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We introduce a complex-plane generalization of the consecutive level-spacing ratio distribution used
to distinguish regular from chaotic quantum spectra. Our approach features the distribution of complex-
valued ratios between nearest- and next-to-nearest-neighbor spacings. We show that this quantity can
successfully detect the chaotic or regular nature of complex-valued spectra, which is done in two steps.
First, we show that, if eigenvalues are uncorrelated, the distribution of complex spacing ratios is flat within
the unit circle, whereas random matrices show a strong angular dependence in addition to the usual level
repulsion. The universal fluctuations of Gaussian unitary and Ginibre unitary universality classes in the
large-matrix-size limit are shown to be well described by Wigner-like surmises for small-size matrices with
eigenvalues on the circle and on the two-torus, respectively. To study the latter case, we introduce the toric
unitary ensemble, characterized by a flat joint eigenvalue distribution on the two-torus. Second, we study
different physical situations where non-Hermitian matrices arise: dissipative quantum systems described by
a Lindbladian, nonunitary quantum dynamics described by non-Hermitian Hamiltonians, and classical
stochastic processes. We show that known integrable models have a flat distribution of complex spacing
ratios, whereas generic cases, expected to be chaotic, conform to random matrix theory predictions.
Specifically, we are able to clearly distinguish chaotic from integrable dynamics in boundary-driven
dissipative spin-chain Liouvillians and in the classical asymmetric simple exclusion process and to
differentiate localized from delocalized regimes in a non-Hermitian disordered many-body system.
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I. INTRODUCTION

Understanding decoherence and dissipation effects arising
in open quantum mechanical systems requires dealing with
nonunitary dynamics generated by non-Hermitian operators.
Non-Hermitian physics has attracted much attention
recently, for instance, in the study of Lindbladian dynamics
of integrable [1–11] and chaotic [12–15] open quantum
systems, topological phases of open systems [16–27], PT -
symmetric and general non-Hermitian optics [28–35], non-
Hermitian many-body localization [36], non-Hermitian
quantum critical phenomena [37–40], or quantum chaotic
scattering [41,42]. However, a methodology to classify all
of these non-Hermitian systems into different classes or

phases, in terms of their universal spectral correlations, is
still lacking.
For Hermitian systems, the by-now universally

accepted conjectures of Berry and Tabor [43] and of
Bohigas, Giannoni, and Schmit [44] (see also Ref. [45])
assert, respectively, that classically integrable systems
follow Poisson statistics of uncorrelated random varia-
bles, while systems with a chaotic semiclassical limit
have statistics well described by random matrix theory
(RMT). Most astonishingly, many-body systems with
no classical counterpart follow a similar rule. Poisson
level statistics is found for integrable or (many-body)
localized systems, whereas RMT distributions are
observed in generic thermalizing phases [46,47]. The
power of the RMT approach relies on the fact that
spectral fluctuations (measuring correlations of levels)
are highly universal, depending solely on the symmetries
of the system and not on the details of particular models.
For instance, the three classical Gaussian ensembles
(GOE, GUE, and GSE) are completely determined by
time-reversal symmetry, depending on a single parameter
β ¼ 1, 2, or 4, the Dyson index.
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Since the early days of RMT, level-spacing distributions,
i.e., the distribution of the distance, s ¼ εiþ1 − εi > 0,
between consecutive energy levels, εiþ1, εi, have proved
to be a very useful and hence popular measure of spectral
correlations in integrable and chaotic systems, i.e., a
signature of quantum chaos. Indeed, for closed systems,
spacings between uncorrelated levels display level cluster-
ing, while RMT statistics lead to level repulsion, with a
characteristic power-law behavior of the spacing distribu-
tion, PðsÞ ∝ sβ as s → 0, in the respective universality
classes. Rather remarkably, the spacing distribution in the
(universal) large-matrix-size limit is very well described
by that obtained for 2 × 2 matrices, the Wigner surmise.
Spacing distributions further allow the study of intermedi-
ate statistics, either with crossovers between Poisson and
RMT statistics [48–55] or transitions between different
RMT universality classes [50,56–59]. Statistics of higher-
order spacings (i.e., distance between kth-nearest neigh-
bors) have also been considered over the years [60–65].
For non-Hermitian systems, by a direct generalization

[66] of the Berry-Tabor and Bohigas-Giannoni-Schmit
conjectures to dissipative systems, we expect classically
integrable systems and classically chaotic systems to follow
Poisson and Ginibre level statistics, respectively. For
random matrices from the Ginibre ensembles [i.e., matrices
where all entries are independent identically distributed
(IID) Gaussian random variables], one finds cubic level
repulsion, PðsÞ ∝ s3. Interestingly, all three Ginibre ensem-
bles (GinOE, GinUE, and GinSE) have the same cubic level
repulsion [66–69], independently of the Dyson index β.
For those ensembles, a Wigner-like surmise, in terms of
modified Bessel functions, has recently been proposed in
Ref. [70], in which it was also shown that noncubic level
repulsion can exist in non-Hermitian ensembles with
different symmetries.
In order to compare theoretical predictions of RMT with

actual measured or computed level sequences, one has to
eliminate the dependence of the spacing distribution on the
local mean spectral density, which is nonuniversal and
system dependent. This elimination is achieved by a
procedure known as unfolding [68,71], in which, in the
case of a real spectrum, one changes from a sequence Ej of
levels to a new sequence ej ¼ N ðEjÞ, where N ðxÞ is the
level staircase function measuring the mean number of levels
below x. At the unfolded scale, the spacing distribution has a
mean unit spacing, and thus fluctuations can be uniformly
compared across the spectrum. Unfolding is a nontrivial
procedure since it requires an analytic expression (or
accurate estimate) of the level density, which is not available,
in general. Furthermore, numerical unfolding sometimes
proves ambiguous and numerically unreliable. In the case of
a two-dimensional—i.e., complex—spectrum, the situation
is worse: The unfolding is, in principle, ambiguous; even so,
one can find a minimal prescription that guarantees uniform
unfolded complex level density [69].

An alternative way to overcome the local dependence
on the level density is to consider ratios of consecutive
spacings, which were introduced in Ref. [72]. They were
extensively applied in numerical studies of many-body
localization [72–81], periodically driven, interacting quan-
tum systems [82], and quantum quenches [83,84]. In
Refs. [85,86], analytic expressions for the ratio distribu-
tions were obtained, including Wigner-like surmises for
3 × 3 matrices. The transition between Poisson and GOE
statistics at the level of ratios [87], higher-order spacing
ratios [86,88–91], and nearest-neighbor by next-to-nearest-
neighbor ratios (NN-by-NNN ratios) [63] have also been
considered recently.
While spacing (and spacing ratio) distributions for real

spectra are well understood [68,71,92–94] and some results
exist for spacings in complex spectra [66–70,95,96], two
major shortcomings in the latter case remain to be addressed.
On the one hand, to bypass the difficult and unreliable
unfolding procedure, one is naturally led to consider ratios of
spacings in the complex plane; However, this issue remains
an open question. On the other hand, the existing studies on
spacings in complex spectra focused solely on the distance,
s > 0, between the complex eigenvalue and its nearest
neighbor, neglecting the additional information contained
in the angular (directional) correlations.
In this paper, we tackle both issues above by introducing

complex spacing ratios, as the ratio of the distance (taken as
a complex number with magnitude and direction) from a
given level to its NN by the (complex) distance to the NNN;
for a precise definition, see Sec. II. Two comments are in
order regarding these complex spacing ratios. First, when
defining ratios for real spectra, level sequences are usually
assumed to be ordered. However, there is no global order in
the complex plane, and hence all ratios that relied on the
ordering have to be abandoned. Indeed, the only remaining
spacing ratio is, then, the NN-by-NNN ratio, the modulus
of which was introduced in Ref. [63] (and kth-nearest-
neighbor generalizations) for studies of real spectra.
Second, this new spacing ratio (and not only its modulus)
can also be defined for real spectra. It does not coincide
with any of the aforementioned ratios; in particular, it adds
a sign to the NN-by-NNN ratio of Ref. [63]. We emphasize
that, while this sign might seem a minor difference in the
case of real spectra, for complex spectra, the full angular
dependence constitutes, arguably, the cleanest signature of
dissipative quantum chaos.
The paper is organized as follows. In Sec. II, we define

the complex spacing ratio, mention some of its qualitative
features, point out the differences for integrable and chaotic
spectra, and state the key ideas behind our analytical
results. In Sec. III, we present exact analytical distributions
and small-N surmises. In Sec. IV, examples of applications
to different physical problems (driven spin chains, non-
Hermitian many-body localization, and classical stochastic
processes) are studied. We draw our conclusions in
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Sec. V. A detailed derivation of the analytical results is
given in three appendixes: The ratio distributions for
uncorrelated random variables in d dimensions are com-
puted in Appendix A; exact analytical distributions and
small-size surmises are derived for Hermitian random
matrix ensembles in Appendix B and for non-Hermitian
ensembles in Appendix C.

II. OVERVIEW AND MAIN RESULTS

Let the set fλkgNk¼1 be the spectrum of some Hermitian or
non-Hermitian matrix. The levels λk may, correspondingly,
be real or complex. For each λk, we find its NN (with
respect to the distance in R or in C) λNNk and its NNN λNNNk
and define the (in general, complex) ratio

zk ¼
λNNk − λk
λNNNk − λk

: ð1Þ

This definition is illustrated in Fig. 1(a). We then seek the
probability distribution function ϱðNÞðzÞ of finding a
spacing ratio with value z, which is defined either in the
limit N → ∞ or, for a finite N, upon averaging over spectra
of an ensemble of random matrices.
If the spectrum is real, z≡ r satisfies−1 ≤ r ≤ 1 and may

not coincide with the ratio of consecutive spacings. If the
spectrum is complex, z≡ reiθ ≡ xþ iy, with 0 ≤ r ≤ 1,
and the distribution is not necessarily isotropic. We also
consider the radial and angular marginal distributions,
ϱðrÞ ¼ R

dθ rϱðr; θÞ and ϱðθÞ ¼ R
dr rϱðr; θÞ, respectively.

We start by considering two paradigmatic cases: syn-
thetic uncorrelated levels (corresponding to random diago-
nal matrices) and the Ginibre ensembles. By natural
extensions of the Berry-Tabor and Bohigas-Giannoni-
Schmit conjectures, one expects integrable systems to have
the same ratio statistics as uncorrelated levels and chaotic
systems to follow Ginibre statistics. Because of the inde-
pendence of levels in the synthetic spectrum, the presence
of a reference level does not influence its two nearest
neighbors, and hence all ratios z have the same probability,
which yields a flat distribution. In contrast, for random

matrices, we expect the usual repulsion, with two imme-
diate consequences. First, the ratio density should vanish at
the origin; second, the repulsion should spread all the
neighbors of the reference level evenly around it, leading to
a suppression of the ratio density for small angles.
Figure 1 shows the ratio density ϱðzÞ in the complex

plane for uncorrelated levels (b) and GinUE matrices (c)
and confirms the expectations above. For uncorrelated
levels, the ratio is indeed flat inside the unit circle,
i.e., ϱPoiðzÞ ¼ ð1=πÞΘð1 − jzjÞ, with Θ the Heaviside step
function. It immediately follows that the radial and angular
marginal distributions are, respectively, ϱPoiðθÞ ¼ 1=ð2πÞ
and ϱPoiðrÞ ¼ 2r, and thus hcosθi¼R

dθ cosθϱPoiðθÞ¼0.
GinUE random matrices, on the contrary, have cubic level
repulsion, ϱGinUEðrÞ ∝ r3 as r → 0 (note that one power
of r comes from the area element on the plane), and the
distribution shows some anisotropy, measured, for instance,
by hcos θi ¼ R

dθ cos θϱGinUEðθÞ ≃ 0.24.
For a real (complex) spectrum, Fig. 2 (Fig. 3) shows the

distribution function of the level-spacing ratio, z, both for
uncorrelated levels and for GUE (GinUE) random matrices
of different sizes as well as the radial (radial and angular)
marginal distributions. Contrary to the case of consecutive
spacings ratios, the distribution function for small-size
GUE or GinUE matrices, say, with N ¼ 3 or N ¼ 4, does
not qualitatively capture the large-N asymptotics (see
Figs. 2 and 3, respectively). For a complex-valued spec-
trum, Figs. 3(g) and 3(h) show that in the GinUE distri-
bution for small N (dashed red line), there is an
enhancement of the small angles, rather than the suppres-
sion seen at large N (yellow histogram). A similar issue
arises for the case of a real spectrum shown in Fig. 2(b): For
large N (yellow histogram), there is a high probability of
finding negative ratios, while for small N (red and blue
dashed lines), the probability of positive r is higher.
This small-N peak inversion can be understood as a

boundary effect. For definiteness, consider matrices drawn

FIG. 1. (a) Sketch of the NN and NNN level spacings used to
define the complex spacing ratio, z. (b,c) Density plot of z in
complex plane for (b) 105 uncorrelated levels and (c) an ensemble
of 100 spectra of N × N random matrices drawn from the GinUE
with N ¼ 104.

(a) (b)

FIG. 2. Comparison of numerical results and analytic predictions
for the case of a real spectrum. (a) Yellow bars: Histogram of the
ratios for 105 independent levels. Black line: Exact result.
(b) Yellow bars: Histogram of the ratios obtained by exact
diagonalization (ED) for N ¼ 104 GUE matrices. Black line:
Approximate GUE result forN → ∞, given by Eq. (B14), which is
valid near r ¼ 0. Red solid (dashed) line: Exact result for N ¼ 3
CUE (GUE) given by Eq. (B17) [Eq. (B8)]. Blue solid (dashed)
line: Exact result for N ¼ 4 CUE (GUE) given by Eq. (B19)
[Eq. (B12)]. CUE with N ¼ 3, 4 yield good Wigner-like surmises.
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from a Hermitian ensemble. For N ¼ 3, the sign of the
ratios is completely fixed: The two levels at the edges must,
by construction, have both neighbors on the same side and
hence r > 0; the central level has one neighbor on each side
and hence r < 0; it follows that the area below the negative-
r peak is 1=3 and the area below the positive-r peak is 2=3
(the analytical expressions below confirm this reasoning
exactly). As N increases, the edge levels, which always
have positive ratios, lose importance relative to the growing
number of bulk levels, which tend to have negative ratios,
and peak inversion follows. The argument for non-
Hermitian matrices is analogous: Bulk levels favor large
angles, while boundary levels lead to small angles; at small
N, boundary levels dominate, but they cannot compete in
number with bulk levels at large N.
The strong N dependence thus precludes any small-size

Wigner-like surmise using GinUE-drawn matrices. One of
our main results is that these boundary effects can be
overcome by using different ensembles with the same
asymptotic large-N distribution. Figure 4 sketches the main
idea of our approach. For a real spectrum, we obtain a
surmise using the spacing ratios of the circular unitary
ensemble (CUE) [68,97], whose spectrum lies along the
unit circle, therefore avoiding boundary effects. Figure 2(b)
shows that the predictions of this method (solid red and
blue lines) converge rapidly for increasing N and already
give a very good quantitative agreement for N ¼ 3 and
N ¼ 4. The toric unitary ensemble (TUE), introduced in the
next section, generalizes this idea for the case of a complex
spectrum. Figures 3(g) and 3(h) show that the predictions
obtained in this way for small N (solid and red lines) also
qualitatively reproduce the large-N results.

A second main result of our work is to verify that these
distributions generalize the Berry-Tabor and Bohigas-
Giannoni-Schmit conjectures to physical situations where
the relevant operators have complex-valued spectra. By
studying different physical models where non-Hermitian
matrices arise, we show that known integrable cases have
a flat distribution of complex spacing ratios, whereas
generic cases, which are expected to be chaotic, conform
to random matrix theory predictions. Figures 6(a)–6(e)
below illustrate our findings for a spin-1=2 chain, subject
to boundary driving and/or bulk dissipation, modeled by
Markovian Lindblad dynamics. The flat distribution of
Fig. 6(a) corresponds to a boundary-driven XX chain with
bulk dephasing, which is known to have an integrable

FIG. 3. Distribution of complex level-spacing ratios—numerical results and analytic predictions for independent levels (a)–(d) and
GinUE-drawn matrices (e)–(h). (a) Spacing ratio density for 105 independently drawn levels. (b) Flat distribution, Eq. (4). (c,d)
Histogram of jzj and arg z (yellow bars) and theoretical prediction (black lines). (e) Spacing ratio distribution for GinUE matrices
(N ¼ 104) obtained by ED. (f) Surmise for the TUE withN ¼ 3, Eq. (7). (g,h) Histograms of jzj and arg z obtained by ED (yellow bars).
Red, blue, and magenta (solid) lines computed from Eq. (C9) for N ¼ 3, 4, 5, respectively; dashed lines give the exactN ¼ 3 result from
the GinUE, Eq. (C7), for comparison.

FIG. 4. Sketch of how to eliminate boundary effects that
preclude small-N surmises of complex spacing ratio statistics.
(a) Instead of computing the ratios of the GUE, we compute those
of the circular unitary ensemble. (b) Instead of computing the
ratios of the GinUE, we compute those of the toric unitary
ensemble (note that this representation is only schematic, as the
two-torus is embedded in R4).
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Liouvilian. This case contrasts with the nonintegrable
cases (b)–(e), where the distribution of complex spacing
ratios is highly asymmetric and is expected to reach the
GinUE distribution in the thermodynamic limit. Similar
results are reported in Sec. IV B for the case of nonunitary
Hamiltonian dynamics and in Sec. IVC for the spectrum of
the Markov matrix describing the ASEP. These results
provide solid evidence that the complex level-spacing ratio
distribution can be used to distinguish chaotic from inte-
grable dynamics of operators with complex-valued spectra.

III. ANALYTICAL RESULTS: EXACT
DISTRIBUTION FUNCTIONS AND SURMISES

In this section, we summarize our main analytical results
regarding the complex spacing ratio distribution of inde-
pendent levels and the small-N surmises obtained for the
CUE and the TUE.
For independent levels, the spacing ratios are isotropic.

Therefore, the only nontrivial distribution is that of r ¼ jzj,
which can be obtained analytically for d dimensions
(generalizing real, d ¼ 1, and complex, d ¼ 2, spectra).
Furthermore, all joint-spacing distributions of more than
one spacing factorize into single-spacing distributions
P̂ðsÞ, and one can write the ratio distribution in terms of
P̂ðsÞ only:

ϱPoiðrÞ ¼ Θð1 − rÞ
Z

∞

0

ds
sP̂ðsÞP̂ðrsÞR
∞
rs ds

0P̂ðs0Þ : ð2Þ

At the unfolded scale, the d-dimensional single-spacing
distribution P̂ðsÞ is a Brody distribution [48],

P̂ðsÞ ¼ dΓð1þ 1=dÞdsd−1e−Γð1þ1=dÞdsd ; ð3Þ

which recovers the standard exponential distribution
for one-dimensional spectra. The ratio distribution in d
dimensions,

ϱPoiðrÞ ¼ drd−1Θð1 − rÞ; ð4Þ

then follows. After introducing a d-dimensional volume
element, the ratio distribution is, indeed, flat. For more
details on spacing ratios for uncorrelated random variables,
and some generalizations, see Appendix A.
We now address random matrix ensembles starting

with the case of real spectra. The level-spacing ratio
distribution function for N × N matrices drawn from
arbitrary Hermitian ensembles, ϱðNÞðrÞ, can be formally
written as an (N − 1)-fold integral over the joint eigenvalue
distribution function [Eq. (B3)]. By specializing to the
Gaussian ensembles, this quantity can be explicitly com-
puted for small-size matrices, e.g., N ¼ 3 [Eq. (B8)]. Other
small sizes are still amenable to a brute-force evaluation of
the integrals. However, we were not able to determine the

complete asymptotic large-N distribution using this
approach. Nonetheless, it can be employed to capture

the scaling, ϱðN→∞Þ
GUE ðrÞ ∝ rβ, in the vicinity of r ¼ 0.

As shown in the last section, although larger values of N
suppress the weight of boundary effects, the convergence
towards the infinite-N limit is very slow. Convergence is
much faster in the case of the circular ensembles (CE),
where results for small-size matrices (N ¼ 3, N ¼ 4) from
the CE already capture most of the features of the large-N
asymptotics. Since for N → ∞, CE and GE have the same
level-spacing ratio statistics, we can use CE small-size
matrices as surmises for the GE large-N distribution. As for
GE, for CE the level-spacing ratio distribution function for
N × N matrices can be formally obtained in the form of an
(N − 1)-fold integral. For N ¼ 3, the ratio distribution
reads

ϱð3ÞCUEðrÞ ∝ Θð1 − r2Þ
Z

π

−π
dvjvjð1 − cos vÞ

× ð1 − cos rvÞ(1 − cosðr − 1Þv); ð5Þ

which is evaluated in Eq. (B17), yielding a ratio of
polynomials of r, whose explicit form is given in the
Supplemental Material [98]. A similar expression was also
obtained for N ¼ 4 [Eq. (B19)]. For further details on
Hermitian ensembles, we refer the reader to Appendix B.
Finally, we turn to non-Hermitian ensembles, consider-

ing, for simplicity, only the case β ¼ 2. The general
expression of the ratio distribution, for an arbitrary ensemble,
is a 2ðN − 1Þ-fold real integral over the ensemble’s joint
eigenvalue distribution [Eq. (C4)]. For the GinUE, the
distribution for N ¼ 3 can be computed explicitly
[Eq. (C7)], but, again, it does not correctly describe the
large-N asymptotics. The leading-order expansion in powers
of r yields ϱðNÞðrÞ ∝ r3, but it is valid only around r ¼ 0.
In order to eliminate boundary effects from a complex

spectrum, we consider the two-dimensional analogue of the
circular ensemble. This novel ensemble has eigenvalues
equally distributed on the two-dimensional (Clifford) torus,
T2 ¼ S1 × S1 ⊂ S3 ⊂ R4, which can be parametrized by
two angles, ϑ ∈ ð−π; π�, φ ∈ ð−π; π�. In analogy with the

CUE, we dubbed it the TUE. Therefore, PðNÞ
TUE is flat on

the torus. It follows that PðNÞ
TUE is fully determined by the

Vandermonde interaction on the torus, and it reads

PðNÞ
TUEðϑ1;…; ϑN ;φ1;…;φNÞ
∝
Y
j<k

½2 − cosðϑj − ϑkÞ − cosðφj − φkÞ�: ð6Þ

Setting N ¼ 3, we compute a Wigner-like surmise for
the complex spacing ratio distribution for non-Hermitian
random matrices,
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ϱð3ÞTUEðx;yÞ∝
Z

π

−π
dsdtðs2þ t2Þ2½2− coss− cos t�

× ½2− cosðsx− tyÞ− cosðtxþ syÞ�
× ½2− cosðsðx− 1Þ− tyÞ− cosðtðx− 1Þþ syÞ�:

ð7Þ

The integral of Eq. (7) and its generalizations for N ¼
4; 5;… [see Eq. (C9)] can be numerically integrated and
provide our surmises for the large-N asymptotics of the
GinUE universality class. Figures 3(e)–3(h) show that the
convergence of the radial marginal distribution is similar to
that of the real case: Both N ¼ 3 and N ¼ 4 provide good
approximations, the latter being already almost indistin-
guishable from large-N exact diagonalization data. The
angular marginal distribution has a much slower conver-
gence, especially near θ ¼ �π. Although the qualitative
features are already captured for N ¼ 3, quantitatively, one
can still distinguish the discrepancies even for N ¼ 5 in
Fig. 3(h), although the agreement does improve as N
increases. For further details on non-Hermitian ensembles,
see Appendix C.

IV. PHYSICAL APPLICATIONS

We now determine the complex spacing ratio distribution
of several different numerical examples of current interest.
In Sec. IVA, we consider the Lindbladian description of
boundary-driven dissipative spin chains; in Sec. IV B,
we address a non-Hermitian Hamiltonian modeling
many-body localization; in Sec. IV C, we study a classical
stochastic process.

A. Boundary-driven dissipative spin chains

A simple way of modeling open quantum systems is by
employing a master equation approach to describe the
dynamics of the system’s reduced density matrix. When the
environment is Markovian, this procedure substantially
simplifies, and the master equation acquires the Lindblad
form

d
dt
ρðtÞ¼LρðtÞ

≡−i½H;ρðtÞ�þ
XD
μ¼1

�
WμρðtÞW†

μ−
1

2
fW†

μWμ;ρðtÞg
�
;

ð8Þ

where H is the Hamiltonian andWμ, with μ ¼ 1;…; D, are
called jump operators, modeling the system-environment
interaction.
Here, we study the spectrum of a family of non-

Hermitian operators L for a well-studied physical setup
of a chain of spins 1=2. In the middle of the chain, the
magnetization along z is conserved, and the net role of the
environment is to dephase the system, i.e., decrease off-
diagonal amplitudes of the density matrix when written
in the z basis. At the two ends of the chain, the spin
magnetization can be injected or extracted at fixed rates.
This model had been extensively used for studying non-
equilibrium spin transport [5,8,99].

1. Model

We consider a chain of N spins 1=2 evolving in time by
the action of a Lindblad-Liouvillian operator, given by
Eq. (8) and schematically represented in Fig. 5(a). Note
that H belongs to a family of next-to-nearest-neighbor
Heisenberg XXZ Hamiltonians,

H ¼ J
XN−1

l¼1

ðσxlσxlþ1 þ σylσ
y
lþ1 þ Δσzlσ

z
lþ1Þ

þ J0
XN−2

l¼1

ðσxlσxlþ2 þ σylσ
y
lþ2 þ Δ0σzlσ

z
lþ2Þ; ð9Þ

with σαl the Pauli operators, α ∈ fx; y; zg and
l∈f1;2…;Ng, and J (J0) the nearest- (next-to-nearest-)
neighbor exchange coupling and z-axis anisotropy Δ (Δ0).
To model bulk dephasing and spin injection, we consider

FIG. 5. Sketch of the three models studied: (a) A boundary-driven dissipative spin chain, Sec. IVA; (b) a non-Hermitian disordered
many-body system, Sec. IV B; (c) a classical simple exclusion process, Sec. IV C.
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two types of incoherent jump processes (in total, D ¼
N þ 4 of them):

(i) bulk dephasing of all spins,

Wl ¼ ffiffiffi
γ

p
σzl; l ∈ f1;…; Ng; ð10Þ

(ii) amplitude damping (spin polarization) processes at
the boundaries,

WNþ1 ¼
ffiffiffiffiffi
γþL

q
σþ1 ; WNþ2 ¼

ffiffiffiffiffi
γ−L

p
σ−1 ;

WNþ3 ¼
ffiffiffiffiffi
γþR

q
σþN; WNþ4 ¼

ffiffiffiffiffi
γ−R

p
σ−N: ð11Þ

Here, γ controls the dephasing rate, and γ�L=R controls the
spin injection (þ) and extraction (−) at the left (L) or right
(R) ends of the chain. Thus, the model is characterized by
the nine parameters J, J0, Δ, Δ0, γ, γ�L;R, which allows us to
tune its integrability or chaoticity.
The Hilbert space is spanned by the states js1;…; sNi,

with sl ¼ �1. The space of density matrices—the
Liouville space, K—in which L acts is spanned by
ks1;…;sN ;s01;…;s0N⟫¼js1;…;sNi⊗ hs01;…;s0N jT. Using
this notation, we formulate the spectral problem for the
Liouvillian superoperator L in terms of a 4N × 4N matrix
representation acting on a 4N-dimensional density oper-
ators ρ ∈ K,

L ¼ −i
��

H −
i
2

Xr

μ¼1

W†
μWμ

�
⊗ 1

− 1 ⊗
�
H þ i

2

Xr
μ¼1

W†
μWμ

�T�
þ
XD
μ¼1

Wμ ⊗ W�
μ:

ð12Þ

The superoperator Sz ¼ Sz ⊗ 1 − 1 ⊗ SzT, with Sz ¼P
N
l¼1 σ

z
l the total z-axis magnetization, commutes with the

Liouvillian ½L;Sz� ¼ 0 [99]. This result implies that K
splits into sectors, KM, of conserved quantum number M,
each spanned by ð2NM Þ states ks1;…; sN ; s01;…; s0N⟫, withP

lðsl − s0lÞ ¼ N −M. The tensor-product representation
of the Liouvillian block-diagonalizes into 2N þ 1 sectors
LM, L ¼ ⨁2N

M¼0LM, with each block a ð2NM Þ × ð2NM Þ matrix.
The symmetric sector M ¼ N contains all states with
vanishing magnetization, including the steady state.
Note that, for M ≠ N, each complex conjugate pair of

eigenvalues of the Liouvillian is divided across two sectors
of symmetric magnetization; i.e., if sector M contains the
eigenvalue Λ, then sector j2N −Mj contains the eigenvalue
Λ�. The different sectors M must be analyzed separately
because spectra corresponding to different conserved
quantum numbers form independent level sequences that
superimpose without interacting [71].

2. Numerical results

Numerical results were obtained by exactly diagonaliz-
ing the matrix representation of L, Eq. (12), for different
chain length N and in specific sectors M. The largest
system we diagonalized was N ¼ 10 spins in the sector
with magnetization M ¼ 7, which corresponds to a
77520 × 77520 matrix. The following four cases of param-
eters were studied:

(i) (Deph) Boundary-driven XX chain with bulk de-
phasing. The numerical parameters are chosen as
J ¼ 1, J0 ¼Δ¼Δ0 ¼0, γ ¼ 1, γþL ¼ 0.5, γ−L ¼ 1.2,
γþR ¼ 1, γ−R ¼ 0.8. This model can be mapped onto
the Fermi-Hubbard model with imaginary interac-
tionU ¼ iγ [5] and hence is Bethe-ansatz integrable.

(ii) (A) Isotropic Heisenberg (XXX) chain with pure-
source or pure-sink driving and no dephasing.
Numerical parameters are chosen as J ¼ Δ ¼ 1,
J0 ¼ Δ0 ¼ 0, γ¼ γ−L ¼ γþR ¼0, γþL ¼ 0.6, γ−R ¼ 1.4.
The steady state of this model is known to be
integrable [8], but the bulk of the spectrum is likely
not integrable.

(iii) (B) XXX chain with arbitrary boundary driving and
no dephasing. Numerical parameters are chosen as
J ¼ Δ ¼ 1, J0 ¼ Δ0 ¼ 0, γ ¼ 0, γþL ¼ 0.5, γ−L ¼ 0.3
γþR ¼ 0.3, γ−R ¼ 0.9. The bulk Hamiltonian of this
model is integrable, but, by adding a generic
boundary driving, not even the steady state is
expected to be exactly solvable.

(iv) (C) XXZ chain with next-to-nearest-neighbor inter-
actions, arbitrary boundary driving, and no dephas-
ing. Numerical parameters chosen as J ¼ J0 ¼ 1,
Δ¼0.5,Δ0 ¼1.5, γ¼0, γþL ¼0.5, γ−L¼0.3 γþR ¼ 0.3,
γ−R ¼ 0.9. For this model, not even the bulk Ham-
iltonian is integrable.

Additionally, we consider a fifth model for comparison:
(i) (RL) Random Liouvillian [12] at strong dissipation.

Numerical parameters (adopting the notation of
Ref. [12]) are chosen as N ¼ 80, β ¼ 2, r ¼ 2,
g ¼ 100.

We apply the procedure described at the beginning of
Sec. II to compute the distribution of the complex spacing
ratios for the five models depicted in Fig. 6. There is a
striking difference between the integrable model (Deph)
and the others, which are expected to be chaotic. The
dephasing-XX model, Fig. 6(a), displays a distribution
similar to that of uncorrelated levels. Models B, C, and RL
[Figs. 6(c), 6(d), and 6(e), respectively] clearly conform to
RMT statistics. Model A [Fig. 6(b)], on the other hand,
shows an intermediate behavior between Poisson and RMT
statistics, both in terms of radial level repulsion and of
anisotropy of the angular distribution. This behavior could
arise either from actual intermediate statistics of the
spectrum or from finite-size effects. On the contrary, model
C already displays the universal large-N behavior, with no

COMPLEX SPACING RATIOS: A SIGNATURE OF … PHYS. REV. X 10, 021019 (2020)

021019-7



noticeable finite-size effects. These results indicate that
complex spacing ratios indeed offer a clean and simple
signature of quantum chaos in Markovian setups.

3. Single-number signatures

Next, we try to capture the main features of the
distribution of complex spacing ratios through a reduced
set of numbers, which we call single-number signatures.
A popular single-number signature, used for the ratio of
undirected spacings, is the degree of level repulsion α, i.e.,
the exponent describing the power-law behavior of the
radial marginal distribution, ϱðrÞ ∝ rα, as r → 0 or, equiv-
alently, α ¼ limr→0 log ϱðrÞ= log r. For Hermitian random
matrices, it is given by the Dyson index, α ¼ β; for non-
Hermitian random matrices from the universality class
of either GinOE, GinUE, or GinSE, it is α ¼ 3; for real
independent random variables, it is α ¼ 0; and for complex
uncorrelated random variables, it is α ¼ 1. Although the
degrees of repulsion α just stated can be easily checked
against the numerical spectra and the above predictions
confirmed, an actual computation of α for a given spectrum
introduces a large relative error. An alternative measure of
the radial distribution is given by its moments, for instance,
the mean hri. For independent random variables, we can
compute exactly hri ¼ 2=3, while for GinUE matrices, we
numerically find hri ≈ 0.74. To measure the anisotropy of
the angular marginal distribution, we consider hcos θi,
which is zero for a flat distribution and positive (negative)
when small angles are enhanced (suppressed), in particular,
hcos θi ≈ −0.24 for large-N GinUE matrices.

We give the values of hcos θi and hri for the five
Liouvillians in Table I (the spin-chain Liouvillian values
are for N ¼ 10, M ¼ 7). From the radial measure hri, it is
difficult to discern the integrability or chaoticity of the
different models. Indeed, the values for all four models A,
B, C, RL are within 3% of each other. On the contrary,
as anticipated in Sec. II, the angular distribution offers a
more sensitive signature. From the value of hcos θi, the
dephasing-XX model clearly supports Poisson statistics,
and models C and RL are very close to RMT statistics.
Model B, which also seemed very close to RMT statistics
from Fig. 6 and from the value of hri here, shows a more
significant deviation. Finally, model A has a value of
hcos θi, almost exactly halfway between uncorrelated
levels and RMT statistics, attesting to its intermediate
behavior, at least for the sector dimensions considered.

4. Finite-size scaling

We now provide a finite-size analysis of the dephasing-
XX model—which conforms to Poisson level statistics—
model A—with intermediate statistics—and model C—with
RMT statistics.
Dephasing-XX model.—We consider single-number sig-

natures hcos θi and hri as a function of sector dimension in
Fig. 7. Both signatures clearly tend to the expected value
for uncorrelated random variables (dashed line) as kNM
increases. There is also a visible difference between sectors
with even or odd M, with sectors of even M tending faster
to the large-dimension universal limit. This aspect is also
visible in Fig. 7(d).

FIG. 6. Complex spacing ratio density for different Liouvillian spectra. (a) Deph–boundary-driven XX chain with bulk dephasing;
(b) A–XXX chain with pure-source/pure-sink driving; (c) B–XXX chain with arbitrary polarizing boundary driving; (d) C–XXZ chain
with nearest-neighbor and next-to-nearest-neighbor interactions; (e) RL–random Liouvillian [12] at strong dissipation. Spin-chain
Liouvillians are diagonalized for N ¼ 10, M ¼ 7.

TABLE I. Single-number signatures of integrability or chaos for different Liouvillians: models Deph, A, B, C, and RL. They are
compared with exact analytical results for uncorrelated random variables (labeled Poisson), numerical exact diagonalization of
(104 × 104) random GinUE matrices, and TUE surmise estimates for N ¼ 3, 4, 5 (subscripts denote matrix size) computed from
Eq. (C9). The convergence of hcos θi computed from the TUE surmises is much slower than that of hri, as noted in the text.

Poisson Deph A B C RL GinUE104 TUE3 TUE4 TUE5

−hcos θi 0 −0.0305ð26Þ 0.1293(24) 0.1890(23) 0.2349(7) 0.2287(20) 0.24051(61) 0.15322(1) 0.1695(4) 0.1938(86)
hri 2=3 0.6537(9) 0.7122(7) 0.7292(7) 0.7368(7) 0.7373(6) 0.73810(18) 0.73193(1) 0.73491(5) 0.7315(50)

LUCAS SÁ, PEDRO RIBEIRO, and TOMAŽ PROSEN PHYS. REV. X 10, 021019 (2020)

021019-8



Model A.—We observe that (i) there is a smaller degree
of level repulsion here than for fully chaotic systems (which
does not increase substantially when kNM grows by nearly 2
orders of magnitude) and (ii) some anisotropy is developing
as kNM increases. In Fig. 8, we plot the two single-number
signatures hcos θi and hri. While the anisotropy indeed
grows (slowly) with kNM, the average of the radial marginal
distribution is approximately flat. No difference between
even M and odd M is visible in this case. Contrary to the
dephasing-XX model above, for which the N ¼ 10,M ¼ 7
sector is already very close to the limiting Poisson statistics,
the convergence of model A towards either Poisson or
GinUE statistics is much slower. From these results, it is,
therefore, inconclusive whether the model is tending very
slowly to RMT statistics [as favored by Fig. 8(a)] or if it
follows some type of intermediate statistics. Considerably
larger sector dimensions are, unfortunately, out of reach of
current computational capabilities.
Model C.—Finally, we consider a chaotic Liouvillian,

model C. Here, the universal limit of RMT statistics is
quickly attained. Figure 8 depicts the two single-number
signatures hcos θi and hri and confirms the fast conver-
gence. For the largest sectors diagonalized, the results are

already compatible, within their statistical errors, with the
infinite-size limit.

B. Disordered open system and detection
of many-body localized regime

After a quench, local observables of chaotic systems
thermalize to values that can be predicted by a thermody-
namic ensemble average [100]. However, in the presence of
sufficiently strong disorder for a given system size [101],
isolated quantum systems, even interacting ones, may fail
to thermalize—a phenomenon dubbed many-body locali-
zation (MBL) [47,103]. Spectral properties in the many-
body localized regime resemble those of integrable models.
In fact, some proposals to model MBL rely on approximate
locally conserved quantities [104]. Recently, numerical
observation of the MBL regime has also been reported
for non-Hermitian Hamiltonians [36]. Moreover, within the
delocalized (ergodic) regime, we show that the complex
spacing ratio distribution is able to distinguish between
GinUE statistics and those of another symmetry class, AI†

[25,70]. This result firmly supports the claim of Ref. [36]
that the model considered therein belongs to this symmetry
(universality) class.

1. Model

We consider the model of Ref. [70] consisting of hard-
core bosons on a one-dimensional lattice with N sites and
periodic boundary conditions. Non-Hermiticity arises due
to alternating on-site gain/loss terms. The (non-Hermitian)
Hamiltonian reads

H ¼
XN
j¼1

½−Jðb†jþ1bj þ b†jbjþ1Þ

þ Unjnjþ1 þ ðhj þ ið−1ÞjγÞnj�; ð13Þ

where b†j (bj) is the creation (annihilation) operator of a

hard-core boson at site j, nj ¼ b†jbj is the particle-number
operator, J is the hopping strength, U gives short-range
repulsion, γ measures the non-Hermiticity, and the local
disorder hj is uniformly distributed in ½−h; h�. The
Hamiltonian conserves particle number; hence we divide
the Hilbert space into sectors of fixed particle number D.
We decompose H ¼ ⨁N

D¼0HD, where each HD is a
ðNDÞ × ðNDÞ matrix.

2. Numerical results

Following Ref. [36], we set J ¼ 1,U ¼ 2, γ ¼ 0.1 (weak
non-Hermiticity) and consider h ¼ 2 (corresponding to
delocalized regime) and h ¼ 10 (localized regime) sepa-
rately. Again, numerical results were obtained by exact
diagonalization of the Hamiltonian of Eq. (13) in sectors of
definite particle number D. We considered different filling

FIG. 7. Finite-size effects on the complex spacing ratios of a
spin-chain Liouvillian of the dephasing-XX model, for different
chain lengths N and spin sectors M, the sector dimension being
kNM ¼ ð2NM Þ. (a) Average value of cos θ; (b) average value of r.
The upper (lower) dashed line corresponds to the GinUE
(Poisson) limit.

FIG. 8. Finite-size effects on the complex spacing ratios of
spin-chain Liouvillians of model A (blue) and model C (orange).
We consider different chain lengths N and spin sectors M, the
sector dimension being kNM ¼ ð2NM Þ. (a) Average value of cos θ;
(b) average value of r. The upper (lower) dashed line corresponds
to the GinUE (Poisson) limit.
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fractions ν ¼ D=N, ν ¼ 1=2, 1=3, 1=5 and system sizes N.
We performed disorder averaging, obtaining at least 105

eigenvalues for each combination of N, D. The largest
system diagonalized was for N ¼ 25, D ¼ 5, which cor-
responds to 53 130 × 53 130 matrices.
Applying the numerical procedure described at the start

of Sec. II, we computed the distribution of the complex
spacing ratios for the localized and delocalized regimes; see
Fig. 9. For the system sizes considered there (N ¼ 18,
D ¼ 9), the localized regime, Fig. 9(a), supports Poisson
statistics (flat distribution), while the delocalized regime,
Fig. 9(b), conforms to RMT statistics. These considerations
are put on more quantitative grounds by considering single-
number signatures for both regimes; see Fig. 10, where we
plot the values of hcos θi and hri for different system sizes
and sectors.
While in the localized regime (h ¼ 10) the finite-size

scaling is consistent with a statistical signature of uncorre-
lated levels, the delocalized regime, even if clearly non-
Poissonian, does not conform to GinUE statistics. Instead,
it attains the values labeled by AI†, obtained by sampling
random matrices from the AI† symmetry class [25,70].

These findings show that complex spacing ratios are not
only effective in discriminating between localized and delo-
calized phases, but they can also be used to distinguish
between randommatrix ensembleswith different symmetries.

C. Classical stochastic process

Classical stochastic processes are widely used to model
physical, chemical, and biological systems. The solution
for a classical stochastic process is obtained by specifying
the continuous-time evolution of a probability vector of the
system, P, governed by a Markov matrix M∶ ∂tPðtÞ ¼
MPðtÞ, i.e., PðtÞ ¼ expfMtgPðt ¼ 0Þ. By conservation of
probability, the columns of the Markov matrix must add up
to zero. It then follows that the diagonal elements of M
are fully determined by the off-diagonal elements, and we
can writeMjk ¼ Ajk − δjk

P
m Amk, with δjk the Kronecker

delta and Ajj ¼ 0. Among the most-studied classical
stochastic process are asymmetric simple exclusion proc-
esses (ASEP), used to study transport of interacting
particles in one dimension. In the following, we analyze
the complex-valued spectrum of the matrix M for inte-
grable and nonintegrable ASEP using the complex spacing
ratio distribution. We show that while the first case follows
Poisson statistics of uncorrelated levels; the second con-
forms to RMT predictions.

1. Model

Consider a set of hard-core classical particles on anN-site
ring with nearest-neighbor hoppings. The hard-core con-
dition reduces the dimension of configuration space
to 2N . Within each time interval dt, any particle can hop
fromsite j to site jþ 1withprobabilitypdt and fromsite j to
site j − 1with probabilityqdt.Whenp ≠ q, this case defines
the ASEP [105–108]. To break integrability, we further
consider a staggeringof thehopingprobabilities by requiring
that the probability of hopping fromodd to even sites (p1dt if
hopping clockwise) is different from that of hopping from
even to odd sites (p2dt), and similarly from anticlockwise
jumps, with probabilities q1dt and q2dt, respectively.
Finally, we admit the possibility of particles entering or
leaving the system at site j ¼ 1, with probabilities μþdt and
μ−dt, in each time interval. Assuming N to be even, the
matrix A for this process is given by

A ¼
XN=2

j¼1

½p1σ
−
2j−1σ

þ
2j þ p2σ

−
2jσ

þ
2jþ1 þ q1σ

þ
2j−1σ

−
2j

þ q2σ
þ
2jσ

−
2jþ1� þ μþσþ1 þ μ−σ

−
1 : ð14Þ

2. Numerical results

We numerically diagonalized the Markov matrix M,
described in the preceding section, for a ring with N ¼ 16

FIG. 9. Complex spacing density for the non-Hermitian
Hamiltonian of Eq. (13), in the (a) localized and (b) delocalized
regime, for N ¼ 18, D ¼ 9.

FIG. 10. Finite-size effects on the complex spacing ratios of the
non-Hermitian Hamiltonian of Eq. (13), in the delocalized (blue)
and localized (orange) regimes. We consider different chain
lengths N and particle-number sectors D, the sector dimension
being kND ¼ ðNDÞ. (a) Average value of cos θ; (b) average value of
r. The upper, middle, and lower dashed lines correspond to the
large-N GinUE, AI†, and Poisson limits, respectively.
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sites (M is 65 536 × 65 536). For simplicity, we considered
a totally asymmetric exclusion process (TASEP, q1 ¼
q2 ¼ 0), fixed p2 ¼ 1, and set μþ ¼ μ− ¼ 0.5. Since μþ,
μ− ≠ 0, particle conservation is broken, and hence, we
do not restrict M to sectors of fixed particle number. We
then considered two cases: nonstaggered hopping,
p1 ¼ p2 ¼ 1, for which the model is known to be inte-
grable [105]; and staggered hopping, p1 ¼ 0.2 ≠ p2, which
we expect to break integrability. This expectation is
confirmed by the distribution of complex spacing ratios
(see Fig. 11). The complex spacing ratio distribution for
nonstaggered hopping [Fig. 11(a)] is approximately flat
(the inhomogeneity can, as before, be related to finite-size
effects). The distribution for staggered hopping [Fig. 11(b)]
clearly presents level repulsion and suppression at small
angles, with h− cos θi ¼ 0.2356ð24Þ and hri ¼ 0.7382ð7Þ.
Both effects are compatible with the Ginibre universality
class [recall that, for 104 × 104 matrices from the GinUE,
we found h−cosθi¼0.24051ð61Þ and hri ¼ 0.73810ð18Þ].
These results show that the complex spacing ratio distri-
bution is also capable of discriminating between integrable
and nonintegrable classical stochastic processes.

V. CONCLUSIONS AND OUTLOOK

We introduced complex spacing ratios to analyze uni-
versal spectral features of non-Hermitian systems (inte-
grable and chaotic). We found that angular correlations
between levels in dissipative systems provide a clean
signature of quantum chaos: Uncorrelated random varia-
bles, which describe integrable systems, have a flat, and
hence isotropic, ratio distribution in the complex plane,
while for RMT ensembles from the Ginibre universality
class, there is a suppression of small angles in the large-N
limit. We also reencountered the familiar cubic level
repulsion in the latter case.
Our results show that complex spacing ratios allow us to

clearly distinguish (known or conjectured) integrable sys-
tems from chaotic ones. Compelling numerical evidence
for this claim has been given by a finite-size analysis of

boundary-driven spin-chain Liouvillians and classical
stochastic processes. Complex spacing ratios can also
differentiate the many-body-localized regime from the
delocalized regime in the non-Hermitian disordered
many-body systems. Furthermore, in the delocalized
phase, single number signatures, h− cos θi and hri, can
also discriminate between Hamiltonians in different sym-
metry classes.
We provided surmises of the large-N complex spacing

ratio distribution for GUE and GinUE ensembles. These
surmises were obtained for small matrices, with N ¼ 3, 4,
using the CUE and its two-dimensional generalization—the
toric unitary ensemble—which overcome the large finite-
size effects observed for small-size GUE and GinUE
matrices. Even so, the angular marginal distribution was
found to have a somewhat slow convergence towards the
N → ∞ limit.
Because of their ability to unambiguously discriminate

between regular and chaotic dynamics, without the need
for unfolding, we expect complex spacing ratios to play an
important role in future studies of dissipative quantum
chaos and classical stochastic processes. Specifically,
complex spacing ratio statistics can be used as a clean
and simple empirical detector of integrability, as well as an
order parameter characterizing ergodicity-breaking transi-
tions in non-Hermitian systems.
An interesting open question is whether complex spacing

ratios can be used to discriminate between symmetry
classes other than the Ginibre and AI†, for instance, those
introduced recently in Ref. [70].
Finally, the toric unitary ensemble introduced in Sec. II,

modeling the Coulomb gas on the Clifford torus, also
warrants further study. Besides analyzing the properties of
random matrix realizations of this novel ensemble, it would
be interesting to encounter physical systems for which the
TUE arises naturally.
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APPENDIX A: UNCORRELATED
RANDOM VARIABLES

Taking isotropy as a starting point, i.e., assuming that the
distribution of complex spacing ratios only depends on the
absolute value of the ratio r, we now show that it is, indeed,
flat for uncorrelated random variables (the Poisson spec-
trum). The independence of the levels simplifies the
problem enough so that we are also able to exactly compute

FIG. 11. Complex spacing density for the Markov matrix
describing the ASEP, with (a) nonstaggered and (b) staggered
hopping probabilities, for N ¼ 16.
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the more general ratio rmk of the distance to themth-nearest
neighbor (mNN) by the distance to the kth-nearest neighbor
(kNN) (which reduces to the ratio discussed in the main text
when m ¼ 1, k ¼ 2). We do all calculations for spectral
points (levels) represented by vectors in d-dimensional
Euclidean space. Real, complex, and quaternionic spectra
correspond to d ¼ 1, 2, 4, respectively, but our results also
apply to other cases, say, uncorrelated random vectors in
three-dimensional space.

1. Joint spacing distributions

By translational invariance, we can consider the level for
which the ratio is being computed (the reference level) at
the origin. To compute the probability P̂ðsÞds of finding
its NN at a distance s, we introduce the conditional
probability gðsÞds of finding a level in ½s; sþ ds� given
our reference level at the origin and the probability HðsÞ ¼R
∞
s ds0P̂ðs0Þ ¼ 1 −

R
s
0 ds

0P̂ðs0Þ of having no level in ½0; s�
(the hole probability). By independence of the levels, the
probability gðsÞds is actually independent of the presence
of the reference level. For the NN to be at s, we must verify
that (i) there is a level at s and (ii) there are no levels in
½0; s�, whence we conclude that

P̂ðsÞ ¼ gðsÞHðsÞ: ðA1Þ

Noting that the hole probability is equal to 1 − FðsÞ,
where FðsÞ is the cumulative distribution of P̂ðsÞ, we can
equally well express P̂ðsÞ solely in terms of HðsÞ, P̂ðsÞ ¼
−ðdH=dsÞ.Alternatively,wecanalsowritegðsÞasa function
ofHðsÞonly,gðsÞ ¼ −ð1=HÞ½dHðsÞ=ds� ¼ −ðd logH=dsÞ,
or inverting this relation,HðsÞ∝ expf−R

s
0 ds

0gðs0Þg. Finally,
thisprocessallowsus toexpress P̂ðsÞsolely in termsofgðsÞas
P̂ðsÞ∝gðsÞexpf−R

s
0 ds

0gðs0Þg or, after inverting, gðsÞ ¼
P̂ðsÞ= R∞

rs ds
0P̂ðs0Þ.

Now, Eq. (A1) is easily generalized to give the joint
distribution of the NN and NNN spacing [i.e., of the
probability density P̂ðs1; s2Þ of having the NN at a distance
s1 and the NNN at a distance s2], which we need to

compute the distribution of their ratio. It is given by
considering one level each at s1 and s2 and all remaining
levels beyond s2, i.e.,

P̂ðs1; s2Þ ¼ gðs1Þgðs2ÞΘðs2 − s1ÞHðs2Þ: ðA2Þ

Analogously, the joint distribution of the first-kNN
spacings is

P̂ðs1;…; skÞ ¼
Yk
j¼1

gðsjÞΘðsjþ1 − sjÞHðskÞ: ðA3Þ

It is worthwhile to note that we can express the
whole hierarchy of joint probabilities solely in terms of
the single-variable functions P̂ðsÞ, gðsÞ, orHðsÞ, whichever
is easier to compute in a given situation. Of course, this
factorization property is a particularity of independent
random variables and does not carry over to random matrix
ensembles.
The distribution of the (absolute value) of the ratio r ¼

s1=s2 is given in terms of the joint distribution P̂ðs1; s2Þ,
and, hence, it is also completely determined by the single
spacing distribution P̂ðsÞ [Eq. (2)]:

ϱðrÞ ¼
Z

ds1 ds2P̂ðs1; s2Þδ
�
r −

s1
s2

�
¼

Z
ds sP̂ðrs; sÞ

¼ Θð1 − rÞ
Z

∞

0

ds
sP̂ðsÞP̂ðrsÞR∞
rs ds

0P̂ðs0Þ :

In the last line, we have expressed the ratio distribution
solely in terms of the single spacing probability. Now,
we only need to compute one of P̂ðsÞ, gðsÞ, or HðsÞ, which
we do in d dimensions in the next section.
Likewise, the mNN by kNN ratio, rmk ≡ sm=sk, is

defined in terms of the joint spacing distribution
P̂ðs1;…; skÞ and is fully determined by the single spacing
distribution:

ϱmkðrmkÞ ¼
Z

ds1 � � � dsm � � � dskP̂ðs1;…; sm;…; skÞδ
�
r −

sm
sk

�

¼
Z

ds1 � � � dsm−1dsmþ1 � � � dskP̂ðs1;…; sm−1; rsk; smþ1;…; skÞ

¼ Θð1 − rÞ
Z

∞

0

ds1 � � � dsm−1dsmþ1 � � � dskΘðsk − sk−1Þ � � �Θðsmþ1 − rskÞΘðrsk − sm−1Þ � � �Θðs2 − s1Þ

×
skP̂ðs1Þ � � � P̂ðsm−1ÞP̂ðrskÞP̂ðsmþ1Þ � � � P̂ðskÞR

∞
s1
ds01P̂ðs01Þ � � �

R
∞
sm−1

ds0m−1P̂ðs0m−1Þ
R
∞
rsk

ds0P̂ðs0Þ R∞
smþ1

ds0mþ1P̂ðs0mþ1Þ � � �
R
∞
sk−1

ds0k−1P̂ðs0k−1Þ
: ðA4Þ
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2. Uncorrelated random variables
in d-dimensional space

We consider the spectrum to be composed of N IID
random variables, supported in a d-dimensional ball of
radius R. At a later point, we take the limitsN, R → ∞with
constant mean density NR−d ¼ 1. The probabilities gðsÞds
and HðsÞ are then given by ratios of d-dimensional
volumes VdðLÞ ¼ πd=2=Γðd=2þ 1ÞLd, where L is a
length.
To determine gðsÞ, we note that any one of the N − 1

levels can be the NN if it falls inside the interval ½s; sþ ds�,
whence it follows that

gðsÞds ¼ ðN − 1ÞVdðsþ dsÞ − VdðsÞ
VdðRÞ

¼ N − 1

Rd d sd−1dsþOðds2Þ: ðA5Þ

Taking the limits N, R → ∞, we immediately obtain that
gðsÞ ∝ sd−1.
Regarding HðsÞ, since all other (N − 2) levels are

independent and must lie beyond a distance s, we have

HðsÞ ¼
�
1 −

VdðsÞ
VdðRÞ

�
N−2

¼
�
1 −

sd

Rd

�
N−2

: ðA6Þ

To be able to properly take the limits, we need to unfold
the spectrum to a unit mean; i.e., we change variables
to s ¼ s=hsi. Note that, in the computation of gðsÞ, the
unfolding would only give an overall constant, so we did
not need it to proceed. Using Eqs. (A1), (A5), and (A6),
we have

P̂ðsÞ ¼ d
N − 1

Rd sd−1
�
1 −

sd

Rd

�
N−2

; ðA7Þ

which is correctly normalized, as it should be. We then have

hsi ¼
Z

∞

0

ds sP̂ðsÞ ¼ Γð1þ 1=dÞ ΓðNÞ
ΓðN þ 1=dÞR; ðA8Þ

or, taking N → ∞ and using the asymptotic behavior of
the Γ function, limN→∞NαΓðNÞ=ΓðN þ αÞ ¼ 1, for any
α ∈ C, hsi ¼ Γð1þ 1=dÞN−1=dR.
In terms of the unfolded variable s, the hole probability

reads

HðsÞ ¼
�
1 −

Γð1þ 1=dÞdsd
N

�
N−2

: ðA9Þ

Taking limits, HðsÞ ¼ expf−Γð1þ 1=dÞdsdg, and the
(unfolded) spacing distribution is given by

P̂ðsÞ ¼ dΓð1þ 1=dÞdsd−1e−Γð1þ1=dÞdsd : ðA10Þ

Note that, for d ¼ 1, we recover the standard exponential
distribution, P̂ðsÞ ¼ e−s. In d dimensions, the spacing
follows, instead, a Brody distribution [48].
The NN- and NNN-joint spacing distribution P̂ðs1; s2Þ

can be written solely in terms of the single spacing
distribution P̂ðsÞ by inserting Eq. (A10) into Eq. (A2),

P̂ðs1; s2Þ ¼ d2Γð1þ 1=dÞ2dsd−11 sd−12

× e−Γð1þ1=dÞdsd
2Θðs2 − s1Þ: ðA11Þ

Finally, the joint distribution of the kNN spacings,
Eq. (A3), reads, in d dimensions,

P̂ðs1;…; skÞ ¼ dkΓð1þ 1=dÞkd
Yk−1
j¼1

sd−1j e−Γð1þ1=dÞdsdk

×
Yk
j¼1

Θðsjþ1 − sjÞ: ðA12Þ

3. Ratio distribution

We now turn to the ratio distributions. Henceforth, we
always assume that we are at the unfolded scale and denote
the spacings by s instead of s. Inserting Eq. (A10) into the
last equality of Eq. (2), we obtain Eq. (4),

ϱðrÞ ¼ drd−1Θð1 − rÞ:

The constraint enforced by the Θ function implies that
the distribution is supported in the d-dimensional unit
ball, which we parametrize by the radial distance r and the
(d − 1)-dimensional solid angle Ωd−1. By recalling thatR
1
0 dr rd−1

R
dΩd−1ϱðr;Ωd−1Þ ¼

R
1
0 drϱðrÞ and that the dis-

tribution is isotropic and hence ϱðr;Ωd−1Þ is independent of
Ωd−1, by using Eq. (4), and by noting that

R
dΩd−1 ¼ Sd−1

gives the area of the unit sphere in d dimensions and that
Sd−1=Vdð1Þ ¼ d, we conclude that

ϱðr;Ωd−1Þ ¼ Θð1 − rÞ d
Sd−1

¼ Θð1 − rÞ 1

Vdð1Þ
; ðA13Þ

i.e., the distribution is indeed flat since it is given by the
inverse of the volume of its support.
We next consider the distribution of the mNN by kNN

ratio, of which the above result is a special case (m ¼ 1,
k ¼ 2). Inserting Eq. (A10) into the last equality of
Eq. (A4), we obtain

ϱmkðrmkÞ ¼
�
k − 1

m

�
dmðrmkÞdm−1ð1 − ðrmkÞdÞk−m−1:

ðA14Þ
Equation (A14) constitutes the most general distribution

for Poisson spacing ratios in d dimensions. Figure 12
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shows a comparison of Eq. (A14) with numerical spacing
ratios of 20 000 IID levels, for eight different combinations
of d, m, k, showing perfect agreement in all cases.
Finally, note that a flat distribution in the d-dimensional

unit ball is only possible if ϱðrmkÞ ∝ ðrmkÞd−1 for all rmk, as
in Eq. (4). This case implies m ¼ 1 and k −m ¼ 1 ⇒
k ¼ 2. We thus see that a flat distribution is a peculiarity of
the NN-by-NNN ratio and is not achieved by any other
combination of m, k.

APPENDIX B: HERMITIAN RANDOM
MATRIX ENSEMBLES

1. Arbitrary Hermitian ensembles

We now consider the NN-by-NNN spacing ratio for
random matrices, first addressing the case of hermitian
ensembles. Let the spectrum of an (arbitrary for now)
Hermitian-RMT matrix be composed of levels fλkgNk¼1,
which are not taken to be ordered. Since the joint
eigenvalue distribution function PðNÞðfλkgÞ is invariant
under permutations of levels, we reorder the set such that
our reference level is λ1, its NN λ2, and its NNN λ3.
Contrary to the previous section, in general, we cannot set
the reference level λ1 ¼ 0 since PðNÞðfλkgÞ may not be
invariant under translations. These choices (together with
the immediate implication that all other N − 2 levels must
be further away from λ1 than λ3 is) are enforced via the
constraint

Θððλ3 − λ1Þ2 − ðλ2 − λ1Þ2Þ
YN
j>3

Θððλj − λ1Þ2 − ðλ3 − λ1Þ2Þ:

ðB1Þ

The NN-by-NNN ratio is r ¼ ðλ2 − λ1Þ=ðλ3 − λ1Þ. We can
then immediately write down the expression for its dis-
tribution,

ϱðNÞðrÞ ¼
Z

dλ1 � � � dλNPðNÞðλ1;…; λNÞ

× δ

�
r −

λ2 − λ1
λ3 − λ1

�
Θððλ3 − λ1Þ2 − ðλ2 − λ1Þ2Þ

×
YN
j>3

Θððλj − λ1Þ2 − ðλ3 − λ1Þ2Þ: ðB2Þ

We next change variables to u≡ λ1, v≡ λ3 − λ1, sn ¼
λnþ3 − λ1 (n ¼ 1;…; N − 3), perform the integration in λ2
using the δ function, and obtain

ϱðNÞðrÞ ¼ Θð1 − r2Þ
Z

du dv
YN−3

j¼1

dsjΘðs2j − v2Þjvj

× PðNÞðu; uþ rv; uþ v; uþ s1;…; uþ sN−3Þ:
ðB3Þ

2. Gaussian ensembles

Equation (B3) is valid for an arbitrary Hermitian ensem-
ble. We now specialize for the case of the Gaussian
ensembles, GO/U/SE, labeled by the Dyson index β. The
joint eigenvalue distribution reads

PðNÞ
GE ðx1;…; xNÞ ∝ exp

�
−
1

2

XN
j¼1

x2j

�YN
j>k

jxj − xkjβ: ðB4Þ

In terms of the variables of Eq. (B3), we have

(a)

(e) (f) (g) (h)

(b) (c) (d)

FIG. 12. Comparison of analytic prediction for the mNN by kNN spacing ratio, Eq. (A14), black line, with numerical results. Each
histogram is obtained by computing the ratios for 20 000 IID levels. The numerical parameters are as follows: (a) d ¼ 1, m ¼ 1, k ¼ 2;
(b) d ¼ 2, m ¼ 1, k ¼ 2; (c) d ¼ 4, m ¼ 1, k ¼ 2; (d) d ¼ 1, m ¼ 1, k ¼ 3; (e) d ¼ 1, m ¼ 1, k ¼ 6; (f) d ¼ 2, m ¼ 1, k ¼ 3;
(g) d ¼ 1, m ¼ 2, k ¼ 8; (h) d ¼ 2, m ¼ 2, k ¼ 6. Panels (a)–(c) correspond to the NN-by-NNN spacing ratio, Eq. (4), for real,
complex, and quaternionic spectra, respectively.
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PðNÞ
GE ðu; uþ rv; uþ v; uþ s1;…; uþ sN−3Þ ∝ jrjβj1 − rjβjvj3β

YN−3

j¼1

jskjβjsk − vjβjsk − rvjβ
YN−3

j<k

jsj − skjβ

× exp

�
−
1

2

�
Nu2 þ 2u

�
ð1þ rÞvþ

XN−3

j¼1

sj

�
þ ð1þ r2Þv2 þ

XN−3

j¼1

s2j

��
:

ðB5Þ

The integration in u is Gaussian and can be readily performed, yielding

Z
du exp

�
−
1

2

�
Nu2 þ 2u

�
ð1þ rÞrþ

XN−3

j¼1

sj

���
∝ exp

�
1

2N

�
ð1þ rÞvþ

XN−3

j¼1

sj

�2�
: ðB6Þ

We finally obtain the distribution of the ratio as an (N − 2)-fold integral:

ϱðNÞ
GE ðrÞ ∝ Θð1 − r2Þjrjβj1 − rjβ

Z
dvjvj3βþ1 exp

�
−
1

2
v2
�
1þ r2 −

ð1þ rÞ2
N

��Z YN−3

j¼1

dsjΘðs2j − v2Þ

× jsjjβjsj − vjβjsj − rvjβ exp
�
−
1

2

�
s2j −

1þ r
N

vsj

��
exp

�
−
1

N

XN−3

k;l¼1

sksl

�YN−3

k<l

jsk − sljβ: ðB7Þ

For small N (N ¼ 3, 4), the integrals in Eq. (B7) can be computed exactly. Unfortunately, contrary to the consecutive
spacings ratio, for NN-by-NNN ratios, the small-size expressions do not accurately describe the large-N asymptotics.
For N ¼ 3, no sj integrals exist in Eq. (B7). Furthermore, the r dependence can be factored out of the v integral, and no

integrals have to be performed at all:

ϱð3ÞGEðrÞ ∝ Θð1 − r2Þjrjβj1 − rjβ
Z

dv v3βþ1 exp

�
−
1

3
v2ð1 − rþ r2Þ

�
¼ N

jrjβj1 − rjβ
ð1 − rþ r2Þ1þ3β=2 Θð1 − r2Þ; ðB8Þ

where the β-dependant normalization isN ¼ 9=4 for β ¼ 1,N ¼ 27
ffiffiffi
3

p
=ð2πÞ for β ¼ 2, andN ¼ 243

ffiffiffi
3

p
=ð2πÞ for β ¼ 4.

The distribution of Eq. (B8) for β ¼ 2 is plotted in Fig. 2(a), in comparison with exact diagonalization results.
For N ¼ 4, we must perform an additional integral in s (here for β ¼ 2),

ϱð4ÞGUEðrÞ ∝ Θð1 − r2Þr2ð1 − rÞ2
Z þ∞

−∞
dvjvj7 exp

�
−
3

8
v2
�
1þ r2 −

2

3
r

��

×
Z þ∞

−∞
ds s2ðs − vÞ2ðs − rvÞ2 exp

�
−
3

8
s2
�
exp

�
1

4
ð1þ rÞvs

�
Θðs2 − v2Þ: ðB9Þ

If we denote

fðs; v; rÞ ¼
Z

dss2ðs − vÞ2ðs − rvÞ2 exp
�
−
3

8
s2
�
exp

�
1

4
ð1þ rÞvs

�
; ðB10Þ

then Eq. (B9) reads

ϱð4ÞGUEðrÞ ∝ Θð1 − r2Þr2ð1 − r2Þ ×
�Z þ∞

0

dvjvj7 exp
�
−
3

8
v2
�
1þ r2 −

2

3
r

��
ðfðs; v; rÞjs¼−v

s¼−∞ þ fðs; v; rÞjs¼∞
s¼v Þ

þ
Z

0

−∞
dvjvj7 exp

�
−
3

8
v2
�
1þ r2 −

2

3
r

��
ðfðs; v; rÞjs¼v

s¼−∞ þ fðs; v; rÞjs¼∞
s¼−vÞ

�
; ðB11Þ

which is evaluated (with the correct normalization) to
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ϱð4ÞGUEðrÞ ¼
1

4π

r2ð1 − rÞ2
ð1 − rþ r2Þ7ð8þ 3r2Þ13=2ð4 − 4rþ 3r3Þ9=2

×(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ 3r2

p
Bð4Þ
1 ðrÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 4rþ 3r2

p
Bð4Þ
2 ðrÞ þ

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ 3r2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 4rþ 3r2

p
Bð4Þ
3 ðrÞ)Θð1 − r2Þ; ðB12Þ

with the polynomials Bð4Þ
k given in the Supplemental Material [98].

We compare the analytical predictions for the ratio distribution for small-size matrices with numerical results from exact
diagonalization of GUE-drawn random matrices in Figs. 13(a) and 13(b). The agreement is perfect, which is to be expected
since the computation is exact. However, these results are not particularly useful in practice since universality is only
displayed for large N. We thus turn to the case N → ∞.
When N → ∞, we can rewrite Eq. (B7), discarding all exponentials suppressed by 1=N:

ϱðN→∞Þ
GE ðrÞ ∝ Θð1 − r2Þ jrjβj1 − rjβ

ð1þ r2Þ1þ3β=2

Z
dv v3βþ1e−v

2

Z YN
j¼1

dsjΘ
�
s2j −

v2

1þ r2

�

× jsjjβ
				sj − rvffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2
p

				
β
				sj − vffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2
p

				
β

e−s
2
j

YN
j<k

jsj − skjβ: ðB13Þ

Although we cannot compute this integral exactly, note
that its multiplying prefactor gives the exact distribution of
r for r → 0. It also qualitatively describes the distribution
for all r, albeit it is missing the exact heights of the peaks
of positive and negative r. We thus obtain the loosely
approximating distribution,

ϱðN→∞Þ
GE ðrÞ ≈N

rβj1 − rjβ
ð1þ r2Þ1þ3β=2 Θð1 − r2Þ: ðB14Þ

At any rate, the absence of a term −r inside the denom-
inator (which was killed by the limit N → ∞) completely
distinguishes this result from the caseN ¼ 3; see Fig. 2 [the
black line is the approximation of Eq. (B14)].

3. Circular ensembles

We discussed in Sec. II how the difference between the
N ¼ 3 and N → ∞ statistics is due to boundary effects.

To eliminate these effects, we should consider periodic
boundary conditions, i.e., identify the ends of the spectrum.
Hence, we consider the circular ensembles, whose spec-
trum is supported on the unit circle and whose joint
eigenvalue distribution is

PðNÞ
CE ðϕ1;…;ϕNÞ ∝

Y
j<k

jeiϕj − eiϕk jβ: ðB15Þ

Note that, although the eigenvalues are complex (eiϕj),
they are fully described by real angles ϕj ∈ ð−π; π�. The
spacing ratio is defined in terms of the real variables,
r ¼ ðϕ2 − ϕ1Þ=ðϕ3 − ϕ1Þ; i.e., we are measuring the spac-
ings on the circle, not in the embedding space, C. By
rotational invariance of the circle, we may set ϕ1 ¼ 0. We
can rewrite the Vandermonde interaction as jeiϕj − eiϕk j ¼
sinβðjϕj − ϕkj=2Þ. The general result of Eq. (B3), applied
to the circular ensembles, reads

FIG. 13. Comparison of exact diagonalization (ED) for GUE- and CUE-drawn random matrices with analytical results. (a) N ¼ 3
GUE, black line given by Eq. (B8), with β ¼ 2; (b) N ¼ 4 GUE, black line given by Eq. (B12); (c) N ¼ 3 CUE, black line given by
Eq. (B17); (d) N ¼ 4 CUE, black line given by Eq. (B19).
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ϱðNÞ
CE ðrÞ ∝ Θð1 − r2Þ

Z
π

−π
dvjvjsinβ jvj

2
sinβ

jrvj
2

sinβ
jð1 − rÞvj

2

×
Z

π

−π

Y
j

dsjΘðs2j − v2Þsinβ jsjj
2

sinβ
jsj − rvj

2
sinβ

jsj − vj
2

YN−3

j<k

sinβ
jsj − skj

2
: ðB16Þ

We now evaluate the preceding integral for N ¼ 3 and N ¼ 4, restricting ourselves to the complex case, β ¼ 2. We
have sin2 (ðϕj − ϕkÞ=2) ¼ 2(1 − cosðϕk − ϕjÞ).
For N ¼ 3, a single integral in v is to be performed [Eq. (5)],

ϱð3ÞCUEðrÞ ∝ Θð1 − r2Þ
Z

π

−π
dvjvjð1 − cos vÞð1 − cos rvÞð1 − cosðr − 1ÞvÞ;

which yields, after normalization,

ϱð3ÞCUEðrÞ ¼
1

48π2
Θð1 − r2Þ

ðr − 2Þ2ðr − 1Þ2ðr − 1
2
Þ2r2ðrþ 1Þ2

× (Qð3Þ
1 ðrÞ þQð3Þ

2 ðrÞ cosðπrÞ þQð3Þ
3 ðrÞ cosð2πrÞ þQð3Þ

4 ðrÞ sinðπrÞ þQð3Þ
5 ðrÞ sinð2πrÞ); ðB17Þ

with the polynomials Qð3Þ
k ðrÞ given in the Supplemental Material [98]. The distribution of Eq. (B17) is plotted in black in

Fig. 13(c), in comparison with numerical diagonalization of N ¼ 3 CUE matrices, and in red in Fig. 2(b), in comparison
with diagonalization of large-N GUE matrices.
For N ¼ 4, we have an additional integral in s to perform,

ϱð4ÞCUEðrÞ ∝ Θð1 − r2Þ
Z

π

−π
dvjvjð1 − cos vÞð1 − cos rvÞð1 − cosðr − 1ÞvÞ

×
Z

π

−π
dsð1 − cos sÞ(1 − cosðs − rvÞ)(1 − cosðs − vÞ)Θðs2 − v2Þ: ðB18Þ

Following the procedure leading to Eq. (B12), the integral is evaluated (with the correct normalization) as

ϱð4ÞCUEðrÞ ¼
1

219317π3
1

ðr − 6Þ2ðr − 5Þ2ðr − 4Þ2ðr − 3Þ3ðr − 5
2
Þ2ðr − 2Þ3ðr − 3

2
Þ3ðr − 4

3
Þ2

×
1

ðr − 1Þ3ðr − 2
3
Þ3ðr − 1

2
Þ3ðr − 1

3
Þ3r3ðrþ 1

3
Þ2ðrþ 1

2
Þ3ðrþ 2

3
Þ2ðrþ 1Þ3

×
1

ðrþ 4
3
Þ2ðrþ 3

2
Þ2ðrþ 2Þ3ðrþ 5

2
Þ2ðrþ 3Þ2ðrþ 4Þ2ðrþ 5Þ2ðrþ 6Þ2

× (Qð4Þ
1 ðrÞ þQð4Þ

2 ðrÞ cosðπrÞ þQð4Þ
3 ðrÞ cosð2πrÞ þQð4Þ

4 ðrÞ cosð3πrÞ
þQð4Þ

5 ðrÞ sinðπrÞ þQð4Þ
6 ðrÞ sinð2πrÞ þQð4Þ

7 ðrÞ sinð3πrÞ); ðB19Þ

with the polynomials Qð4Þ
k given in the Supplemental Material [98]. The distribution of Eq. (B17) is plotted in black in

Fig. 13(d), in comparison with numerical diagonalization of N ¼ 4 CUE matrices, and in blue in Fig. 2(b), in comparison
with exact diagonalization of large-N GUE matrices. Although in the large-N limit we can give only approximate
expressions for the complex spacing ratio distribution, the small-size surmises computed for the circular ensembles describe
very well the universal large-N asymptotics. Indeed, the distribution for the N ¼ 4 CUE is already indistinguishable (to the
naked eye) from the numerical N → ∞ results.
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APPENDIX C: NON-HERMITIAN RANDOM MATRIX ENSEMBLES

1. Arbitrary non-Hermitian ensembles

We now turn to complex spectra. We consider an arbitraryN × N matrix from a non-Hermitian ensemble whose complex
eigenvalues are fλkgNk¼1, λk¼xkþ iyk, and their joint distribution function is PðNÞðλ1;…;λNÞ¼PðNÞðx1;…;xN ;y1;…;yNÞ.
We again consider the first level λ1 to be the reference level, its NN to be λ2, and its NNN to be λ3. The complex NN-by-
NNN spacing ratio is

z≡ reiθ ≡ xþ iy ¼ λ2 − λ1
λ3 − λ1

¼ ðx2 − x1Þðx3 − x1Þ þ ðy2 − y1Þðy3 − y1Þ
ðx3 − x1Þ2 þ ðy3 − y1Þ2

þ i
ðx3 − x1Þðy2 − y1Þ − ðx2 − x1Þðy3 − y1Þ

ðx3 − x1Þ2 þ ðy3 − y1Þ2
:

ðC1Þ

We introduce new variables u≡ x1, v≡ y1, p≡ x2 − x1, q≡ y2 − y1, s≡ x3 − x1, t≡ y3 − y1, an ≡ xnþ3 − x1,
bn ≡ ynþ3 − y1, n ¼ 1;…; N − 3. In terms of these new variables, the δ-function constraints (fixing the real and imaginary
parts of z) are

δ

�
x −

psþ qt
s2 þ t2

�
δ

�
y −

sq − pt
s2 þ t2

�
¼ ðs2 þ t2Þδ(p − ðsx − tyÞ)δ(q − ðtxþ syÞ); ðC2Þ

and the Θ-function constraints (requiring all λn with n > 3 to be further away from λ1 than λ3) are

Θ(ðs2 þ t2Þ − ðp2 þ q2Þ)
YN
j¼4

Θ(ða2j þ b2jÞ − ðs2 þ t2Þ): ðC3Þ

The distribution function of z is again obtained by integrating the joint eigenvalue distribution multiplied by the
constraints of Eqs. (C2) and (C3). Integrating over p and q using the δ functions, we arrive at the distribution for z for an
arbitrary non-Hermitian ensemble:

ϱðNÞðx; yÞ ¼ Θ(1 − ðx2 þ y2Þ)
Z

du dv ds dt
YN−3

j¼1

daj dbjΘ(ða2j þ b2jÞ − ðs2 þ t2Þ)ðs2 þ t2Þ

× PðNÞðu; uþ sx − ty; uþ s; uþ a1;…; uþ aN−3; v; vþ txþ sy; vþ t; vþ b1;…; vþ bN−3Þ: ðC4Þ

2. Ginibre unitary ensemble

We now restrict ourselves to the GinUE (complex Gaussian IID entries, β ¼ 2), whose joint eigenvalue distribution reads

PðNÞ
GinUEðx1;…; xN ; y1;…; yNÞ ¼

Y
j<k

½ðxj − xkÞ2 þ ðyj − ykÞ2� exp
�
−
XN
j¼1

ðx2j þ y2jÞ
�
: ðC5Þ

Replacing xj, yj by the variables of Eq. (C4) and performing the Gaussian integration over the two variables u, v, we
arrive at the ratio distribution for the Ginibre ensemble,
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ϱðNÞ
GinUEðx; yÞ ∝ Θ(1 − ðx2 þ y2Þ)ðx2 þ y2Þð1þ x2 þ y2 − 2xÞ

×
Z

ds dtðs2 þ t2Þ4 exp
�
−ðs2 þ t2Þ

�
ð1þ x2 þ y2Þ

�
1 −

1

N

�
−

2

N
x

��

×
Z YN−3

j¼1

dajdbjΘða2j þ b2j − ðs2 þ t2ÞÞða2j þ b2jÞððaj − sÞ2 þ ðbj − tÞ2Þ

× ½ðaj − sxþ tyÞ2 þ ðbj − tx − syÞ2�
YN−3

j<k

½ðaj − akÞ2 þ ðbj − bkÞ2�

× exp

�
−
XN−3

j¼1

�
a2j

�
1 −

1

N

�
−

1

N

X
k≠j

ajak −
2

N
ajfsð1þ xÞ − tyg

��

× exp
�
−
XN−3

j¼1

�
b2j

�
1 −

1

N

�
−

1

N

X
k≠j

bjbk −
2

N
bjfsyþ tð1þ xg

��
: ðC6Þ

As before, the distribution for N ¼ 3 follows from
Eq. (C6) without the need to perform any integrals
explicitly. Indeed, in polar coordinates x ¼ r cos θ,
y ¼ r sin θ, we get, after normalization,

ϱð3ÞGinUEðr; θÞ ¼
81

8π

r2ð1þ r2 − 2r cos θÞ
ð1þ r2 − r cos θÞ5 Θð1 − rÞ: ðC7Þ

Equation (C7) describes the exact diagonalization results
for N ¼ 3; see Fig. 14.
As for the Hermitian case, the leading order behavior (i.e.,

the first term in a power expansion in r) of the distribution
for N → ∞ can be obtained without carrying out any
integral. Although it does not give a good quantitative
match, it captures the high (low) density at large (small)
angles. By discarding all exponentials suppressed by 1=N
from Eq. (C6), factoring out terms containing z from the s
and t integrals, we obtain the prefactor,

ϱðN→∞Þ
GinUE ðr; θÞ ≈ 12

π

r2ð1þ r2 − 2r cos θÞ
ð1þ r2Þ5 Θð1 − rÞ: ðC8Þ

3. Toric unitary ensemble

We now want to eliminate boundary effects from a
complex spectrum by considering a two-dimensional ana-
log of the circular ensembles. Recall that the circular
ensembles have eigenvalues on the unit circle S1. A
possible generalization would be to consider eigenvalues
on the sphere S2 ⊂ R3, which would be provided by the
spherical unitary ensemble (SUE) [93,109–112], of matri-
ces A−1B with both A, B GinUE matrices. However, while
belonging to the same universality class as the GinUE, for
the SUE, the convergence to the large-N limit is also quite
slow. Instead, we consider eigenvalues on the two-dimen-
sional (Clifford) torus T 2 ¼ S1 × S1 ⊂ S3 ⊂ R4, which
show a very fast convergence.
We parametrize the torus by two angles ϑ ∈ ð−π; π�,

φ ∈ ð−π; π�, with a generic point P ∈ T 2 given by P ¼
ð1= ffiffiffi

2
p Þðcosϑ; sin ϑ; cosφ; sinφÞ. In analogy with the

CUE, we want to construct a flat joint eigenvalue distri-
bution on T2, which we call the distribution of the TUE.
Since the Clifford torus has no curvature, the distribution
is simply given by the Vandermonde interaction,

FIG. 14. Comparison of exact diagonalization (ED) of GinUE-drawn matrices with analytical results, for N ¼ 3. (a) Ratio density
from ED; (b) exact distribution, Eq. (C7); (c) histogram of absolute value of ratios from ED; (d) histogram of argument of ratios from
ED; black lines are computed from Eq. (C7).
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PðNÞ
TUEðϑ1;…; ϑN ;φ;…;φNÞ ∝ jΔT2 j2. Note that ΔT2 is

given by the distance between points in the embedding
space parametrized by the eigenvalues. In other words, if
Pj ∈ T2 is parametrized by the angles ðϑj;φjÞ, then the
Vandermonde interaction is jΔT2 j ¼ Q

j<k kPj − PkkR4 .
One can check that, with this reasoning, the usual
Vandermonde terms for the Gaussian, Ginibre, circular,
and spherical ensembles coincide with, respectively,
jΔRj ¼

Q
j<k kPj − PkkR, jΔR2 j ¼ Q

j<k kPj − PkkR2 ,
jΔS1 j ¼ Q

j<k kPj − PkkR2 , jΔS2 j ¼ Q
j<k kPj − PkkR3

(with Pj in the respective embedding spaces). Using
our parametrization of the torus and considering only
β ¼ 2, the Vandermonde interaction reads jΔT2 j2 ¼Q

j<k ½2 − cosðϑj − ϑkÞ − cosðφj − φkÞ�.

We can then write down the joint eigenvalue distribution
for the TUE, given by Eq. (6),

PðNÞ
TUEðϑ1;…; ϑN ;φ1;…;φNÞ
∝
Y
j<k

½2 − cosðϑj − ϑkÞ − cosðφj − φkÞ�:

Having introduced the relevant joint eigenvalue distri-
bution, the remaining procedure is straightforward. By
rotational invariance in both factors S1, we can set ϑ1 ¼ 0
and φ1 ¼ 0. The complex spacing ratio is, accordingly,
z ¼ ðϑ2 þ iφ2Þ=ðϑ3 þ iφ3Þ. If we then insert Eq. (6) into
the general ratio distribution, Eq. (C4), we obtain

ϱðNÞ
TUEðx; yÞ ∝

Z
π

−π
dsdt

YN−3

j¼1

dajdbjΘ(ða2j þ b2jÞ − ðs2 þ t2Þ)ðs2 þ t2Þ2½2 − cos s − cos t�

× ½2 − cosðsx − tyÞ − cosðtxþ syÞ�½2 − cosðsðx − 1Þ − tyÞ − cosðtðx − 1Þ þ syÞ�

×
YN−3

j¼1

½2 − cos aj − cos bj�½2 − cosðs − ajÞ − cosðt − bjÞ�

× ½2 − cosðsx − ty − ajÞ − cosðtxþ sy − bjÞ�
Y
j<k

½2 − cosðaj − akÞ − cosðbj − bkÞ�: ðC9Þ

For N ¼ 3, the double integral to be performed is given
in Eq. (7),

ϱð3ÞTUEðx;yÞ∝
Z

π

−π
dsdtðs2þ t2Þ2½2− coss− cos t�

× ½2− cosðsx− tyÞ− cosðtxþ syÞ�
× ½2− cosðsðx− 1Þ− tyÞ− cosðtðx− 1Þþ syÞ�:

The integral of Eq. (7), and its generalizations for
N ¼ 4; 5;…, can be numerically integrated (the analytic
expression is far too involved to be useful) and describes
very well the large-N asymptotics of the GinUE univer-
sality class; see Figs. 3(e)–3(h).
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