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While a clean, driven system generically absorbs energy until it reaches “infinite temperature,” it may do
so very slowly exhibiting what is known as a prethermal regime. Here, we show that the emergence of an
additional approximately conserved quantity in a periodically driven (Floquet) system can give rise to an
analogous long-lived regime. This can allow for nontrivial dynamics, even from initial states that are at a
high or infinite temperature with respect to an effective Hamiltonian governing the prethermal dynamics.
We present concrete settings with such a prethermal regime, one with a period-doubled (time-crystalline)
response. We also present a direct diagnostic to distinguish this prethermal phenomenon from its infinitely
long-lived many-body localized cousin. We apply these insights to a model of the recent NMR experiments
by Rovny et al. [Phys. Rev. Lett. 120, 180603 (2018)] which, intriguingly, detected signatures of a Floquet
time crystal in a clean three-dimensional material. We show that a mild but subtle variation of their driving
protocol can increase the lifetime of the time-crystalline signal by orders of magnitude.
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I. INTRODUCTION

The study of quantum systems out of equilibrium has led
to the identification of fundamentally new phenomena, such
as the discrete time crystal (DTC) in periodically driven
(Floquet) systems [1–7]. In a generic many-body system,
periodic driving leads to heating to a featureless “infinite
temperature” state, appropriate to maximizing entropy in a
system with no conservation laws [8–10]. The only known
generic mechanism for avoiding this heating [8,10–13]—in
the asymptotic limit of large systems and late times—relies
on the phenomenon of many-body localization (MBL) in
disordered, interacting systems [14–23]. This permits the
existence of nontrivial MBL Floquet phases [1], the DTC
being a paradigmatic example which displays a novel form
of long-range spatiotemporal order—breaking both the
discrete time-translation symmetry of the periodic drive
and an emergent (spatial) Ising symmetry [1,3,5,24].
Many-body localization requires a number of idealized

conditions (for example, perfect environmental isolation
and short-ranged interactions) that may not always be

realized in a given experimental setup. Nevertheless, even
absent MBL, it was shown that the heating time can be
made exponentially large in some dimensionless system
parameters, th ∼O( expðω=JÞ), when the driving fre-
quency ω is large compared to the local energy scales in
the system, ∼J [25–29]. Intuitively, absorbing one “quan-
tum” of energy ω from the drive requires the rearrangement
of many local degrees of freedom with energy scales J,
which is a high-order process leading to parametrically
slow heating.
In the “prethermal” regime prior to heating, t < th, the

system can display nontrivial dynamics and is well
described by a (quasilocal) time-independent “effective
Hamiltonian”Heff that captures the dynamics of the system
out to an exponentially long time [26–29]. Building on this,
it was shown in Ref [30] that a DTC can be realized for an
extended prethermal regime, even absent MBL, if one
arranges for (a slightly generalized) Heff to additionally
display an emergent Ising symmetry, with a spontaneous
Ising symmetry-breaking transition at some temperature
Tc. Then, upon starting from a symmetry-broken initial
state at a low temperature below Tc, the system can display
oscillations of the Ising order parameter at twice the driving
period. At late times, the system eventually heats to infinite
temperature and Heff ceases to be a good description.
We will refer to such prethermal time crystals that rely on
spontaneous symmetry breaking (SSB) as “prethermal
SSB DTCs.”
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Intriguingly, a recent NMR experiment on a clean, peri-
odically driven three-dimensional crystal observed signatures
of time crystallinity, despite being far from any MBL regime
[31,32]. The experiment measured the global magnetization
of the sample, and observed period-doubled oscillations for
the duration of the experimental coherence time (about a 100
drivingperiods).Despite the almost complete lack of disorder,
the observed signal was very similar to that observed in two
earlier experiments, on disordered nitrogen-vacancy centers
[33] and trapped ions [34], that were closer in spirit to MBL
TCs due to slow disorder-impeded thermalization [35].
A natural conjecture is that the clean NMR experiment

may be seeing a prethermal SSB DTC as in Ref. [30].
However, the experiment prepares a weakly polarized
initial state that is at an extremely high temperature (vastly
in excess of the strength of the dipolar interactions in the
crystal). This does not satisfy the requirement in [30] for
starting with a symmetry-broken initial state at a low
temperature with respect to Heff .
Thus, the NMR results do not fit into any existing

framework of Floquet MBL (or prethermal) order, and call
for a new theory. We identify the emergence of a long-lived
approximately conserved quantity as the crucial missing
ingredient. The existence of this conserved quantity sta-
bilizes the time-crystalline behavior and provides a pre-
thermal window via a long timescale on which this
conservation law is eventually destroyed. This conservation
law may or may not be accompanied by the presence of
approximate long-lived energy conservation (i.e., the exist-
ence of a local time-independent Heff ) in previously
identified prethermal phenomena, thereby extending these
qualitatively. We also emphasize that the existence of this
conservation law does not, in turn, require any (conven-
tional) spontaneous symmetry breaking.
To make contact with the experiment, we arrange for the

emergence of a long-lived U(1) symmetry, that is approx-
imately the total spin (or global magnetizationM) along the
z direction. We primarily focus on cases where there is also
long-lived energy conservation and hence an Heff . Here,
one can show that dynamics from initial states at infinite
temperature but nonzero magnetization density can never-
theless show nontrivial dynamics [such as long-lived
oscillations of MðtÞ] for a long period of time, thereby
allowing for the apparently oxymoronic notion of pre-
thermalization without temperature.
One of the insights deriving from our analysis is that a

prethermal DTC signal is most stable for parameter values
which may not have been a priori obvious. In particular, a
well-known route to realizing an approximate U(1) sym-
metry in a time-independent system is to apply a large
magnetic field in the, say, z direction [27]. However, as we
discuss below, this is not as straightforward in some natural
Floquet settings since the stroboscopic nature of the
Floquet unitary does not allow for the accumulation of
arbitrarily large phases.

The crispest mechanism for realizing the physics we
have in mind entails engineering the desired emergent
symmetry to leading order inHeff , with residual symmetry-
breaking perturbations arising only at higher orders in a
small parameter ϵ=ω. In more detail, a fundamental object
of interest in a Floquet system is the time-evolution
operator over one driving period T, defined as UðTÞ ¼
T e−i

R
t

0
dtHðtÞ. This can be used to formally define a

(nonunique) “Floquet Hamiltonian” ĤF via ÛðTÞ ¼
T e−i

R
T

0
dt ĤðtÞ=ℏ ≡ e−iĤFT=ℏ, where the operator ĤF is gen-

erally highly nonlocal in a many-body system. When ω is
large compared to the local energy scales of the problem,
one can perform a high-frequency asymptotic expansion for

ĤF in powers of 1=ω, ĤF ¼ P
nð1=ωÞnĤðnÞ

F ; the leading-

order term Ĥð0Þ
F is the time-averaged Hamiltonian, while

higher-order terms are progressively longer ranged and
contribute significantly to the dynamics only at correspond-
ingly later times. While ultimately divergent, this expansion
looks convergent out to some optimal order nopt ¼
Oðω=JÞ. Truncating the expansion at this order yields
Heff which is an exponentially accurate approximation to
the Floquet time evolution ÛðTÞ, thereby setting the rate of
heating to be exponentially small [26–29]. If Ĥð0Þ

F has the
desired symmetry, with violations coming in at higher
orders with strength ðϵ=ωÞn (where ϵ is an independently
chosen small parameter), then the timescale on which the
symmetry is destroyed can be made parametrically large for
small ϵ and large ω.
In sum, our work (i) widens the scope of Floquet

prethermalization, (ii) expands the toolkit for using the
Floquet system to generate dynamics with novel drives and
symmetries, and (iii) sheds light on the mystery of the
NMR time-crystal experiment. In particular, we also predict
that a slight and straightforward modification of the
original experimental NMR protocol [31,32]—a judicious
choice of an optimal magnetic field driving protocol—will
exponentially enhance the many-body lifetime of the
observed DTC.
The rest of this manuscript is structured as follows. In

Sec. II, we present the drive studied in the NMR DTC
experiment, and introduce a family of short-range interact-
ing one-dimensional spin 1=2 models inspired by the
experiment as model systems to provide evidence confirm-
ing our picture. We then analyze the regimes of thermal-
ization for our model drives in Sec. III, showing how one
can engineer a long-lived approximate emergent U(1)
conservation that can show nontrivial magnetization
dynamics even at infinite temperature and enhance the
lifetime of the DTC signal observed in the NMR experi-
ment. Section IV provides concrete signatures for distin-
guishing between the different MBL and prethermal
regimes in experiment, while Sec. V concludes with a
summary and outlook.
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II. NMR FLOQUET DRIVE

In order to keep this work self-contained, we briefly
summarize the pertinent details of the NMR DTC
experiment of Refs. [31,32]. A standard NMR setup
entails nuclear spins Ii located on sites i of a crystalline
lattice, interacting via dipolar interactions, Jij ∼ μ0γiγj=
ð4πjrijj3Þ½Ii · Ij − 3ðIi · r̂ijÞðIj · r̂ijÞ� for spins separated
by the lattice vector rij, where μ0 is the vacuum permeabil-
ity, and γi and γj are the nuclear gyromagnetic ratios of the
two spins. In the NMR DTC experiment [31], the spins are
furnished by spin-1=2 31P nuclei in ammonium dihydrogen
phosphate, and are arranged in a three-dimensional crys-
talline lattice. As is typical of NMR experiments, the setup
is subject to a strong magnetic field oriented along the z
direction (by convention). The Zeeman splitting of the
nuclear spins from this applied field is several orders of
magnitude larger than the strength of the dipolar inter-
actions, and the Zeeman field leads to a very fast precession
of all transverse components of the nuclear spins. Then, in
the rotating frame of this large applied field, one can define
a so-called “secular” Hamiltonian which takes a “XXZ”
form for interactions between spins of the same type [31]:

Hsecular ¼
X
i;j

μ0γiγj
4πjrijj3

1

2
½3cos2ðθijÞ − 1�ðIi · Ij − 3Izi I

z
jÞ

þ h
X
i

Izi þ � � � ; ð1Þ

where θij is the angle between the internuclear vector rij
and the z axis (defined by the static external field), Izi refers
to the z component of the spin Ii, and � � � refers to other
couplings between other types of nuclear spins and higher-
order terms. Note that the secular Hamiltonian conserves
the total z component of the magnetization, M ¼ P

i I
z
i .

The DTC experiment [31,32] prepares a weakly mag-
netized mixed initial state at high temperature. The spins
interact via Hsecular for a time period T and are then
periodically subject to a near-perfect π pulse that globally
flips all spins, with a deviation ϵ. Despite the systematic
deviation in the rotation angle, the experiment observes a
period-doubled signal locked at a frequencyω=2 for strong-
enough interactions J, one characteristic signature of time-
crystalline order [5]. For weaker interactions, the system
crosses over to a regime with “beating” at a frequency that
tracks ϵ instead of robust period doubling—thereby cross-
ing over from a regime with a time-crystalline signature to
one without.
For concreteness, we will work with a tractable

minimal model inspired by the NMR drive in which the
essential ingredients for producing DTC behavior via U(1)
prethermalization are manifest. We study a driven one-
dimensional system of spin degrees of freedom on sites i,
Sαi ¼ 1

2
σαi where α ¼ x, y, z, and σα are Pauli spin 1=2

matrices. The drive consists of three elements. The first

are XXZ-type nearest and (integrability-breaking) next-
nearest-neighbor interactions of respective strengths J, J0;
the second a uniform magnetic field in the z direction, hSztot;
and the third a periodically applied global spin rotation by
an angle θ about the x axis, generated by Px

θ. Our choice to
work in one dimension with truncated-range interactions is
for numerical tractability; our conceptual framework is
equally applicable to higher dimension and longer-range
interactions.
The model drive is

Px
θ ¼ e−iθS

x
tot ;

Hc ¼ J
XL−1
i¼1

ðSxi Sxiþ1 þ Syi S
y
iþ1 − 2SziS

z
iþ1Þ

þ J0
XL−2
i¼1

ðSxi Sxiþ2 þ Syi S
y
iþ2 − 2Szi S

z
iþ2Þ; ð2Þ

with J ¼ 1, J0 ¼ 0.5. The resulting Floquet unitary, which
is the stroboscopic time evolution operator over one period,
is given by

UðTÞ ¼ Px
θe

−iT1ðHcþhSztotÞ ¼ Px
θe

−ihT1S
z
tote−iT1Hc; ð3Þ

where the second line follows from the first because
½Hc; S

z
tot� ¼ 0 justifies the separation of exponentials. In

what follows, we vary the period T1 and field h, while
considering small, θ ¼ 0þ ϵ, and nearly maximal, θ ¼
π þ ϵ (“π pulse”), spin rotation angles. These are detuned
by a small amount ϵ ¼ 0.1, unless otherwise stated, to
address the stability of the phenomena we discuss. The
exact π pulse, Px

π ∼
Q

i σ
x
i , enacts a perfect flip of all spins

in the z basis. For θ ¼ π þ ϵ, the flip has a systematic
deviation, as in NMR experiment.
Let us discuss some salient features of this drive.
First, for ϵ ¼ 0, the evolution can be identified with that

of a static Hamiltonian with perfect U(1) symmetry. This is
trivially true when θ ¼ 0, in which case the problem
reduces to an undriven one, UðTÞ ¼ e−iT1ðHcþhSztotÞ. For
the “flipped” case with spin rotation angle θ ¼ π, this is still
true if the two period unitary is considered, UðTÞ2 ¼
e−i2T1Hc , which follows from the fact that ½Hc; Px

π� ¼ 0
and fSztot; Px

πg ¼ 0. In the latter case, the U(1) sym-
metry can be used to achieve perfect period doubling
(or “time-crystalline”) dynamics with the global mag-
netization flipping every period: MðnTÞ ¼ ð−1ÞnMð0Þ,
where M ¼ P

i σ
z
i , n is an integer, and MðnTÞ ¼

U†ðnTÞMUðnTÞ. Again, this follows simply because
Uð2TÞ commutes with M while UðTÞ anticommutes with
M due to the action of the π flip, and does not rely on
symmetry breaking.
On the other hand, for any nonzero ϵ, the system is

genuinely driven and will eventually approach the infinite
temperature ensemble ρ ∝ I. The challenge is thus to
generate long timescales, th and tm, both for the
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approximate nonconservation of energy and the approxi-
mate nonconservation of Sztot, respectively.
Second, note that the second line of Eq. (3) implies that

hT1 is only defined modulo 2π, and hence cannot be made
arbitrarily large for this drive: there is no simple high-field
limit. We will show that the dynamics in this system can be
explained via an approximate long-lived conservation of
Sztot. However, the approximate conservation of Sztot—the
central emergent feature—is not due to a large field h.
Instead, it is the smallness of the detuning ϵ of the global spin
rotation, which controls both the strength of driving and the
strength of the Sztot violation. We emphasize that while a
large magnetic field is used in the NMR setup to obtain an
interaction Hamiltonian Hc that conserves Sztot within the
secular approximation, the periodic drive as a whole
comprises both the interaction Hamiltonian (with the field)
and the global spin rotation—and there is no simple large
field limit to obtain Sztot conservation for UðTÞ as a whole.
Third, in the low-frequency regime when ω ¼ 2π=T1 ≪

fJ; hg, the experiment finds that the envelope of MðnTÞ
decays exponentially in time so there is no long-lived
signal. In this regime, there is no quasiconservation of
energy and jMðtÞj ∼ e−t=td , with a decay time td ∼ 1=ϵ2.
This is the “dephasing regime” [36]. The basic picture is
that the operator Sztot gets “rotated away” from the z axis by
an angle ϵ every drive cycle under the action of Px

ϵ . The
component of the polarization in the XY plane gets
dephased under the action of Hc, while the component
parallel to z remains conserved while Hc acts. This gives a

decay MðnÞ ∼ cosðϵÞn, consistent with the observed expo-
nential decay upon expanding in small ϵ. In the next
section, we will work instead in the high-frequency limit
which allows us to enter a prethermal regime.

III. REGIMES OF THERMALIZATION

In this section, we discuss various regimes of thermal-
ization for the model drive in Eq. (3) in the high-frequency
regime ω ≫ fJ; hg. The demonstration of a long-lived
U(1)-stabilized DTC signal proceeds in several steps. Our
starting point is an analysis of the NMR experiment with its
period-doubled response [Case 1, Fig. 1(a)]. We then
demonstrate how to extend its lifetime dramatically into
a bona fide prethermal signal by adjusting the drive
parameters. This proceeds in two steps. We first arrange
for the appearance of a prethermal regime by adjusting the
drive [Case 2, Fig. 1(b)] to yield an effective Hamiltonian
with emergent approximate U(1) conservation, but no
period doubling. The second step [Case 3, Fig. 1(c)]
recreates the period-doubled DTC response, now with a
parametrically longer lifetime, by adjusting the applied
Zeeman field. The resulting dramatic increase in lifetime is
a consequence of the effective Hamiltonian, at leading
order, being perfectly U(1) symmetric.
As discussed previously, the high-frequency regime

ω ≫ fJ; h; θg allows one to define a quasilocal time-
independent effective Hamiltonian associated with the
quasiconservation of energy [26–29]. The dynamics are
well approximated by Heff up to the “heating time”

FIG. 1. Survival of the total magnetization CtotðnTÞ [defined in Eq. (6)], stroboscopically observed, in a chain of length L ¼ 20 under
the NMR Floquet drive for different driving frequencies ω ¼ 2π=T1 (3). The detuning of the spin rotation is ϵ ¼ 0.1. (a) Without a field
(h ¼ 0) and with an approximate global flip Px

θ, θ ¼ π þ ϵ, corresponding to the presumptive parameters of the NMR experiment, the
magnetization dies off quickly with little dependence on the driving frequency. (b) At half the maximum field, h ¼ π=ð2T1Þ, and with
θ ¼ 0þ ϵ, the survival of the magnetization is enhanced. Dashed lines show the evolution with the time-averaged leading-order
effective Hamiltonian. (c) With the maximal field h ¼ π=T1 and with an approximate global spin flip θ ¼ π þ ϵ, we observe a
prethermal time-crystalline signal with dramatically enhanced lifetime, by more than 100× compared to (a). The lifetime shows an
exponential dependence on driving frequency (Fig. 2), a hallmark of prethermalization.
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th ∼ eω=J. We note that the existence of this prethermal
regime requires ω to be much bigger than all local energy
scales in the time-dependent Hamiltonian, Eq. (2).
However, this is not strictly true when θ ¼ π þ ϵ, which
is the regime in which one gets a nontrivial DTC phase.
This issue is also encountered when considering the
existence of Floquet MBL in the DTC phase, and the
resolution is that one needs to eliminate the large frequency
effect of the π pulse first, which is conveniently done by
either working in a “toggling” frame which rotates by Px

π

each time a global rotation is applied or, equivalently, by
considering the time evolution over two periods:

Uð2TÞ ¼ Px
πPx

ϵe−ihT1S
z
tote−iT1HcPx

πPx
ϵe−ihT1S

z
tote−iT1Hc

¼ Px
ϵeþihT1S

z
tote−iT1HcPx

ϵe−ihT1S
z
tote−iT1Hc; ð4Þ

where we have used ½Hc; Px
π� ¼ 0 and fSztot; Px

πg ¼ 0 to
eliminate the large θ field. Then, one can define an effective
Hamiltonian which, to leading order in 1=ω, is a time
average:

Heff ¼ Ĥð0Þ
F þOð1=ωÞ

Ĥð0Þ
F ∝

T1

T1 þ ϵ

�
Hc þ

ϵeff
T1

X
i

Sxi þ heff
X
i

Szi

�
þOð1=ωÞ:

ð5Þ
Note that Heff is a generic thermalizing Hamiltonian with
no disorder and no MBL. Higher-order terms in Heff make
it quasilocal with a decaying range of interactions. For the
“unflipped” case when θ ¼ ϵ, we consider a single period

UðTÞ (3) and the proportionality constant in Ĥð0Þ
F is 1, and

heff ¼ h and ϵeff ¼ ϵ. On the other hand, when θ ¼ π þ ϵ,
we define Heff with respect to Uð2TÞ the proportionality

constant for Ĥð0Þ
F is 2, and the values heff and ϵeff depend on

h and ϵ as discussed below.
With this in hand, we can predict drives for which

prethermal—including time-crystalline—phenomena occur,
and also understand the status of the experimental protocol in
this regard. One of our mainmessages is that ifHeff shows an
approximate long-lived U(1) conservation, then MðtÞ will
saturate at a nonzero constant value on some (typically short)
timescale under evolution with Heff , for all initial states that
start with a nonzeromagnetization density. In the flipped case
where Heff captures the dynamics over two periods (and
hence over either even or odd times), a nonzero thermal value
for Mð2nTÞ implies period-doubled oscillations when con-
sidering both even and odd times because Px

πMPx
π ¼ −M.

We will denote by tm the timescale on which the
approximate U(1) conservation is destroyed. This can arise
via two mechanisms: (i) the system heats to the infinite
temperature ensemble with no conservation laws, and Heff
ceases to be a good description, which occurs on timescale
th. Expectation values for all observables, including MðtÞ

become trivial at this time; (ii) the system thermalizes to the
“true” equilibrium thermal ensemble for Heff which does
not conserve U(1) symmetry (higher-order terms inHeff are
not fine-tuned in any way, and will generally break the
symmetry). At this time, denoted tth, MðtÞ will decay to
zero for all initial states at infinite temperature with respect
to Heff , including those that started with a finite magneti-
zation density. Note that tth will be set by a combination of
ϵ and ω and could be made larger than th for small-enough
ϵ. Thus, tm ∼min½tth; th� will be set by the faster of the two
processes above, and this sets the lifetime of the DTC
response for the period-doubled case.
To examine the presence of U(1) conservation in an

initial state independent manner, we consider the normal-
ized quantity [27]

ΔðnTÞ≡ 1

2L
jjMðnTÞ −Mð0Þjj2

¼ 1

2L
1

2L
Trf½MðnTÞ −Mð0Þ�†½MðnTÞ −Mð0Þ�g

¼ 1 −
1

L
1

2L
Tr½MðnTÞMð0Þ�

≡ 1 − CtotðnTÞ: ð6Þ
Here, kk denotes the Hilbert-Schmidt operator norm,
and ΔðnTÞ ¼ 0 when M is strictly conserved in which
case MðtÞ ¼ Mð0Þ. The third line uses the fact that
Tr½M†ðtÞMðtÞ� ¼ Tr½Mð0ÞMð0Þ� ¼P

ijTr½σziσzj� ¼ L2L by
the cyclicity of trace and the tracelessness of the Pauli
operators. This expression relates the conservation of
global magnetization to the infinite temperature autocorre-
lator ofMðtÞ, which is experimentally measurable. We note
that, more precisely, an approximate U(1) conservation will
manifest itself as a dressed quasilocal operator M̃ that is
conserved for a long-time tm, and M̃ only agrees withM to
leading order in a small parameter [27].
We study the normalized autocorrelator CtotðtÞ defined

above, and the deviation of the (absolute value) of this
quantity from 1 is a proxy for the nonconservation of M in
the system. For an efficient numerical simulation of the
system, we use quantum typicality [37–40] to replace the
trace so that

CtotðnTÞ ≈
1

L
hψ̃ jMðnTÞMjψ̃i; ð7Þ

where jψ̃i is a random (Haar measure) state, typical for
infinite temperature. We can then efficiently simulate the
dynamics using numerically exact Krylov space-time
evolution technique [39,41,42] to calculate the action of
matrix exponentials on wave functions. This allows us to
access large systems of sizes L ¼ 20–24, beyond those
accessible to exact diagonalization. Accessing these large
sizes is particularly crucial in numerical studies of pre-
thermalization which require us to work in the regime
J ≪ ω ≪ JL, where the first inequality is required to get a
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long-timescale th, and the second is required to keep the
O(1) frequency smaller than the extensive many-body
bandwidth so as work in a sensible thermodynamic limit.
In practice, the MB bandwidth is a factor of 5–10 larger
than the frequency for the sizes we can achieve. The
typicality approximation in Eq. (7) is exponentially accu-
rate in terms of L, and for our Hilbert space dimensions
>106, using a single wave function jψ̃i is sufficient. We
now examine the behavior of CtotðnTÞ for several differ-
ent cases.

A. Case 1: hT1 = 0, Experimental Choice

Let us start with the choice of parameters in the NMR
experiment, in which a large Zeeman field is applied but the
field is tuned so that hT1 ¼ 0mod 2π. This corresponds to

heff ¼ 0 and ϵeff ¼ ϵ in Ĥð0Þ
F , Eq. (5). Note that one also

obtains heff ¼ 0 if there is a π pulse present, because the z
field flips sign and gets “echoed” out to leading order under
the action of the π flip. However, heff ¼ 0 is maximally
nonideal from the point of view of the “usual” mechanism
for generating an approximate U(1) conservation in a time-
independent Hamiltonian, which attempts to engineer a
large separation of scales between different Sztot sectors by
subjecting the system a large magnetic field [27]. Indeed,
the lifetime of TC response seen is the shortest for this case
[Fig. 1(a)].
To wit, consider starting from an initial state that is at

near-infinite temperature with respect to Heff , but has a net
magnetization density, similar to the experiment. Then,
even if there is a long-lived Heff with th ∼ expðω=JÞ, the
appropriate thermal value for M with respect to Heff is 0,
andMð2nTÞwill thermalize to zero on a timescale tth set by
the destruction of Sztot conservation in Heff . In the absence
of a large scale heff , this timescales as tm ∼ tth ∼ 1=ϵ2 and
depends polynomially on 1=ϵ by standard golden-rule-type
reasoning.
In other words, even though th scales exponentially with

ω, we do not expect tm ∼ tth to show a strong ω depend-
ence. The ω independence is borne out by the numerical
data in Figs. 1(a) and 2 and explains the relatively short
lifetime of the time-crystalline response due to the absence
of any exponential scaling in tm. We note that since the
actual experiment measures only 100 cycles, it still sees a
finite Fourier peak at π corresponding to the transient
period doubling. Of course, in principle, one could also
consider a regime with small-enough ϵ such that tth > th.
In this regime, the conservation of magnetization is
destroyed due to Heff ceasing to be a good description
rather than the destruction of Sztot conservation within Heff ,
i.e., tm ∼minðth; tthÞ; this corresponds to a window with a
prethermal exponential dependence, tm ∼ th ∼ expðωÞ for
the smallest range of ϵ’s.
A prethermal regime can be enhanced, however, through

modifying the magnetic field h.

B. Case 2: hT1 = π=2, Generation
of a prethermal regime

Let us begin with the discussion of the nontrivial half-
maximal value (due to the compactness of the unit circle)
hT1 ¼ π=2. Here, we consider the case without a π pulse,
i.e., we include only a small spin rotation by θ ¼ ϵ ¼ 0.1
per period T of the drive. This prevents the field from being
“echoed out,” so that heff ¼ h ¼ π=2T1. Adding this field
separates the different Sztot sectors and makes the spin flip
terms of strength ϵ more off-resonant and hence more
ineffectual at destroying Sztot conservation. However, as
mentioned earlier, this field cannot be made parametrically
large as is required for a bona fide prethermal U(1) regime
in Heff (i.e., one with an exponentially long-lived in h U(1)
conservation). Instead, it still the case that Sztot conservation
in Heff is destroyed on a polynomial in 1=ϵ timescale.
However, for this case, we show that prethermalization in

the dynamics of MðtÞ can be achieved by directly coupling
to prethermalization of energy and relying on a notion of
temperature, rather than relying on U(1) conservation. We
note that the temperature can be quite high in this case,
much higher than ordering temperatures for spontaneous
symmetry breaking (in higher dimensions).
Consider again an initial state at a finite magnetization

density. Now, due to the presence of the z field in Heff , this
state is also at a finite energy density and hence temper-
ature. Thus,MðnTÞ will show an approximate “plateau” to
a nonzero thermal value appropriate to the temperature of
the initial state, before relaxing to zero at a later timescale
tm ∼ th ∼ exp½ω=J�, at which Heff ceases to be a good
description.
Indeed, Fig. 1(b) shows an initial relaxation of CtotðnTÞ

to a plateau at short times, followed by a later decay to zero
as expected for an infinite temperature state with no
additional conservation laws. We have verified that this

FIG. 2. Number of driving periods needed to reach a magneti-
zation threshold of Ctot ¼ 0.8, which serves as an estimate for tm
for the data in Fig. 1 with no (h ¼ 0) and maximal field
(h ¼ π=T1). At large frequencies, the maximal field data shows
a greatly increased tm with an exponential dependence on ω. The
dashed curves show additional data for longer chains (L ¼ 24).
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later timescale scales as tm ∼ exp½ω=J� (not shown). The
dashed lines in the figure correspond to the thermal
expectation value obtained by direct evolution with the
time-averaged Hamiltonian Heff , and these match the
plateau values as expected.

C. Case 3: hT1 =π, Prethermalization
without temperature

Finally, we consider the maximal possible field (again
due to the compactness of the unit circle) of hT1 ¼ π,
which leads us to a demonstration of prethermalization
without temperature, relying solely on U(1) conservation.
We also return to the π-flip case to obtain a prethermal
DTC. It turns out that for this value of h, the field segment
of the drive also realizes a π pulse, but now in the z
direction: e−hT1S

z
tot ∼ Pz

π ¼
Q

i σ
z
i . Again, let us look over

two periods. Crucially, the effect of the z π pulse is to “echo

out” the ϵSxtot term. Thus, Ĥð0Þ
F over two periods has both

heff ¼ 0 and ϵeff ¼ 0 so that the (leading order)Heff exactly
conserves Sztot.
Now, if one prepares initial states at infinite temperature

with respect to Heff but finite magnetization density (which
is possible because heff ¼ 0), then the initial value of M
will persist for the time that the dynamics is approximately
governed by Heff. Then, at time tm ∼ th ∼ expðω=JÞ, the
magnetization decays to zero once Heff ceases to be a good
description. As explained earlier, if one looks over both
even and odd times, then oscillations are visible. This is
confirmed in Fig. 1(c).
Put differently, when Heff has U(1) conservation, the

equilibrium ensemble of Heff is characterized by both a
temperature β−1 and a chemical potential μ. One can prepare
initial states that have β ¼ 0, but have finiteμ ≠ 0, and hence
can show a persistent magnetization—thereby separating
the notion of prethermalization from temperature by
allowing for a separate thermodynamic parameter.
As is already visible by direct inspection of the time

traces of CtotðnTÞ in Figs. 1(a) and 1(c), the lifetime of
the approximate conservation of Sztot and consequently the
time-crystalline behavior is strongly enhanced by the pres-
ence of a magnetic field in the z direction. In other words, a
small modification of the applied field in the NMR experi-
ment can lead to an exponentially greater DTC lifetime [43].
Figure 2 shows a direct comparison of the TC lifetimes in

the case of zero and maximal field by extracting the time it
takes for CtotðnTÞ to decay to a threshold value of 0.8. At
high driving frequencies ω≳ 6, we observe an exponential
scaling of the lifetime with the frequency in the presence of
the field—the characteristic signal of prethermalization—
while without a field there is only a weak frequency
dependence. The colored lines are extracted from the
data for a chain of length L ¼ 20 in the other panels
of 1, while the black dashed line stems from the analysis of
a larger system of size L ¼ 24. Note the negligibly small

system-size dependence, which is to be expected as
prethermalization is sensitive to the ratio of O(1) parameter
sizes rather than the system size.
Finally, we note that the exact conservation of Sztot inHeff

when hT1 ¼ π is only true to leading order in 1=ω. Higher-
order corrections at OðϵJ=ωÞ will again cause Sztot to be
destroyed within Heff on some polynomial timescale
tth ∼ ω2=ϵ2. For very small ϵ’s and large ω’s such that
tth < th, we will find that tm ∼ tth does not show an
exponential dependence on ω. However, because the
destruction of Sztot conservation on timescales tth only
occurs due to higher-order corrections in Heff , in practice
one can still isolate a large prethermal window where
tm ∼ th ∼ expðωÞ, as is visible from Fig. 1(c). In the limit
that ϵ → 0, this window in ω can be made arbitrarily large.
Although discussed in the context of our model drive, the

mechanism outlined above is very general. One can
consider large families of drives for which the leading
terms in Heff have a desired symmetry, with corrections
only coming in at higher orders in 1=ω. When the strength
of these corrections is further controlled by a small
parameter ϵ, it is possible to tease out an exponentially
large window in ω for small-enough ϵ during which the
symmetry is approximately conserved.
We next turn to amore detailed verification of our picture,

and its stability. First, Fig. 3 provides visually compelling
direct evidence of the prethermal mechanism involving
approximate U(1) conservation. It displays the participation
entropy in the computational z basis fjiig upon starting
from a specific basis state. The participation entropy of a
wave function jψi in each magnetization sector HN↑

is

defined as S1½N↑� ¼ −
P

i∶jii∈HN↑
jhijψij2 ln jhijψij2, where

HN↑
containing all basis states with N↑ spins pointing up.

FIG. 3. Time dependence of the sector (labeled by the number
of up spins N↑) resolved participation entropy S1½jψðnTÞi; N↑� of
the wave function jψðnTÞi starting from the initial state
j00100100100100100100i (i.e., in the sector with N↑ ¼ 6) under
the NMR Floquet drive with a frequency of ω ¼ 6.25, hT1 ¼ π,
and an approximate global spin flip after each period θ ¼ π þ ϵ
with ϵ ¼ 0.18. The wave function spreads quickly within one
sector, before slowly spreading over several sectors.
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We find two distinct timescales: The wave function very
quickly delocalizes in its initial magnetization sector, and
then,muchmore slowly, leaks into increasingly distant other
sectors, which is clearly visible in the delayed onset of the
growth of the participation entropy for different magneti-
zation sectors.
Finally, we note that a judiciously chosen z field to

realize a U(1) conservation in Heff is both experimentally
feasible, and reminiscent of various “dynamical decou-
pling” schemes for Hamiltonian engineering. However, our
results are not limited to a fine-tuned z field. Figure 4 shows
the stability of the prethermal DTC lifetimes to detuning
from the maximal field. While for a maximal field the
lifetimes are optimal as expected, the exponential scaling of
the lifetimes with ω is still visible down to a detuning of
about 10% from the maximal field.

IV. DISTINGUISHING BETWEEN
PRETHERMAL AND MBL TCs

For realistic experiments with a lifetime limited by
extrinsic factors, it may often be the case that the pre-
thermal time window is longer than the experimental

lifetime. Thus, the question naturally arises of how to
distinguish a prethermal DTC from a bona fide (MBL-
localized) infinitely long-lived one, and also how to
distinguish between prethermal U(1) DTCs (this work)
and prethermal SSB DTCs relying on spontaneous sym-
metry breaking (Ref. [30]). Indeed, all three DTC experi-
ments thus far (on trapped ions, diamond NV centers, and
NMR spins) nominally observe very similar experimental
signatures, but for apparently different reasons.
To achieve this goal, we avail ourselves of the funda-

mentally distinct origin of the respective longevities. While
the emergence of locally conserved quantities—the l bits—
underpin MBL [21,44,45], the prethermal U(1) DTC only
offers a global conservation law which is not in conflict
with local spin diffusion. The prethermal SSB DTC relies
on yet a distinct mechanism which requires low-temper-
ature initial states and spontaneous symmetry breaking.
The crispest way to distinguish between these mecha-

nisms is by considering a variety of different initial states
and measuring local spin autocorrelators in the z basis. If
we start with a random infinite temperature product state of
z spins in the Sztot ¼ 0 sector, only an MBL DTC will
display oscillations in local autocorrelators hσzi ðnTÞσzi i.
These states are too high in temperature for prethermal SSB
DTCs, and they have Sztot ¼ 0 leading to zero net mag-
netization density for the U(1) DTC. Figure 5 displays a
simulation of both local and global infinite temperature
spin autocorrelators in the z basis for the NMRmodel. In all
settings displayed, we find that the local version decays
much more quickly than the approximately symmetry-
protected global one, while such a decay is precluded for
the MBL version.
Finally, to distinguish between prethermal U(1) TCs and

prethermal SSB TCs, one should start with initial states

FIG. 4. Robustness of prethermal regime to drive imperfec-
tions. (a) Survival of the total magnetizationCtotðnTÞ in a chain of
length L ¼ 20 under the NMR Floquet drive (3) for driving
frequency 2π=T1 ¼ 7.5 and magnetic fields h detuned from the
optimal field h ¼ π=T1. The detuning of the spin rotation Px

πþϵ is
ϵ ¼ 0.1. (b) Number of driving periods needed to reach a
thresholds of 0.8 for the same data as in panel (a).

FIG. 5. Comparison between the survival of the global mag-
netization CtotðnTÞ and the local correlation function Cz

ii ¼
ð1=2LÞTr½ZiðnTÞZi�. The former can decay much more slowly
when there is an approximate global U(1) conservation, while the
latter decays swiftly due to fast thermalization withinU(1) sectors
as shown in Fig. 3. This is in contrast to a many-body localized
time crystal where both local and global autocorrelators oscillate
with a finite amplitude even at infinitely late times.
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with Sztot ¼ 0, but still at a low temperature with respect to
Heff (say, states with a single domain wall in the center of
the chain). Local autocorrelators in the U(1) TC will
thermalize within the Sztot ¼ 0 sector, showing no net
magnetization and zero amplitude of oscillations. On the
other hand, the prethermal SSB DTC will show oscillations
in local correlators starting from such states, with occa-
sional “phase slips” at late times due to slow coarsening
dynamics of domain walls.
By contrast, if one starts from a polarized initial product

state, then all three categories give virtually indistinguish-
able signatures. This is a drawback of existing TC experi-
ments on disordered systems which only consider a very
limited class of initial states. Indeed, the need for more fine-
grained experimental diagnostics was made particularly
apparent in a recent theoretical study of the trapped ion
experiment [5]. The trapped ion setup tries to realize an
MBL DTC phase by engineering a Floquet Ising drive with
imperfect π flips, and disorder in the longitudinal z fields.
However, the disorder in the fields is echoed out under the π
flip to leading order, so that the model does not realize an
MBL TC but rather looks to be a prethermal SSB DTC. If
the experiment had been conducted for a wide variety of
initial states (instead of only two low-temperature initial
states) this difference would have been apparent.
Finally, one can ask if the mechanism of U(1) pretherm-

alization might be at play in the trapped ion or NV center
drives, since both models do have a U(1) symmetry for
ϵ ¼ 0. Similar to the NMR experiment, the NVexperiment
can only measure a global polarization, and the experiment
starts with a fully polarized initial state and observes an
oscillating signal for MðtÞ with a slowly decaying
envelope. Indeed, an effective Hamiltonian for this model
is also obtained by adding a large z field and going to
an appropriate rotating frame—if this applied field
were chosen to be hT1 ¼ πmod 2π (which removes the
deviation ϵ to leading order), then one would observe an
enhancement of the DTC signal for this experiment as well.
However, in the NV model, thermalization is a critically
slow process due to disorder [35]—so that local autocor-
relators would also decay slowly, unlike the NMR experi-
ment where the decay of local correlators is fast. However,
neither experiment has access to site-resolved local auto-
correlations, so this difference between their thermalization
mechanisms cannot be experimentally verified. The
trapped ion experiment does measure local autocorrelators,
but numerics for this model on different initial states are
consistent with a prethermal SSB DTC rather than a
prethermal U(1) DTC [1]. In principle, the trapped ion
experiment could be repeated with a variety of different
initial states to elucidate this difference.

V. CONCLUSIONS

In summary, we have analyzed in detail a scenario
relevant for the optimization of NMR experiments on

prethermal discrete time crystals in periodically driven
quantum many-body systems. We argue that at high-
enough driving frequency, an optimal magnetic field
exists which stabilizes an approximate U(1) conservation
law and bears the potential to enhance the lifetimes of time-
crystalline behavior by 2 orders of magnitude [Figs. 1(a)
and 1(c)]. This optimization represents a small modification
of the existing NMR experiment and should be achievable
in practice.
One of our main contributions is to connect previous

NMR insights with more rigorous theories of prethermal-
ization to (i) demonstrate a large parameter window with an
exponential lifetime for an emergent conservation law, even
without large magnetic fields inHeff , (ii) elucidate how this
permits interesting prethermal dynamics, even at infinite
temperature with respect toHeff , and (iii) explain how these
can be combined to obtain prethermal time crystals at high
temperatures and without relying on the existence of
symmetry breaking in Heff . This, in turn opens up the
possibility of realizing prethermal TCs in a much wider
range of settings than is known thus far, because the need
for SSB in thermalizing Hamiltonians comes with stringent
constraints on allowed spatial dimensions and ranges of
interactions due to Peierls-Mermin-Wagner–type theorems.
Finally, it is interesting to ask if the notion of an effective

Hamiltonian can be dispensed with altogether to achieve
drives with only a U(1) conservation without any notion of
an effective Hamiltonian—the most dramatic rendition of
prethermalization without temperature. Indeed, consider a
drive with an oscillating magnetic field of the form [46]:

UðTÞ ¼ e−iðT=2ÞðHcþϵSxtotþhSztotÞe−iðT=2ÞðHcþϵSxtot−hS
z
totÞ: ð8Þ

In this case, the strength of the field h can be made
extremely large because of the presence of the noncommut-
ing ϵSxtot in both Hamiltonians. Now, if one works in the
high-frequency limit, then the leading-order Heff averages
over both terms and reduces to the heff ¼ 0 case considered
earlier. On the other hand, in the low frequency limit
where such an averaging is not appropriate and Heff is not
defined, each term of the drive can be made to conserve
U(1) in a crisp prethermal sense, thereby endowing U(1)
conservation to the drive as a whole. We have qualitatively
verified numerically that this drive has enhanced MðtÞ
conservation at small rather than large frequencies.
However, obtaining a quantitative agreement is limited
by finite-size numerics due to our inability to access a
regime where J ≪ h ≪ ω ≪ JL.
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