÞ ¼ 1,

there exists a unique parametrization that minimizes the
path length Lðθ2; θ1Þ (see Appendix E). Geometrically, the
normalization condition means that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðx; θÞp

has to be a
vector of length 1, i.e., tracing a path on the infinite-
dimensional unit sphere (see the illustration in Fig. 1).
Thus, the minimal length is the arc length between points
Pðx; θ1Þ and Pðx; θ2Þ,

Λ≡ 2 arccos

�Z
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðx; θ2ÞPðx; θ1Þ

p �
; ð46Þ

which is also referred to as the Bhattacharyya angle [38].
The parametrization that realizes this minimal length is the
geodesic curve,

P�ðx; θÞ ¼ 1

sinðΛ
2
Þ2
�
sin

�
Λ
2

θ2 − θ

θ2 − θ1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðx; θ1Þ

p
þ sin

�
Λ
2

θ − θ1
θ2 − θ1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðx; θ2Þ

p �
2

; ð47Þ

which simultaneously minimizes the action integral

Cðθ2; θ1Þ ¼
1

2

Z
θ2

θ1

dθIðθÞ: ð48Þ

For the geodesic curve, we thus have

L�ðθ2; θ1Þ ¼ Λ; C�ðθ2; θ1Þ ¼
Λ2

2ðθ2 − θ1Þ
; ð49Þ

while for any other parametrization Pðx; θÞ, we have the
inequalities

Cðθ2; θ1Þ ≥
L2

2ðθ2 − θ1Þ
≥

Λ2

2ðθ2 − θ1Þ
; ð50Þ

where the first inequality follows from applying the
Cauchy-Schwartz inequality to L2 and the second one is
a consequence of L ≥ Λ.
Applying the above formula to the case where θ ¼ t, we

immediately have the statistical length of the time evolution
of the probability density,

LðtÞ ¼
Z

t

0

dsvIðsÞ ⇔ vIðtÞ ¼ dtLðtÞ: ð51Þ

Thus, the intrinsic velocity vIðtÞ is the velocity of the
probability density vector, and it measures how fast the
system traverses the path. Using the speed limit in Eq. (1),
we find that

LðtÞ ≥ LrðtÞ≡
Z

t

0

ds
jdshrisjffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔr2is

p : ð52Þ

We can interpret Lr as the “length” of the time evolution of
the observable r. In Ref. [4], a protocol to measure the
statistical length for probability distributions belonging to
the exponential family in Eq. (22) was suggested. While the
above formula only provides a lower estimate, we can
obtain it for arbitrary dynamics and any observable. On the
other hand, this formula also provides a geometric inter-
pretation of the speed limit in Eq. (1). The statistical length
L is the length of the path traced by the probability in a
high-dimensional space. Since computing the average
corresponds to a projection into a lower-dimensional space
(in this case, one-dimensional space), Eq. (1) states that the
projected path LR is always shorter. In a similar way, the
nonmonotonic behavior in the presence of hidden degrees
of freedom discussed in Sec. III can be understood from a

FIG. 1. Illustration of different parametrizations of the path
between two probability densities Pðθ1Þ and Pðθ2Þ (red dots).
While any parametrization P̃ is constrained to lie on the unit
sphere due to normalization, the length of the path can be
arbitrarily long (blue). By contrast, the shortest possible path is
given by the geodesic P� (green dashed line). Note that this three-
dimensional illustration corresponds to the case of three discrete
states, whereas in the case of continuous random variables, the
underlying space is infinite dimensional.
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geometric point of view, as illustrated in Fig. 2. Moreover,
if the observable r only depends on a subset y of the
stochastic variables, then we have the sequence of bounds

jdthritjffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔr2it

p ≡ vrðtÞ ≤ vIrðtÞ ≤ vIyðtÞ ≤ vIðtÞ: ð53Þ

Here, vIr is the evolution speed of Prðr; tÞ ¼R
dxδðrðxÞ − rÞPðx; tÞ, and vIy is the evolution speed

of Pyðy; tÞ. This sequence of inequalities implies that as
less information is included in the probability density, its
evolution speed gets slower. This result is intuitive as
averaging out degrees of freedom may eliminate fast
timescales from the dynamics.
For θ ¼ t, the action functional in Eq. (48) plays the role

of a kinetic energy,

CðtÞ ¼ 1

2

Z
t

0

dsvIðsÞ2; ð54Þ

and from Eq. (50), we immediately get the integral speed
limit derived in Ref. [21],

t ≥
L2

2C
≥
Λ2

2C
; ð55Þ

which provides a lower bound on the time it takes for the
probability vector to trace a path of length L. Using
Eq. (50), we can further derive an integral speed limit in
terms of the observable r,

t ≥
L2
r

2C
≥

1

2C
ðhrit − hri0Þ2
hΔr2imax

; ð56Þ

where hΔr2imax denotes the maximal variance of r in the
interval ½0; t�. This case provides a lower bound on the time
necessary to change the average of the observable from hri0
to hrit. In the case of a relaxation process, we can combine
Eqs. (15) and (55) in order to obtain

t ≥
Λ2

2C
≥

Λ2

tIð0Þ
⇒ t ≥

Λ
vIð0Þ

: ð57Þ

Since the Bhattacharyya angle in Eq. (46) only depends on
the initial and final states, Eq. (57) constitutes a speed limit
on relaxation processes, which only depends on the initial
speed of the evolution. We remark that such speed limits
have been extensively discussed in quantum-mechanical
systems (see, e.g., Ref. [39]); however, it has recently been
found that similar bounds also apply to classical and
stochastic dynamics [30,40]. In contrast to the Margolus-
Levitin-type bound derived in Ref. [30] [Eq. (23) therein],
this result does not require any particular spectral properties
of the generator or existence of a steady state; the only
requirement is that the generator does not depend explicitly
on time. Note that, in contrast to a jump process on a finite
state space, in the continuous case, the existence of a steady
state is not guaranteed even if the generator is time
independent and ergodic; the simplest example is
Brownian motion in an infinite domain, which does not
possess a steady-state probability density. Furthermore, the
bound (57) is tighter than the Mandelstam-Tamm-type
bound derived in Ref. [30] [Eq. (26) therein] for a particle
relaxing in a binding potential since we have 2 arccosðxÞ ≥
πð1 − xÞ for x > 0. Using Eq. (37), we further have that

�Z
t

0

dt0 Iðt0Þ
�

2

≤
�Z

t

0

dt0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
dt0Iðt0Þσtotðt0Þ

r �
2

≤ −
1

2

Z
t

0

dt0 dt0Iðt0Þ
Z

t

0

dt0 σtotðt0Þ

¼ 1

2
(Ið0Þ − IðtÞ)ΔStot

≤
1

2
Ið0ÞΔStot; ð58Þ

where we used the Cauchy-Schwarz inequality from the
first to the second line. From Eq. (55), this formula gives us

t ≥
ffiffiffi
2

p
Λ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ið0ÞΔStotp ; ð59Þ

or combining with Eq. (57),

FIG. 2. Illustration of the nonmonotonic behavior of the Fisher
information in the presence of hidden degrees of freedom. The
relaxation of the system towards the steady state traces a path in
the (in this case, three-dimensional) state space. In the full state
space (left diagram), this relaxation is accompanied by a
monotonic decrease of the temporal Fisher information (i.e.,
the speed of the relaxation process), as indicated by the arrows
along the path. Tracing out the hidden degrees of freedom
corresponds to a projection of the path into a lower-dimensional
subspace (shaded, right diagram). In this example, the initial
relaxation process is mostly in the direction of the hidden degrees
of freedom, resulting in an apparently slower speed in the
projected dynamics and thus in a nonmonotonic behavior of
the Fisher information.
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t ≥
Λ

vIð0Þ
× max

�
1;

ffiffiffiffiffiffiffiffiffiffi
2Λ2

ΔStot

r �
: ð60Þ

Thus, we can possibly obtain a tighter speed limit by using
additional information on the thermodynamic properties of
the relaxation process in the form of the total entropy
production.

VI. EXAMPLES

A. General normal distributions

A particularly succinct and widely applicable example
for the relation between statistical length, Fisher informa-
tion, and observables is for a normal distribution in M
variables,

Pðx; tÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞM det(ΞðtÞ)

p
×exp

�
−
1

2
(x−mðtÞ)TΞðtÞ−1(x−mðtÞ)

�
; ð61Þ

with the average hxit ¼ mðtÞ and the (symmetric and
positive-definite) covariance matrix ΞðtÞ defined by

ΞijðtÞ ¼ h(xi −miðtÞ)(xj −mjðtÞ)it: ð62Þ

Here, the subscript T denotes transposition and det the
determinant. In this case, we can compute the rate of
Shannon entropy change σsysðtÞ ¼ dtΣsysðtÞ and the Fisher
information explicitly [41],

σsysðtÞ ¼ 1

2
dt ln ( detðΞÞ) ¼

1

2
tr(ΞðtÞ−1 _ΞðtÞ); ð63aÞ

IðtÞ ¼ _mðtÞTΞðtÞ−1 _mðtÞ þ 1

2
tr(Ξ−1ðtÞ _ΞðtÞΞ−1ðtÞ _ΞðtÞ);

ð63bÞ

where _mðtÞ and _ΞðtÞ are the component-wise time deriv-
atives of the respective quantities and tr is the trace. A
normal distribution can arise from the solution of a Fokker-
Planck equation with linear drift coefficients,

∂tPðx; tÞ ¼ −∂xiðaiðx; tÞ − BijðtÞ∂xjÞPðx; tÞ;
with aiðx; tÞ ¼ KijðtÞxj þ kiðtÞ; ð64Þ

with a symmetric, positive-semidefinite matrix B, provided
that the initial distribution is normal,

P0ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞM detðΞ0Þ
p
× exp

�
−
1

2
ðx −m0ÞTΞ−1

0 ðx −m0Þ
�
: ð65Þ

The mean and covariance matrix are then determined by the
differential equations

dtmiðtÞ ¼ KijðtÞmjðtÞ þ kiðtÞ; ð66aÞ

dtΞijðtÞ ¼ KilðtÞΞljðtÞ þ KjlðtÞΞliðtÞ
þ (BijðtÞ þ BjiðtÞ); ð66bÞ

or, in matrix notation (using that B is symmetric),

_μðtÞ ¼ KðtÞmðtÞ þ kðtÞ; ð67aÞ

_ΞðtÞ ¼ KðtÞΞðtÞ þ ΞðtÞKTðtÞ þ 2BðtÞ; ð67bÞ

with initial conditions mð0Þ ¼ m0 and Ξð0Þ ¼ Ξ0. These
equations allow us to write the Fisher information without
relying on time derivatives,

IðtÞ ¼ ðKmþ kÞTΞ−1ðKmþ kÞ

þ 1

2
tr½ðΞ−1KΞþ KTÞ2

þ 4BðΞ−1K þ KTΞ−1Þ þ 4BΞ−1BΞ−1�: ð68Þ

Obviously, any normal distribution is uniquely determined
by its mean and covariance matrix, and thus the latter two
quantities also specify the average of any observable RðxÞ
and its time evolution. However, how precisely the time
evolution of the mean and covariance matrix impact the
time evolution of hRit, i.e., the explicit expression of hRit
in terms of m and Ξ, is not obvious except in simple cases.
Nevertheless, from Eq. (1), we always have the bound

h _RiTΞ−1
R h _Ri ≤ _mTΞ−1 _mþ 1

2
trðΞ−1 _ΞΞ−1 _ΞÞ: ð69Þ

This bound is particularly instructive for a time-indepen-
dent covariance matrix _Ξ ¼ 0, where the change in the
average of any observable, relative to its covariance matrix,
is always less than the respective quantity for the mean of
the distribution. In this sense, no observable can change
faster than the mean of the distribution. We further note a
result valid for any probability distribution, which depends
on time only via its mean m, and can thus be written as
Pðx; tÞ ¼ P̃(x −mðtÞ). For such a probability distribution,
the Fisher information is always larger than for a normal
distribution with the same mean and variance,

IðtÞ ≥ InormalðtÞ ¼ _mðtÞTΞðtÞ−1 _mðtÞ: ð70Þ

Thus, a normal distribution minimizes the Fisher informa-
tion for pure translations. We give the proof of this result in
Appendix F. Note that the inequality (70) breaks down if
the variance or some higher cumulants depend on time.
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The speed limit in Eq. (1) also applies to the rate of
change of the Shannon entropy since σsysðtÞ ¼ dt −R
dx ln (Pðx; tÞ)Pðx; tÞ ¼ −

R
dx ln (Pðx; tÞ)∂tPðx; tÞ,

(σsysðtÞ)2 ≤ ðhðlnPÞ2it − hlnPi2t ÞIðtÞ: ð71Þ

For a normal distribution, this relation takes a particularly
simple form since, as we show in Appendix F, we have

hðlnPÞ2it − hlnPi2t ¼
M
2
; ð72Þ

independent of the covariance matrix. For a normal dis-
tribution, we thus have the relation between Shannon
entropy and Fisher information,

(σsysðtÞ)2 ≤ M
2
IðtÞ: ð73Þ

Using ΣsysðT Þ − Σsysð0Þ ¼ R
T
0 dtσsysðtÞ and applying the

Cauchy-Schwarz inequality, we obtain

T ≥
(ΣsysðT Þ − Σsysð0Þ)2

MC
: ð74Þ

Since we generally expect both C and Σsys to scale linearly
with the numberM of degrees of freedom, we can write it in
terms of the following speed limit for normal distributions:

T ≥
(Σ̄sysðT Þ − Σ̄sysð0Þ)2

C̄
; ð75Þ

where Σ̄sys ¼ Σsys=M and C̄ ¼ C=M are the Shannon
entropy and thermodynamic cost per degree of freedom.
This result has two interesting consequences: First, it
provides a speed limit in terms of the Shannon entropy
difference between initial and final states. Second, it
explicitly demonstrates that, at least in the case of a normal
distribution, this speed limit remains useful in the limit of a
macroscopic number of degrees of freedom, M ≫ 1. We
stress that the latter statement is not self-evident: For the
case of the speed limit in Eq. (57), the numerator is
obviously bounded from above by π, the largest possible
arc length on the unit sphere. On the other hand, the
denominator scales as

ffiffiffiffiffi
M

p
for independent degrees of

freedom since the Fisher information is additive in this
case. Thus, the right-hand side of Eq. (57) is typically of
order 1=

ffiffiffiffiffi
M

p
, and the bound becomes meaningless in the

macroscopic limit.

B. Brownian motion

The most basic example of a continuous-valued random
process is Brownian motion. Let us first consider the
classical case of an overdamped particle in a environment
at temperature T, described by the diffusion equation

∂tPðx; tÞ ¼ −μ∂xðF0 − kBT∂xÞPðx; tÞ; ð76Þ

or, equivalently, the overdamped Langevin equation

_xðtÞ ¼ μF0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2μkBT

p
ξðtÞ; ð77Þ

where F0 is a constant bias force, T is the temperature, and
ξðtÞ is Gaussian white noise. The solution of the diffusion
equation is straightforward,

Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð2Dxtþ hΔx2i0Þ

p
× exp

�
−
(x − ðμF0tþ hxi0Þ)2
2ð2Dxtþ hΔx2i0Þ

�
; ð78Þ

where hxi0 and hΔx2i0 are the initial average and variance
of the particle’s position at time t ¼ 0. Here, we intro-
duced the diffusion coefficient Dx given by the Einstein
relation Dx ¼ μkBT. As we only have 1 degree of free-
dom, the expression for the Fisher information, Eq. (63),
simplifies to

IðtÞ ¼ μ2F2
0

2Dxðtþ hΔx2i0
2Dx

Þ
þ 1

2ðtþ hΔx2i0
2Dx

Þ2
: ð79Þ

Both with and without bias, the Fisher information for
Brownian motion is a monotonously decaying function;
however, while for free Brownian motion the Fisher
information decays as 1=t2, this process slows to a 1=t
decay in the presence of bias. In the latter case, even
though the Fisher information decreases, the time deriva-
tive of the average position dthxit ¼ μF0 does not decay
to zero but remains constant. This case is not in contra-
diction with the speed limit in Eq. (1), which only
demands that the time derivative of hxit relative to the
fluctuations of x—which, in this case, increase with
time—should decrease along with the Fisher information.
For unbiased Brownian motion F0 ¼ 0, the local mean
velocity and its time derivative are given by

νðx; tÞ ¼ Dx

2Dxtþ hΔx2i0
ðx − hxi0Þ;

_νðx; tÞ ¼ −2
�

Dx

2Dxtþ hΔx2i0

�
2

ðx − hxi0Þ: ð80Þ

The positive local mean velocity for x > hxi0 captures the
apparent flow away from the initial position due to the
diffusive motion. At the same time, the change in the local
mean velocity is negative, indicating that the flow slows
down over time as the distribution approaches the uniform
equilibrium state.
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C. Particle in a parabolic trap

As a second paradigmatic example, we consider a single
overdamped particle with position xðtÞ in a parabolic trap
Uðx; tÞ ¼ κðtÞ(x − rðtÞ)2=2,

∂tPðx; tÞ ¼ μ∂x(κðtÞðx − rðtÞ)þ kBTðtÞ∂xÞPðx; tÞ; ð81Þ

or, equivalently, the Langevin equation

_xðtÞ ¼ −μκðtÞ(xðtÞ − rðtÞ)þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μkBTðtÞ

p
ξðtÞ; ð82Þ

where κ the spring constant and T the temperature. We
allow the spring constant, temperature, and equilibrium
position rðtÞ of the trap to change as a function of time.
Provided that the initial state is given by a normal
distribution with average hxi0 and variance hΔx2i0, the
solution to this problem is the normal distribution

Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhΔx2it

p exp

�
−
ðx − hxitÞ2
2hΔx2it

�
; ð83Þ

where the average and variance of the position obey the
following differential equations,

dthxit ¼ −μκðtÞ(hxit − rðtÞ); ð84aÞ

dthΔx2it ¼ −2 μκðtÞhΔx2it þ 2μkBTðtÞ: ð84bÞ

Again, for a single degree of freedom, the expression for
the Fisher information is immediate, from Eq. (63),

IðtÞ ¼ 1

2

�
dthΔx2it
hΔx2it

�
2

þ ðdthxitÞ2
hΔx2it

: ð85Þ

Here, the Fisher information (and thus the thermodynamic
cost C) consists of two positive terms: The first one is
nonzero if the variance changes as a function of time;
the second one is nonzero if the average position changes.
The average rates of change of Shannon σsysðtÞ ¼ dtΣsysðtÞ
and total entropy σtotðtÞ ¼ dtΣtotðtÞ (see Appendix C) are
given by

σsysðtÞ ¼ 1

2

dthΔx2it
hΔx2it

;

σtotðtÞ ¼ hΔx2it
μkBTðtÞ

�
1

4

�
dthΔx2it
hΔx2it

�
2

þ ðdthxitÞ2
hΔx2it

�
: ð86Þ

In this case, the bound in Eq. (73) on the rate of change of
the Shannon entropy is obvious since we have (M ¼ 1)

IðtÞ ¼ 1

2

�
dthΔx2it
hΔx2it

�
2

þ ðdthxitÞ2
hΔx2it

≥
1

2

�
dthΔx2it
hΔx2it

�
2

¼ 2(σsysðtÞ)2: ð87Þ

A particularly instructive case with explicit time dependence
is when only the equilibrium position of the trap depends on
time. Assuming that the variance of the particle’s position
initially has its thermal equilibrium value, hΔx2ieq ¼ kBT=κ,
it remains at this value for all times, dthΔx2it ¼ 0. Then, the
probability distribution depends on time only via the average
position hxit, and we have

IðtÞ ¼ ðdthxitÞ2
hΔx2ieq : ð88Þ

Comparing this to Eq. (1), we see that this satisfies the
equality condition for the speed limit,

jdthxitj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔx2ieq

q
vIðtÞ: ð89Þ

More generally, any normal distribution with a constant
covariance matrix is an explicit example of Eq. (3) and
satisfies the speed limit with equality.
On the other hand, the local change in Shannon and total

entropy, defined in Appendix C, is given by

ΔΣsys
locðx; tÞ ¼

x − hxit
hΔx2it

;

ΔΣtot
locðx; tÞ ¼

1

μkBTðtÞ
�
dthΔx2it
2hΔx2it

ðx − hxitÞ þ dthxit
�
:

ð90Þ

The local change in Shannon entropy vanishes only if the
particle is located at the instantaneous average position
since this corresponds to the maximum of the probability
distribution, and thus a slight change of the particle’s
position will not change its Shannon entropy. On the other
hand, the local change in total entropy always vanishes
independent of the particle’s position if the system is
in an equilibrium state dthxit ¼ dthΔx2it ¼ 0. This result
reflects the fact that in an equilibrium system, the total
entropy production is zero not only on average but also for
every single trajectory. Using the equations of motion (84),
we can also write the Fisher information as

IðtÞ ¼ 2μ2
�
kBTðtÞ
hΔx2it

− κðtÞ
�

2

þ μ2κðtÞ2
hΔx2it

(hxit − rðtÞ)2:

ð91Þ

Then, the time derivative of the Fisher information can be
calculated as
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dtIðtÞ ¼
2μdthΔx2it
hΔx2i2t

kB _TðtÞ þ
2 μκðtÞdthxit

hΔx2it
_rðtÞ

þ
�
2ðdthxitÞ2
κðtÞhΔx2it

−
2μdthΔx2it
hΔx2it

�
_κðtÞ

− 2μkBTðtÞ
�ðdthΔx2itÞ2

hΔx2i3t
þ ðdthxitÞ2

hΔx2i2t

�
: ð92Þ

The first three terms depend explicitly on the time deriva-
tive of T, r, and κ, respectively, while the last term is
negative and corresponds to the relaxational contribution in
Eq. (13). In particular, if the parameters T, r, and κ are
independent of time, then we have

dtIðtÞ ¼ −2μkBT
�ðdthΔx2itÞ2

hΔx2i3t
þ ðdthxitÞ2

hΔx2i2t

�
≤ 0; ð93Þ

and the Fisher information decreases monotonically, as
predicted by Eq. (15). Finally, we note that for the particle
in a parabolic trap, the local mean velocity is

νðx; tÞ ¼ dthxit þ
�
kBTðtÞ
hΔx2it

− κðtÞ
�
ðx − hxitÞ: ð94Þ

The first term is just the global average velocity, and the
second term encodes the local deviations around it. Note
that the local deviations only contribute if the variance of
the position is not equal to its (instantaneous) equilibrium
value hΔx2it ¼ kBTðtÞ=κðtÞ. Taking a time derivative, we
obtain the change in the local mean velocity [see Eq. (31)],

_νðx; tÞ ¼ d2t hxit þ dt

�
kBTðtÞ
hΔx2it

− κðtÞ
�
ðx − hxitÞ

−
�
kBTðtÞ
hΔx2it

− κðtÞ
�
dthxit: ð95Þ

If only the equilibrium position of the trap depends on time,
hΔx2it ≡ hΔx2ieq ¼ kBT=κ, these expressions simplify to

νðx; tÞ ¼ dthxit; _νðx; tÞ ¼ d2t hxit; ð96Þ

i.e., the local mean velocity and its time derivative are
equal to the global average values of the velocity and the
acceleration. In this case, the decomposition of the time
derivative of the Fisher information in Eq. (13) also takes a
particularly simple form,

dtIðtÞ ¼
2μκ2

kBT
ðdthxit _r − ðdthxitÞ2Þ: ð97Þ

The second term is the negative relaxational contribution,
whereas the first term depends on the change of the
equilibrium position of the trap. This form allows us to
state a condition for the Fisher information to increase with

time: The trap velocity _r should be in the same direction as
the average particle velocity but of larger magnitude.
Physically, this case corresponds to accelerating the trap.
If we move the trap in a periodic manner such that
IðτÞ ¼ Ið0Þ, where τ is the period of the driving, then
we can use Eq. (35) together with Eqs. (84) and (96) to
obtain the constraintZ

τ

0

dt ð_rðtÞ2 − _rðtÞdthxitÞ ≥ 0: ð98Þ

On the other hand, we have, from integrating Eq. (97) over
one period,Z

τ

0

dt ððdthxitÞ2 − _rðtÞdthxitÞ ¼ 0: ð99Þ

Combining these two results, we obtainZ
τ

0

dt _rðtÞ2 ≥
Z

τ

0

dt ðdthxitÞ2; ð100Þ

which implies that the amplitude of the motion of the trap
always exceeds the amplitude of the particle’s motion,
independent of the driving protocol.
The above calculation can also be done for an under-

damped particle with position xðtÞ and velocity vðtÞ,

∂tPðx; v; tÞ ¼ ( − v∂x þ
κðtÞ
m

(x − rðtÞ)∂v

þ γ

m
∂v

�
vþ γkBTðtÞ

m
∂v

�
)Pðx; v; tÞ;

ð101Þ

with the associated equations of motion for the moments

dthxit ¼ hvit;

dthvit ¼ −
γ

m
hvit −

κðtÞ
m

(hxit − rðtÞ);
dthΔx2it ¼ 2hΔxΔvit;

dthΔxΔvit ¼ −
γ

m
hΔxΔvit −

κðtÞ
m

hΔx2it þ hΔv2it;

dthΔv2it ¼ −
2γ

m
hΔv2it −

2κðtÞ
m

hΔxΔvit þ
2γkBTðtÞ

m2
:

ð102Þ

Here, the friction coefficient γ is related to the mobility by
γ ¼ μ−1. Note that the overdamped case is obtained
by taking the limit of vanishing particle mass m → 0. In
this case, the solution of the equations is already quite
involved, and we refrain from writing down the cumber-
some expression for the Fisher information, which can be
obtained from Eq. (63). However, in this case, since we
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have 2 degrees of freedom, the case where T, r, and κ do not
depend on time already offers some interesting insights.
In this case, we observe a relaxation from the initial state to
the equilibrium state with hxieq ¼ r, hvieq ¼ 0, hΔx2ieq ¼
T=κ, hΔxΔvieq ¼ 0, and hΔv2ieq ¼ T=m. For a nonequili-
brium initial condition corresponding to a potential with
κ̃ > κ and r̃ ≠ r, the speed vI of the relaxation process is
shown in Fig. 3. While the overall speed vI decays
monotonically, as predicted by Eq. (15), the speed vI;x
of the evolution of the marginal position distribution Pðx; tÞ
exhibits a nonmonotonic behavior. Note that we also have
vI;x ≤ vI; i.e., eliminating the velocity reduces the evolu-
tion speed of the probability density. As the system
approaches the overdamped limit of vanishing mass (bot-
tom panel), the maximum in the speed of the marginal
distribution moves to shorter times, and we recover the
monotonic behavior of the overdamped system for times
longer than the typical relaxation time of the velocity, m=γ.
As an example of the speed limit in Eq. (1), we show the

time derivatives of the average position and velocity
relative to their variances (green lines in Fig. 3). We
observe that while both x and v obey the bound set by
vI , only the position x obeys the tighter bound set by vI;x.

VII. DETECTION OF HIDDEN STATES

To demonstrate how the Fisher information can be used
as a tool to reveal hidden states, we study two simple
Markov jump models. The first model can be considered as
a minimal model for sensory adaptation [11,42–45]. The
purpose of such models is to understand how biological
sensor systems can adapt to their environmental conditions,
i.e., react to changes in an external stimulus while returning
to an inactive state at a constant stimulus. The model
discussed in Ref. [43] consists of four states, which are
decomposed into an activity (a) and a memory (m) degree
of freedom, both of which can take a value of 0 or 1 and
which correspond to the output of the sensor system and an
internal state, respectively. The system reacts to its envi-
ronment by changing the values of the transition rates
between these four states depending on an external stimulus
(e). The rates are parametrized as

Wm
aa0 ðeÞ ¼ ωae−ðβ=2Þ(Fða;m;eÞ−Fða0;m;eÞ);

Wa
mm0 ðeÞ ¼ ωme−ðβ=2Þ(Fða;m;eÞ−Fða;m0;eÞ); ð103Þ

where Wm
aa0 denotes the transition rate between states with

different activity at fixed memory and vice versa. All other
rates (i.e., those where both a and m change simultane-
ously) are assumed to be zero. Here, ωa and ωm are the bare
transition rates, β ¼ 1=ðkBTÞ is the inverse temperature,
and the free energy function F is defined as

Fða;m; eÞ ¼ je −mjðΔm þ je − ajΔgÞ; ð104Þ

with the energy penalties Δm and Δg for mistracking the
input signal. In this case, we treat the memory as a hidden
degree of freedom; i.e., we assume that we can only observe
the output of the sensor system in an experiment. We then
want to use the monotonicity of the Fisher information to
predict the existence of the memory from only a measure-
ment of the activity. We denote the probability of finding
the system in state ða;mÞ by Pa;m. Then, the probability of
finding a certain value for the activity is Pa ¼

P
m¼0;1 Pa;m,

and the corresponding Fisher information is defined as

Ia ¼
X
a¼0;1

ðdtPaÞ2
Pa

: ð105Þ

Following Ref. [43], we choose ωa ¼ 5, ωm ¼ 1 (such that
ωa ≫ ωm) and βΔm ¼ βΔa ¼ ln 100. We further initialize
the system in the steady state corresponding to e ¼ 0, i.e.,
without an external stimulus. Then, we switch on the
stimulus (e ¼ 1) and observe the change in the occupation

FIG. 3. Time dependence of the evolution speed vIðtÞ ¼
ffiffiffiffiffiffiffiffi
IðtÞp

of the joint distribution (black line) and the marginal x distribu-
tion (orange line) for an underdamped particle in a parabolic trap
for m ¼ 1 (top panel) and m ¼ 1=10 (bottom panel). The
remaining parameters are given by kBT ¼ 2, γ ¼ 1, κ ¼ 1,
r ¼ 0, and the system is initially in the equilibrium state
corresponding to κ ¼ 4 and r ¼ 2.
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probabilities Pa;m. As shown in Fig. 4, the Fisher infor-
mation corresponding to the entire state space decays
monotonically as predicted by Eq. (15). However, when
we observe only the occupation probabilities of the activity
states, the corresponding Fisher information (105) shows a
nonmonotonic behavior, clearly indicating the presence of
the hidden memory states.
As our second example, we imagine a small machine

(e.g., a molecular motor) that can move between N sites
on a one-dimensional chain, which are indexed by i.

For simplicity, we only allow moves to neighboring sites,
i.e., from i to iþ 1 or i − 1. We further assume that the
machine has two internal states. One is an inactive state α,
in which the transition rates to the left and right are small
and symmetric (e.g., driven by thermal noise), Wα

iþ1;i ¼
Wα

i−1;i ¼ rα=2. The other state β is an active state, where the

rates of right and left moves are different, Wβ
iþ1;i ¼ rβq,

Wβ
i−1;i ¼ rβð1 − qÞ, where the parameter 0 < q < 1 deter-

mines the asymmetry between the rates. Finally, the rate of
change of the internal state is r�s from α to β and r�ð1 − sÞ
from β to α, with 0 < s < 1. This system is sketched in
Fig. 5. We note that similar, albeit more detailed, models
have been used to study the energetics of actual molecular
motors [46]; in this case, i corresponds to the position of the
motor, whereas the internal state represents different
chemical states. Denoting the probability to be at site i
in state α at time t as Pα

i ðtÞ, the evolution of these
probabilities is given by the master equations

dtPα
i ¼ rα

�
1

2
Pα
i−1 þ

1

2
Pα
iþ1 − Pα

i

�
þ r�ðð1 − sÞPβ

i − sPα
i ); ð106aÞ

dtP
β
i ¼ rβðqPβ

i−1 þ ð1 − qÞPβ
iþ1 − Pβ

i Þ
þ r�ðsPα

i − ð1 − sÞPβ
i Þ: ð106bÞ

We consider the situation where the position of the
machine is the observable, while its internal state cannot be
directly observed and thus constitutes a hidden degree of

FIG. 4. The Fisher information of all states (black lines) and of
only the activity (orange lines) for the sensory adaptation model;
the solid lines are the result of Monte Carlo simulations (5 × 104

samples), and the dashed lines are obtained by solving the master
equation corresponding to Eq. (103) directly. While the total
Fisher information decays monotonically, the partial Fisher
information of only the activity states exhibits a nonmonotonic
behavior.

FIG. 5. A sketch of the Markov-jump model in Eq. (106) (left diagram) and the corresponding behavior of the Fisher information
(right diagram) for r� ¼ 0.1. The solid lines are the results of Monte Carlo simulations (2 × 105 samples), and the dashed lines are the
solution of the master equation (106). In both cases, we consider a model with N ¼ 3 states, extended to N� ¼ 6 states by observing the
number of rotations modulo 2. As discussed in Sec. III and Appendix D, the Fisher information of the detailed probabilities Pα

i and P
β
i ,

taking into account both the sites and the internal state, is a monotonically decreasing function of time (black lines). By contrast,
projecting the dynamics onto only the sites yields a nonmonotonic behavior of the corresponding Fisher information (orange lines).
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freedom. The total (observable) probability to be at site i is
Pi ¼ Pα

i þ Pβ
i . The question we wish to answer is whether,

by observing only the position and thus Pi, we can draw
any conclusions about the presence of the hidden internal
states of the machine. Under periodic boundary conditions,
i.e., identifying the sitesN þ 1 and 1, respectively,N and 0,
with each other, a straightforward calculation shows that in
the steady state, the probabilities are given by πi ¼ 1=N,
and we have a current J ¼ ð2q − 1Þsrβ=N flowing between
any two sites i and iþ 1. However, neither of these steady-
state quantities necessarily indicates the presence of the
internal states since the effective master equation

dtPi ¼ srβðqPi−1 þ ð1 − qÞPiþ1 − PiÞ ð107Þ
with no internal states leads to the same probabilities and
current in the steady state. However, the time evolution
resulting from Eqs. (106) and (107), starting from an
arbitrary initial state, is generally different. In particular,
the Fisher information Isite ¼

P
N
i¼1ðdt lnPiÞ2Pi obtained

from observing only the occupation probabilities of the
sites is a monotonically decreasing function for the effec-
tive equation (107) (see Appendix D). By contrast, for
Eq. (106), the evolution of Pi generally depends on the
internal state, and the Fisher information may exhibit a
nonmonotonic behavior. The time derivative of Isite is
explicitly given by

dtIsite ¼
XN
i¼1

�
(ðrα − rβÞð_κþi þ _κ−i Þ − rβð2q − 1Þð_κþi − _κ−i Þ

− 2(r�ð2s − 1Þ þ rα − rβ) _Φi)_χi

−
rα

2
χi(ð_κþi Þ2 þ ð_κ−i Þ2)

− rβð1 − χiÞðqð_κþi Þ2 þ ð1 − qÞð_κ−i Þ2)
�
Pi; ð108Þ

where we defined Φi ¼ − lnðPiÞ, κ�i ¼ lnðPi�1=PiÞ and
χi ¼ Pα

i =Pi and _Φ denotes a time derivative. Since
0 < χi < 1, the two terms in the second line are negative;
they describe the relaxation of the site occupation proba-
bility towards a uniform probability. By contrast, the terms
in the first line can be positive or negative. Importantly, they
are nonzero only if the ratio χi ¼ Pα

i =Pi changes in time,
i.e., if the relative probability to be in state α at site i
changes. This case is equivalent to the condition formulated
in Sec. III that the conditional probability of the hidden
degrees of freedom should change with time. As a concrete
example, we take a periodic chain consisting of N ¼ 3 sites
and set s ¼ 1=2, rα ¼ 0.1, rβ ¼ 1, and q ¼ 0.99. This
example corresponds to a situation where the transitions
between the internal states are symmetric, and the dynamics
are slow in the inactive state and, by contrast, fast and
highly directed in the active state. Since we consider the
internal states to be hidden, we assume that we do not have

any control over their initial preparation. Thus, we take the
machine to be initially in the steady state of the dynamics,
Eq. (106). However, in this case, we obviously have
dtPα

i ¼0 and thus IðtÞ ¼ IsiteðtÞ ¼ 0. In order to have a
nontrivial time evolution, we artificially extend the state
space to N� ¼ 6 sites; i.e., we consider Eq. (108) with
N� ¼ 6 and an initial state corresponding to the steady-state
occupation of the N ¼ 3 case. In practice, this process can
be done by not only observing the occupation probability of
each site but also the number of “rotations” of the motor:
This number increases by 1 when a jump from site 3 to the
right is observed and decreases by 1 upon a jump from site
1 to the left. Then P1, P2, and P3 are the probabilities of
being at sites 1, 2, and 3 and having performed an even
number of (or zero) rotations, while P4, P5, and P6 are the
probabilities of being at sites 1, 2, and 3 and having
performed an odd number of rotations. As shown in Fig. 5,
we indeed find that Isite is a nonmonotonic function of time.
Thus, by observing only the occupation probabilities of the
sites and computing the corresponding Fisher information,
we can infer the presence of hidden states in the system.
While we need good statistics in order to observe the
nonmonotonic behavior (in the present case, at least 105

samples), this should not present a problem in practice
since we do not require a specific initial preparation but can
start from the steady state of the dynamics, allowing for
easy repetition of the experiment. We remark that whether
the Fisher information actually exhibits a nonmonotonic
behavior is sensitive to the parameters of the system and its
initial preparation. For example, for the parameters and
initial state given above, we only observe an increase of the
Fisher information for r� ≲ 0.31, i.e., if the transitions
between the internal states are sufficiently slow.
While the above model is a simplified idealization of a

molecular motor, related models have been successfully
employed to model actual biological examples [47–50]. In
particular, the probability density of such systems can be
measured with good accuracy [49], and the existence of
hidden states is known in some cases [51]. Since our
method does not require any model for the dynamics, it
may be useful as a straightforward way to test for the
presence of hidden states using only the experimental data.

VIII. DISCUSSION

The speed limit in Eq. (1) on the time evolution of the
average of a fluctuating observable shows that the behavior
of measurable observables (averages and fluctuations) is
governed by the information-theoretic concept of Fisher
information. A similar connection between the Fisher
information and the family of thermodynamic uncertainty
relations was recently obtained in Refs. [52,53]. Such a
connection can potentially be exploited in several ways. If
the underlying probability distribution and the correspond-
ing Fisher information are not known, then we can obtain a
lower bound in terms of measurable quantities. Since the
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lower bound is guaranteed to hold for all observables, we
may also compare the bounds obtained by measuring
different observables in order to find the observable that
contains the most information about the time evolution of
the probability density.
On the other hand, if we have a theoretical model for a

particular physical system, then the speed limit can serve as
a test for the validity of the model: If we find that the
observed time evolution of any observable exceeds the
Fisher information bound predicted by the theoretical
model, then this observation is a sure indication that crucial
information about the system is missing in the model. For
systems without explicit time dependence, the monotonic
decay of the Fisher information provides even stricter
restrictions on the type of models that can describe a given
system. Finally, if the Fisher information itself is known,
then the speed limit imposes a regularity condition on the
system in the sense that it limits the rate of change of any
conceivable observable.
We remark that trade-off relations between speed,

accuracy, and the cost of driving the system have been
observed in many contexts, both theoretically and exper-
imentally [15,42,54,55]. The speed limit in Eq. (1) shows
that such trade-off-relations exist independently of the
precise nature of the stochastic dynamics and are a
consequence of information-theoretic bounds. This case
reinforces the insight that the information content of a
physical system has measurable consequences and that
information theory can be a useful tool to characterize the
properties of the system.
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APPENDIX A: EFFICIENT STATISTICS FOR
TIME EVOLUTION

In Sec. II, we posed the question of what probability
density gives rise to equality in Eq. (1). To answer this
question, we briefly review the derivation of the Cramér-
Rao bound for the pertinent case. For some observable
rðxÞ, we can write the time derivative of its average as

dthrit ¼
Z

dx rðxÞ∂tPðx; tÞ

¼
Z

dx ðrðxÞ − hritÞ∂t ln (Pðx; tÞ)Pðx; tÞ; ðA1Þ

where we used that the average of ∂t ln (Pðx; tÞ) is zero due
to conservation of probability. Taking the square and
applying the Cauchy-Schwarz inequality, we obtain

ðdthritÞ2 ≤ hðr − hritÞ2itIðtÞ: ðA2Þ

This formula is the Cramér-Rao bound, which is the square
of Eq. (1). Now, in order to have equality in the Cauchy-
Schwarz inequality,

hfgi2t ≤ hfi2t hgi2t ; ðA3Þ

either one of the functions is constant (we ignore this trivial
case) or the two functions are linearly dependent,

fðxÞ ¼ αgðxÞ: ðA4Þ

Thus, in order to obtain equality in Eq. (A2), we must have

∂t ln (Pðx; tÞ) ¼ αðtÞðrðxÞ − hritÞ: ðA5Þ

This result constitutes a differential equation for Pðx; tÞ
with respect to time, whose solution is

Pðx; tÞ ¼ e
R

t

0
ds αðsÞðrðxÞ−hrisÞP0ðxÞ: ðA6Þ

Defining AðtÞ ¼ R
t
0 ds αðsÞ and using the fact that Pðx; tÞ

has to be normalized, we can also write this formula as

Pðx; tÞ ¼ eAðtÞrðxÞ

heAðtÞrðxÞi0
P0ðxÞ; ðA7Þ

with the boundary condition Að0Þ ¼ 0, where h…i0
denotes an average with respect to the initial probability
density P0ðxÞ. All the information about the time evolution
of the probability density is encoded in the constant AðtÞ.
Since we have

dthrit
hΔr2it

¼ dtAðtÞ; ðA8Þ

we can infer the time evolution of the probability density by
measuring the average and variance of the observable r. In
that sense, while r is not a sufficient statistic of Pðx; tÞ
[since we cannot generally infer P0ðxÞ from the knowledge
of only r], the time evolution of r contains all the
information about the time evolution of Pðx; tÞ; i.e., r is
an efficient statistic saturating the Cramér-Rao bound [56].
Explicitly, we can write
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Pðx; tÞ

¼
exp½R t

0 ds
dshris
hΔr2is rðxÞ�

hexp½R t
0 ds

dshris
hΔr2is rðxÞ�i0

P0ðxÞ

¼
exp½ð hrit

hΔr2it −
hri0

hΔr2i0 þ
R
t
0 ds

hris
hΔr2is ds ln (hΔr

2isÞ)rðxÞ�
hexp½ð hrit

hΔr2it −
hri0

hΔr2i0 þ
R
t
0 ds

hris
hΔr2is ds ln (hΔr

2isÞ)rðxÞ�i0
× P0ðxÞ; ðA9Þ

which makes the dependence of the probability density on
the average and variance of r explicit. If the variance of r is
independent of time, then this formula simplifies to

Pðx; tÞ ¼
exp½ðhrit−hri0ÞrðxÞhΔr2i �

hexp½ðhrit−hri0ÞrðxÞhΔr2i �i
0

P0ðxÞ: ðA10Þ

As an example of a Fokker-Planck dynamics that explicitly
realizes the above probability distribution, we consider an
overdamped particle in a parabolic trap with spring con-
stant κ, centered at the time-dependent position aðtÞ,

∂tPðx; tÞ ¼ μ∂x(κðx − aðtÞ)þ kBT∂xÞPðx; tÞ: ðA11Þ

If the variance of the particle’s position initially has the
equilibrium value hΔx2ieq ¼ T=κ, then it will remain
constant in time. Since the force is linear in x, the
distribution is further Gaussian and can be written as

Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhΔx2ieq

q e−½ðx−hxitÞ
2=2hΔx2ieq�

¼ e½ðhxit−hxi0Þx=hΔx
2ieq�e−f½ðhxitÞ

2−ðhxi0Þ2�=hΔx2ieqg

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πhΔx2ieq
q e−½ðx−hxi0Þ

2=2hΔx2ieq�

¼
exp

h
ðhxit−hxi0Þx

hΔx2ieq

i
D
exp

h
ðhxit−hxi0Þx

hΔx2ieq

iE
0

P0ðxÞ; ðA12Þ

which is precisely of the form Eq. (A10) with rðxÞ ¼ x. We
thus have equality in Eq. (1),

jdthxitjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔx2ieq

q ¼ vIðtÞ: ðA13Þ

APPENDIX B: FISHER INFORMATION AND
STOCHASTIC HEAT

One of the ambiguities of stochastic thermodynamics is
that the stochastic definition of heat and work is not unique
in the sense that only their averages are constrained by

thermodynamics. This feature allows for different defini-
tions of, e.g., heat, which all have the same average yet
differ in terms of their fluctuations. The classical definition
of stochastic heat flow in overdamped systems is [19,20]

_QðtÞ ¼ −f ðxðtÞ; tÞ ∘ _xðtÞ; ðB1Þ

where ∘ denotes the Stratonovich product, which satisfies
the first law of thermodynamics, dtU(xðtÞ)¼ _QðtÞþ _WðtÞ,
for single trajectories. Because of the discontinuous nature
of Brownian trajectories, while this definition yields the
correct average heat flow h _Qit between the system and the
heat bath on average, its variance is formally infinite,
hΔ _Q2it ¼ ∞. However, instead of measuring the instanta-
neous velocity _xðtÞ of a particle, we may also measure the
average velocity at its instantaneous position xðtÞ, which is
given by the local mean velocity νðxðtÞ; tÞ, and define the
heat flow in terms of the latter,

_QmeanðtÞ ¼ −f ðxðtÞ; tÞ · νðxðtÞ; tÞ; ðB2Þ

where the “·” is an ordinary scalar product. This quantity
may be regarded as a “local mean heat” in the sense that it is
the average of _Q with respect to the conditional probability
density Pðx; tþ dtjxðtÞ; tÞ. It has the same average as _QðtÞ;
however, its variance is finite. Another possible definition
of heat in terms of the local mean velocity is

_QentrðtÞ ¼ −νðxðtÞ; tÞTμ−1νðxðtÞ; tÞ þ kBT∇ · νðxðtÞ; tÞ:
ðB3Þ

Taking the average, we obtain, after some calculus,

h _Qentrit ¼ −kBT(σtotðtÞ − σsysðtÞ); ðB4Þ

where σsysðtÞ ¼ −∂t

R
dx ln (Pðx; tÞ)Pðx; tÞ is the rate of

Shannon entropy production. This definition corresponds
to interpreting heat as the entropy increase of the environ-
ment, and, like Eq. (B2), its variance is finite. While
Eqs. (B1)–(B3) all have the same ensemble average and
thus yield the correct average heat flow, their stochastic
definitions probe different aspects of the dynamics.
Equation (B1) can be evaluated for a single trajectory
knowing only the force, but it depends on both xðtÞ and
_xðtÞ, leading to divergent fluctuations. On the other hand,
Eq. (B2) depends only on the position of the particle, but it
includes information about both the individual trajectory
and the local mean velocity of the ensemble. Finally,
Eq. (B3), including the gradient of the local mean velocity,
requires even more detailed statistics, but it can, in
principle, be evaluated without explicit knowledge of the
force. Importantly, while Eqs. (B2) and (B3) have the same
ensemble average and finite fluctuations, their fluctuations
differ. Indeed, a straightforward calculation yields
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IðtÞ ¼ β2hð _Qheat − _QentrÞ2it: ðB5Þ

Similar to Eq. (23), the Fisher information can be expressed
as power fluctuations; however, in general, this power is not
simply the input power but rather the difference between
different definitions of the stochastic heat flow.

APPENDIX C: THERMODYNAMIC COST FOR
FOKKER-PLANCK DYNAMICS

In Ref. [21], the justification for referring to the quantity
C as a thermodynamic cost was provided by relating it to
the entropy change upon the system transitioning between
two discrete states x and x0. To provide the analogue for the
case when the system is described by a set of continuous
variables, we first note that the Fokker-Planck equation (6)
for the probability density is equivalent to the stochastic
evolution of the state xðtÞ of the system described by the
Langevin equation [57]

dxðtÞ ¼ aðxðtÞ; tÞdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BðxðtÞ; tÞ

p
· dWðtÞ; ðC1Þ

where
ffiffiffiffi
B

p
refers to the unique positive-semidefinite

principal square root of the symmetric and positive-
semidefinite matrix B. Note that W is a vector of mutually
uncorrelated Wiener processes and the dot denotes the Itō
product. We remark that the form of Eq. (C1) is more
general than Eq. (5), which is obtained by setting a ¼ μf
and B ¼ μT. We describe the stochastic Shannon entropy
(or generalized potential) as

ΦsysðtÞ ¼ − lnPðxðtÞ; tÞ; ðC2Þ

with hΦsysit ¼ SsysðtÞ. We rewrite the Fokker-Planck equa-
tion (6) as a continuity equation in terms of the probability
current jðx; tÞ,

∂tPðx; tÞ ¼ −∇jðx; tÞ with

jðx; tÞ ¼ (aðx; tÞ − ∇Bðx; tÞ)Pðx; tÞ; ðC3Þ

where we define the operator ∇B ¼ ∂xjBij. Using Itō’s
Lemma, we have, for the differential of Φsys,

dΦsysðtÞ ¼ −∂t lnPðxðtÞ; tÞdt − ∇ lnPðxðtÞ; tÞ · dxðtÞ
− Bðx; tÞ∇∇ lnPðx; tÞ; ðC4Þ

where by B∇∇ we mean the operator Bij∂xi∂xj. We can
equivalently write this equation using the Stratonovich
product ∘ ,
dΦsysðtÞ ¼ −∂t lnPðxðtÞ; tÞdt − ∇ lnPðxðtÞ; tÞ ∘ dxðtÞ:

ðC5Þ
The first term describes the change in Shannon entropy in a
fixed state x due to the change in the ensemble probability

Pðx; tÞ to be in state x. We interpret this term as a global (in
the sense of ensemble) contribution; note that because of
conservation of probability, this term always vanishes, on
average. On the other hand, the second, local, contribution
describes the change in Shannon entropy due to a change in
state from x to x0 ¼ xþ dx; this corresponds to the change
in Shannon entropy due to a transition Δσsysx0→x of a Markov
jump process, as defined in Ref. [21]. In analogy to
Ref. [21], we thus interpret

ΔΣsys
locðx; tÞ≡ −∇ lnPðx; tÞ ðC6Þ

as the local change in Shannon entropy, which is related to
the change in average Shannon entropy via

dΣsys ¼ hΔΣsys
loc ∘ dxi ¼

Z
dxΔΣsys

locðx; tÞjðx; tÞdt: ðC7Þ

Using this definition and integrating by parts, it is then easy
to show that

−h∂tΔΣ
sys
loc ∘ _xit ≡ −

Z
dx jðx; tÞ∂tΔΣ

sys
locðx; tÞ

¼
Z

dx jðx; tÞ∇∂t lnPðx; tÞ

¼ −
Z

dx ∂t lnPðx; tÞ∇jðx; tÞ

¼
Z

dx ∂t lnPðx; tÞ∂tPðx; tÞ ¼
�
ds
dt

�
2

;

ðC8Þ

in analogy to Eq. (37) of Ref. [21]. For a diagonal diffusion
matrix Bij ¼ Biδij, with Bi > 0, we can further write the
change in total entropy as follows [33,34],

dΦtotðtÞ ¼ dΦsysðtÞ þ dΦmedðtÞ; with

dΦmedðtÞ ¼ (BiðxðtÞ; tÞ)−1ðaiðxðtÞ; tÞ
− ∂xiBiðxðtÞ; tÞ) ∘ dxiðtÞ: ðC9Þ

Defining the local change in medium entropy and total
entropy,

ΔΣmed
loc ðx; tÞ≡ (aðx; tÞ − b0ðx; tÞ)B−1ðx; tÞ;

ΔΣtot
locðx; tÞ≡ ΔΣmed

loc ðx; tÞ þ ΔΣsys
locðx; tÞ; ðC10Þ

with the vector b0iðx; tÞ ¼ ∂xiBiðx; tÞ, we thus have, for the
average change in total entropy [34],

dΣtot ¼ hðΔΣmed
loc þ ΔΣsys

locÞ ∘ dxi
¼

Z
dx

jðx; tÞB−1ðx; tÞjðx; tÞ
Pðx; tÞ dt: ðC11Þ
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This result further allows us to write�
ds
dt

�
2

¼ hð∂tΔΣmed
loc − ∂tΔΣtot

locÞ ∘ _xi; ðC12Þ

again in analogy to the identification made in Ref. [21].

APPENDIX D: MONOTONICITY OF
FISHER INFORMATION

Here, we prove the decomposition of the Fisher infor-
mation given in Eq. (13), for the specific cases of Fokker-
Planck and Markov jump dynamics. We now assume that
Pðx; tÞ describes the time evolution of a diffusive dynam-
ics, i.e., is the solution of the Fokker-Planck equation
corresponding to Eq. (C1) [57],

∂tPðx; tÞ ¼ Gðx; tÞPðx; tÞ with

Gðx; tÞ ¼ −∂xiðaiðx; tÞ − ∂xjBijðx; tÞ); ðD1Þ

where a sum over repeated indices is implied. Here, aðx; tÞ
is a drift vector, and Bðx; tÞ is a symmetric and positive-
semidefinite diffusion matrix, i.e.,

viBijðx; tÞvj ≥ 0; ðD2Þ

for an arbitrary vector v and for all x and t. Note that this
form includes Eq. (6) as a special case for ai ¼ μijfj and
Bij ¼ kBTμij. The Fokker-Planck operator G is the gen-
erator of the dynamics. We further introduce the adjoint of
the generator,

G†ðx; tÞ ¼ ðaiðx; tÞ þ Bijðx; tÞ∂xjÞ∂xi ; ðD3Þ

which satisfies Z
dx fGg ¼

Z
dx gG†f ðD4aÞ

G†f2 ¼ 2fG†f þ 2½∂xif�Bij½∂xjf� ðD4bÞ

for suitable (smooth and integrable) functions fðx; tÞ and
gðx; tÞ. For such a dynamics, we consider the time
derivative of the Fisher information

dtIðtÞ ¼
Z

dx
2P½∂tP�½∂2

t P� − ½∂tP�3
P2

; ðD5Þ

with the convention that derivatives inside square brackets
do not act on terms outside the brackets. Here and in the
following, we omit the arguments of the respective func-
tions for brevity. We write the second time derivative of the
probability density as ∂2

t P ¼ ∂tGP ¼ _GPþ G∂tP, where
we introduce the time derivative of the Fokker-Planck
operator,

_Gðx; tÞ ¼ −∂xið½∂taiðx; tÞ� − ∂xj ½∂tBijðx; tÞ�Þ: ðD6Þ

Defining the generalized potential Φðx; tÞ ¼ − ln (Pðx; tÞ),
which can be identified as a stochastic Shannon entropy in
the sense that the Shannon entropy is the average of Φ,
Σsys ¼ −

R
dx lnðPÞP ¼ hΦit, we can write, for the time

derivative of the Fisher information,

dtIðtÞ þ 2

Z
dx ½∂tΦ� _GP

¼ −
Z

dx ð2½∂tϕ�G2Pþ ½∂tΦ�2GPÞ

¼ −
Z

dx ð2½GP�½G†∂tΦ� þ P½G†ð∂tΦÞ2�Þ

¼ −2
Z

dx ð½GP�½G†∂tΦ� þ P½∂tΦ�½G†∂tΦ�

þ P½∂xi∂tΦ�Bij½∂xj∂tΦ�Þ

¼ −2
Z

dx ½∂xi∂tΦ�Bij½∂xj∂tΦ�P

−
Z

dxð½GP� þ P½∂tΦ�Þ½G†∂tΦ�:

From the definition of Φ, we have P∂tΦ ¼ −∂tP ¼ −GP,
such that the last term vanishes. We thus arrive at

dtIðtÞ ¼ −2h½ _G†∂tΦ�it|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
dtIdrvðtÞ

−2h½∂xi∂tΦ�Bij½∂xj∂tΦ�i
t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dtIrelðtÞ

; ðD7Þ

with the operator

_G†ðx; tÞ ¼ ð½∂taiðx; tÞ� þ ½∂tBijðx; tÞ�∂xjÞ∂xi : ðD8Þ

This result is precisely the decomposition in Eq. (13).
Next, consider a Markov jump process on a set of M

discrete states defined by the (generally time-dependent)
transition rates WijðtÞ ≥ 0 from state j to state i and
occupation probabilities piðtÞ of state i. The time evolution
of the occupation probabilities is governed by the Master
equation [58]

dtpiðtÞ ¼
X
j

(WijðtÞpjðtÞ −WjiðtÞpiðtÞ)

¼
X
j

GijðtÞpjðtÞ; ðD9Þ

where we define the matrix-valued generator GðtÞ,

GijðtÞ ¼ WijðtÞ − δij
X
k

WkiðtÞ: ðD10Þ

In analogy to the continuous case, the (temporal) Fisher
information is given in terms of the time derivative of the
occupation probability [21],
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IðtÞ ¼
X
i

(dtpiðtÞ)2
piðtÞ

: ðD11Þ

The time derivative of the Fisher information is then

dtIðtÞ ¼
X
i

2piðtÞ½dtpiðtÞ�½d2t piðtÞ�− ½dtpiðtÞ�3
piðtÞ2

¼
X
i

ð2½dt lnpiðtÞ�½d2t piðtÞ�− ½dt lnpiðtÞ�2½dtpiðtÞ�Þ; ðD12Þ

or in terms of the generator,

dtIðtÞ ¼
X
i

�
2½dt lnpiðtÞ�½dt

X
j

GijðtÞpjðtÞ� − ½dt lnpiðtÞ�2½
X
j

GijðtÞpjðtÞ�
�

¼ 2
X
i;j

½dt lnpiðtÞ� _GijðtÞpjðtÞ þ
X
i;j

(2½dt lnpiðtÞ�GijðtÞ½dt lnpjðtÞ� − ½dt lnpiðtÞ�2GijðtÞ)pjðtÞ; ðD13Þ

where we introduced the time derivative of the generator _GðtÞ. We define ai ≡ dt lnpiðtÞ, in terms of which we can rewrite
the above as

dtIðtÞ ¼ 2aT _Gbþ
X
i;j

ð2aiGijajpj − a2iGijpjÞ: ðD14Þ

We now plug the explicit definition (D10) of the generator into the second term,X
i;j

ð2aiGijajpj − a2iGijpjÞ ¼
X
i;j

ðaið2Gijaj − aiGijÞpjÞ

¼
X
i;j

(ai

�
2

�
WijðtÞ − δij

X
k

WkiðtÞ)aj − ai

�
WijðtÞ − δij

X
k

WkiðtÞ
��

pj

�

¼
X
i;j

ð2aiWijajpj − a2i WijpjÞ −
X
i;k

ð2a2i piWki − a2i piWkiÞ

¼
X
i;j

ð2aiWijajpj − a2i Wijpj −Wija2jpjÞ

¼ −
X
i;j

ððai − ajÞ2WijpjÞ; ðD15Þ

where we renamed the summation indices in the last term from ði; kÞ to ðj; iÞ in the second-to-last step. Since both the
transition rates and occupation probabilities are positive, Wij ≥ 0 and pi ≥ 0, this term is evidently negative. We thus
arrive at

dtIðtÞ ¼ −2½dtΦðtÞ�T _GðtÞpðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dtIdrvðtÞ

−
X
i;j

ðdtΦiðtÞ − dtΦjðtÞÞ2WijðtÞpjðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dtIrelðtÞ

; ðD16Þ

where, in analogy to the continuous case, we introduced the
vector of state-dependent Shannon entropy Φ defined by
Φi ¼ − lnpi. As in Eq. (D7), the time derivative of the
Fisher information decomposes into a driving term involv-
ing the explicit time dependence of the generator and a
negative-semidefinite term, which describes relaxation
towards the instantaneous steady state. If the transition
rates do not depend explicitly on time, dtWij ¼ 0, then, just

as in the case of Fokker-Planck dynamics, the Fisher
information decreases monotonically in time,

dtIðtÞ ¼ dtIrelðtÞ ≤ 0; ðD17Þ

in complete analogy to Eq. (15). We remark that the same
result holds for a mixed process,
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∂tPkðx; tÞ ¼ −∂xi(a
k
i ðxÞ − ∂xjB

k
ijðxÞ)Pkðx; tÞ

þ
X
l

(WklðxÞPlðx; tÞ −WlkðxÞPkðx; tÞ);

ðD18Þ

i.e., a Fokker-Planck dynamics with additional discrete
states labeled by k and a state-dependent drift vector and
diffusion matrix, since the generator is the sum of a
diffusion and jump part, to which the arguments leading
to Eqs. (15) and (D17) can be applied separately.

APPENDIX E: MINIMAL-COST
PROBABILITY DENSITY

Let us consider two particular values θ1, θ2 of a
parameter and the corresponding probability densities
PaðxÞ ¼ Pðx; θ1Þ and PbðxÞ ¼ Pðx; θ2Þ. Note that there
is an infinite number of possible parametrized probability
densities satisfying these conditions; e.g., we may have two
probability densities Pðx; θÞ and P̃ðx; θÞ that coincide at θ1
and θ2 but are different otherwise. Each of these possible
choices has an associated statistical length and action
defined by Eqs. (45) and (48),

Lðθ2; θ1Þ ¼
Z

θ2

θ1

dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
dx

(∂θPðx; θÞ)2
Pðx; θÞ

s
;

Cðθ2; θ1Þ ¼
1

2

Z
θ2

θ1

dθ
Z

dx
(∂θPðx; θÞ)2

Pðx; θÞ ; ðE1Þ

where we assumed θ2 > θ1 without loss of generality. Note
that for different P and P̃, the length and cost are also
generally different. However, there exists a unique choice
P�ðx; θÞ that simultaneously minimizes the length and cost.
To see this case, we first minimize the cost C with respect to
Pðx; θÞ. In order to simplify the notation, we reparametrize
θðqÞ ¼ θ2qþ θ1ð1 − qÞ with q ∈ ½0; 1�. Using this nota-
tion, we can write the length and cost as

Lðθ2; θ1Þ ¼
Z

1

0

dq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
dx

(∂qPðx; qÞ)2
Pðx; qÞ

s
;

Cðθ2; θ1Þ ¼
1

2ðθ2 − θ1Þ
Z

1

0

dq
Z

dx
(∂qPðx; qÞ)2

Pðx; qÞ ; ðE2Þ

with Pðx; qÞ≡ P(x; θðqÞ). We now want to minimize C
with respect to Pðx; qÞ, under the condition that Pðx; qÞ is a
well-defined probability density, i.e., Pðx; qÞ > 0 andR
dxPðx; qÞ ¼ 1. Introducing the Lagrange multiplier α,

we thus have to minimize the auxiliary functional

FC½P; ∂qP� ¼
Z

1

0

dqfC½P; ∂qP�ðqÞ

≡
Z

1

0

dq(
Z

dx
ð∂qPÞ2

P
− 4α

�Z
dxP − 1

�
);

ðE3Þ

where the factor 4 in front of α is included for later
notational convenience. The corresponding Euler-Lagrange
equation reads

∂PfC − dq∂∂qPfC ¼
ð∂qPÞ2
P2

− 2
∂2
qP

P
− 4α ¼ 0: ðE4Þ

Since Pðx; qÞ > 0, we can write this equation as

ð∂qPÞ2 − 2P∂2
qP − 4αP2 ¼ 0; ðE5Þ

which has the general solution

Pðx; qÞ ¼ fðxÞ cos ( ffiffiffi
α

p ðq − gðxÞ)2: ðE6Þ

The functions fðxÞ and gðxÞ, as well as the value of α, are
fixed by the boundary conditions Pðx; 0Þ ¼ PaðxÞ and
Pðx; 1Þ ¼ PbðxÞ and the normalization. The final result for
P�ðx; qÞ, minimizing the cost, reads

P�ðx; qÞ ¼ 1

1 − cosðΛ
2
Þ2
�
sin

�
Λ
2
ð1 − qÞ

� ffiffiffiffiffiffiffiffiffiffiffiffi
PaðxÞ

p
þ sin

�
Λ
2
q

� ffiffiffiffiffiffiffiffiffiffiffiffi
PbðxÞ

q �
2

;

with Λ ¼ 2 arccos

�Z
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PaðxÞPbðxÞ

q �
: ðE7Þ

For this choice, we have I�ðqÞ ¼ R
dx ð∂qP�ðx; qÞÞ2=

P�ðx; qÞ ¼ Λ2 and thus the minimal cost and statistical
length

C� ¼ Λ2

2ðθ2 − θ1Þ
; L� ¼ Λ: ðE8Þ

In hindsight, it is obvious that C is minimized by a
probability density that yields constant Fisher information
since the former is defined as C ¼ R θ2

θ1
dθ IðθÞ. The same is

true for the length L, which is thus also minimized by P�.
We note that, in analogy to the discussion in Ref. [21], the
choice P�ðx; qÞ is the geodesic curve connecting PaðxÞ and
PbðxÞ; however, the geometric analogy is now less intuitive
since the underlying space is infinite dimensional. Since
P�ðx; qÞ yields the minimal length between Pa and Pb

for a normalized probability density, we can interpret L� ¼
Λ as the arc length between Pa and Pb on the infinite-
dimensional unit sphere.
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Since C� is the minimal cost, any other normalized
probability density P̃ðx; qÞ results in a larger cost C̃ ≥ C�. In
particular, for a simple linear interpolation

P̃ðx; qÞ ¼ PbðxÞqþ PaðxÞð1 − qÞ; ðE9Þ

which is positive and normalized, we obtain the cost

C̃ðθ2; θ1Þ ¼
1

2ðθ2 − θ1Þ
Z

dx ðPb − PaÞ ln
�
Pb

Pa

�

¼ 1

2ðθ2 − θ1Þ
ðDKLðPbkPaÞ þDKLðPakPbÞÞ

≡ 1

θ2 − θ1
Dsym

KL ðPb; PaÞ; ðE10Þ

where we defined the symmetrized Kullback-Leibler diver-
gence or relative entropy. Thus, we obtain the lower bound
on the latter,

Dsym
KL ðPb; PaÞ ≥ 2 arccos

�Z
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PaðxÞPbðxÞ

q �
2

: ðE11Þ

Applying the above discussion to the time evolution of a
stochastic dynamics θ ¼ t, we fix the initial and final states
of the system, Pðx; 0Þ ¼ PiðxÞ and Pðx; T Þ ¼ PfðxÞ. The
optimal time evolution between these two states is given by
Eq. (E7), with s ¼ t=T . Since this evolution results inL� ¼
Λ and C� ¼ Λ2=ð2T Þ, we obtain a lower bound on the
thermodynamic cost of the evolution from the initial to the
final state [21],

C ≥
Λ2

2T
; with Λ ¼ 2 arccos

�Z
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PiðxÞPfðxÞ

q �
:

ðE12Þ

Thus, the minimal thermodynamic cost is given by the
square of the shortest distance between the initial and final
states, divided by the evolution time. This case shows that,
in particular, a faster evolution is generally associated with
a larger thermodynamic cost; furthermore, zero cost is only
realizable in the quasistatic limit where the time evolution is
infinitely slow.

APPENDIX F: SHANNON ENTROPY AND
FISHER INFORMATION FOR NORMAL

DISTRIBUTIONS

We consider a multivariate normal distribution

PðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞM detðΞ−1Þ

p exp

�
−
1

2
ðx − μÞTΞ−1ðx − μÞ

�
;

ðF1Þ

where M denotes the dimension of x, Ξ is the (positive-
definite and symmetric) covariance matrix defined by

Ξij ¼ hðxi − μiÞðxj − μjÞi; ðF2Þ

and μ is the average of x. We want to compute the variance
of the logarithm of P,

Δln ≡ hðlnPÞ2i − hlnPi2: ðF3Þ

By definition, we have

lnðPðxÞÞ ¼ −
1

2
ðM lnð2πÞ þ lnðdetΞ−1Þ

þ ðx − μÞTΞ−1ðx − μÞÞ: ðF4Þ

Since the first two terms are independent of x, they do not
contribute to the variance, and we thus have

Δln ¼
1

4
fh½ðx− μÞTΞ−1ðx− μÞ�i− hðx− μÞTΞ−1ðx− μÞi2g:

ðF5Þ

The average in the second term is readily computed,

hðx − μÞTΞ−1ðx − μÞi ¼ hðxi − μiÞðΞ−1Þijðxj − μjÞi
¼ ðΞ−1Þijhðxi − μiÞðxj − μjÞi
¼ ðΞ−1ÞijΞij; ðF6Þ

where summation over repeated indices is implied. Since
the covariance matrix is symmetric, this formula is equal to

hðx − μÞTΞ−1ðx − μÞi ¼ ðΞ−1ÞijΞji ¼ TrðΞ−1ΞÞ
¼ Trð1Þ ¼ M: ðF7Þ

For the first term, on the other hand, we have

hððx − μÞTΞ−1ðx − μÞÞ2i
¼ hðxi − μiÞðΞ−1Þijðxj − μjÞðxk − μkÞðΞ−1Þklðxl − μlÞi
¼ ðΞ−1ÞijðΞ−1Þklhðxi − μiÞðxj − μjÞðxk − μkÞðxl − μlÞi:

ðF8Þ

We now apply Isserli’s theorem for higher-order moments
of normal random variables,

hðxi − μiÞðxj − μjÞðxk − μkÞðxk − μkÞi
¼ ΞijΞkl þ ΞikΞjl þ ΞilΞjk; ðF9Þ

and again use the symmetry of the covariance matrix to
write
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ðΞ−1ÞijðΞ−1Þklhðxi − μiÞðxj − μjÞðxk − μkÞðxl − μlÞi
¼ ðΞ−1ÞijðΞijðΞ−1ÞklΞlk þΞikðΞ−1ÞklΞlj þΞjkðΞ−1ÞklΞliÞ:

ðF10Þ

We now recast the sum over l in matrix notation,

ΞijðΞ−1ÞklΞlk þ ΞikðΞ−1ÞklΞlj þ ΞjkðΞ−1ÞklΞli

¼ ΞijðΞ−1ΞÞkk þ ΞikðΞ−1ΞÞkj þ ΞjkðΞ−1ΞÞki
¼ Ξijδkk þ Ξikδkj þ Ξjkδki

¼ ΞijM þ Ξij þ Ξji; ðF11Þ

where we performed the sum over k in the last step. We thus
have

hððx − μÞTΞ−1ðx − μÞÞ2i ¼ ðΞ−1ÞijðΞijM þ Ξij þ ΞjiÞ
¼ M2 þ 2M: ðF12Þ

Plugging the results for the first and second terms into
Eq. (F5), we obtain the result

Δln ¼
M
2
; ðF13Þ

independent of the form of the covariance matrix.
Next, for any distribution that depends on time only via

its mean,

Pðx; tÞ ¼ P̃ðx − μðtÞÞ; ðF14Þ

with a function P̃ðzÞ that does not explicitly depend on
time, the Fisher information can be written as

IðtÞ ¼
Z

dx
ð∂tPðx; tÞÞ2

Pðx; tÞ ¼
Z

dz
ð _μðtÞT∇zP̃ðzÞÞ2

P̃ðzÞ : ðF15Þ

We now use the operator inequality,

D − Ξ−1 ≥ 0; ðF16Þ

in the sense that the expression on the left-hand side is a
positive-semidefinite matrix. Here, we define

ðDÞij ¼
Z

dz
∂zi P̃ðzÞ∂zj P̃ðzÞ

P̃ðzÞ : ðF17Þ

This inequality holds for arbitrary differentiable probability
distributions and leads to

IðtÞ ¼ _μðtÞTD _μðtÞ ≥ _μðtÞTΞ−1 _μðtÞ: ðF18Þ

Since the rightmost expression is just the Fisher informa-
tion for a normal distribution with a time-independent
covariance matrix, Eq. (63b), this formula proves the bound

(70). What remains is to prove the operator inequality,
Eq. (F16). To do so, we consider the covariance
covðf; gÞ≡ hfgi − hfihgi with respect to some differen-
tiable probability distribution PðxÞ, x ∈ RM,

covðaTx; bT∇ lnðPÞÞ ¼
Z

dx aixibj∂xjPðxÞ

−
Z

dx aixiPðxÞ
Z

dy bj∂yjPðxÞ

¼ −
Z

dx aibjPðxÞ∂xjxi ¼ −aibjδij;

ðF19Þ

where a, b ∈ RM are arbitrary vectors and we sum over
repeated indices. Here, we integrate by parts in the second-
to-last step. On the other hand, we have, from the
covariance inequality,

covðaTx; bT∇ lnðPÞÞ2 ≤ varðaTxÞvarðbT∇ lnðPÞÞ; ðF20Þ

where var denotes the variance with respect to PðxÞ,
varðfÞ≡ hf2i − hfi2. First, we note that hbT∇ lnðPÞi ¼
0 and, consequently, the variance of bT∇ lnðPÞ is given by

varðbT∇ lnðPÞÞ ¼
Z

dxbi
∂xiPðxÞ∂xjPðxÞ

PðxÞ bj ¼ bTDb:

ðF21Þ

Next, we evaluate the variance

varðaTxÞ ¼
Z

dxaiajxixjPðxÞ

−
Z

dx
Z

dyaiajxiyjPðxÞPðyÞ ¼ aTΞa:

ðF22Þ

Then, the covariance inequality (F20) can be written as

bTDb ≥
ðbTaÞ2
aTΞa

: ðF23Þ

Since this result holds for arbitrary a and Ξ is positive
definite and thus invertible, we may choose

a ¼ Ξ−1b: ðF24Þ

For this choice, we obtain

bTDb ≥
ðbTΞ−1bÞ2
bTΞ−1ΞΞ−1b

¼ bTΞ−1b; ðF25Þ

where we used the symmetry of Ξ and that ΞΞ−1 ¼ 1.
Since b is arbitrary, this result is equivalent to the
inequality (F16).
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