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Periodic driving has emerged as a powerful tool in the quest to engineer new and exotic quantum phases.
While drivenmany-body systems are generically expected to absorb energy indefinitely and reach an infinite-
temperature state, the rate of heating can be exponentially suppressed when the drive frequency is large
compared to the local energy scales of the system—leading to long-lived “prethermal” regimes. In this work,
we experimentally study a bosonic cloud of ultracold atoms in a driven optical lattice and identify such a
prethermal regime in theBose-Hubbardmodel. Bymeasuring the energy absorption of the cloud as the driving
frequency is increased, we observe an exponential-in-frequency reduction of the heating rate persisting over
more than 2 orders of magnitude. The tunability of the lattice potentials allows us to explore one- and two-
dimensional systems in a range of different interacting regimes. Alongside the exponential decrease, the
dependence of the heating rate on the frequency displays features characteristic of the phase diagram of the
Bose-Hubbard model, whose understanding is additionally supported by numerical simulations in one
dimension. Our results show experimental evidence of the phenomenon of Floquet prethermalization and
provide insight into the characterization of heating for driven bosonic systems.

DOI: 10.1103/PhysRevX.10.021044 Subject Areas: Atomic and Molecular Physics,
Quantum Physics, Statistical Physics

I. INTRODUCTION

The study of out-of-equilibrium dynamics in Floquet
systems is an exciting new frontier in quantum physics
[1–5]. By driving a quantum system, it is possible to enhance
or stabilize interesting equilibrium phases or even to create
new, inherently nonequilibrium phases without a static
analog, such as the discrete time crystal [6–11] or the
anomalous Floquet insulator [12–14]. A seemingly ubiqui-
tous obstruction toward realizing such phases in the many-
body setting is thermalization: By absorbing energy from the
drive, a quantum system is generically expected to heat up
and eventually approach a featureless “infinite-temperature”
state, which is the maximum entropy state in the absence of

any conservation laws [15–17]. The only robust exception to
this fate is provided by many-body localization (MBL) [18–
28], whereby sufficiently strong disorder can prevent this
“heat death” [15,17,29–32]. This exception, however, comes
with a number of constraints (e.g., on the presence of
disorder, the dimensionality of the system, or the range of
interactions [33,34]) that may preclude potentially interest-
ing theoretical scenarios or experimental platforms.
An alternative route toward the realization of nonequili-

brium phases is to accept the ultimate thermalizing fate
of the system and focus instead on delaying the inevitable by
engineering a long-lived “prethermal” regime. In particular,
it has been shown that the timescale for heating can be
bounded from below as tth ≳Oðeℏω=Jeff Þ for sufficiently
large drive frequency ω, where Jeff represents a typical local
energy scale of the system [35–39]. Intuitively, such expo-
nentially large heating timescales arise when absorbing one
quantumof energy from the drive requires the rearrangement
of many local degrees of freedom, which is a high-order
process.At times t ≪ tth, the system can, in principle, exhibit
rich dynamics, featuring symmetries, quasiconserved quan-
tities (including an effective Hamiltonian), etc., [37,40,41].
The existence of prethermal regimes at large driving

frequencies was established in a number of analytical and
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numerical works [35–50]. On the experimental front, the
heating mechanisms of interacting driven systems have
lately been the focus of several works based on ultracold
atoms in optical lattices, tracking condensate decay, atom
losses, or doublon production [51–56]. Recently, signatures
of prethermalization were observed in the extreme limit of
fast, ultrastrong driving [57] by measuring the lowest-band
depletion. However, a clear experimental demonstration of
frequency-tuned prethermalization, manifested by expo-
nential-in-frequency heating times, has yet to be provided.
Such a demonstration requires overcoming several chal-
lenges: The quantum system, while driven, must preserve
coherence for long enough times that the exponential
scaling of tth with frequency becomes manifest; at the
same time, one must be able to tune ω across a wide enough
range without exciting high-energy degrees of freedom that
lie outside the scope of the original isolated system—e.g.,
omnipresent higher bands in lattice models; and, finally, the
overall exponential trend must be resolved from other
system-specific spectral features that may obscure it in
the available frequency range.
In this work, we show evidence of an exponential-in-

frequency thermalization time, the main signature of Floquet
prethermalization, in a driven Bose-Hubbard system of
ultracold bosonic atoms in a square optical lattice. This
observation is made possible by two crucial advantages of
our experimental setup: (i) the high degree of isolation of our
system, which enables us to explore long evolution times
[58,59]; and (ii) a sensitive thermometry technique, enabled
by quantum-gas microscopy [60], which allows us to
measure the heating even for weak drives, thereby sup-
pressing transfers to higher bands and avoiding parametric
instabilities.
By tuning the lattice parameters, we explore the response

of the atoms in a broad range of couplings spanning the
superfluid and Mott-insulating phases. The exponentially
slow heating is observed most clearly on the superfluid
side, where it coexists with weak spectral features possibly
associated to Bogoliubov quasiparticle excitations. On the
Mott-insulating side, the heating rate is nonmonotonic in
frequency, dominated by resonances with higher-occupa-
tion excitations (doublons and triplons). Nonetheless, in
both phases, the heating rate drops substantially (by 1–2.5
orders of magnitude) even with a modest increase in
frequency in the experimentally accessible range. Our
understanding of the observed phenomena is aided by
numerical simulations in one dimension which, while
limited in system size, can explore a broad range of
couplings, drive frequencies, and timescales.

II. EXPERIMENTAL SETUP

Our experiment begins with the preparation of a two-
dimensional cloud of ultracold 87Rb atoms trapped in a
single antinode of a vertical optical lattice. Next, the cloud
is adiabatically loaded into an in-plane square optical lattice

at depth V0. We fix the number of atoms such that the
density in the central part of the trap is close to one atom per
lattice site, typically leading to a total atom number of
Nat ≃ 200. In the prepared state, the atoms populate only
the lowest energy band of the lattice potentials, and our
system can be well described by a two-dimensional Bose-
Hubbard model, with Hamiltonian

Ĥ0 ¼ −J
X

hi;ji
â†i âj þ

U
2

X

i

n̂iðn̂i − 1Þ þ
X

i

ϵin̂i; ð1Þ

where âi, â
†
i , and n̂i, respectively, denote the annihilation,

creation, and number operators at a site i of the square
lattice [i ¼ ðix; iyÞ], J is the tunneling amplitude between
nearest-neighbor sites hi; ji, U is the on-site interaction
energy, and ϵi is the harmonic trapping potential (see the
Appendix A).
At this stage, the atoms are at a very low temperature,

close to the ground state of Eq. (1). We then start driving the
system by periodically modulating the depth of the in-plane
lattices as VðtÞ ¼ V0½1þ A cosðωtÞ� [see Fig. 1(a)], where
A is the relative modulation amplitude, leading to a time-
dependent modulation of all the Hamiltonian parameters.
However, the tunneling strength, due to its exponential
dependence on the lattice depth, dominates the modulation
so that

ĤðtÞ ≈ Ĥ0 þ g cosðωtÞÔdrv; ð2Þ

with g ¼ δJ=J and Ôdrv ¼ J
P

hi;ji â
†
i âj [61]. To ensure that

during the driving no atoms are excited into higher bands,
we keep the driving frequencies well below the band gap
[62] and use a low modulation amplitude A ≪ 1 to avoid
multiphoton interband transitions [63] (see Appendix A).
After driving the system for an integer number of

periods, Ncyc ¼ ωtdrv=2π, we slowly ramp up the lattice
depth until the system becomes an atomic-limit Mott
insulator. At this stage, all tunneling dynamics is frozen,
and, if no heating takes place during the drive, this results in
a Mott insulator near unit filling. Finally, we measure the
parity-projected atomic occupation of the lattice sites
through fluorescence imaging [60]. Because of parity
projection, the growth of the hole density is directly linked
to excitation processes that increase the variance of the
single-site occupation. Thus, the density of holes is a proxy
for the energy density of the cloud and, thus, for the heating
dynamics (see Appendix D).

III. THERMALIZATION DYNAMICS

In Fig. 1(c), we plot the evolution of the density of holes
ρh under driving for four different frequencies. The depth of
the in-plane lattices is V0 ¼ 8Er, where Er ¼ h2=8ma2lat is
the recoil energy, withm being the atomic mass and alat the
lattice spacing. The relative modulation amplitude of the
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periodic drive is A ¼ 0.05. While each drive frequency
in Fig. 1(c) gives rise to a qualitatively similar time
dependence of ρh, the thermalization times themselves are
vastly different—spanning 1.5 orders of magnitude within
less than a factor of 2 inω. Such a striking dependence on the
drive frequency is an indication of the exponential slowdown
of heating characteristic of Floquet prethermalization.
Theoretically, the phenomenon of prethermalization refers

to the quasiconservation of energy stemming from the
existence of a (quasi) local time-independent Hamiltonian
that captures the dynamics of the system out to an exponen-
tially long time. While one can always formally define a
(nonunique) “Floquet Hamiltonian” from the unitary time

evolution operator via ÛðTÞ ¼ T e−i
R

T

0
dtĤðtÞ=ℏ ≡ e−iĤFT=ℏ,

the operator ĤF is generally highly nonlocal in a many-body
system (and, hence, unphysical). Nevertheless, when the
frequency ω is large compared to the local energy scales of
the problem (here denoted collectively by Jeff ), one can
perform a high-frequency asymptotic expansion for ĤF in

powers of 1=ω, ĤF ¼ P
nð1=ωÞnĤðnÞ

F ; the leading-order

term Ĥð0Þ
F equals the time-averaged Hamiltonian, while

higher-order terms are progressively longer ranged and
contribute significantly to the dynamics only at correspond-
ingly later times. While ultimately divergent, this expansion
looks convergent out to some optimal order nopt ¼
Oðω=JeffÞ. Truncating the expansion at this order yields
an exponentially accurate approximation to the Floquet time
evolution ÛðTÞ, which sets the rate of heating to be
exponentially small [35,37–39], giving

EðNcycÞ=Nat ≲ NcycJeffe−ℏω=Jeff þOð1=ωÞ; ð3Þ

where EðNcycÞ ¼ hĤð0Þ
F iNcyc

is the energy absorbed by the
system.
Thus, in our experiment, one expects the energy density

to at first increase linearly in time (as is also expected, e.g.,
from linear-response theory) before eventually saturating to

arXiv:1912.09443
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FIG. 1. Floquet thermalization dynamics in a driven Bose-Hubbard system. (a) Schematic of the two-dimensional system of bosonic
atoms in an intensity-modulated optical lattice. The lattice depth VðtÞ is sinusoidally modulated in either one or two dimensions.
(b) Depiction of the process of Floquet thermalization in our interacting system. An initial low-temperature state, involving only the
ground state and low-lying excitations, is heated by the drive until it equally populates all many-body states within the lowest band
(infinite temperature relative to the lowest band), while higher bands are not populated. (c) Dynamics of the density of holes as a
function of the driving cycles Ncyc (measured after ramping the system adiabatically into the atomic limit of a Mott insulator), a proxy
for the energy density (see Appendix D), in a lin-log plot. Four different datasets are shown, all driven in the superfluid regime at
J=U ¼ 0.16, for driving frequencies ω ¼ 19.3J=ℏ (gray), ω ¼ 25.8J=ℏ (light blue), ω ¼ 29.0J=ℏ (blue), and ω ¼ 35.5J=ℏ (green).
The hole density is calculated from a region of interest of 10 × 10 lattice sites in the center of the cloud. The solid curves are fits to the
exponential form Eq. (4). The plotted traces display thermalization timescales separated by more than an order of magnitude. The error
bars denote the standard error of the mean (SEM). The square insets show the reconstructed atomic number distribution (red circles),
extracted from our raw fluorescence pictures, for three example snapshots.
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its infinite-temperature value; other local observables such
as ρh are expected to follow the same behavior. While more
intricate behavior could, in principle, arise at intermediate
times, the simplest ansatz for the stroboscopic time
dependence of ρh takes the form

ρhðNcycÞ ≃ ρ0 þ ðρ∞ − ρ0Þ½1 − expð−Ncyc=Nth
cycÞ�; ð4Þ

where ρ0 is the baseline value measured in the absence of
the drive, ρ∞ is the infinite-temperature value, and Nth

cyc is
the heating timescale, predicted to obey Nth

cyc > eOðωÞ for
sufficiently high ω.
Fits to the data of the form (4) [solid lines in Fig. 1(c)], in

fact, reveal a good agreement and yield thermalization
timescales Nth

cyc between 4 × 102 at the lowest frequency
and 104 at the highest. Note that the long times measured in
our data, over 3000ℏ=J, are crucial to the detection of this
effect and reflect the high level of isolation of our system, in
which any intrinsic decoherence processes are highly
suppressed (see Appendix A). We remark that what may
look like a plateau in ρh at early times is, in fact, a very slow
linear growth as follows from Eq. (3) (and as is true more
generally of prethermal “plateaux”). A nonequilibrium
initial state, e.g., one with a spatial density imbalance,
would first thermalize relative to the leading-order pre-

thermal Hamiltonian [in our case, Ĥð0Þ
F ≈ Ĥ0; see Eq. (2)]

on a timescale independent of ω and then heat to an infinite
temperature exponentially slowly. However, in our experi-
ment, we do not observe any fast transient dynamics before
the onset of this slow heating, because the initial state we

prepare is already in thermal equilibrium relative to Ĥð0Þ
F .

While the dynamics of ρh illustrate qualitatively the
phenomenon of Floquet prethermalization, a more precise
characterization of the heating-rate dependence can be
obtained from a fit of the atomic density profile. This
established thermometry method, based on the fit of a
grand-canonical model [60,64], provides us with a measure
for the temperature of the cloud, from which we can
characterize the heating induced by the drive. Because of
the high sensitivity of this technique, we can better explore
the linear-response regime, where the drive amplitude A is
small such that interband processes are strongly suppressed
(see Appendix B). This weak-drive probing is in contrast to
recent measurements of the response of Bose-Einstein
condensates in one- and two-dimensional optical lattices
[55,56], which focus instead on the emergence of para-
metric instabilities under strong drives.

IV. HEATING IN THE BOSE-HUBBARD MODEL:
NUMERICS

Before moving on to the results of the experiment
outlined above, it is useful to gain some intuition on the
nature of Floquet heating in the Bose-Hubbard phase
diagram with the help of numerical simulations. A variety

of methods have been applied to the Bose-Hubbard model
out of equilibrium [1,46,65–68], with particular interest on
parametric instabilities of the superfluid condensate in
recent years [42,69]. To study the approach to infinite
temperature under weak driving, we use numerical exact
diagonalization and the Krylov subspace method for time
evolution [70] as detailed in the following.
While the general theory of prethermalization applies to

arbitrarily strong drives, our experiment considers a weak
modulation g ≪ 1. In this regime, the energy absorbed per
Floquet cycle by the system is well captured within linear
response theory as the dissipative part of a response
function:

ΦðωÞ ¼
X

n≠0
jhnjÔdrvj0ij2δðEn − ℏωÞ; ð5Þ

where fEn; jnig label the eigenvalues and eigenvectors of
the time-averaged Hamiltonian Ĥ0 in Eq. (1) (j0i being the
ground state, with E0 ¼ 0) and Ôdrv is introduced in
Eq. (2). We note that ΦðωÞ is also the quantity rigorously
bounded by an exponential in Ref. [35] (the result there is
proven for systems with bounded energy density, e.g.,
fermions on a lattice, but we argue in Appendix C that a
slightly relaxed version applies to the present case of
bosons near unit filling as well). ΦðωÞ has units of energy
and, for weak drives (g ≪ 1), is proportional to the energy
absorbed per Floquet cycle, dE=dNcyc ∼ g2ΦðωÞ. Strictly
speaking, it quantifies the rate at which the ground state is
depleted, though in the following we refer to ΦðωÞ as a
“heating rate” for simplicity.
We compute ΦðωÞ in Eq. (5) via numerical exact

diagonalization of a one-dimensional chain of L ¼ 9 sites
at unit filling. Given the small system size, we replace the
harmonic trap potential in Ĥ0 with hard-wall (open) boun-
dary conditions (for additional details on the numerics, see
Appendix D). This approach, while strongly limited in
system size, provides complete flexibility in the choice of
couplings J=U and frequency ω while also allowing us to
probe extremely long timescales (within linear response).
The results, shown in Fig. 2, outline a clear picture of the
nature of heating in the two phases. To best highlight
each phase’s spectral features, we show the heating and
the frequency in units of J in the superfluid phase [see
Fig. 2(a)] and U in the Mott-insulating phase [see Fig. 2(b)].
Deep in the superfluid phase, the system manages to heat

efficiently up to frequency ω ¼ 8J=ℏ, and then the rates
sharply drop in an exponential fashion, with additional
kinklike features visible at ω ¼ 16J=ℏ and higher multiple
frequencies. This behavior suggests that heating takes place
via the excitation of quasiparticles from the condensate. As
the drive carries no net momentum, the quasiparticles must
come in pairs with opposite momenta �q. For ω > Ω2qp

(twice the quasiparticle bandwidth), to absorb a single
quantum of energy ℏω from the drive, the system must
concurrently scatter multiple pairs from the condensate into
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excited states, with each additional scattering event sup-
pressing the amplitude by factors of U=J ≪ 1. This fact
gives the expected exponential scaling and explains the
threshold features visible in Fig. 2(a) at frequencies
commensurate with 8J=ℏ (twice the single-particle band-
width). Increasing the interaction strength U gradually
washes out the above features while pushing the value
of Ω2qp upward approximately in agreement with the

Bogoliubov prediction Ω2qp ≃ 8J=ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U=2J

p
—though

notice the latter is a mean-field prediction, and as such it is
expected to work better in higher dimensions.
As U increases further, eventually the superfluid spectral

features give way to sharp peaks associated to higher on-
site occupancy (doublons, triplons, etc.), a characteristic of
the Mott-insulating phase. In fact, Fig. 2(b) displays a
hierarchy of peaks at integer values of ℏω=U. The location
and height of each peak can be understood by perturbing
away from an atomic limit (J ¼ 0) Mott state (see
Appendix C). While the envelope of the peaks does obey
an exponential bound (in one dimension—see Appendix C
for a discussion of higher dimensions), the strongly non-
monotonic structure of ΦðωÞ means that measurements
with a limited dynamic range in ω andNth

cyc may not be able
to identify the overall trend.

While these results are obtained for the ground state
of the system, the exponential suppression also holds
at finite temperatures. In Appendix D, we show that
considering an ensemble at intermediate and high temper-
atures does not lead to significant changes in the results
we present in this section. In addition, we also comple-
ment the analysis in this section by studying the approach
of the system to an infinite temperature via exact time
evolution. This method confirms that the above picture
remains valid even beyond the linear-response regime and
shows that the zero-temperature spectral function ΦðωÞ
captures the heating timescales remarkably well.

V. EXPERIMENTAL RESULTS:
HEATING IN TWO DIMENSIONS

We now turn to experimentally characterizing the slow
Floquet thermalization, by extracting the temperatures from
the density profile of the cloud, in our two-dimensional
system. We measure the heating rates at different lattice
depths within V0 ¼ 5–11Er over a range of driving
frequencies with a fixed relative modulation A ¼ 0.05.
These heating rates are extracted from a linear fit of the
temperature (see Appendix B), and we express them as
the energy absorbed per Floquet cycle ϕðωÞ, which is
related to ΦðωÞ through ϕðωÞ ¼ ðπgÞ2ΦðωÞ. The results
[see Fig. 3(a)] reveal a clear suppression of the heating
rate as the frequency is increased, extending over more than
two decades in the measured range. This abrupt arrest of
Floquet thermalization manifests the presence of a Floquet
prethermal regime.
For values of J=U well above the phase transition at

J=U ≃ 0.06 [71], i.e., in the superfluid phase, all datasets
show qualitatively the same behavior—a monotonic and
approximately exponential decrease of the heating rate as
the frequency is increased. This trend is further indicated,
for the two datasets with highest J=U, by the fit of an
exponential function ϕðωÞ ¼ Ce−ℏω=Jeff [see dotted lines
in Fig. 3(a)]. The fit allows us to extract the effec-
tive local energy scales Jeff;1 ¼ 5.76ð16ÞJ and Jeff;2 ¼
5.9ð2ÞJ, which are consistently on the same order of
magnitude as the Hamiltonian parameters J and U. As
we move away from weak interactions, a visible kinklike
feature appears on top of the general exponential trend.
Following the line of argument from the previous section,
we expect the dominant heating process in the superfluid
to be the generation of quasiparticle pairs with opposite
momenta. Due to this process, the heating is expected to
be further reduced for drive frequencies above twice the
Bogoliubov quasiparticle bandwidth, which in the 2D
case is Ω2qp;2D ¼ 2 × 8J=ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U=4J

p
[42]. In Fig. 3(a),

we indicate with five small arrows the frequency Ω2qp;2D

for the five traces with weakest interactions, which
roughly agree with the positions of the kinks observed
in the data.

(a)

(b)

FIG. 2. Numerical simulation of heating in the 1D Bose-
Hubbard model. The linear-response heating rate ΦðωÞ, com-
puted by numerical exact diagonalization of a chain of L ¼ 9
sites at unit filling, as a function of drive frequency ω in (a) the
superfluid and (b) the Mott-insulating phase. In (a), J=U varies
from 0.6 (lightest blue) to 16 (darkest blue), while in (b) it varies
from 0.02 (darkest red) to 0.16 (lightest red). The critical point is
at approximately J=U ¼ 0.26.
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Aside from this feature, we note that below twice the
noninteracting bandwidth (here, 16J=ℏ) the heating rate is
not flat, in contrast to the results for the 1D numerics. This
behavior is to be expected based on the different density of
states of a tight-binding model in a square lattice in 1D and
2D: In the latter case, the density of states has a maximum
in the middle of the band, which means the excitation of
quasiparticles is most efficient, and the heating fastest, near
twice the middle of the bandwidth (here, ω ¼ 8J=ℏ) [72].
Finally, we also note that the dynamic range of the driving
frequencies is smaller for higher J=U, since higher tunnel-
ing strengths J require higher frequencies (on an absolute
scale) to see prethermalization, making the limitation posed
by interband heating more severe.
Moving to the strong interaction regime, different

features emerge. The dataset with the smallest J=U, in
fact, the only one in the Mott-insulating phase, shows a
distinct nonmonotonic behavior in the observed frequency
range. To identify the relevant spectral features associated
with it, in Fig. 3(b), we show the same data as in Fig. 3(a)
but expressed in units of the interaction strength U. Indeed,
the trace at J=U ¼ 0.06 (dataset in dark orange) shows a
peaked structure at ω ¼ U=ℏ and 3U=ℏ, as expected for the
doublon and triplon resonances, respectively. As the
interaction strength is reduced, these resonant features fade
into a continuum associated with the superfluid bandwidth,
similar to what one observes for the numerics in Fig. 2(b).
Finally, we also note that in the regime of very high

frequencies, which features the smallest heating rates, we
reach the sensitivity limit of this experiment. This limit is
caused by the very long measurement times and the
significant contribution of the background heating present

in our system. The noise floor is expected to be dependent
on J=U due to the change in the excitation spectrum of the
system.

VI. EXPERIMENTAL RESULTS:
HEATING IN ONE DIMENSION

Our experimental setup allows us also to produce 1D
systems. We achieve this setting by ramping the lattice
along the y axis to a depth of V0;y ¼ 20Er before the start of
the drive. The typical atom number in each one of these 1D
systems is of Nat ≃ 15. The measured heating rates in this
1D geometry are shown in Fig. 4, displayed in a similar
fashion as in the 2D case, for lattice depths at V0;x ¼ 3–9Er

and with a relative lattice modulation of Ax ¼ 0.1 (while
Ay ¼ 0). Here, too, we observe an exponential suppression
of the heating rate as a function of the drive frequency ω.
However, for ω < 8J=ℏ, the heating rate appears almost
constant, in agreement with the numerics in Fig. 2(a), and
only beyond this flat part do we see a sharp decrease. While
this behavior can be solely explained in terms of twice the
noninteracting bandwidth of the system, 2 × 4J=ℏ, we also
observe a second kink at a slightly higher frequency,
reminiscent of the 2D case, which shifts to higher frequen-
cies as interactions increase. In Fig. 4, we also use four
arrows to indicate the position of twice the Bogoliubov
bandwidth, Ω2qp;1D ¼ 2 × 4J=ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þU=2J

p
, for the first

four datasets, showing a reasonable agreement that even-
tually becomes discrepant for higher interactions. We also
include an exponential fit of the first dataset, with
J=U ¼ 0.62, taken only above ω < 8J=ℏ and from which
we extract an effective local energy scale of Jeff ¼ 3.0ð3ÞJ.

(a) (b)

FIG. 3. Heating rate per Floquet cycle in 2D vs drive frequency. The heating rates and driving frequencies are expressed in units of
(a) the tunneling strength J and (b) the on-site interaction U. The range of lattice depths V0 varies from 5 to 11Er in steps of 1Er
(correspondingly, J=U varies from 0.47 to 0.06). In (a), the datasets go from shallower (dark blue) to deeper (light blue) lattices. Five
small arrows indicate the position of Ω2qp;2D for the first four datasets (see the main text). The two dotted lines are exponential fits of the
first two datasets. In (b), the datasets go from deeper (dark orange) to shallower (light orange) lattices. The dashed vertical gray lines
indicate the doublon and triplon resonances at ω ¼ U=ℏ and 3U=ℏ, respectively. The error bars denote the SEM.
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Note that in this case the presence of interactions leads
already to a deviation from the simple exponential trend,
even for the weakest interaction explored here.
For stronger interactions, the heating rate becomes

nonmonotonic, analogously to the 2D results and the 1D
numerics, though in this case the associated features are
less sharp. This difference could be explained by the
inhomogeneity present in the 1D system, due to much
stronger confinement from the transverse lattice. We also
note that, while the numerical simulations capture most
features of the 1D experimental data, quantitative discrep-
ancies between the timescales are to be expected for various
reasons, chiefly the different boundary conditions (hard
wall vs harmonic confinement) but also the drive ampli-
tudes (infinitesimal vs finite) and protocols (the experiment
naturally includes a weak modulation of U which is not
considered in the simulations).

VII. CONCLUSION

We have studied the nature of heating in a system of
driven ultracold bosonic atoms in an optical lattice and
found strong evidence that the thermalization time diverges
exponentially in the drive frequency—a central prediction
in the theory of Floquet prethermalization. When increas-
ing the frequency only by a factor of 2 or 3, we were able to
suppress the heating rate by as much as 2 orders of
magnitude. This possibility of driving isolated quantum
systems while avoiding heating for exponentially long

times is a key step toward the engineering of new forms
of matter existing only out of equilibrium.
Furthermore, our results add physical insight to the

intuitive picture of Floquet prethermalization—that a
quantum system driven at a high enough frequency heats
slowly, because the absorption of a quantum of energy ℏω
from the drive requires many coordinated rearrangements
of its local degrees of freedom. Our experimental results not
only confirm this picture, but also shed light on the
understanding of what those rearrangements look like in
a real system. Interestingly, they point to different scenarios
for the superfluid and Mott-insulating sides of the Bose-
Hubbard phase diagram.
In the future, it will be interesting to explore Floquet

heating in our system in the limit of hard-core bosons,
where a different prethermalization mechanism, based on
weak integrability breaking, may be realized [46]. Another
direction is the addition of disorder, where it would be
interesting to microscopically characterize the failure of
the MBL phase to heat to an infinite temperature. Other
possible directions include implementing more exotic
drives, such as quasiperiodic ones [49,50], using strong
drives to probe the heating rates with our technique beyond
the linear-response regime, and exploring the dependence
on the initial temperature. Most interestingly, our work
paves the way for future realizations of novel prethermal
Floquet phases of matter with no equilibrium analogs.
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FIG. 4. Heating rate per Floquet cycle in 1D vs drive frequency.
The heating rates and driving frequencies are expressed in units
of the tunneling strength J. The datasets vary from shallower
(dark blue) to deeper (light blue) lattices with lattice depths
V0;x ¼ 3, 4, 5, 6, 7, 9Er. The values of J=U vary correspondingly
from 0.62 to 0.09. Four small arrows indicate the position of
Ω2qp;1D for the first four datasets (see the main text). The dotted
line indicates an exponential fit of the first dataset. The gray
shaded area indicates the region within twice the single-particle
bandwidth, ω ¼ 8J=ℏ. The error bars denote the SEM.
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APPENDIX A: EXPERIMENTAL DETAILS AND
PARAMETERS

1. Description of the setup

After the preparation of a two-dimensional degenerate
gas of rubidium-87 atoms, we load the atoms into a square
optical lattice, generated by two retroreflected laser beams
in the atomic plane, with lattice spacing alat ¼ 532 nm. We
ramp up the in-plane optical lattices with an s-shaped ramp
of 75 ms up to a lattice depth V0 expressed in units of the
energy recoil Er ¼ h2=8ma2lat, where m is the atomic mass.
Ramps of the same duration and form are used to ramp to
the transition point and to the atomic limit after the driving
dynamics, where the energy content of the gas is measured.
In addition to the lattice potential, the atoms experience

an overall harmonic trapping potential, given by ϵi ¼
ma2latðω2

xi2x þ ω2
yi2yÞ=2, where ωx and ωy are the harmonic

trap frequencies in the plane, which are slightly different
for each lattice depth. In the 2D case, they are in the range
2π × 45 Hz < ωx, ωy < 2π × 55 Hz, while in the 1D case
ωx ≃ 2π × 70 Hz is roughly constant.

2. Bose-Hubbard parameters

The values of J and U used in the main text are obtained
from a numeric calculation of the band structure and are
based on the calibrated lattice depths V0, which are
estimated to have an uncertainty of roughly 2%. We show
here all the calculated parameters for the relevant depths
corresponding to Figs. 3 and 4. In the 2D case, both in-
plane lattices have the same lattice depth, and the lattice
modulation is A ¼ 0.05 (see Table I). In the 1D case, the
lattice along the y axis is fixed to 20Er, and the lattice along
the x axis is tuned to V0;x and driven with amplitude Ax ¼
0.1 (see Table II). We also plot the modulation of the
tunneling strength δJ, obtained as δJ¼ðJV0−A−JV0þAÞ=2.

3. Higher bands

As we mention in the main text, we need to keep the
drive at small enough frequencies and low enough ampli-
tudes in order to not populate higher bands. Naively, this
constraint should require only staying below the gap to the
second excited band, Eg;2 ¼ E2ðq ¼ 0Þ − E0ðq ¼ 0Þ, since

due to symmetry reasons there is no coupling to the first
excited band with gap Eg;1 ¼ E1ðq ¼ π=aÞ − E0ðq ¼ 0Þ.
However, multiphoton resonances can lead to interband
transfer even for frequencies well below the gap energies,
such that in practice we need to identify the regimes at
which interband heating starts to take place and stay below
those. In Table III, we plot both Eg;1 and Eg;2, also obtained
from band-structure numerics, for five different lattice
depths within the explored regimes. All the frequencies
used to drive the lattice depth in the experiment are well
below both Eg;1 and Eg;2=3.

4. Bare residual heating

In addition to the thermalization processes induced by
our well-controlled periodic driving, unwanted bare heating
also takes place in the system, even in the absence of any
drive. The experiments in this work, however, are per-
formed before a notable onset of these heating mechanisms
(which typically occurs for timescales > 3000ℏ=J).
The main decoherence mechanism in our experiment

stems from mechanical vibrations and phase noise in the
optical-lattice lasers. This mechanism mainly leads to
intraband heating in the system, giving rise to a slow
increase of the temperature even when the lattice is not
actively modulated.

APPENDIX B: LINEAR HEATING IN THE
EXPERIMENT

1. Heating dynamics

The experimental heating rates shown in Figs. 3 and 4 are
extracted from the temperature dynamics within the linear
heating regime. The heating rate per Floquet cycle can be

TABLE I. Table of Bose-Hubbard parameters for the 2D
experiment.

V0 (Er) J=h (Hz) U=h (Hz) J=U δJ=h (Hz) δJ=J

5 134.0 288 0.47 8.8 0.067
6 103.2 327 0.32 8.0 0.077
7 80.0 363 0.22 7.0 0.088
8 62.5 396 0.16 6.1 0.098
9 49.2 427 0.11 5.3 0.11
10 38.9 457 0.085 4.5 0.12
11 31.0 485 0.064 3.8 0.12

TABLE II. Table of Bose-Hubbard parameters for the 1D
experiment.

V0;x (Er) Jx=h (Hz) U=h (Hz) Jx=U δJx=h (Hz) δJx=Jx

3 229.1 288 0.62 18.7 0.08
4 174.9 412 0.42 18.8 0.11
5 134.0 446 0.30 17.7 0.13
6 103.2 475 0.22 16.0 0.16
7 80.0 500 0.16 14.1 0.18
9 49.2 543 0.09 10.6 0.22

TABLE III. Table with the band gaps for different lattice
depths.

V0 (Er) Eg;1=h (kHz) Eg;1ðJÞ Eg;2=h (kHz) Eg;2ðJÞ
3 3.9 17 9.1 40
5 5.5 41 10.6 79
7 7.1 89 12.5 156
9 8.7 176 14.7 298
11 10.1 328 16.9 544
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expressed as ϕðωÞ ¼ kBdT=dt × 2π=ω, where kB is the
Boltzmann constant, T is the temperature, and 2π=ω is
the drive cycle period. We verify that we probe the system
within linear response by plotting in Fig. 5 sample heating
dynamics in 2D at V0 ¼ 6Er for four different driving
frequencies with a relative driving amplitude A ¼ 0.05.
The initial temperature of the cloud is typically around
0.1U0=kB, whereU0=h ¼ 660 Hz is the interaction strength
at the atomic limit. In units of the tunneling strength J at 6Er,
the temperature is roughly kBT ¼ 1.4J. We can see that the
increase in the temperature is consistent with being in
the linear-response regime.

2. Scaling from Fermi’s golden rule

We also explore the heating rates for different amplitudes
of the drive in 2D (see Fig. 6), since in the linear regime

we expect a scaling of the heating rate predicted by
Fermi’s golden rule, i.e., proportional to the drive ampli-
tude squared. From fitting a power law with the expression
ϕðAÞ ¼ cAα, we obtain c ¼ 4.0ð4Þ and α ¼ 2.11ð4Þ.

APPENDIX C: PRETHERMALIZATION
BOUND FOR BOSONS

The bound on the spectral function (linear-response
heating rate) proven in Ref. [35],

ΦðωÞ < Ce−ℏω=Jeff ðC1Þ

for appropriate constants C and Jeff , is strictly speaking
valid only for systems with a bounded local Hilbert space
such as spins, fermions, or hard-core bosons. The Bose-
Hubbard system we study in this work instead allows for
unbounded occupation of each site, which is argued in
Ref. [35] to generically relax the bound (C1) from
exponential to stretched exponential:

ΦðωÞ < Ce−ðℏω=JeffÞα ; 0 < α < 1: ðC2Þ

Here, we discuss the relevance of this relaxed bound to our
experimental observations.
As the physical reason for relaxing the bound to Eq. (C2)

has to do with unbounded energy density, the most natural
place to look for violations of the original exponential
bound is the Mott-insulating phase. There,ΦðωÞ is strongly
nonmonotonic and exhibits peaks near ℏω ¼ mU, m ∈ N,
as shown in Fig. 2(b). These can be understood via
perturbation theory from the Mott-insulator state in the
atomic limit J ¼ 0: Each ℏω ¼ mU peak appears at some
order pm in perturbation theory, giving a leading contri-
bution ∼ðJ=UÞ2pm , or

Φðω ¼ mU=ℏÞ < Ce−2pm logðU=JÞ;

in a form reminiscent of the prethermal bounds.
Generally, the optimal process to absorb the most energy

in the fewest moves consists of depleting a whole con-
tiguous region on the lattice and gathering all its particles
on a central site. Taking a sphere of radius R in the
hypercubic lattice in d dimensions, this process gives an
energy absorption of ω ∼ R2d in p ∼ Rdþ1 “moves,” yield-
ing pm ∼ ðm1=2dÞdþ1. This scaling gives, in general, a
stretched exponential bound like Eq. (C2) with power

α ¼ dþ 1

2d
:

In one dimension, we recover α ¼ 1, i.e., the exponential
bound. On the other hand, in higher dimensions, this
construction gives a series of peaks that violate the
exponential bound. However, such peaks occur at a very
high frequency and are sparsely distributed in the spectrum

FIG. 5. Heating dynamics at V0 ¼ 6Er. The temperature of a
driven system for four different frequencies as a function of
evolution time t. The continuous lines are linear fits. The error
bars denote the SEM.

FIG. 6. Fermi-golden-rule scaling. The heating rate as a
function of the drive amplitude on a log-log scale. The data
are taken at V0 ¼ 8Er with driving frequency ω ¼ 14.5J=ℏ. The
solid line is a power-law fit. The error bars denote the SEM.
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—in 2D, the lowest such peak is the quintuplon at ℏω ¼
10U (gathering all four nearest neighbors), followed by the
“13-uplon” at ℏω ¼ 78U (gathering the eight next-nearest
neighbors), etc. Such high frequencies are unlikely to be
achievable in experiment without exciting other degrees of
freedom and are thus irrelevant in practice.
In the superfluid phase, single-site high-occupancy

excitations play a less prominent role than they do in
the Mott phase, which means the above physics is even less
likely to be relevant to observations, justifying the use of
the exponential bound of Eq. (C1) somewhat beyond its
domain of mathematical rigor.
We conclude by noting that Ref. [74] finds that the

quantity Jeff in the exponential bound Eq. (C1) is funda-
mentally connected to many important aspects of quantum
dynamics, including operator growth and chaos. This fact
raises interesting questions about such issues in bosonic
systems, particularly whether similar bounds on chaos
and complexity also hold for a generalized bound
like Eq. (C2).

APPENDIX D: NUMERICAL SIMULATIONS

1. Details on linear-response calculation

The linear-response expression Eq. (5), evaluated in a
finite-sized system, consists of a finite number of δ
functions. In order to turn it into a smooth function and
plot it, we replace the δ functions by narrow Gaussians:
ð1= ffiffiffiffiffiffi

2π
p

ΔωÞe−ð1=2Þðω=ΔωÞ2 [this expression becomes δðωÞ
as Δω → 0]. We set Δω ¼ 0.01U=ℏ and also sample ω in
increments of Δω.
To reduce noise in the resulting data for ΦðωÞ in Fig. 2,

we additionally perform a moving window average over up
to ten consecutive data points.

2. Temperature dependence

The linear-response function in Eq. (5), and the numeri-
cal data in Fig. 2 computed from it, apply to a system in the
ground state, i.e., at T ¼ 0. The temperature dependence of
this quantity is an interesting subject, especially in some
bosonic systems where it has been argued that pretherm-
alization may be a statistical property dependent on the
choice of initial state [75,76]. Here, we clarify this issue by
computing ΦðωÞ for different temperatures.
For a finite temperature kBT ¼ 1=β, the expression for

ΦðωÞ in Eq. (5) becomes

Φðω; βÞ ¼
X

m;n

jhnjÔdrvjmij2½pβðmÞ − pβðnÞ�

× δðEn − Em − ℏωÞ; ðD1Þ

where pβðnÞ is the Boltzmann weight of eigenstate n,

pβðnÞ ¼ e−βEn=trðe−βĤ0Þ. In the high-temperature (low-β)
limit, Eq. (D1) becomes

Φðω; βÞ ≃ β
ℏω
D

X

m;n

jhnjÔdrvjmij2δðEn − Em − ℏωÞ; ðD2Þ

where D is the Hilbert space dimension, D ¼ ð2L−1L Þ for a
chain of L sites at unit filling. All the temperature
dependence in Eq. (D2) is captured by the prefactor of
β, which means that the quantity kBT ×Φ reaches a
temperature-independent value at high T. This quantity
can be computed from the same data used for the
T ¼ 0 case.
In Fig. 7, we show results obtained for Φðω; βÞ at finite

temperatures together with the corresponding dataset at
zero temperature from Fig. 2. While some of the sharper
features visible in the T ¼ 0 data are smoothed out by the
thermal averaging, the main qualitative aspects are pre-
served. In particular, the exponential suppression remains
identical and is, in fact, even clearer. In the inset in the
figure, we also take a look at the quantity kBT ×Φ, which
as expected saturates to a finite value as one moves toward
the infinite-temperature limit.
The “statistical prethermalization” scenario proposed in

Ref. [76] for systems of bosons predicts a strong initial-
state dependence in heating time and an exponential-in-
frequency suppression in the heating rate tuned by an
effective temperature, not a fixed local energy scale of
the problem. These behaviors are not seen in the pre-
sent case. One reason for this difference may be the fact
that we consider systems at unit filling, as opposed
to the high-occupancy semiclassical limit studied
in Ref. [76].

FIG. 7. Temperature dependence of the linear-response heating
rate. Plot ofΦðω; βÞ as a function of the drive frequency for states
at different temperatures. The corresponding temperatures are
kBT ¼ 0J, 1J, 10J, 100J, and 1000J (curves from blue to light
red). The zero-temperature data are the same shown in Fig. 2 in
the superfluid phase (J=U ¼ 2). In the inset, we show the
quantity kBT ×Φ for the same temperatures (in the T ¼ 0 case,
we plot Φ directly) and also for the infinite-temperature limit (red
curve). The datasets collapse on top of each other, as predicted
from Eq. (D2).
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3. Dynamics simulations

Here, we present numerical simulations that complement
those of the main text and corroborate their validity at a
finite drive amplitude. We use a Krylov subspace method to
simulate the dynamics of a state jψðNcycÞi at stroboscopic
times t ¼ NcycT (T ¼ 2π=ω is the drive period) and track
the value of the “energy” hψðNcycÞjĤ0jψðNcycÞi≡ ENcyc

during the evolution to define a thermalization time Nth
cyc.

This method can probe slightly larger sizes than full
diagonalization (up to L ¼ 13 sites, Hilbert space dimen-
sion in the millions) and, most importantly, is not restricted
to drive amplitudes g ≪ 1, at the expense of a limited
dynamic range in Nth

cyc.
We define a normalized energy density

εðNcycÞ≡
ENcyc

− E0

E∞ − E0

;

where E∞ ∝ TrðĤ0Þ is the infinite-temperature value of the
energy. During the dynamics, this density obeys
0 ≤ εðNcycÞ ≤ 1. We define the heating time Nth

cyc as the
lowest Ncyc such that εðNcycÞ is greater than some pre-
defined threshold ε⋆ (we use 0.1, though other choices give
similar results). We also keep track of the “density of holes”

ρhðNcycÞ ¼
1

L

X

i

hψðNcycÞjρ̂h;ijψðNcycÞi;

where ρ̂h;i is a projector onto even occupation of site i,
which mimics the fluorescence imaging technique used in
the experiment. We choose the initial state jψð0Þi as the
ground state of Ĥ0 (obtained via the Lanczos method). We
then approximate each Floquet cycle by a sequence of s
constant Hamiltonians, fĤðt ¼ Tk=sÞ∶k ¼ 0;…; s − 1g,
and time evolve the state vector for time T=s with each
of these Hamiltonians using the Krylov subspace method.
In practice, we use s ¼ 32 steps; further increasing s
changes the results negligibly.
In addition, to better imitate the experimental procedure,

before measuring the observables ε and ρh, we ramp the
system into an atomic-limit Mott insulating state; i.e., we
arrest the drive and slowly take J → 0 as JðNcycT þ tÞ ¼
ð1 − t=τÞJðNcycTÞ for 0 ≤ t ≤ τ, where τ is a long time-
scale (we use τ ¼ 100ℏ=U). In practice, this process is
again accomplished by time evolving with piecewise
constant Hamiltonians, keeping the same time step used
during the drive. A copy of the wave function at t ¼ NcycT
(before the ramp) is stored so that the time evolution can
resume after the measurement is taken.
Results for a fairly strong drive amplitude g ¼ 0.5 (see

Fig. 8) generally agree with the linear-response picture
—Nth

cycðωÞ is approximately flat for ω≲ Ω2qp and then
starts increasing exponentially. The time traces of the

density of holes ρh, shown in Fig. 8(a), are very similar
to the experimental data in Fig. 1(c). A comparison with the
energy density traces in Fig. 8(b) also confirms that ρh is
indeed a good proxy for the energy density ε. We further
confirm the relation between these two quantities by
plotting the density of holes vs the normalized energy
density (see Fig. 9).
Finally, we can compare the results of the Krylov time

evolution simulations to those of the linear-response
function in the main text, evaluated via exact diagonaliza-
tion. In Fig. 10(a), we show time evolution data analogous
to Fig. 8 and fit each curve to a single-timescale exponen-
tial, EðNcycÞ ¼ E∞ð1 − e−Ncyc=Nth

cycÞ, in an early-time win-
dow EðNcycÞ < 1

4
E∞. The best-fit values of 1=Nth

cyc are then
shown in Fig. 10(b) superimposed with the linear-response
rate ðπgÞ2ΦðωÞ=E∞ computed via exact diagonalization.
(Both quantities are intensive, and, thus, we can compare
them across different system sizes, L ¼ 12 for Krylov time
evolution and L ¼ 9 for exact diagonalization.) The agree-
ment is excellent, even at a quantitative level, and corrob-
orates the validity of the linear-response prediction even at
a fairly large value of the coupling (g ¼ 0.5 in this case).
We remark that the late-time dynamics close to an infinite
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FIG. 8. Time evolution simulations. One-dimensional chain of
L ¼ 12 sites at unit filling in the superfluid phase, driven with
amplitude g ¼ 0.5 and subsequently ramped to the atomic limit.
(a) Density of holes ρh and (b) normalized energy density ε as a
function of the number of Floquet cycles Ncyc for different values
of the frequency of the drive. The frequencies range from ω ¼
2J=ℏ (gray) to ω ¼ 12J=ℏ (dark green). Inset: Heating rate
(inverse number of Floquet cycles Ncyc where ε crosses the
threshold value ε⋆ ¼ 0.1) vs drive frequency ω.
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temperature can deviate quite significantly from the early-
time prediction, as expected; nonetheless, the timescale
Nth

cyc is a good estimate of the overall heating time—i.e., by
the time the deviation is significant, the prethermal
“plateau” has already faded away.
As the method simulates time evolution directly, its cost

scales as OðNth
cycÞ and, hence, exponentially in ω; this cost

limits us to ℏω ≃ 12J and, in particular, prevents us from
testing the presence of an additional threshold feature near
2Ω2qp as seen in linear response [Fig. 2(a)]. It also makes
the method generally less suited to the Mott-insulating
phase, where Nth

cyc has nonmonotonic oscillations by many
orders of magnitude.
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ω ¼ 12J=ℏ (dark green).
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(b)

FIG. 10. Comparison between time evolution simulations and
linear-response theory. (a) Energy density vs time from a Krylov
time evolution simulation of a chain of length L ¼ 12 (solid
lines) and fits to exponentials EðNcycÞ ¼ E∞ð1 − e−Ncyc=Nth

cycÞ
(dashed lines). The drive amplitude is g ¼ 0.5. The frequencies
of the rive range from ω ¼ 7J=ℏ (gray) to ω ¼ 11.5J=ℏ (dark
green). (b) Inverse time constants 1=Nth

cyc obtained from the fits
(green markers) compared with the linear-response rate
ðπgÞ2ΦðωÞ=E∞ (blue line).
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