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In the absence of spin-orbit coupling, the conventional dogma of Anderson localization asserts that all
states localize in two dimensions, with a glaring exception: the quantum Hall plateau transition (QHPT). In
that case, the localization length diverges and interference-induced quantum-critical spatial fluctuations
appear at all length scales. Normally, QHPT states occur only at isolated energies; accessing them therefore
requires fine-tuning of the electron density or magnetic field. In this paper we show that QHPT states can be
realized throughout an energy continuum, i.e., as an “energy stack” of critical states wherein each state in
the stack exhibits QHPT phenomenology. The stacking occurs without fine-tuning at the surface of a class
AIII topological phase, where it is protected by U(1) and (anomalous) chiral or time-reversal symmetries.
Spectrum-wide criticality is diagnosed by comparing numerics to universal results for the longitudinal
Landauer conductance and wave function multifractality at the QHPT. Results are obtained from an
effective 2D surface field theory and from a bulk 3D lattice model. We demonstrate that the stacking of
quantum-critical QHPT states is a robust phenomenon that occurs for AIII topological phases with both odd
and even winding numbers. The latter conclusion may have important implications for the still poorly
understood logarithmic conformal field theory believed to describe the QHPT.
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I. INTRODUCTION

Noninteracting topological quantum phases of matter
feature robust gapless edge or surface states [1–3].
Remarkably, these states are protected from Anderson
localization [4–6], defying the central dogma of conven-
tional localization physics according to which all states
localize in one dimension, as do most states in two
dimensions [7]. An exception occurs for 2D systems with
strong spin-orbit coupling and sufficiently weak disorder;
in this case, Anderson localization occurs near the band
edges, but states near the band center can remain delocal-
ized due to weak antilocalization [8]. By contrast, for the
chiral [helical] edge states of the quantum Hall effect [2D
topological insulators (TIs)], as well as the isolated 2D
Dirac cone at the boundary of a 3D TI, all states spanning
the bulk gap are prevented from localizing.

While the protection of chiral and helical 1D edge states is
easily understood as the absence of elastic backscattering
[1,2,9,10], the effects of disorder on 2D surface states of bulk
topological phases is more subtle. Indeed, although pure
backscattering is suppressed for the single Dirac fermion
cone that forms at the boundary of the simplest 3DTI, elastic
impurity scattering does occur at all other angles. The
protectionof the2Dsurfacestates throughout thebulkenergy
gap is understood from the combination of weak antilocal-
ization, as well as aZ2 topological term in the effective field
theory for the surface with quenched disorder [a nonlinear σ
model (NLσM) in the symplectic class] [7,11–15].
In this paper, we consider the effects of disorder on 2D

Dirac surface states of class AIII topological phases, at
energies throughout the bulk gap. (See Table I for a review
of the tenfold classification.) In the absence of strong
interactions [16], class AIII is characterized by a Z-valued
winding number ν in three dimensions, reflecting the
number of 2D Dirac nodes on the surface. In this case,
due to the absence of full spin-orbit coupling, protection
from Anderson localization cannot be attributed to weak
antilocalization. Class AIII could be realized either as a
topological insulator on a bipartite lattice, with complex
hopping that preserves sublattice symmetry but breaks time
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reversal, or as a time-reversal-invariant, spin-triplet topo-
logical superconductor (TSC) that preserves a U(1) rem-
nant of spin SU(2) symmetry [4,17–19].
The effects of quenched disorder for class AIII surface

states at energies close to zero are well known; here energy
is measured relative to the surface Dirac point and the
disorder comes in the form of a random vector potential.
Topologically protected continuum Dirac models were
originally studied in the contexts of the quantum Hall ef-
fect [24] and d-wave superconductor quasiparticles [25–30].
The zero-energy states always escape Anderson localization
[24,25]. Instead, these states are quantum critical, exhibiting
strongly inhomogeneous spatial fluctuations on all length
scales. These fluctuations can be characterized by the
multifractal spectrum of wave function intensities [7], which
is known exactly in these models [24,26,27,31]. Two other
key attributes include a critical low-energy density of states
ρðEÞ that vanishes or diverges as E → 0 and a precisely
quantized longitudinal conductivity at zero energy, indepen-
dent of disorder [7,24,32,33] and (at zero temperature)
interactions [34].

Despite this plethora of exact results at zero energy, very
little was known about the character of finite-energy states or
of the finite-temperature response. Ludwig et al. [24] argued
that all finite-energy states of a 2DDiracmodel with one node
(corresponding to the bulk winding number ν ¼ 1) should
Anderson localize. Later, Ostrovsky et al. [14] instead con-
jectured that finite-energy states in this model could escape
localization via a remarkable route: each of these states would
sit exactly at the integer quantum Hall plateau transition
(QHPT). TheQHPTis a quantum phase transition that divides
Anderson topological-insulating quantum Hall plateaus; it is
known to also be quantum critical, with apparently universal
multifractal spectra and average longitudinal conductivity
[7,35–40]. Ostrovsky et al. suggested, however, that this
would only hold very close to the Dirac point [14].
Moreover, the derivation would seem to imply an “even-
odd” effect, similar to the Haldane conjecture for half-integer
versus integer Heisenberg spin chains. Specifically, finite-
energy class AIII topological surface states with odd winding
numbers are predicted to exhibit QHPT criticality, while those
with even winding numbers would simply localize [5,14,15].

TABLE I. The tenfold way classification for strong (fully gapped), d-dimensional symmetry-protected topological phases of fermions,
i.e., topological insulators (TIs) and topological superconductors (TSCs) [4]. The 10 classes are defined by different combinations of the
three effective discrete symmetries T (time-reversal), P (particle-hole), and S (chiral or sublattice). For a d-dimensional bulk, any
deformation of the clean band structure that preserves T, P, and S and does not close a gap preserves the topological winding number.
For a (d − 1)-dimensional edge or surface theory, the equivalent statement is that any static deformation of the surface (quenched
disorder) that preserves T, P, and S also preserves the “topological protection” against Anderson localization. Of particular interest here
are classes C, A, D, on one hand, and classes CI, AIII, DIII, on the other hand. Classes C, A, and D are topological in d ¼ 2, and describe
the spin (SQHE), integer (IQHE), and thermal (TQHE) quantum Hall effects; all three can be realized as TSCs with broken T. Classes
CI, AIII, and DIII are topological in d ¼ 3, and can describe 3D time-reversal-invariant TSCs. (In this case, the physical time-reversal
symmetry appears as the effective chiral symmetry S [4,17].) The column “spin sym.” denotes the amount of spin SU(2) symmetry
preserved for TSC realizations of these 6 classes. In this work, we show that the finite-energy surface states of the 3D class AIII
topological phase appear to form a “stack” of quantum-critical, Anderson delocalized wave functions. We provide evidence that each
state in the stack is statistically identical on large length scales and corresponds precisely to the topological quantum phase transition in
class A (the integer quantum Hall plateau transition). Previous numerical results also uncovered a gap-spanning stack of critical states at
the surface of the class CI TSC, which match the statistics of the class C spin quantum Hall plateau transition [20]. A third study [21]
revealed spectrum-wide criticality at the surface of class DIII, conjectured to be related to the thermal quantum Hall plateau transition in
class D. Thus the numerical results presented in this paper and in Refs. [20,21] appear to connect the quantum Hall plateau transitions in
classes C, A, and D to gap-spanning stacks of critical states at the surfaces of class CI, AIII, and DIII 3D topological phases. The
conclusion of gap-spanning surface criticality, locked to plateau transitions in classes C, A, D, is in sharp contrast to the conventional
expectation for finite-energy 2D surface states in classes CI, AIII, DIII. The conventional expectation is that finite energy always breaks
the defining chiral S symmetry, producing a standard Wigner-Dyson class, so that [7] CI → AI (Anderson localized), AIII → A
(Anderson localized), and DIII → AII (Anderson localized or weak antilocalization) (see, however, Ref. [22]).

Class T P S Spin sym. d ¼ 2 d ¼ 3 Topological realization Replicated fermion NLσM

C 0 −1 0 SU(2) 2Z � � � SQHE (2D dþ id TSC) Spð4nÞ=Uð2nÞ
A (unitary) 0 0 0 U(1) Z � � � IQHE Uð2nÞ=UðnÞ ⊗ UðnÞ
D 0 þ1 0 � � � Z � � � TQHE (2D pþ ip TSC) Oð2nÞ=UðnÞ
CI þ1 −1 1 SU(2) � � � 2Z 3D TSC Spð4nÞ ⊗ Spð4nÞ=Spð4nÞ
AIII 0 0 1 U(1) � � � Z 3D TSC, chiral TI Uð2nÞ ⊗ Uð2nÞ=Uð2nÞ
DIII −1 þ1 1 � � � Z2 Z 3D TSC (3He-B) Oð2nÞ ⊗ Oð2nÞ=Oð2nÞ
AI (orthogonal) þ1 0 0 SU(2) � � � � � � � � � Spð4nÞ=Spð2nÞ ⊗ Spð2nÞ
AII (symplectic) −1 0 0 � � � Z2 Z2 2D, 3D TIs Oð2nÞ=OðnÞ ⊗ OðnÞ
BDI þ1 þ1 1 SU(2) � � � � � � � � � Uð2nÞ=Spð2nÞ
CII −1 −1 1 � � � � � � Z2 3D chiral TI Uð2nÞ=Oð2nÞ
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In this paper, we present strong numerical evidence that
finite-energy surface states throughout the bulk gap of a
class AIII topological phase exhibit QHPT criticality
beyond the crossover length scale ζ ∼ E−1=z of the zero-
energy critical theory; see Fig. 1 for a graphical summary.
Moreover, we find no evidence of an even-odd effect.
Calculations are performed for winding numbers ν ¼
f1; 2g using two different model types: (1) effective
low-energy 2D surface field theories and (2) surface states
of 3D topological lattice models in the slab geometry. For
the continuum theories, we compute the energy-resolved
Landauer conductivity, Landauer conductance distribution,
multifractal spectrum, and density of states. We observe the
crossover of the conductivity between the exact zero-
energy class AIII result and the known average conduc-
tivity of the QHPT [36–38,40]; concomitantly we observe
QHPT multifractality. We demonstrate the crossover
between two copies of the ν ¼ 1 model to ν ¼ 2 as a
function of internode scattering. For square systems, we
obtain a Landauer conductance distribution that scales
towards the known QHPT result [39] with increasing
system size for both ν ¼ 1, 2. Our results confirm and
significantly extend a previous glimpse of QHPT multi-
fractality at finite energy reported in Ref. [41]. For the
lattice models, we provide evidence that states throughout

the gap avoid localization, and that finite-energy states
exhibit multifractal spectra consistent with the QHPT. We
summarize our main findings in Fig. 1.
We conclude that class AIII appears to solve the problem

of topologically protecting its surface state spectrum
throughout the bulk gap by forming an energy continuum
of QHPT states. This is surprising, given that in the 2D
quantum Hall effect, critical states appear only at isolated
energies; accessing them in experiment requires fine-tuning
of the electron density or magnetic field to a quantum-
critical point. The phenomenon of spectrum-wide criticality
observed here is very unusual, but has been previously
reported in two other cases: models for surface states of class
CI and DIII topological superconductors [20,21]. The finite-
energy states in class CI [20] were found to exhibit critical
statistics consistent with the class C spin quantum Hall
plateau transition [7,42–48]. A single surface Majorana
fermion cone is predicted to occur at the boundary of a
class DIII TSC, such as the candidate material
CuxBi2Se3 [2,49]. In the presence of disorder, finite-
energy class DIII Majorana surface states also appear to
exhibit robust, universal criticality [21], conjectured to
be related to the thermal quantum Hall plateau transition
in class D [50–56]. The tenfold-way symmetry classi-
fication is reviewed in Table I, with an emphasis on the
implied connections between surface states of the 3D
topological classes CI, AIII, DIII, and 2D topological
phase transitions in classes C, A, D.
Together, the results obtained in this paper and in

Refs. [20,21] imply that the ordinary 3D class AII, Z2

topological insulator is actually the exceptional case. The
metallic surface states of a class AII TI do not exhibit
universal criticality; instead, the classical surface conduc-
tivity at each energy in the gap is determined by the
impurity density and the density of states, and this
nonuniversal, energy-dependent value is continuously
enhanced at larger distances due to weak antilocalization
[7,11–14]. On the other hand, three of the five [4,19]
topological classes in 3D exhibit spectrum-wide quantum
criticality. There appears to be an unexpected, integral
connection between Z-graded topological phases in two
and three spatial dimensions: the quantum phase transitions
in the former (classes C,A,D) are bundled into gap-spanning
stacks of surface eigenstates in the latter (classes CI, AIII,
DIII). Our results should have a deeper topological under-
pinning, which, however, remains yet to be uncovered.
Our results may also have implications for the theory of

the class A integer QHPT itself. The transition has been
extensively studied numerically [7,35], with universal
signatures consistent with a conformally invariant critical
point. Despite 30 years of effort, very little is known about
this critical point analytically, which is believed to be
governed by a logarithmic conformal field theory (LCFT)
[57]. A recent proposal by Zirnbauer [58] in fact argues that
the QHPT is itself governed by a zero-energy, class AIII

(a) (c)

(d)

(b)

FIG. 1. Summary of main results. (a) We consider a 2D Dirac
node in the presence of quenched vector potential disorder AðrÞ
of correlation length ξ and strength λ, modeling the surface state
of a topological phase in symmetry class AIII. It is well known
that the zero-energy field theory is critical while finite energies E
feature a power-law density of states (b) and an emergent length
scale ζ ∼ E−1=z. (c) By studying the real-space characteristics of
finite-energy eigenstates (conductivity σ and the curvature of the
multifractality spectrum θ), we identify ζ as a crossover scale
beyond which criticality of the quantum Hall plateau transition
(QHPT) type emerges. Our results imply that the finite-energy
states form a “stack” of critical QHPT wave functions; this is in
sharp contrast to the conventional expectation of Anderson
localization [24]. We also show that this unusual energy con-
tinuum of critical states is stable under the addition of a second
Dirac node.
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theory with winding number ν ¼ 4. An additional special
feature is that the purely marginal Abelian disorder strength
(a generic feature for class AIII theories, reviewed below) is
fine-tuned to a special value so as to render the density of
states noncritical. A very surprising consequence of this
proposal is that the correlation length exponent νQHPT is
actually predicted to be infinite, the claim being that
existing numerical studies showing νQHPT in the range
between 2.3 and 2.6 [7,35,59–67] are beset by finite-size
effects. We note that for the finite-energy class AIII surface
states that exhibit QHPT critical statistics, the exponent
νQHPT does not play a role because all states are delocalized.
If Zirnbauer’s proposal is correct, then our numerical

results suggest that both the zero- and finite-energy states of
the class AIII bulk topological phase with the special
winding number ν ¼ 4 are governed by the same conformal
field theory. In this scenario, the energy perturbation serves
only to fine-tune the Abelian disorder strength to the correct
value so as to achieve QHPT criticality. At least this
proposal should be falsifiable using the class AIII surface
state theory, which is a relatively well understood LCFT
(a Wess-Zumino-Novikov-Witten model [23,25–28]).

A. Outline

This paper is organized as follows. In Sec. II, we
transcribe a disordered Dirac Hamiltonian for two nodes.
We enumerate topological (anomalous) and regular sym-
metry operations and identify ν ¼ 1, 2 class AIII surface
state models. We also define two nontopological models
that will be studied for comparison: a Dirac version of the
Gade “sublattice hopping” class AIII model [68–70] and a
topologically trivial version of spinless graphene in the
unitary class A. We summarize key known results for these
models, as well as for the quantum Hall plateau transition.
In Sec. III, we present numerical results for the ν ¼ 1

topological AIII model at zero and finite energies. These
include the density of states, the multifractal spectrum for
wave function and local density of states fluctuations, the
Landauer conductivity, and the distribution function for the
Landauer conductance. In Sec. IV, we repeat this analysis
for the ν ¼ 2 topological surface state model. In Sec. V, we
present analogous results for the nontopological Dirac
models defined in Sec. II.
Results for multifractal spectra of surface states obtained

from a 3D topological lattice model in the slab geometry,
with bulk winding numbers ν ¼ f1; 2g, are presented in
Sec. VI. We discuss our results in the context of similar
findings in classes CI and DIII [20,21] in Sec. VII, and in
particular highlight possible implications for the analytical
understanding of the logarithmic conformal field theory
[57] governing the QHPT. The latter is explored in light
of a very recent proposal by Zirnbauer [58] linking the
QHPT to an effective AIII surface state model with winding
number ν ¼ 4.

II. 2D DIRAC MODELS, SYMMETRY CLASSES,
AND TOPOLOGICAL SURFACE THEORIES

The low-energy physics of the class AIII topological
surface states that we study in this paper in Secs. III and IV,
along with two nontopological models employed for
comparison (Sec. V), can be encoded in a 2D, two-valley
Dirac-fermion Hamiltonian. The most generic model can
be considered the low-energy effective field theory for
spinless graphene, with the two cones corresponding to the
K and K0 valleys. The Hamiltonian is [7]

H ¼
Z

d2rψ†ĥψ ; ĥ≡ ĥ0 þ ĥA þ ĥB þ ĥC; ð1Þ

where

ĥ0 ¼ −ivσ̂ā∂ ā; ð2aÞ

ĥA ¼ māσ̂3τ̂ā þ Aā;3σ̂āτ̂3; ð2bÞ

ĥB ¼ V0 þm3σ̂3τ̂3 þ Aā;b̄σ̂āτ̂b̄; ð2cÞ

ĥC ¼ Vāτ̂ā þ V3τ̂3 þm0σ̂3 þ Aā;0σ̂ā; ð2dÞ

where ā ∈ f1; 2g and repeated indices are summed. The
parameter v is the Fermi velocity, while the 16 potentials
fmμ; A1;μ; A2;μ; Vμg (μ ∈ f0; 1; 2; 3g) encode quenched dis-
order [71]. In the context of graphene, the four-component
Dirac spinor is defined via ψT ≡ ½cA;KcB;KcB;K0 − cA;K0 �,
whereT denotes thematrix transpose, andwhere cA;K (cB;K0 )
annihilates an electron on sublattice A (B) in valley
K (K0). The Pauli matrices fσ̂1;2;3g (fτ̂1;2;3g) act on sublattice
(valley) space, so that σ̂3 ⇒ diagf1;−1; 1;−1g and τ̂3 ⇒
diagf1; 1;−1;−1g.
For spinless fermions hopping on the honeycomb lattice,

three key symmetries are T2 ¼ þ1 time-reversal, P2 ¼ þ1
particle-hole, and sublattice S symmetry. The latter is the
product of T and P. With respect to the single-particle
Hamiltonian ĥ, these symmetries are encoded in the
conditions [72]

T∶ σ̂2τ̂2ĥ
�σ̂2τ̂2 ¼ ĥ; ð3aÞ

P∶ − σ̂1τ̂1ĥ
Tσ̂1τ̂1 ¼ ĥ; ð3bÞ

S∶ − σ̂3τ̂3ĥσ̂3τ̂3 ¼ ĥ; ð3cÞ

where the asterisk denotes the complex conjugate. The
kinetic Hamiltonian in Eq. (2a) as well as the bilinear
perturbations in ĥA [Eq. (2b)] are invariant under T, P, and
S. Those in ĥB [Eq. (2c)] are invariant under T, but not P or
S, while those in ĥC [Eq. (2d)] are odd under T; some are
invariant under P or S.
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In the graphene context, fm1;2g, m3, and m0, respec-
tively, denote Kekulé, charge density wave, and Haldane
masses [3,73]. The particle-hole symmetric vector poten-
tials fAā;3g can encode elastic strain (via pseudomagnetic
fields) [74]. The scalar potential is V0, while real magnetic
fields can be encoded in fAā;0g.

A. Nontopological class A and AIII models

In the absence of T, P, and S, the Dirac Hamiltonian in
Eq. (2) resides in the unitary class A. If we take all 16
bilinear perturbations to be Gaussian random variables with
zero average (including a vanishing average Haldane-
Chern insulator mass m0 ¼ 0), then this theory realizes a
topologically trivial Anderson insulator, with localized
states at all energies [7,33].
We can get a purely two-dimensional, nontopological-

surface-state version of class AIII by imposing only
sublattice symmetry S. In the honeycomb lattice model,
sublattice symmetry is implemented via

cAðrAÞ → c†AðrAÞ; cBðrBÞ → −c†BðrBÞ; i → −i: ð4Þ

This is a symmetry for real or complex nearest-neighbor
hopping on any bipartite lattice at half filling [68,69]. The
allowed bilinear perturbations implied by Eq. (3c) are
fm1; m2; A1;3; A2;3; V1; V2; A1;0; A2;0g [70]. The vector
potentials act independently on the two nodes, while the
scalar and mass potentials scatter between them. This class
AIII Hamiltonian can alternatively describe Bogoliubov–
de Gennes quasiparticles in a 2D px-wave, spin-triplet
(“polar” [75,76]) superconductor [17].
At the band center (≡ zero energy), sublattice symmetry

introduces additional Goldstone modes in the nonlinear σ
model target manifold relative to ordinary metals. As a
result, states near zero energy evade Anderson localization,
as originally shown by Gade and Wegner [68,69].
Localization is still possible for strong random hopping
[77]. On the other hand, at energies away from zero we
expect eigenstates to reside in an ordinary Wigner-Dyson
class. For a system possessing only sublattice symmetry,
the finite-energy states are expected to reside in the unitary
class A, which localizes without fine-tuning to the quantum
Hall plateau transition. (See Sec. VII A for a precise
nonlinear σ model formulation in the topological case.)
Thus all finite-energy states of a nontopological class AIII
model in two dimensions are expected to localize.

B. Topological AIII models with ν ∈ f1;2g
Classes CI, AIII, and DIII can describe quasiparticles

in time-reversal-invariant superconductors, with SU(2),
U(1), or no spin symmetry, respectively [4,19]. For
any Bogoliubov–de Gennes Hamiltonian, physical time-
reversal invariance can always be represented as an
effective “chiral” symmetry, i.e., the condition that some

matrix MS anticommutes with the single-particle
Hamiltonian matrix ĥ [23]. The sublattice symmetry in
Eq. (3c) is such a chiral condition.
There are in fact two unitarily inequivalent types of chiral

symmetry available for 2D Dirac fermions [78]. The
sublattice symmetry in Eq. (3c) defines a 2D class AIII
Dirac theory with mass, scalar potential, and vector
potential perturbations. Since one can gap out the system
with a nonzero average mass without breaking the defining
chiral symmetry, this cannot be a topological surface state
theory. On the other hand, for the same two-node Dirac
Hamiltonian in Eq. (2), we can introduce an “anomalous”
version of the chiral symmetry,

Stop∶ − σ̂3ĥσ̂3 ¼ ĥ: ð5Þ

This differs from Eq. (3c) due to the absence of a grading in
valley space. In the context of a class AIII topological
superconductor, Eq. (5) represents physical time-reversal
symmetry realized at the boundary of the sample [4,19,23].
In a chiral bulk topological insulator, it is the surface
projection of the bulk sublattice symmetry [18].
Equation (5) is anomalous because it cannot be realized
via a local symmetry transformation in a strictly 2D lattice
model [unlike Eq. (3c), which is the continuum version of
the lattice operation in Eq. (4)].
Imposing Eq. (5) on theDiracmodel, only vector potential

perturbations are allowed. That is, the Hamiltonian in Eq. (2)
reduces to

ĥð2ÞAIII ≡ σ̂ā½−iv∂ ā þ Aā;0ðrÞ þ Aā;iðrÞτ̂i�; ð6Þ

where the repeated indices ā ∈ f1; 2g and i ∈ f1; 2; 3g are
summed. Equation (6) describes 2D Dirac fermions per-
turbed by quenched random U(1) (Aā;0) and SU(2) (Aā;i)
vector potentials. If we further suppress scattering between
the two nodes, we get two copies of the simpler single-node
theory:

ĥð1ÞAIII ≡ σ̂ā½−iv∂ ā þ Aā;0ðrÞ�: ð7Þ

In this case only Abelian vector potential disorder appears.
Equations (6) and (7) can be realized as surface state theories
for class AIII TSCs with bulk winding numbers ν ¼ 2 and
ν ¼ 1, respectively. Alternatively, two independent copies of
Eq. (7) obtain from the 2D class AIII Gade-Dirac model
defined by Eq. (3c), when internode scattering (mediated by
fm1; m2; V1; V2g) is suppressed byhand. Similar fine-tuning
of impurity amplitudes in a model for 2D d-wave super-
conductor quasiparticle scattering can realize 2 or 4 copies of

ĥð2ÞAIII or ĥ
ð1Þ
AIII, respectively [21,29].

The effective field theory describing the wave func-
tion and transport statistics near zero energy for the sur-
face state models in Eqs. (6) and (7) is a class AIII
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Wess-Zumino-Novikov-Witten (WZNW) nonlinear σ
model [23,25–28] (see Sec. VII A). It is identical in form
to the principal chiral σ model relevant to Gade-Wegner
physics in class AIII [68–70], except that the latter lacks the
WZNW term. The presence or absence of this term
completely changes the low-energy physics [7,70,78].
The key low-energy properties of Eqs. (6) and (7) are as
follows.
(1) Zero-energy multifractal spectrum.—Zero-energy

eigenstates of ĥðνÞAIII (where ν ∈ f1; 2g is the winding
number) are critically delocalized, with a purely parabolic
multifractal spectrum τðqÞ [7]. (For a review of multi-
fractality in the context of topological superconductor
surface states, see Refs. [20,21,23,41].) The multifractal
spectrum is [24,26,27,31]

τðqÞ ¼ 2ðq− 1Þ þΔðqÞ;

ΔðqÞ ¼ θνqð1− qÞ; 0 ≤ jqj ≤ qc; qc ¼
ffiffiffiffiffi
2

θν

s
; ð8Þ

where the parameter θν is given by

θν ¼
ν − 1

ν2
þ λA

π
: ð9Þ

Here λA is the variance of the Abelian white noise disorder
potential in Eqs. (6) and (7):

Aā;0ðrÞAb̄;0ðr0Þ ¼ λAδā;b̄δ
ð2Þðr − r0Þ: ð10Þ

The Abelian disorder strength λA is exactly marginal in the
renormalization group (RG) sense; i.e., it parametrizes a
line of fixed points [24,26,27].
In fact, Eq. (8) holds only for qc ≥ 1. For qc < 1, the

τðqÞ undergoes “freezing” [31,41,79,80]. A frozen wave
function is quasilocalized, in that it typically exhibits a “few”
rarified peaks. These peaks, however, are separated by
arbitrarily large distances. We consider only the unfrozen
regime, i.e., λA < πf2 − ½ðν − 1Þ=ν2Þ�g, in this paper.
The nontopological 2D Gade-Wegner models also fea-

ture an Abelian parameter λA; this is related to the variance
of the vector potentials fAā;0; Aā;3g in the model defined by
Eq. (3c). Unlike the topological surface-state theory, how-
ever, the λA parameter always flows to infinity under the
RG [68–70]. For this reason, the low-energy physics of 2D
Gade-Wegner models is always frozen [81,82].
(2) Finite energy: Correlation length and density of

states.—A finite energy E ≠ 0 introduces a scale to the
conformally invariant zero-energy theory. Formally, energy
is a relevant coupling strength that flows to largevalues under
the renormalization group [20,21,24]. We can associate to
this relevant coupling a correlation length ζðEÞ ∼ jEj−1=z,
with the dynamical critical exponent [23,25,26]

z ¼ 2 −
1

ν2
þ λA

π
: ð11Þ

We will see that ζðEÞ plays an unconventional role in the
characterization of finite-energy eigenstates for topological
class AIII Hamiltonians [Eqs. (6) and (7)], in that it divides
two different quantum-critical scaling regimes; see Fig. 1 and
Secs. III, IV, and VI. The length ζðEÞ thus plays the role of a
crossover scale between different critical fixed points,
instead of dividing a critical point (the delocalized zero-
energy theory) from a massive fixed point (which would be
an Anderson insulator at finite energy).
The dynamical critical exponent z also determines the

scaling form of the low-energy density of states (DOS)
ρðEÞ for the Hamiltonians in Eqs. (6) and (7), which
vanishes or diverges with a power law:

lim
E→0

ρðEÞ ≃ jEjð2−zÞ=z: ð12Þ

Equation (12) assumes weak λA, such that the system is not
“frozen” at zero energy (in the sense discussed above).
Because λA → ∞ in the Gade-Wegner models, the low-

energy DOS in the 2D, nontopological version of class AIII
always freezes. The low-energy behavior is given by

ρGadeðEÞ ∼
1

jEj exp ð−cjEj
αÞ; ð13Þ

where α ¼ 1=2 (2=3) below (above) freezing [68–70,81–
83] (but see also Ref. [84]).
(3) Zero-temperature, zero-energy conductivity.—At

zero temperature and zero doping relative to the Dirac
point, the Landauer conductivity of ĥðνÞAIII is independent of
the disorder [24,32,33], and equivalent to that of the clean
limit [7,85],

σx;x ¼ jνj=π; ð14Þ

in units such that the conductance quantum e2=h ¼ 1. This
result also describes charge conduction through a wide,
perfectly clean nanoscopic flake of graphene, precisely
doped to the Dirac point [85]. For the topological WZNW
class AIII theory, Eq. (14) appears to hold even in the
presence of both disorder and interactions [34].
By contrast, in the Gade-Wegner class AIII Dirac model,

the conductivity at zero energy is nonuniversal, depending
on the microscopic strengths of the mass and potential
disorders [7,70]. Interactions furthermodify the conductivity
via Altshuler-Aronov corrections [17,86]; the latter are
excised by the WZNW term in the topological case [34].

C. Integer quantum Hall plateau transition

In Secs. III and IV, we look for signatures of the class A
quantum Hall plateau transition in the finite-energy eigen-
states of Eqs. (6) and (7). The key attributes we detect are

SBIERSKI, KARCHER, and FOSTER PHYS. REV. X 10, 021025 (2020)

021025-6



the multifractal spectrum and Landauer transport proper-
ties. From numerical studies of the QHPT, the τðqÞ
spectrum is known to be approximately parabolic, given
by Eq. (8) with θQHPT ≃ 1=4 [7,35]. At the plateau
transition, the disorder-averaged conductivity has been
obtained from a Kubo-formula calculation of a disordered
tight-binding model in a magnetic field [40]. Extrapolating
results on very long samples with finite width to infinite
width, the result is

σðQHPTÞx;x ≃ 0.58� 0.02; ð15Þ

again in units such that e2=h ¼ 1. The distribution of the
critical Landauer conductance g has been computed for
square samples of the Chalker-Coddington network model
[39] and the tight-binding model [40]. In the limit of large
system sizes, gðQHPTÞ ¼ 0.60� 0.02 was obtained [40]. For
earlier studies, see Refs. [35–38].

III. ONE DIRAC NODE, U(1) VECTOR
POTENTIAL DIRT (AIII, ν= 1)

In this section, we present numerical evidence for a
continuous band of critical QHPT states in a single Dirac
node with a randomU(1) vector potential. This corresponds
to the ν ¼ 1 class AIII surface state Hamiltonian in Eq. (7),
which is a 2 × 2 matrix differential operator, protected by
the “topological” version of chiral symmetry in Eq. (5). For
analytical approaches, the white noise disorder correlator
Eq. (10) along with an UV cutoff on the Dirac dispersion is
a convenient choice. In contrast, for our numerics, we find
it useful to work with finite-range disorder correlations and
take the UV cutoff for the dispersion to infinity. We assume
the disorder fields Aā;0ðrÞ (ā ∈ f1; 2g) to vary smoothly on
a scale ξ, and these fields are taken to have zero average
value over the sample area. The disorder statistics are taken
to be Gaussian with the correlator

Aā;0ðrÞAb̄;0ðr0Þ ¼ δā;b̄
W2ðℏv=ξÞ2

2π
e−jr−r0j2=2ξ2 ; ð16Þ

with disorder correlation length ξ; in this and the following
two sections we restore ℏ. The dimensionless disorder
strength is ð1=ξ2Þðξ=ℏvÞ2 Rr hA1ðrÞA1ðr0Þidis ¼ W2. In the
limit of ξ being the smallest scale, the exact analytical
results [24] for the white noise disorder case should hold at
low energies. The dynamic critical exponent is predicted to
be given by [Eq. (11) with ν ¼ 1]

z ¼ 1þW2=π: ð17Þ

This corresponds to the purely marginal parameter λA ¼ W2

in Eq. (10), which parametrizes a line of fixed points [24].
These results arevalid in the low-energy jEj → 0 limit, below
the freezing transition that occurs at Wc ¼

ffiffiffiffiffiffi
2π

p
≃ 2.5

[31,41,79,80]. In the following, we work with W ¼ 2.3 in
order to keep disorder-induced length scales short while
staying below Wc. We then expect z ¼ 2.68.
We start with an exact diagonalization (ED) study of the

Hamiltonian in Eq. (7), regularized on a lattice in momen-
tum space, assuming periodic boundary conditions in real
space. Compared with tight-binding models in real space,
the momentum space approach avoids fermion doubling
and band bending effects, on the one hand, but results in a
dense Hamiltonian matrix which limits the available system
sizes, on the other hand. We choose a linear dimension of
L ¼ 60ξ and a momentum cutoff ξjkāj ≤ R (ā ∈ f1; 2g),
with R ¼ 5 (corresponding to a matrix Hamiltonian of size
18 050), which gives sufficient real-space resolution to
resolve the smooth variation of the disorder field. We
checked that the results are converged with respect to R
and the number of disorder realizations (typically a few
hundred).
In Fig. 2(a) we plot the ED DOS ρ versus energy E > 0.

The scaling form ρðEÞ ∼ E2=z−1 implies a divergence at
zero energy when z > 2, as in our case. In our finite-size
system, the divergence is replaced by a peak. At larger
energies above ∼2ℏv=ξ, the DOS is unaffected by disorder
scattering and asymptotically approaches the clean value
ρ0ðEÞ ¼ ðE=2πℏvÞ (dashed line). In Fig. 2(b) we quantify
the DOS power law by plotting NðEÞ ¼ R

E
0 dϵρðϵÞ (solid

line) and confirm that it goes like NðEÞ ∼ E2=z for small E
(dashed line). This agreement with nontrival analytical
predictions validates our numerical model and demon-
strates precise control over the disorder strength.
We now turn to the results of a transport calculation for

which we assume x to be the transport direction. The time-

independent Schrödinger equation ĥð1ÞAIIIψ ¼ Eψ can be
written as

∂xψðx; kyÞ ¼ ðkyσ̂3 þ iσ̂1kFÞψðx; kyÞ

− iσ̂1
1

ℏv

X
k0y

Ûðx; ky − k0yÞψðx; k0yÞ; ð18Þ

where Û ≡ A1;0σ̂1 þ A2;0σ̂2 and kF ≡ E=ℏv. This can be
solved in terms of the transfer matrix, using the method of
Ref. [11]. We assume periodic boundary conditions in the
transverse direction with jkyj ¼ 2πjnj=Ly ≤ R=ξ (n ∈ Z),
with Ly ¼ 400ξ, and again use the mode cutoff R large
enough so that the results below do not depend on it.
Assuming clean, highly doped leads attached at x ¼ 0 and
x ¼ Lx, the propagating lead modes are σ̂1 eigenstates [11].
This allows the definition of a scattering matrix S. From the
transmission block t, the longitudinal conductance can be
found asG ¼ ðe2=hÞtrðt†tÞ. We take the disorder averageG
and plot the resistance, normalized to the sample width
Ly=G in Fig. 2(c) as a function of Lx. For a diffusive
sample, we expect Ly=G ¼ LyR0 þ ð1=σÞLx, where R0 is
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some contact resistance and σ the bulk conductivity. The
data for E ¼ 0 agree with σ ¼ e2=hπ [Eq. (14)] and R0 ¼ 0
for each disorder realization, as required by gauge invari-
ance and chiral symmetry [33,87].
For any finite energy, there is a crossover of the resistance

trace to diffusive behavior with a larger conductivity. We
define the crossover scale ζ as the length Lx where Ly=G
deviates by 5% from the E ¼ 0 result. In Fig. 2(d) we show
that the crossover scale for E ≪ ℏv=ξ indeed follows the
scaling ζ ∼ E−1=z expected for the correlation length.
In Fig. 2(e), we plot the conductivities as fitted from the

resistance data well above the crossover scale for
Lx > ζ þ 10ξ. As the resistance trace is not perfectly linear
in Lx, there is a few percent ambiguity in the definition of σ
that we further address in the next paragraph. For
0 < E≲ ℏv=ξ, the conductivities show a plateau at

σ ≃ 0.55ðe2=hÞ, in fair agreement with the value σðQHPTÞx;x ¼
0.58� 0.02ðe2=hÞ obtained by Schweitzer and Markoš
[40] via the Kubo formula for a lattice model at the QHPT
transition. At larger energies E, the conductivity at the

accessible length scales increases with energy. This is as
expected for the crossover to the semiclassical Drude
conductivity, which goes as σ ∼ ðe2=hÞð1=W2Þ [72].
To get further insight into the behavior of quantum

transport as a function of system size, we next study the
probability distribution of the Landauer conductance gðLÞ
for square samples with increasing length L, keeping the
disorder strength the same as above. The results for
energies Eξ=ℏv ¼ 0.01, 0.1, 0.8, 1.0 are shown in
Figs. 3(a)–3(d). In all cases, the distributions pðln gÞ agree
reasonably well with the established distribution obtained
from a square-shaped Chalker-Coddington network model
of size 128, reproduced from Ref. [39] (gray shaded area).
For the energies Eξ=ℏv ¼ 0.01, 0.1, an evolution of the
distribution toward the Chalker-Coddington result can be
observed with increased system size L, whereas for
Eξ=ℏv ¼ 0.8, 1.0, the distribution does not change visibly
on the available length scales. The evolution of the average
square conductance ¯gðLÞwith L is depicted in Fig. 3(e). For
energies Eξ=ℏv ¼ 0.01, 0.1, we find an increase with

(a) (b) (c)

(d) (e) (f)

FIG. 2. Numerical results for the topological class AIII surface model with a single Dirac node (ν ¼ 1), defined by Eq. (7) and
protected by the “anomalous” chiral symmetry in Eq. (5). The random vector potential strength isW ¼ 2.3 [Eq. (16)]. (a) The DOS ρðEÞ
versus energy, as calculated from ED (100 disorder realizations), is most strongly affected by disorder around the Dirac point (E ¼ 0).
(b) The integrated DOS NðEÞ ¼ R

E
0 dϵρðϵÞ is plotted versus energy. The predicted scaling form implied by Eq. (12) is governed by the

disorder-dependent dynamical critical exponent z ¼ 1þW2=π. (c) Quantum transport results for the resistance normalized to system
width, averaged over 200 disorder realizations. The energies are from top to bottom Eξ=ℏv ¼ 0, 0.003, 0.01, 0.03, 0.1, 0.3, 0.7, 1.2.
(d) The crossover scale from the transport calculation scales as the correlation length ζ ∼ E−1=z. (e) Conductivities extracted from the
slope of the curves in (c) above the crossover scale ζ, compared to the established value of the QHPT critical conductivity.
(f) Anomalous part of the multifractal spectrum ΔðqÞ extracted from box-size scaling of ED eigenstates for box sizes beyond the
correlation length ζ, as determined in (d). The data correspond to Eξ=ℏv ¼ 0.01, 0.03, 0.1, 0.3, 0.7, 1.2 (bottom to top at q ¼ 2) and are
based on 100 disorder realizations.
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system size, whereas there is a weak decrease for
Eξ=ℏv ¼ 0.8, 1.0 (not discernible in the conductance
distributions). The data for all energies are consistent with
a limiting value of gðQHPTÞ ¼ 0.60� 0.02, as obtained in
Ref. [40] by extrapolating results for a disordered lattice
model to large system sizes (gray line). For the horizontal
axis in Fig. 3(e), the exponent −0.5 on L has been chosen
arbitrarily. Our range of length values is not sufficient to
determine if there is indeed a power-law approach of gðLÞ
to its limiting value with a characteristic irrelevant expo-
nent, as established for the fine-tuned QHPT in Ref. [40].
Our data suggest that the relevant length scale for the
approach to the QHPT fixed point strongly increases with
energy beyond E ≃ ℏv=ξ. Interestingly, this parallels the
behavior of the Boltzmann transport mean free path for our
correlated disorder model where the scattering range in
momentum space is restricted to 1=ξ.
Further evidence for the presence of a stack of QHPT

critical states at finite energies comes from the anomalous
part of the multifractal spectrum ΔðqÞ ¼ τðqÞ − 2ðq − 1Þ,
as shown in Fig. 2(f). Here, τðqÞ is defined via the scaling
of the disorder averaged generalized inverse participation
ratios [7],

Pq ∼ ðb=LÞτðqÞ; ð19Þ

where, for a single disorder realization,

Pq ¼
X
B

�X
ri∈B

jψðriÞj2
�

q
; ð20Þ

and the outer sum is over square regions B with linear size b
covering the real-space lattice. To find Pq, we use the ED
eigenstate ψ closest to energy E. It turns out that for small
energiesE≲ 0.1ℏv=ξ, the power law in Eq. (19) is governed
by two different multifractal spectrums τðqÞ, with the
crossover at b ≃ ζ as found in Fig. 2(d). To capture only
the long-distance physics beyond the correlation length, we
restrict to b > ζ, which is possible only for E ≥ 0.01ℏv=ξ
due to the overall system size restriction. For a wide range of
energies E≲ ℏv=ξ, we find ΔðqÞ, in good agreement with
the established form for QHPT states [7,35], ΔðqÞ ¼
θQHPTqð1 − qÞ [Eq. (8)], with θQHPT ≃ 0.25. The class
AIII multifractality from Eq. (9) expected at low energies
and for box sizes below the length scale ζ is not clearly visible
in our numerics. This is due to insufficient system size for the
high degree of rarification associated to our large disorder
strength (chosen just below the freezing transition
[31,79,80]). For a similar study at weaker disorder strength
confirming Eq. (9) at low energies, see Ref. [41].

(a)

(b)

(c)

(d)

(e)

FIG. 3. Landauer conductance g (in units of e2=h) of square
samples of length L for the topological class AIII surface model
with a single Dirac node (ν ¼ 1), as in Fig. 2. The probability
distribution pðln gÞ of the logarithm of the conductance for
L=ξ ¼ 60, 100, 180, 300 is depicted in (a)–(d) for energies
Eξ=ℏv ¼ 0.01, 0.1, 0.8, 1.0, respectively. The data are based on
between 1000 and 10000 disorder realizations, depending on
system size. The gray filled area depicts the result obtained for a
square-shaped Chalker-Coddington network model of size 128
reproduced from Ref. [39]. Panel (e) shows the scaling of the
mean square conductance gðLÞ for the above lengths and energies
and the asymptotic value for the QHPT obtained from Ref. [40].
For the horizontal axis, the exponent on L has been chosen
arbitrarily.
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IV. TWO DIRAC NODES, U(1) ⊕ SUð2Þ VECTOR
POTENTIAL DIRT (AIII, ν= 2)

In this section, we consider the ν ¼ 2 class AIII
topological surface state model in Eq. (6). The disorder
consists of U(1) fAā;0g and SU(2) fAā;iτ̂

ig vector poten-
tials, with ā ∈ f1; 2g and i ∈ f1; 2; 3g. We take these eight
potentials to be mutually uncorrelated, each with a smooth
autocorrelation function as in Eq. (16). The disorder
strength is taken to be WA for each of the two Abelian
potentials and WN for the non-Abelian ones, respectively.
We set WN ¼ 1.5 and WA ¼ 2.2 to stay below the freezing
transition atWA;c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
7π=4π

p ¼ 2.34 [freezing is discussed
below Eq. (10)]. We obtain z ¼ 7=4þW2

A=π ¼ 3.29 for
the dynamical critical exponent [Eq. (11)].
As above for ν ¼ 1, we start with an ED study of

Hamiltonian ĥð2ÞAIII and use L ¼ 60ξ and R ¼ 5 as a UV-
cutoff parameter (corresponding to a matrix Hamiltonian of
size 36 100). Figure 4(a) shows the DOS ρðEÞ with the
expected peak at energy E ¼ 0 and a crossover to the clean
DOS of two Dirac cones (dashed line) at large energies. In

Fig. 4(b) we confirm the expected power law of the DOS
ρðEÞ ∼ E2=z−1 by plotting NðEÞ ∼ E2=z.
We now turn to quantum transport results, obtained as in

the ν ¼ 1 case. We use samples of width Ly ¼ 400ξ and
increase the length Lx up to 350ξ. Figure 4(c) shows the
resistance normalized to sample width as a function of
length Lx for a range of energies between E ¼ 0 and
E ¼ 1.2ℏv=ξ. We define a crossover length ζ from the
resistance data as above for ν ¼ 1 and confirm the expected
scaling ζ ∼ E−1=z in Fig. 4(d) for energies E≲ 0.3ℏv=ξ.
Beyond this crossover length, the slope of the low-energy
resistance curves in Fig. 4(c) increases and then roughly
saturates for Lx ≳ 200ξ. The conductivity fitted from this
large Lx data is plotted versus energy in Fig. 4(e); we find

values in close vicinity to σðQHPTÞx;x [Eq. (15)] for small E and
conductivities increasing with energy for E≳ 0.3ℏv=ξ. To
further investigate the scaling of transport properties with
system size, we study the probability distribution of the
Landauer conductance gðLÞ of square samples of length L,
keeping the disorder strength the same as above. The
results for energies Eξ=ℏv ¼ 0.01, 0.1, 0.8 are shown in

(a) (b) (c)

(d) (e) (f)

FIG. 4. Numerical results for the topological class AIII surface model with two Dirac nodes (ν ¼ 2), defined by Eq. (6) and protected
by the “anomalous” chiral symmetry in Eq. (5). The Abelian and non-Abelian vector potential disorder strengths are WA ¼ 2.2 and
WN ¼ 1.5, respectively [cf. Eq. (16)]. (a) The DOS as a function of energy, as calculated from ED (200 disorder realizations). (b) The
integrated DOS NðEÞ ¼ R

E
0 dερðεÞ plotted versus energy. The predicted scaling form implied by Eq. (12) is governed by the dynamical

critical exponent z ¼ 7=4þW2
A=π, which depends only on the Abelian disorder strength. (c) Quantum transport results for the

resistance normalized to system width Ly ¼ 400ξ, averaged over 600 disorder realizations. The energies are from top to bottom
Eξ=ℏv ¼ 0, 0.003, 0.01, 0.03, 0.1, 0.3, 0.7, 1.2. (d) The crossover length from the transport calculation scales as the correlation length
ζ ∼ E−1=z. (e) Conductivities extracted from the Lx ≥ 200ξ slopes of the curves in (c), compared to the established value of the QHPT
critical conductivity. (f) Anomalous part of the multifractal spectrum ΔðqÞ extracted from box-size scaling of ED eigenstates for box
sizes beyond the correlation length ζ as extracted in (d). The data correspond to Eξ=ℏv ¼ 0.003, 0.01, 0.03, 0.1, 0.3, 0.7, 1.2 (bottom to
top at q ¼ 2).
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Figs. 5(a)–5(c), and the evolution of the average conduct-
ance gðLÞ with L is depicted in Fig. 5(d). The situation is
similar to the ν ¼ 1 case. While small energies
Eξ=ℏv ¼ 0.01, 0.1 result in distributions and average
square conductances visibly approaching the QHPT case,
at higher energy Eξ=ℏv ¼ 0.8 the relevant length scale for
this process exceeds our available system size and only a
slight trend of the average conductance is visible.

Finally, Fig. 4(f) shows the anomalous part of the
multifractal spectrum, as calculated from the ED eigen-
states in the vicinity of the energies used for the transport
study. In analogy with the conductivities, we find good
agreement with the QHPT form for low energies. At higher
energies weaker multifractality is observed.
Before closing this section, we give a complementary

perspective on the above results by ramping up from zero
the non-Abelian disorder strength. We takeWN ¼ 0, 1, 2, 3
at fixed Abelian disorder strength WA ¼ 2.1 and fixed
energy E ¼ 0.03ℏv=ξ and present transport data in Fig. 6.
For WN ¼ 0, the two nodes are decoupled and we find a

conductivity close to 2 × σðQHPTÞx;x in agreement with the
single-node case presented in Sec. III. For WN ¼ 1, 2, 3,
the nodes are coupled and the conductivity is close to the

value 1 × σðQHPTÞx;x .

FIG. 6. Numerical transport results for the topological two-
node class AIII Dirac model [ν ¼ 2, Eq. (6)], with Abelian and
non-Abelian vector potential disorder of strengths WA ¼ 2.1 and
increasing WN ¼ 0, 1, 2, 3 at energy E ¼ 0.03ℏv=ξ. The top
panel shows the bare resistance data, while the lower panel
depicts the bulk conductivities obtained from linear fits to the
bare resistance data above Lx ¼ 200ξ. These plots establish the
crossover of the two-node model from the finite-energy conduc-

tivity plateau equal to 2 × σðQHPTÞx;x in the absence of internode

scattering, to a plateau with value 1 × σðQHPTÞx;x in its presence. The
data are obtained for systems of width Ly ¼ 400ξ and are
averaged over 600 disorder realizations.

(a)

(b)

(c)

(d)

FIG. 5. Landauer conductance g (in units of e2=h) of square
samples of length L for the topological class AIII surface model
with two Dirac nodes (ν ¼ 2), as in Fig. 4. The probability
distribution pðln gÞ of the logarithm of the conductance for
L=ξ ¼ 60, 100, 180, 300 is depicted in (a)–(c) for energies
Eξ=ℏv ¼ 0.01, 0.1, 0.8, respectively. The data are based on
between 3000 and 600 disorder realizations, depending on
system size. The gray filled area depicts the result obtained
for a square-shaped Chalker-Coddington network model of size
128, reproduced from Ref. [39]. Panel (d) shows the scaling of the
mean square conductance gðLÞ for the above lengths and energies
and the asymptotic value for the QHPT obtained from Ref. [40].
For the horizontal axis, the exponent on L has been chosen
arbitrarily.
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V. NONTOPOLOGICAL TWO-DIRAC NODE
MODELS: GADE-WEGNER AIII, LOCALIZED

GRAPHENE

We now contrast our findings for the topological-
surface-state class AIII models presented in Secs. III and
IV with two nontopological Dirac models, both of which
are expected to Anderson localize at finite energies.
We first consider the generic two-node Dirac (“spinless

graphene”) model defined by ĥ≡ ĥ0 þ ĥA þ ĥB þ ĥC
[Eq. (2)]. Thismodel possesses onlyU(1) symmetry, without
T, P, S [Eq. (3)] or the topological Stop [Eq. (5)] symmetries.
All disorder potentials are taken to be short-range correlated
as in Eq. (16), with zero average. This model resides in the
unitary class with a vanishing Hall conductivity, and is
expected to localize at all energies [7,33]. All disorder
potentials are taken to carry the same strength W ¼ 1.5.
In Figs. 7(a)–7(c), we show numerical results for this model.
The numerical results are obtained analogously to those
presented in the previous sections. The DOS in Fig. 7(a) is
finite and featureless at and around zero energy. In Fig. 7(b),
we show the inverse participation ratio (IPR)Pq¼2, wherewe
use a box size corresponding to the disorder correlation
length b ≃ ξ. While the IPR is of the same order as for the

classAIIIWZNWmodel (crosses), the localizing behavior is
clearly observed in the resistance data in Fig. 7(c) probing
larger length scales. For small energies E ≤ 0.3ℏv=ξ, the
resistance is growing with increasing slope to values much
above the clean zero-energy resistance (dashed line).
We also consider the nontopological Gade-Wegner class

AIII Dirac model, defined by imposing the sublattice
symmetry in Eq. (3c). Just as in the topological case studied
in Sec. IV, there are eight allowed disorder perturbations. The
crucial difference from the topologicalmodel inEq. (6) is that
Eq. (3c) permits mass and scalar potentials, in addition to
vector potential disorder. The allowed perturbations from
Eq. (2) are fm1; m2; A1;3; A2;3; V1; V2; A1;0; A2;0g [70].
Numerical results are shown in Figs. 7(d)–7(f). The DOS
in Fig. 7(d) shows the characteristic Gade-type singularity at
E ¼ 0 [Eq. (13)], and the IPR in Fig. 7(e) is increased as
compared to the topological version from Fig. 4.
Concurrently, the tendency to localization in the resistance
plot in Fig. 7(f) is clearly observable. However, note that the
conductivity at zero energy in the Gade class AIII Dirac
model is finite and slightly lower than the clean conductivity
σ ¼ 2e2=ðhπÞ (dashed line), in agreement with theoretical
predictions [33,70].

(a) (b) (c)

(d) (e) (f)

FIG. 7. Numerical results for nontopological, two-node Dirac models. Panels (a)–(c) show results for the unitary class A model
defined by all 16 disorder potentials in Eq. (2). Panels (d)–(f) show results for the Gade-Dirac class AIII model defined by restricting to
the 8 potentials allowed by the sublattice symmetry in Eq. (3c). In both cases, all disorder strengths are set equal toW ¼ 1.5. The DOS
versus energy is shown in (a) and (d), respectively. Panels (b) and (e) depict the IPR and compare to the results for the topological class
AIII model from Sec. IV and Fig. 4. The data are averaged over 100 disorder realizations. Quantum transport results showing the
resistance versus sample length are depicted in (c) and (f). The data are averaged over 200 disorder realizations.
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VI. DIRTY SURFACE STATES OF A CLASS AIII 3D
TOPOLOGICAL LATTICE MODEL

We complement the results from the former sections
dealing with pure surface theories by exact diagonalization
studies of a slab topological superconductor system. We
investigate the multifractal spectra of surface states in the
superconducting gap. For this purpose, we take the model
from Ref. [34]. Although not microscopically realistic, this
model encodes a class AIII topological superconductor on
the diamond lattice, as explicated in Fig. 8 and defined
below. By tuning of parameters one can realize winding
numbers of ν ¼ −2, −1, 0, 1, 2. See Fig. 9 for a sketch of
the topological phase diagram. This means we can study
both even and odd winding numbers by tuning parameters
in this model.
The lattice Hamiltonian can be decomposed into three

parts, H ¼ H1 þH2 þH3. We transcribe the model in the
absence of disorder as follows (see also Fig. 8). The first
kinetic term consists of nearest-neighbor hopping from one
sublattice (A) to the other (B):

H1 ¼
X
R;δ

X
ν¼↑;↓

t0½C†
AνðRÞCBνðRþ δÞ þ H:c:�; ð21Þ

where CiνðRÞ annihilates an electron at siteR on sublattice
i ∈ fA;Bg, with spin polarization ν ∈ f↑;↓g. Here the
displacement vectors fδg connect nearest-neighbor A and
B sites, and H.c. is the Hermitian conjugate.
A second kinetic term involves a staggered chemical

potential and next-nearest-neighbor hopping in the xz and
yz planes,

H2 ¼
X
i¼A;B

X
R

X
ν¼↑;↓

ViC
†
iνðRÞCiνðRÞ

þ
X
i¼A;B

X
R;δ̃

X
ν¼↑;↓

tiðδ̃Þ½C†
iνðRÞCiνðRþ δ̃Þ þ H:c:�;

ð22Þ
where the vectors fδ̃g connect next-nearest-neighbor
(same-sublattice) sites on the diamond lattice, and where

Vi ¼
�
μs i ∈ A

−μs i ∈ B;
ð23Þ

tiðδ̃Þ ¼

8>><
>>:

t=2 ði ∈ A; δ̃⊥ŷÞ∨ði ∈ B; δ̃⊥x̂Þ
−t=2 ði ∈ A; δ̃⊥x̂Þ∨ði ∈ B; δ̃⊥ŷÞ
0 δ̃⊥ẑ:

ð24Þ

The Hamiltonian in Eqs. (21) and (22) preserves both time-
reversal and spin SU(2) symmetries. Superconductivity is
introduced via

FIG. 8. Class AIII topological superconductor model on the
diamond lattice [34]. Sublattice A (B) sites are indicated by red
(blue) spheres, and are subject to the on-site potential μs (−μs)
[Eq. (23)]. (a) Nearest-neighbor hopping with amplitude t0
[Eq. (21)]. (b) Next-nearest-neighbor hopping on the A sublattice
[Eqs. (22) and (24)]. Solid line (dashed line) hopping amplitudes
are equal to t=2 (−t=2). (c) Next-nearest-neighbor hopping on the
B sublattice [Eqs. (22) and (24)]. Solid line (dashed line) hopping
amplitudes are equal to t=2 (−t=2). (d) BCS pairing within each
of the sublattices [Eqs. (25) and (26)]. The red lines indicate d-
wave spin-singlet pairing in the xy plane; i.e., red bonds create
singlet Cooper pairs with amplitude Δ=2. The blue lines indicate
p-wave z-axial spin-triplet pairing in the xz and yz planes. Solid
(dashed) bonds create total spin Jz ¼ 0 pairs with amplitude
Δ=2 (−Δ=2).

FIG. 9. Phase diagram of the lattice model defined by Eqs. (21)–
)26 ), as a function of the staggered chemical potential μs and the

next-nearest-neighbor hopping t [Eqs. (22)–(24)]. There are
critical lines at μs ¼ �t and μs ¼ �3t separating different
topological phases with winding numbers ν ¼ −2;−1, 0, 1, 2.
For ν ¼ 2, the bulk gap is largest (and therefore the surface
penetration depth smallest) at μs ¼ 0 and finite t > 0. The ν ¼ 1
phase is narrower in phase space and harder to observe in ED
numerics due to the larger penetration depth. The blue dots
indicate the ν ¼ 2 and ν ¼ 1 parameters investigated in Figs. 10
and 11.

SPECTRUM-WIDE QUANTUM CRITICALITY AT THE SURFACE … PHYS. REV. X 10, 021025 (2020)

021025-13



H3 ¼
X
i¼A;B

X
R;δ̃

X
¼↑;↓
μ;ν

�
1

2
Δμνðδ̃ÞC†

iμðRÞC†
iνðRþ δ̃Þ þH:c:

�

ð25Þ

incorporating spin-singlet d-wave and spin-triplet p-wave
pairing terms,

Δ̂ðδ̃Þ¼

8>>><
>>>:
i

ffiffiffi
3

p
Δμ̂2 ðd-wave spin singletÞ δ̃⊥ẑ

−isgnðδ̃yÞΔμ̂1 ðp-wave spin tripletÞ δ̃⊥x̂

−isgnðδ̃xÞΔμ̂1 ðp-wave spin tripletÞ δ̃⊥ŷ:

ð26Þ

In the last equation, the Pauli matrices fμ̂1;2;3g act on spin-
1=2 space.
For nonzero ft0;Δg, the full Bogoliubov–de Gennes

Hamiltonian in Eqs. (21)–(26) is fully gapped in the bulk,
except for fμs; tg constrained along the topological phase
transition lines indicated in Fig. 9. It preserves time-reversal
T symmetry, aswell as invariance underU(1) rotations about
the ẑ axis in spin (f↑;↓g) space [34]. With superconduc-
tivity, these symmetries realize class AIII [4,17].
We implement the Hamiltonian for a slab geometry. In

the x direction we terminate the diamond lattice in two
surfaces, with W pairs of ðL × LÞ A, B layers in between.
We choose periodic boundary conditions in y and z
directions to obtain a quasi-infinite slab of thickness W.
Disorder is implemented by choosing each coupling λ ∈
ft0; μs; t;Δg [Eqs. (21)–(26)] from a box distribution
λ ∈ ½λ̄ − δxλ̄; λ̄þ δxλ̄�, where λ̄ is the average value of
the coupling strength. In order to avoid localization of
the bulk states, we choose δx that quickly decays away
from the two surfaces, so that the disorder effectively
resides only near sample boundaries. Suppressing bulk
disorder further prevents shifting of topological phase
boundaries as a function of the disorder strength.
To obtain all the in gap states of the sparse Hamiltonian,

we employ the FEAST algorithm [88]. In numbers, this
enables us to compute Oð103Þ eigenstates in the gap for
matrix sizes up to 0.5 × 106 to accuracy of 10−10 times the
matrix norm. As one can see by comparing to the data in
Refs. [60,64,89] on quantum Hall critical wave functions
on the network model, we can access the IPRs with
reasonable precision using the system sizes under consid-
eration. To investigate parabolicity and critical exponents,
i.e., accessing more than a decade of systems sizes with
averaging, our computational power is insufficient. We
therefore leave precision finite-size scaling studies of the
topological surface wave functions to future work.
The lattice wave function carries crystal coordinates

fx; y; zg, sublattice index i ∈ fA; Bg, and spin index
ν ∈ f↑;↓g. The surface-resolved probability density of
an eigenstate wave function ψx;y;z;i;ν is defined via

jψS
y;zj2 ≡

X
i¼A;B

X
x

X
ν¼↑;↓

jψx;y;z;i;νj2; ð27Þ

where we trace over the slab depth x, as well as sublattice
and spin spaces. The surface states decay quickly (expo-
nentially) into the bulk, and our results are not dependent
on how many slices orthogonal to the x direction are taken
for states deeply in the gap.
We define the box probability μn and the inverse

participation ratio Pb
q as usual:

μn ¼
X
y;z∈Ab

n

jψS
y;zj2; ð28Þ

Pb
q ¼

X
n

μqn: ð29Þ

We subdivide the ðL × LÞ surface into square boxes fAb
ng

of linear size b. For the linear regression to extract the
multifractal exponents τq, only commensurate box sizes are
taken into account:

lnPb
q ¼ τq ln bþ c: ð30Þ

For 0 < q < 1, the restriction to commensurate box sizes is
crucial.
For a large system with linear surface size L ¼ 72 and

even winding number ν ¼ 2, we show the density of states
and eigenstate multifractality in Fig. 10. Energy E is
measured in units of the nearest-neighbor hopping strength
t0. For the analysis presented in Fig. 10, we only extract the
in-gap states that comprise less than 1% of the entire energy
spectrum. Throughout the gap, a power-law integrated
density of states NðEÞ ∝ Eα, with α close to unity, is
obeyed [Fig. 10(a)]. The dimensionless disorder strength δ
implemented on all surface couplings of the microscopic
lattice model is related to the Abelian (λA) and non-Abelian
disorder strengths of the surface theory [Eqs. (6) and (10)]
in a nontrivial way. For this reason, a comparison of bare
and effective disorder via Eq. (12) as in the preceding
sections is therefore not revealing in this case.
In Fig. 10(b), a histogram exhibiting the density of

critical versus the density of all states is shown. A state is
critical once its anomalous multifractal exponents Δq

match the class AQHPT prediction ΔðQHPTÞ
q ≃ ð0.25Þqð1 −

qÞ [7,35] within 4% for 75% of the q ∈ ½0; qc� below
freezing, qc ¼ 2.83 [20,21]. Almost a third of the in-gap
states satisfy this. We verify that the inverse participation
ratios logPb

q depend linearly on log b and show this for an
exemplary state in Fig. 10(c). Further, in Fig. 10(d), we
check that the wave functions in the gap consist primarily
of surface states by analyzing their behavior integrated over
slices in the open direction x. Here, the total surface
probabilities are defined via
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jψ topj2 ¼
X
i¼A;B

X
y;z

X
ν¼↑;↓

jψx¼W;y;z;i;νj2;

jψbotj2 ¼
X
i¼A;B

X
y;z

X
ν¼↑;↓

jψx¼0;y;z;i;νj2: ð31Þ

Finally, Figs. 10(e) and 10(f) exhibit anomalous multi-
fractal spectra for states spanning the bulk gap. Although
states near zero energy exhibit stronger multifractality,

most of the in-gap states show weaker fractality, consistent
with the QHPT prediction.
In Fig. 11, we show disorder-averaged multifractal

spectra for smaller (L ¼ 48) systems. We compare the
two winding numbers ν ¼ 1 and ν ¼ 2. In agreement with
the preceding conductivity and multifractality study of the
surface theory (Secs. III and IV), we find the same behavior
at finite energies for both winding numbers. In accordance
with the expectation [Eq. (9)] for the topological AIII

FIG. 10. Numerical exact diagonalization results for the disordered surface states of the 3D class AIII topological superconductor
lattice model defined by Eqs. (21)–(26). The bulk is tuned to the ν ¼ 2 phase as indicated by the blue dot in Fig. 9. Shown are results for
a system of surface size L ¼ 72with box disorder on all couplings λ ∈ ft0; μs; t;Δg only near the top and bottom slab surfaces. For each
parameter the disorder spans λ ∈ ½λ̄ − δλ̄; λ̄þ δλ̄�, where δ ¼ 0.8 and the average coupling strengths are t̄0 ¼ 4, μ̄s ¼ 0, t̄ ¼ 2, and
Δ̄ ¼ 1. Results here characterize eigenstates across the energy (E) spectrum for a single, typical realization of the disorder. The energy E
is measured in units of t0, and the bulk gap is E ¼ 1.5. (a) The integrated density of states NðEÞ is shown. Throughout the gap, a power
law NðEÞ ∝ Eα with α ¼ 1.06 is obeyed. The perfect power law is shown slightly shifted in orange. (b) Histogram of the density of
critical states (DOCS) versus the overall density of states (DOS). A state is critical, once its anomalous multifractal exponents Δq match

the class A QHPT prediction ΔðQHPTÞ
q ≃ ð0.25Þqð1 − qÞ [7,35] within 4% for 75% of the q ∈ ½0; qc� below freezing, qc ¼ 2.83 [20,21].

The total DOS is shown in blue, the critical fraction is colored red. (c) Fits for extracting the multifractal exponents are shown for an
exemplary state at E ¼ 0.47. Commensurate box sizes are shown as red dots, incommensurate ones (padded with zeros) are blue. When
fitting, only commensurate boxings are taken into account, and these satisfy the expected linear relation very well even for large q. One
can observe that logPb

q depends linearly on log b for a single state. (d) Vertical depth profile for the surface states. The ratio of the top
and bottom surface probabilities [Eq. (31)] is plotted versus energy. The vast majority are localized on either one of the two faces with
open boundary conditions; hence, the width of the sample is sufficient to study surface properties. States that extend into the bulk are
colored black, high-energy surface states are blue, and low-energy surface states are green. This color code is also used in (e) and (f). At
E ¼ 1.5, where the gap closes, almost all states extend into the bulk. (e) Second anomalous dimension Δ2 as a function of energy. For

the high-energy surface states (E > 0.3, blue) there is reasonable agreement with ΔðQHPTÞ
2 ¼ −0.5. (f) Multifractal spectra for all surface

states. There is good agreement of the high-energy states (blue dots) with the expected QHPT parabola [7,35] (red line). The low-energy
states are strongly multifractal (green).
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surface theory, there is strong multifractality for strong
disorder at zero energy. For E > 0.5, there is very good
agreement between the class A QHPT parabola and the
observed average multifractal spectra. At higher energies
(not shown), the surface states start extending into the
clean bulk.

VII. DISCUSSION

A. σ models, absent even-odd effect, and phase diagram

The statistics of spatial fluctuations in the zero-energy
eigenstates of the class AIII topological surface-state
Hamiltonians in Eqs. (6) and (7) can be encoded in a
matrix σ model [7]. The form of the theory obtains from
non-Abelian bosonization [24–29,70] and conformal
embedding theory [23],

S¼ ν

8π

Z
d2rTr½∇q̂† ·∇q̂�

−
λAν

2

8π2

Z
d2rTr½q̂†∇q̂� · Tr½q̂†∇q̂�

þ iω
2

Z
d2rTr½Λ̂ðq̂þ q̂†Þ�

−
iν
12π

Z
d2rdRϵabcTr½ðq̂†∂aq̂Þðq̂†∂bq̂Þðq̂†∂cq̂Þ�: ð32Þ

Here ν is the bulk winding number, equal to 1 (2) for the
Hamiltonian in Eq. (7) [Eq. (6)]. The parameter λA is
the strength of the Abelian disorder potential [Eq. (10)].
The parameter ω is the ac frequency at which the
conductivity is to be evaluated. Taking ω ≠ 0 probes states
away from zero energy.
The field q̂ðrÞ is a ð2nÞ × ð2nÞ unitary matrix

[q̂†ðrÞq̂ðrÞ ¼ 1̂2n, where 1̂2n denotes the ð2nÞ × ð2nÞ iden-
tity], with n → 0 equal to the number of fermionic replicas
[7,23]. The frequency ω couples to the (imaginary [29])
“mass” term ði=2ÞTr½Λ̂ðq̂þ q̂†Þ�, where Λ̂ ¼ diagf1̂n;−1̂ng
grades in retarded or advanced space [7]. The fourth line in
Eq. (32) is the Wess-Zumino-Novikov-Witten term, which
requires the extension of the field domain to the three-ball
ðR; rÞ, with 0 ≤ R ≤ 1. The third coordinate R can be
thought of as accessing the “bulk” of the topological phase,
with R ¼ 1 denoting the surface [77].
The first three lines of Eq. (32) describe the topologically

trivial “Gade” AIII Dirac model [17,70,77,86], defined by
the restriction of Eq. (2) via the sublattice (chiral) symmetry
in Eq. (3c). As we saw in Sec. V and Fig. 7, the finite-
energy states of this model are strongly Anderson localized.
It is the advent of the WZNW term on the fourth line of

Eq. (32) that distinguishes the topological class AIII
models [Eqs. (6) and (7)], which are protected by the
anomalous chiral symmetry in Eq. (5). The key zero- and
low-energy properties of topological class AIII surface
states, summarized in Eqs. (9), (11), (12), and (14), can be
derived from Eq. (32) with ω ¼ 0 [23–28,32,33,70]. We
have numerically established that these models exhibit
“stacks” of critically delocalized QHPT states at finite
energy in Secs. III, IV, and VI.
A symmetry-based argument for the effect of ω ≠ 0 in

Eq. (32) is the following. With ω ¼ 0, the model exhibits
Uð2nÞ ⊗ Uð2nÞ symmetry, defined as invariance under
independent left- and right-group transformations:

q̂ → ÛLq̂Û
†
R; Û†

LÛL ¼ Û†
RÛR ¼ 1̂2n: ð33Þ

After absorbing the matrix Λ̂ by left-group translation, ω ≠
0 in Eq. (32) constrains ÛL ¼ ÛR, reducing the symmetry
to the diagonal U(2n). Although ω constitutes an imaginary
mass, if we assume that the oscillations induced by
fluctuations in the larger Uð2nÞ ⊗ Uð2nÞ space are sup-
pressed [29], we can impose “by hand” the constraint

FIG. 11. Disorder-averaged multifractal spectra for the lattice
model defined by Eqs. (21)–(26) with surface size L ¼ 48, slab
depthW ¼ 36, and ν ¼ 1, 2. The corresponding bulk topological
phases are indicated by the blue dots in Fig. 9, while t̄0 ¼ 4 and
Δ̄ ¼ 1 as in Fig. 10. For selected energies, we show Δq as a
function of q in the left-hand panels. The QHPT parabola

ΔðQHPTÞ
q ≃ ð0.25Þqð1 − qÞ is shown (thick gray line) for com-

parison. For ν ¼ 1, 2, selected dimensions Δf0.45;1.45;1.95g are
plotted as a function of energy E on the right. As a guide to the

eye, ΔðQHPTÞ
f0.45;1.45;1.95g ¼ f0.06;−0.16;−0.46g are marked by thick

gray lines. At zero energy, there is strong multifractality. The gap
closes at E ≃ 1.5 (not shown) in both cases. The key takeaway is
that we observe no even-odd effect: both ν ¼ 1, 2 exhibit critical
surface states (with approximate QHPT multifractality) spanning
the bulk energy gap. An even-odd effect would mean critical
(Anderson localized) finite-energy states for odd (even) winding
numbers. Such an effect is predicted from a naive deformation of
the WZNW term in the theory governing zero-energy critical
states; see Sec. VII A. The ED studies on the lattice model agree
with S-matrix and momentum space (Secs. III, IV) studies in that
both ν ¼ 1, 2 match the QHPT critical behavior at finite energies.
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q̂ ¼ q̂†; Tr½q̂� ¼ 0: ð34Þ

Then, q̂2 ¼ 1̂2n. Imposing these conditions in the presence
of the WZNW term requires care, because the constraint
introduces topologically distinct sectors of q̂ðrÞ. Using a
standard deformation of the WZNW term due to Bocquet,
Serban, and Zirnbauer [15,29,51], the σ model in Eq. (32)
reduces to a version of Pruisken’s model for the quantum
Hall effect [90],

S →
σx;x
8

Z
d2rTr½∇q̂ · ∇q̂�

−
σx;y
8

Z
d2r ϵijTr½q̂∂iq̂∂jq̂�; ð35Þ

where

σx;x ¼ ν=π; σx;y ¼ ν=2: ð36Þ

The λA and frequency terms have now disappeared due to
Eq. (34). [We perform the group translation that replaces
Λ̂ → 1̂2n in Eq. (32) before implementing the constraint.]
The topological θ term on the second line of Eq. (35) has

the coefficient σx;y, given by Eq. (36). In the context of a
single massless Dirac fermion, it has been argued that the
parameter σx;y is not the physical Hall conductivity [15].
The latter should vanish for the on-average parity-invariant
class AIII surface [29].
The main point is that Eq. (36) implies a nontrivial even-

odd effect. For odd values of the winding number ν, the
Pruisken term in Eq. (35) has ϑ≡ 2πσx;y ¼ π (modulo 2π),
corresponding to the plateau transition of the integer
quantum Hall effect [7,14,90]. On the other hand, the
parameter ϑ ¼ 2π for even winding numbers. This corre-
sponds to the Anderson insulating quantum Hall plateau.
We conclude that the “derivation” of Eq. (35) from Eq. (32)
predicts that class AIII surface states at finite energy are
critically delocalized at the QHPT (Anderson localized in
the plateau) for odd (even) winding numbers. Although we
have obtained Eqs. (35) and (36) using non-Abelian
bosonization, the same conclusion is seemingly implied
by a straightforward gradient expansion [5,14].
A key result of the numerical results presented in

Secs. III, IV, and VI is that no such even-odd effect is
observed. The Landauer conductivity and multifractal
spectra results for surface theories with ν ¼ 1, 2 shown
in Figs. 2 and 4, as well as the results for the surface states
of the class AIII bulk lattice model exhibited in Fig. 11,
show no difference between even and odd winding num-
bers. In both cases, finite-energy states are observed to form
a stack of quantum-critical QHPT states.
We emphasize that Eqs. (35) and (36) do not obtain by

following a physical renormalization group flow, starting
from the ω ≠ 0 perturbed WZNW model in Eq. (32).
Instead, the imposition of the constraint in Eq. (34) is

essentially a “mean field” guess for how the zero-energy
field theory responds to the finite-energy perturbation. It is
certainly possible that a physical RG flow connects Eq. (32)
with ω ≠ 0 in the ultraviolet to Eq. (35), but with σx;y ¼
1=2 for all nonzero ν. At the same time, the Pruisken theory
is also an ultraviolet description of quantum Hall physics;
i.e., Eq. (35) can only be derived in a controlled fashion for
large bare σx;x ≫ 1 [7,90]. The Pruisken model flows to
strong coupling σx;x → Oð1Þ; for σx;y ¼ 1=2, this flow is
presumed to terminate at the logarithmic conformal fixed
point governing the QHPT.
A schematic RG flow diagram is shown in Fig. 12,

connecting the zero-energy fixed lines of Eq. (32) (with
ω ¼ 0, parametrized by the purely marginal Abelian
disorder variance λA) to the putative QHPT critical point.
A conjectured flow from the ultraviolet Pruisken model
(with ϑ ¼ π) is also indicated in this figure.

B. Critical stacking and Zirnbauer’s ν= 4 AIII model
for the QHPT

Both the class AIII WZNW model in Eq. (32) and the
class A Pruisken model in Eq. (35) model are defined by
Uð2nÞ unitary symmetry. In fact, for the special case of one

FIG. 12. Schematic “physical” renormalization group flow
picture connecting zero-energy and finite-energy fixed-point
descriptions of class AIII topological surface states. In the
zero-energy horizontal plane, the system state is determined
by the winding number ν [equal to π times the longitudinal
conductivity, Eq. (14)] and by the Abelian disorder strength λA,
Eqs. (10) and (32). The latter parametrizes the parallel zero-
energy fixed lines, indicated in black. The numerical results
presented in Secs. III, IV, and VI strongly suggest that nonzero
energy induces a flow (green arrows) to the logarithmic con-
formal field theory that governs the plateau transition of the
ordinary quantum Hall effect. For λA ¼ 0, finite energy produces
special behavior for winding numbers ν ¼ 1 (clean Dirac) and
ν ¼ 2. The latter flows instead to the plateau transition of the spin
quantum Hall plateau transition (SQHPT) [20]. Also indicated is
the schematic flow to the QHPT critical point from the ultraviolet
limit of the quantum Hall plateau transition, as captured by the
Pruisken σ model in Eq. (35) with a large bare conductivity
σx;x ≫ 1 and half-integer σx;y.
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replica, n ¼ 1, these theories can become equivalent. The
Pruisken model with n ¼ 1 has target manifold

Uð2Þ
Uð1Þ ⊗ Uð1Þ ≃

Oð3Þ
Oð2Þ :

In this case, Eq. (35) is the effective Euclidean spacetime
field theory for the (1þ 1)-dimensional antiferromagnetic
SU(2) Heisenberg spin-s chain, with σx;y ¼ s [91].
According to Haldane’s conjecture, for half-integer s this
model is equivalent to the SU(2) sector of the U(2) WZNW
model in Eq. (32), at level ν ¼ 1. Although the “ultraviolet”
Pruisken theory has only diagonal SU(2) symmetry, the
WZNWmodel is invariant under the larger chiral symmetry
group SUð2Þ ⊗ SUð2Þ. Enlarged chiral symmetry is a
generic property of rational 2D conformal field theories.
By contrast, spin chains with integer s have ϑ ¼ 2π, and
flow to a gapped paramagnetic phase: this is the famous
even-odd effect predicted by Haldane’s conjecture [91].
Although the replica limit n → 0 produces nonunitary,

c ¼ 0 logarithmic conformal field theories [28,57], one
might hope that a version of the Haldane conjecture
survives in the replica limit. The QHPT features a non-
critical density of states, as well as an approximately
parabolic multifractal spectrum τðqÞ, Eq. (8), with θ ≃
0.25 [7,35]. We can apparently satisfy both of these
conditions in the class AIII WZNW model [Eqs. (9),
(11), and (12)] by choosing

λA
π

¼ 1

ν2
; ν ¼ 4: ð37Þ

Very recently, Zirnbauer has argued that consideration of
the Chalker-Coddington network model independently
implies the existence of a class AIII current algebra with
level ν ¼ 4 [58]. Owing to the special way that the WZNW
model emerges in the quantum Hall context, Zirnbauer
argues that the mean conductance at the plateau transition is
exactly half the predicted value given by Eq. (14),
σx;x ¼ 2=π ≃ 0.64. This is not too different from previous
numerics [Eq. (15)] [7,35–38,40] and the value we find at
finite energy for ν ¼ 1, 2 class AIII topological surface
states in Figs. 2, 4, and 6.
A very surprising aspect of Zirnbauer’s proposal [58] is

that the correlation length exponent νQHPT (not to be
confused with the class AIII winding number ν) for tuning
away from the transition into the quantum Hall plateau is
actually predicted to be infinite. The claim is that existing
numerical studies showing νQHPT in the range between 2.3
and 2.6 [7,35,59–67] are beset by finite-size effects. We
emphasize that for the finite-energy class AIII surface states
that exhibit QHPT critical statistics studied here, the
exponent νQHPT does not play a role. This is because all
states are delocalized, and the only relevant length scale is
the crossover scale ζðEÞ ∼ E−1=z between the low-energy

class AIII states (which exhibit winding number ν-depen-
dent statistics) and the finite-energy QHPT states. Here, z is
the dynamic critical exponent associated to the class AIII,
low-energy states [Eq. (11)].
The numerical results obtained in this paper open up a

potential avenue to test Zirnbauer’s ν ¼ 4 theory. In
particular, if we assume that the ν ¼ 4 class AIII
WZNW model [Eq. (32)] also exhibits a stack of QHPT
critical eigenstates at finite energy, then the only difference
between zero and finite energies for ν ¼ 4 is the fine-tuning
of the Abelian parameter λA. The latter must satisfy Eq. (37)
in order to realize QHPT multifractality at finite energy.
Thus, both zero- and finite-energy states would be gov-
erned by the same quantum field theory, and the only
missing piece is a controlled renormalization group mecha-
nism that fine-tunes λA → π=16 for ω ≠ 0 in Eq. (32). This
is an interesting avenue for future analytical and/or
numerical work.

C. Conclusion

In this paper we have presented substantial numerical
evidence that most finite-energy surface states of a class
AIII topological superconductor (or chiral topological
insulator) form a “stack” of quantum-critical, QHPT states
in the presence of surface disorder that preserves the
defining class AIII symmetries. Similar results based on
the multifractal analysis of surface states with disorder were
obtained in Refs. [20,21] for class CI and DIII topological
superconductors. For class AIII treated here, we have
provided two additional sources of evidence for the stack-
ing of quantum Hall plateau transition states: (1) Landauer
conductance of the finite-energy states in the continuum
surface-only theory and (2) multifractal analysis of all in-
gap states of a class AIII topological diamond lattice model
in the slab geometry.
In total, the results here and in Refs. [20,21] strongly

argue for an unexpected, new connection between Z-
graded topological phases in two and three spatial dimen-
sions. The 2D topological phases in classes C, A, and D
describe the spin, charge (ordinary integer), and thermal
quantum Hall effects, with broken time-reversal symmetry.
The 3D topological phases in classes CI, AIII, and DIII can
describe time-reversal-invariant topological superconduc-
tors. The numerics suggest that the quantum-critical plateau
transitions in classes C, A, and D, which occur only at
isolated energies in two dimensions, reappear in gap-
spanning “stacks” at the surfaces of class CI, AIII, and
DIII topological phases, respectively, in the presence of
symmetry-preserving disorder.
Much of the physics of these newly uncovered quantum-

critical, multifractal surface metals remains to be explored.
The role of interparticle interaction-mediated instabilities in
the presence of gap-spanning multifractality is an obvious
example. Another avenue is the investigation of Zirnbauer’s
proposal for the field theory of the plateau transition as a

SBIERSKI, KARCHER, and FOSTER PHYS. REV. X 10, 021025 (2020)

021025-18



particular zero-energy class AIII topological surface state
[58], see Sec. VII B for a discussion.
Classes CI, AIII, and DIII are also notable for exhibiting

a precisely quantized longitudinal surface spin or thermal
conductivity, which holds even in the presence of disorder
and interactions [7,24,32–34]. The connection between 2D
class C, A, and D quantum Hall effects and 3D class CI,
AIII, and DIII topological superconductors likely reflects a
deep, topological origin. The latter remains to be uncovered
in future studies.
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