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The operation of numerous physical systems and devices relies on concentrating their state space around
a few carefully engineered eigenstates governing the dynamics. In photonics, these discrete degrees of
freedom are typically the resonant modes of a structure. However, whenever a light source drives the
structure, a continuum of additional nonmodal states generates its forced response, undermining its
underlying physics and hindering control through discretization. Dealing with this nonmodal continuum
poses a challenge to the design of nanophotonic systems aiming to combine compact sources and
nanostructures into unified functional platforms. Here, we present a route to control forced nanostructures
by engineering a discrete set of nonmodal degrees of freedom, originating from joint nanostructure-source
antiresonances. We experimentally demonstrate that the forced response of ultrathin gold films is shaped by
pairs of resonant-antiresonant plasmons, exhibiting joint creation and annihilation in momentum-energy
space. Tuning their excitation, we show that 10 nm films can appear “black”: exhibiting strong
spectroangular wideband absorption.
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I. INTRODUCTION

Physical interactions typically occur within a structure,
designed to concentrate the continuous distribution of
system states around discrete eigenstates. These discrete
eigenstates constitute the principal degrees of freedom
(DOFs) controlling the predominant mechanisms of inter-
action. Consequently, numerous physical phenomena and
system designs rely on the discrete eigenstates of structures,
such as discrete energy levels of quantum potentials [1],
natural frequencies of mechanical oscillators [2], and dis-
crete electromagnetic modes in photonic structures [3,4].
Reducing a continuum of system states to a few discrete
levels not only dramatically scales down complexity, but also
enables one to reveal the underlying physics of the system.
Hence, discrete optical DOFs are frequently invoked to
guide our understanding of fundamental photonic inter-
actions, such as in determining light emission and absorption
efficiencies of photonic configurations [5], information
capacity of optical channels [6], performance of super-
resolution imaging devices [7], and even thermodynamic
properties like brightness in solar concentrators [8].
A discrete eigenstate description necessitates that the

modal expansion of the electromagnetic field encompasses

the principal optical DOFs accessible in a given structure,
as it does for light propagating in waveguides or trapped
in cavities [3,4]. However, when a source is placed near
the structure, its modes cease to provide an adequate
description, as the electromagnetic wave equation becomes
inhomogeneous in the region of interest [9]. Being homo-
geneous field solutions, the modes describe only free
oscillations of light in a structure [3,9] and cannot describe
the forced optical response of a structure driven by a light
source. Instead, the inhomogeneous part of the field is
generally attributed to a continuum of states [3,9], lacking
the distinct advantage of reducing to just a few dominant
optical DOFs that govern observations. For example,
asymmetric line shapes in the scattering spectra of
source-driven photonic structures are often phenomeno-
logically approximated by a Fano-type interaction of a
discrete mode with a continuum of scattered background
radiation [10–12].
The inability of discrete modes to address the forced

response associated with the transfer of energy from a
driving source into the structure poses a special challenge
to nanophotonic systems, where compact sources and
nanostructures combine into unified platforms [13–21] to
achieve nanoscale control of light-matter interactions
[22,23]. On the one hand, nanophotonic systems frequently
rely on surface plasmon polaritons (SPPs) [24]: discrete
modes arising from coherent oscillations of light and
charged particles at the surface of metals [25–27], two-
dimensional materials [28,29], metamaterials [30], transi-
tion metal nitrides [31], and other exotic optical media
[32–35]. On the other hand, SPPs alone cannot capture the
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rich physics emerging in source-driven nanostructures, as
nonmodal contributions are bound to be significant. Just as
emission by a source is modified near nanostructures that
alter the local density of states [18,36], so must that source
induce a tangible forced response by accessing nonmodal
DOFs in those nanostructures.
Here, we show that the forced response of nanostructures

originates from a discrete set of nonmodal optical DOFs
that complements the discrete set of modes. We exper-
imentally and theoretically prove the existence and promi-
nence of nonmodal plasmonic DOFs in nanostructures,
which we denote as antiresonant plasmon polaritons
(APPs). Whereas SPPs are discrete resonances of free

plasmonic oscillations, APPs are the discrete antiresonan-
ces emerging when those oscillations are being forced by a
light source [Figs. 1(c)–1(e)]. We show that SPPs and APPs
jointly shape the forced response, forming resonant-anti-
resonant pairs of independent plasmonic field solutions that
are colocalized at a common interface, and exhibit joint
“creation” and “annihilation” in momentum-energy space.
With elaborate yet straightforward reflectance measure-
ments, we unambiguously observe excitations of SPP-APP
pairs in ultrathin gold films, manifested as combined peak-
and-dip reflectance signatures that cannot be interpreted as
a Fano-type interaction of an SPP mode with a radiation
continuum [Figs. 1(a) and 1(b)]. By precisely controlling

FIG. 1. Experimental concept: controlling pair excitations of modal (SPP) and nonmodal (APP) plasmons. (a) Schematic measurement
setup: ATM-polarized beam impinges upon a thin gold film via a glass coupling prism, and the reflected beam is collected for various
incidence angles θ and illumination wavelengths λ. (b) SPP-APP pair excitations make the measured reflectance R exhibit a tunable
peak-and-dip line shape (λ ¼ 800 nm, red curves), ranging from spectrally and angularly wideband absorption for ultrathin films
(11 nm) to the narrow asymmetric Kretschmann dip for thicker films (44 nm). Inset: Locations of the APP and SPP wave vectors kz
(cyan and magenta circles) along their root locus (dashed line) as the film thickness changes. (c) Incident (Ain, red arrow) and reflected
(Aout, gray arrow) wave amplitudes at the front gold-glass interface are related by the reflection coefficient r, the transfer function of a
linear space-time invariant system (block diagrams). (d),(e) Calculated magnetic fields of the SPP and APP (d ¼ 44 nm, λ ¼ 600 nm),
time dynamics shown in Movie 1. Inset: SPPs and APPs assigned to system resonances (r ¼ ∞) and antiresonances (r ¼ 0).
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these SPP-APP pair excitations, we demonstrate that ultra-
thin gold films (approximately 11 nm) can appear “black”:
exhibiting a surprisingly strong angularly and spectrally
wideband absorption (FWHM Δθ ≈ 47°, Δλ > 1.34 μm).
In particular, we derive design rules to engineer highly
absorbing ultrathin films accurately and efficiently based
on the unique properties of SPP-APP pairs.

II. THEORY: ANTIRESONANT
PLASMON POLARITONS

Conventional theory holds that each metal-dielectric
interface in a nanostructure contributes a single plasmonic
DOF [25,26,37]. For example, a thin metal film fabricated
atop a dielectric substrate supports two plasmonic modes:
the short-range and long-range SPPs, respectively localized
on the metal-substrate and metal-air interfaces of the film,
where their field intensity is highest [Figs. 2(a) and 2(b)].
However, SPPs cannot span the entire range of plasmonic
response in the nanostructure—only its homogeneous part.
Most notably, they cannot describe energy transfer from an
outside source into the nanostructure. This role is reserved
to a discrete set of principal nonmodal plasmonic DOFs we
denote as antiresonant plasmon polaritons, and the thin film
supports one such APP [Fig. 2(c)].
A formal derivation of APP fields in nanostructures

driven by a source, proving their independence from
resonant modes, is found in Appendix A, but the main

idea is the following. Assume an incident wave emitted
by an outside source that impinges upon the front interface
of a planar structure. The backscattering process can be
described by a linear space-time invariant system, whose
transfer function is the reflection coefficient rðkz;ωÞ ¼
Aoutðkz;ωÞ=Ainðkz;ωÞ, and its input and output are the field
amplitudes of the incident (Ain) and reflected (Aout) waves
at the front interface for each longitudinal wave-vector
component kz and angular frequency ω [Fig. 1(c)]. The
output to any nonzero input comprises two independent
parts: a homogeneous solution of the free system (Ain ¼ 0)
and a particular inhomogeneous solution of the forced
system (Ain ≠ 0). The homogeneous part is spanned by the
discrete modes, resonant fields obtained at singular points
of the reflection (r ¼ ∞) transferring energy within or
out of the structure (Ain ¼ 0 but Aout ≠ 0). To span the
inhomogeneous part, a radiation continuum is generally
invoked [3,9]. However, out of the nonmodal continuum,
there is only a discrete set of field solutions that comple-
ments the modes by performing the exact opposite func-
tion: perfectly transferring energy into the structure from an
outside source (Ain ≠ 0 but Aout ¼ 0). This discrete set of
principal nonmodal DOFs consists of the discrete anti-
resonances shared between a structure and its driving
source, when the reflection vanishes (r ¼ 0) [38–40].
Consequently, the forced response of source-driven nano-
structures could be primarily traced back to two discrete
sets of plasmonic DOFs: resonant plasmonic modes (SPPs)

FIG. 2. Three plasmonic degrees of freedom in a thin film. Illustrated magnetic field profiles (green) of the two modal SPPs and the
nonmodal APP of a thin metal film (yellow) illuminated via a dielectric substrate (light blue), and their mechanical analogue in a driven
system of two coupled oscillators. (a) Short-range SPP localized on the metal-substrate interface and its anti-phase resonance analogue.
(b) Long-range SPP and (c) the additional APP degree of freedom localized on the metal-air interface and their respective in-phase
resonance and antiresonance analogues. Red arrows indicate the incident field amplitude Hi and driving force F. Gray arrows indicate
the scattered (reflected and transmitted) field amplitudes, and mechanical oscillation amplitudes with relative phases noted by plus-
minus signs. The long-range SPP comprises only a reflected field in the substrate (r → ∞, Hi ¼ 0), whereas the APP only an incident
field (r ¼ 0,Hi ≠ 0). Therefore, the APP carries power into the film [red since in (c)] while the long-range SPP leaks it away [gray since
in (b)], as seen in Movie 2. Illuminating from the air side leads to a different APP that is localized on the metal-substrate interface
(Appendix B 7).
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that contribute the homogeneous part and antiresonant
plasmonic field solutions (APPs) that contribute an inho-
mogeneous part [e.g., Figs. 1(d) and 1(e)].
For an intuitive explanation of the emergence of APPs,

consider a simplified analogue between layered plasmonic
nanostructures and systems of coupled mechanical oscil-
lators. An isolated metal-dielectric interface functions as a
plasmonic oscillator, supporting one localized resonance
solution in the form of a single-interface SPP. Accordingly,
a layered nanostructure acts like a system of coupled
oscillators, as it produces a collective plasmonic response
through evanescent coupling of adjacent metal-dielectric
interfaces [41]. The principal DOFs spanning this collective
response are therefore analogous to those found in a system
of coupled mechanical oscillators. For instance, a thin
metal film behaves as two coupled mechanical oscillators,
representing its two separate metal-dielectric interfa-
ces (Fig. 2).
If such a mechanical system is freely oscillating, its state

can be fully described by a superposition of discrete
collective resonances, the number of which equals the
number of oscillating masses [2]. For example, a system of
two oscillators supports two independent collective reso-
nances, in which two masses coherently couple either
antiphase [Fig. 2(a), left side] or in phase [Fig. 2(b), left
side]. In a layered nanostructure, the analogues of these
collective resonances are the collective resonant plasmonic
field solutions (SPPs), the number of which equals the
number of plasmonic interfaces. Consequently, the thin
film supports the short-range and long-range SPPs, in
which plasmonic oscillations along its two interfaces
couple either antiphase [Fig. 2(a), right side] or in phase
[Fig. 2(b), right side] [26].
However, when the mechanical system is driven by an

external force, additional DOFs participate in its response
to form the component that transfers energy into the
system. A principal set of such DOFs can be described
by discrete antiresonances: purely inhomogeneous solu-
tions for which the driving force acting on the front
oscillator is counterbalanced by the restoring force applied
by the rest of the system, such that the front oscillator is
suppressed [2]. The receptance of the front oscillator then
vanishes, and so all incident power is transmitted past the
driving point to the remaining oscillators. Because the front
mass is idle, there are as many independent antiresonances
as the number of remaining oscillating masses (see
Supplemental Material [42]). For instance, two coupled
oscillators support exactly one antiresonance, in which all
incident power is transferred to the rear oscillator [Fig. 2(c),
left side].
The plasmonic analogues of mechanical antiresonances

are the discrete antiresonant field solutions we refer to as
APPs. APPs can be interpreted as cases when impinging
light interferes with internally reflected light to suppress
plasmonic oscillations at the front interface facing the

source, transferring all incident power to the remaining
interfaces within the structure. Like their mechanical
counterparts, there are as many independent APPs as there
are plasmonic interfaces in the nanostructure, excluding the
front interface. Hence, in addition to its two SPPs, the thin
film supports one nonmodal plasmonic DOF in the form of
an APP, which transfers incident power from a source to
plasmonic oscillations at its rear interface [Fig. 2(c),
right side].
In principle, therefore, each plasmonic interface in a

layered nanostructure contributes two complementary
DOFs: a resonant mode (SPP) intrinsic to the structure
and an antiresonant field solution (APP) shared between
the structure and its driving source. These resonant-
antiresonant pairs of plasmonic field solutions jointly shape
the forced response of the nanostructure, because their
fields are colocalized on their interface of origin but carry
energy in opposite directions relative to the source. As we
experimentally demonstrate next, the long-range SPP and
APP of the thin film [Figs. 2(b) and 2(c)] form such a pair
and can be controlled to allow wideband absorption by
ultrathin gold films.

III. EXPERIMENT: REFLECTANCE OF
ULTRATHIN GOLD FILMS

We experimentally prove the existence and prominence
of APPs in thin metal films, since these are the simplest
nanostructures to support antiresonant plasmonic field
solutions. We fabricate three gold films of different thick-
ness (44, 21, and 11 nm) atop fused silica right-angle
prisms and measure their reflectance using a scientific-
grade spectroscopic ellipsometer [Fig. 1(a)]. The measure-
ments are taken at high angular resolution (Δθ ¼ 0.1°,
40°–50°) over a wide range of illumination wavelengths
(300–2000 nm,Δλ ¼ 10 nm). A detailed description of our
experimental setup and sample fabrication and characteri-
zation procedures is given in Appendix B1–B3.
The technique of exciting a plasmonic response in thin

films through a coupling prism to add missing momentum
to incident light was pioneered by Kretschmann and
Raether [43] and is heavily relied upon in nanophotonic
systems such as surface plasmon resonance biosensors
[44]. However, our experiment differs from a conventional
Kretschmann experiment in several key aspects. First,
whereas the gold film thickness typically lies in the
50 nm range to obtain the sharpest reflectance dip, we
employ much thinner films reaching the 10 nm range,
where the dominant physical mechanisms affecting the
response are substantially different. Second, we fabricate
those films atop glass substrates using a one-molecule-thick
adhesion layer, instead of standard bulkier lossy adhesion
layers such as Ti or Cr that affect the optical properties of
the sample (monolayer characterization presented in
Appendix B 2). This procedure ensures our measurements
faithfully represent the response of ultrathin gold films, and
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the effects we measure are not artifacts of an additional
layer. Additionally, we can trace the dispersion of observed
features, because we acquire angular line shapes over a
wide spectral range.
Our reflectance measurements are presented in

Figs. 3(a)–3(c) as a function of the incidence angle (θ)
and illumination wavelength (λ) and are all in excellent
agreement with the theoretical prediction (derived in
Appendix B 5). The measurements show a qualitative
change in the response as the film thickness decreases.
The thickest sample [Fig. 3(a)] exhibits the typical
signature of a Kretschmann experiment at λ ¼ 600 nm

[Fig. 1(b), red curve]: a pronounced zero-reflectance dip at
an above-critical angle over a total internal reflection
background, known as the Kretschmann dip [26,27,43].
However, the two thinner samples [Figs. 3(b) and 3(c)]
exhibit utterly different responses that feature both a peak
and a dip, implying that more than a single plasmonic DOF
is at play. In particular, the response of the ultrathin gold
film [Fig. 3(c)] is the one most central to this work: Instead
of approaching the response of a bare glass prism for such a
vanishingly thin film (11 nm), which above the critical
angle is total internal reflection, we observe strong absorp-
tion over wide angular and spectral ranges, with estimated

FIG. 3. Experimental results: excitations of APP and SPP degrees of freedom in thin gold films. (a)–(c) Measured (top) and predicted
(bottom) reflectance from a (a) 44, (b) 21, and (c) 11 nm thin gold film fabricated atop a glass coupling prism as a function of incidence
angle θ and illumination wavelength λ, also shown in Movie 3. (d)–(f) Calculated real part of the long-range SPP (black) and APP
(white) dispersion curves overlaid atop the measured reflectance for each film. Dashed black lines denote the critical angle. Red and
green curves in (a)–(c) highlight the measured and predicted reflectance at λ ¼ 800 nm analyzed in Fig. 4. The offset between regions of
high and low reflectance and the black and white curves in (f) is explained in Appendix B 8.
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FWHM bandwidths of Δθ ≈ 47° and Δλ > 1.34 μm
(see Fig. 7).
Before uncovering the physical mechanism enabling

ultrathin gold films to appear black, we first identify which
plasmonic DOFs dominate their forced response. We trace
back the prominent peak and dip features in the reflectance
to the two discreet plasmonic DOFs accessible from the far
field using the coupling prism: the resonant long-range SPP
[Fig. 2(b)] and the antiresonant APP [Fig. 2(c)], colocalized
on the rear gold-air interface of the gold film. In Figs. 3(d)–
3(f), we compare the real part of their calculated dispersion
curves (derived in Appendix B 4) with the measured
reflectance signatures.
For the thickest sample [44 nm, Fig. 3(d)], the long-

range SPP dispersion curve (black) seems to fit the
measured reflectance dip angle over most wavelengths.
This fit is partly why the standard theory associates the
formation of the Kretschmann dip line shape with an SPP
excitation [25–27,43], despite competing explanations
[45–49]. Recently, the asymmetry of the Kretschmann
dip line shape was attributed to Fano-type interference
of the SPP with a continuum of scattered background
radiation [50], which can account for small displacements
in the dip angle [51]. However, our measurements reveal a
significant discrepancy between the Kretschmann dip angle
and the long-range SPP dispersion curve near the surface
plasma frequency (λ ≈ 530 nm), where the long-range SPP
dispersion undergoes backbending while the measured dip
feature does not. This empirical discrepancy has recently
posed a challenge to the standard theory [52]. Nevertheless,
it does not yet disprove it, because near the backbending the
above comparison becomes problematic: The long-range
SPP wave vector attains a large imaginary part, so its
dispersion is no longer faithfully represented solely by the
real part.
Remarkably, at the same film thickness range, the

nonmodal APP dispersion curve (white) fits the measured
dip angle extremely well throughout the entire range of
measurement [44 nm, Fig. 3(d)]. It does not undergo the
same type of backbending and, instead, splits apart from the
long-range SPP dispersion curve. To definitively attribute
the reflectance dip feature to an APP excitation rather than
an SPP, this splitting must be demonstrated away from
the long-range SPP backbending region. To that end, we
explore thinner gold films, where we observe two well-
separated regions of high and low reflectance, a pro-
nounced peak and a dip. These two regions strongly split
apart as the film thickness decreases once from 44 to 21 nm
[Fig. 3(e)] and again to 11 nm [Fig. 3(f)], marking a clear
trend. Both this splitting and its trend coincide with those of
the strong splitting between the predicted long-range SPP
and APP dispersion curves across the entire 500–2000 nm
spectral range. Hence, our experiment confirms that the
forced plasmonic response of thin gold films can be traced
back to two principal DOFs, the long-range SPP and APP:

The APP is most strongly excited at the reflectance dip,
whereas the long-range SPP at the reflectance peak—
substantially departing from the prevailing theory of the
past five decades.
We emphasize that the ultrathin film reflectance signa-

tures we measure cannot be explained by Fano models,
based on interference of a discrete SPP mode and a
continuum of scattered background radiation (see
Appendix C). From a quantitative standpoint, Fano line
shapes simply do not fit any of the particular peak-and-dip
line shapes emerging when the gold film is thinner than
25 nm (Figs. 9 and 10). Qualitatively, the Fano model
describes a fundamentally different mechanism to that
which dominates the forced response of ultrathin gold
films. Rather than being formed by weak coupling of a
discrete state (narrow) and a continuum (broad) [10], the
forced response of ultrathin films emerges from two
discrete states that are entirely uncoupled and have com-
parable widths. Hence, while a Fano line shape can
phenomenologically approximate the asymmetric zero-
reflectance Kretschmann dip for thicker films [50,51], it
cannot predict nor explain the wideband absorption we
observe for ultrathin gold films.

IV. WIDEBAND ABSORPTION BY
ULTRATHIN GOLD FILMS

To unravel the physical mechanism making ultrathin
gold films appear black, we track the two principal modal
and nonmodal DOFs shaping the forced response in the
reflection analysis depicted in Fig. 4. The measured angular
reflectance signatures [Figs. 4(a)–4(d), fitting colored lines
in Figs. 3(a)–3(c)] describe the thin film response only over
real-valued wave vectors. Capturing the entire system
response requires calculating the reflection coefficient r
over the complex wave-vector domain kz [Figs. 4(e)–4(h)].
This representation highlights the two principal DOFs, the
long-range SPP and APP, appearing as reflection pole
(magenta) and zero (cyan) points, respectively. The mea-
sured reflectance at each incidence angle [Figs. 4(b)–4(d),
red] is determined by jrj2 at a respective point along the real
kz axis [Figs. 4(a)–4(d), green] (see Appendix B 4). Hence,
we retrieve the reflectance of each sample by tracking how
the pole and zero project onto the real axis [Figs. 4(e)–4(h),
dashed black line], following equal-jrj contour lines.
Evidently, these projections imprint a peak-and-dip reflec-
tance signature (black and white arrows). However, this
signature is strongly affected by the particular thickness-
dependent pole and zero locations, which draw a peculiar
trajectory in the complex domain.
Because the long-range SPP and APP are colocalized at

the rear interface, their pole-zero trajectory obeys a pair-
wise symmetry, forming the close-loop root locus depicted
in Fig. 4 insets (shown in detail in Fig. 7 and Movie 4). At
the asymptotic ends of this root locus, the pole and zero are
jointly created and annihilated: As the film thickness
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exceeds the penetration depth of light into the gold film, the
rear gold-air interface becomes inaccessible, and the pole
and zero recombine and cancel (yellow point 1). Con
versely, as the film thickness vanishes entirely, the pole and
zero coalesce at the Brewster angle of the emerging glass-
air interface (yellow point 2) (see Appendix B 6).
Traveling in between those ends, the pole and zero

locations are bound by the local energy balance at the rear
interface: The APP pumps energy into that interface, while
the long-range SPP leaks it away. Consequently, any far-
field source excites the APP more than the long-range SPP
to maintain a net energy influx, and so the associated pole-
zero pair is tilted in a way that ensures a smaller-than-one
reflectance above the critical angle (the yellow jrj ¼ 1 line
stays under the real axis; see Supplemental Material [42]).
When this tilted pair projects onto the real axis, it imprints
the reflectance peak-and-dip signatures we experimentally
observe. The dip indicates a stronger energy transfer from
the source to plasmonic oscillations via the APP excitation,
whereas the peak indicates a reduction in plasmonic energy
consumption due to an increased long-range SPP excita-
tion, as it destructively interferes with the APP at the rear
interface leading to higher reflectance.
The pole and zero root loci are divided into three

regions, in between which the peak-and-dip signature

strongly varies. First, once the film becomes sufficiently
thin to facilitate coupling between its two interfaces, the
pole and zero split apart: The zero draws closer to the
real axis, whereas the pole moves further away [70 nm,
Fig. 4(e)]. Because the zero is closer, it projects more
strongly onto the real axis than the pole, leading to a
pronounced reflectance dip preceded by a subtler reflec-
tance peak closer to the critical angle [Fig. 4(a)]. Second, as
the film thickness further decreases below a critical value,
the zero crosses the real axis, and the pole and zero now lie
on opposite sides [21 nm, Fig. 4(g)]. Therefore, both
strongly project onto the real axis, giving rise to pro-
nounced peak and dip features [Fig. 4(c)]. Finally, as the
film gradually vanishes, splitting between the pole and
zero eventually stops as they converge towards their
coalescence point, retrieving the flat total internal reflection
response of a bare glass prism (see Movie 4).
Each transition between different regions of the pole

and zero root loci marks a distinct physical phenomenon.
For example, the first transition takes place as the zero
crosses the real axis [44 nm, Fig. 4(f)]. Here, the energy
the APP pumps into the thin film exactly compensates for
its plasma loss, so it exhibits no net propagation loss,
attaining a purely real wave vector. Consequently, the APP
becomes directly and fully excitable from the far field,

FIG. 4. Pairing of nonmodal (APP) and modal (SPP) plasmonic DOFs. (a)–(d) Measured (red) and predicted (green) reflectance of
(a) 70, (b) 44, (c) 21, and (d) 11 nm gold films illuminated through a glass coupling prism as a function of incidence angle θ at
illumination wavelength λ ¼ 800 nm. (e)–(h) Calculated reflection coefficient magnitude jrj of the respective films (log scale) for
complex longitudinal wave vectors kz corresponding to the angular range in (a)–(d). Enlarged sections marked by orange rectangles. The
long-range SPP and APP correspond to reflection pole (magenta) and zero (cyan) points, respectively. Constant jrj contour lines
illustrate how the pole-zero pair projects onto the real axis (dashed black line) a reflectance peak-and-dip signature (black and white
arrows). The angular shift between these two features arises from the tilt highlighted by a downward sloping jrj ¼ 1 line (yellow). Inset:
Pole-zero locations along their joint closed-loop root locus as the film thickness decreases from ∞ → 0 (points 1 → 2), shown through
the entire progression in Movie 4. Vertical black lines in (a)–(d) and black dots in (e)–(h) mark the critical angle (kz ¼ k0).
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imprinting the well-known zero-reflectance Kretschmann
dip [Fig. 4(b)].
However, it is the second transition that leads to wide-

band absorption by ultrathin gold films [11 nm, Fig. 3(c)].
It occurs at the ultrathin thickness range, in which the long-
range SPP (pole) and APP (zero) are maximally split
apart in momentum [Fig. 4(h); the exact design obeys
Eqs. (B9)–(B12) in Appendix B 9], before rapidly coalesc-
ing at the vanishingly thin film limit (see Movie 4).
Precisely in this narrow thickness range, the tilted pole-
zero pair projects the widest most separated signatures onto
the real axis. However, whereas the wide projection of the
zero can be observed by far-field measurements over the
entire angular range, that of the pole is observable only
above the critical angle, cutting the peak short due to the
influence of the light cone branch point in the topologically
nontrivial momentum space (see Appendix B 6, Fig. 7,
Movie 4). Consequently, the maximally split pole-zero pair
imprints an atypical signature: a narrow reflectance peak
squeezed onto the critical angle, followed by an angularly
wide absorption dip with its center pushed to higher angles
[Figs. 3(c), 4(d), 7(c), and 7(f)]. In principle, this angularly
wideband absorption spans the entire spectral range at
which gold has a plasmonic response, because the close-
loop trajectory of the long-range SPP and APP pair in
momentum space is topologically guaranteed at each such
wavelength. It is therefore the maximally split state of a
resonant-antiresonant plasmon pair that enables the wide-
band absorption we measure for the 11 nm ultrathin gold
film [Fig. 3(c)], with an estimated spectroangular FWHM
bandwidth of Δθ ≈ 47° and Δλ > 1.34 μm (Fig. 7).
Detailed design rules for this black ultrathin film effect
based on properties of the long-range SPP-APP root locus
are given in Appendix B9.
In our experiment, we use film thickness as a tuning

parameter to control the optical response by moving the
long-range SPP and APP pair to desired locations along a
closed-loop trajectory. Generally, any parameter that reg-
ulates coupling to the interface on which a target SPP-APP
pair is localized can be used to control its contribution to
the line shape. Each such parameter generates its own
closed-loop trajectory for the pair. Hence, while any single
tuning parameter affects both the SPP and APP of a pair,
combining different tuning parameters can allow separate
control of the two.
Finally, we note that the APPs a structure supports

depend on the direction from which it is illuminated.
Hence, illuminating the gold film from the air rather than
glass side leads to a different APP whose field is localized
on the gold-glass interface, and it follows a closed-loop
trajectory with the short-range SPP (Appendix B 7).

V. DISCUSSION AND SUMMARY

In this work, we propose and implement the concept of
nonmodal plasmonics, rooted in the fact that light sources

and nanostructures actively share a principal set of discrete
optical degrees of freedom. We discover a new class of
plasmonic DOFs, identified not with the modes of photonic
nanostructures but with the discrete antiresonances that
form when those nanostructures are being driven by a light
source. These antiresonant plasmon polaritons transfer
energy from the source into the nanostructure, playing a
pivotal role in shaping its forced optical response. APPs
coexist with their modal SPP counterparts, which scatter
energy away from or within the nanostructure. Therefore,
the interference of APPs and SPPs regulates the energy
influx entering the nanostructure from the source, although
APPs also support pure and direct excitation when they
exactly compensate for plasma loss.
Measuring the spectroangular reflectance of ultrathin gold

films, we unambiguously demonstrate that APPs and SPPs
are jointly accessible to external excitation, manifested as
reflectance dip and peak signatures. Albeit having utterly
different dispersions, SPPs and APPs form resonant-anti-
resonant pairs that are colocalized at a common interface and
exhibit joint creation and annihilation in momentum-energy
space. We experimentally demonstrate precise control of
such SPP-APP pairs and show it can dramatically alter the
linear optical response of passive structures: enabling strong
spectrally and angularly wideband absorption for ultrathin
gold films (11 nm), with estimated FWHM bandwidths of
Δθ ≈ 47° andΔλ > 1.34 μm. In particular, we derive design
rules to engineer such a black film response based solely on
properties of SPP-APP pairs. Similarly, intricate forced
responses can be designed by controlling multiple SPP-
APP pairs at different interfaces of a nanostructure, each
designed to govern a separate angular range.
APPs break the long-standing paradigm that each

plasmonic interface contributes a single DOF, supporting
instead a pair of modal and nonmodal DOFs. Furthermore,
by reducing the continuum of nonmodal system states to a
few principal discrete solutions, APPs join with SPPs to
provide a purely discrete description of the forced response
in source-driven nanostructures. Hence, APPs add key
channels that can greatly benefit the control of light-matter
interactions in nanostructures and open up fresh avenues
for nanophotonics research and application. In particular,
APPs can be leveraged to mold the absorption spectra of
photonic nanostructures to achieve high-efficiency plas-
mon-assisted light harvesting or enhanced plasmonic sens-
ing in future nanophotonic devices.
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APPENDIX A: ANTIRESONANT DEGREES
OF FREEDOM IN THE FORCED

OPTICAL RESPONSE

Antiresonant field solutions are zeros in the field
amplitude reflection coefficient of a structure, denoting
discrete wave vectors at which the source and structure are
impedance matched. Hence, their field distribution incor-
porates an incoming wave that transfers all incident power
into the structure, without reflecting an outgoing wave back
toward the source [Fig. 2(c)]. In contrast, resonant modes
are discrete reflection poles whose field includes an out-
going wave directed away from the structure, but no
incoming wave [Figs. 2(a) and 2(b)]. In this appendix,
we show that antiresonant field solutions are linearly
independent from resonant modes.

1. Mapping the backscattering process
to a scalar linear system

Assume that a driving light source emits a polarized wave
that propagates in a homogeneous substrate (x ≤ 0) and is
subsequently backscattered from the front interface of a
planar structure (x ¼ 0). We assume TM polarization and
choose a coordinate system such that the surface normal and
magnetic fields are directed along the x and y axes,
respectively [Figs. 1(a) and 1(c); for TE polarization, similar
equations hold for the electric field]. The magnetic fields of
the incident (Hinc) and reflected (Href ) waves can therefore
be spectrally decomposed in the temporal (t) and spatial (z)
domains and expressed in terms of scalar complex field
amplitude functions Ain and Aout:

Hincðx ≤ 0; z; tÞ ¼ y
Z∞
−∞

Z∞
−∞

Ainðkz;ωÞejðωt−kzzÞe−jkxxdkzdω;

ðA1Þ

Hrefðx ≤ 0; z; tÞ ¼ y
Z∞
−∞

Z∞
−∞

Aoutðkz;ωÞejðωt−kzzÞeþjkxxdkzdω;

ðA2Þ
where y is a unit vector along y, kz and kx are, respectively,
the parallel (z) and normal (x) wave-vector components to
the front interface, satisfying a quadratic relation k2x þ k2z ¼
ðω=cÞ2εμ imposed by the wave equation, ε and μ are the
permittivity and permeability, respectively, of the substrate,
ω is the angular frequency, and c is the speed of light in
vacuum. Because the space-time domain fields are real
valued, the scalar complex field amplitudes satisfy
Ainðkz;ωÞ¼A�

inð−kz;−ωÞ and Aoutðkz;ωÞ¼A�
outð−kz;−ωÞ,

and the kx root branch selection obeys kxðkz;ωÞ ¼−k�xð−kz;−ωÞ. Furthermore, to ensure that the incident
and reflected waves carry energy into and away from the
structure, respectively, the integration is performed over the
Imkx < 0 root branch, corresponding to the proper Riemann
sheet in the Sommerfeld branch cut selection [9].
The interaction between the incident wave and the

structure is governed byMaxwell’s equations and boundary
conditions for the fields throughout the structure. These are
all encapsulated in the field amplitude reflection coefficient
r, relating the field amplitudes of incident and reflected
plane waves at the interface facing the source:

rðkz;ωÞ ¼ Aoutðkz;ωÞ=Ainðkz;ωÞ: ðA3Þ
Therefore, the process of backscattering by a planar
structure can be described by a linear system whose
scalar input and output are the complex field amplitude
functions Ain and Aout, respectively [Fig. 1(c), inset]. This
system is both time invariant and translation invariant in
the z direction, and its temporal (ω) and spatial (kz)
transfer function is the field amplitude reflection coefficient
rðkz;ωÞ.

2. Mapping the linear system output to homogeneous
and inhomogeneous field components

As a linear system, the output amplitude Aout for any
nonzero input amplitude Ain comprises two contributions,
jointly satisfying appropriate initial conditions in z and t:

Aout ¼ AH þ AI; ðA4Þ
a homogeneous part AH solving the free system (Ain ¼ 0),
and a particular inhomogeneous part AI solving the forced
system (Ain ≠ 0). The inhomogeneous part is unique up to a
homogeneous solution but cannot be described solely in
terms of homogeneous solutions.
Hence, the total forced field solution in the substrate

HF ¼ Hinc þHref can be decomposed into what we denote
as homogeneous (HH) and inhomogeneous (HI) compo-
nents, associated with the homogeneous and inhomo-
geneous parts of the system response given by Eq. (A4):

HHðx ≤ 0; z; tÞ ¼ y
Z∞
−∞

Z∞
−∞

AHðkz;ωÞeþjkxxejðωt−kzzÞdkzdω;

ðA5Þ

HIðx ≤ 0; z; tÞ ¼ y
Z∞
−∞

Z∞
−∞

Ainðkz;ωÞe−jkxxejðωt−kzzÞdkzdω

þ y
Z∞
−∞

Z∞
−∞

AIðkz;ωÞeþjkxxejðωt−kzzÞdkzdω;

ðA6Þ
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where the inhomogeneous field component consists of the
driving field in addition to the inhomogeneous part of the
reflected field.

3. Linear independence of the discrete resonant
and antiresonant field solutions

The homogeneous field component HH is spanned by
the discrete optical degrees of freedom that are intrinsic to
the structure, given by the set of resonant electromagnetic
modes (Ain ¼ 0 but Aout ≠ 0)

AH ¼
X
m

am
2
δðkz − kz;Rm

Þδðω − ωRm
Þ

þ
X
m

a∗m
2
δðkz þ kz;Rm

Þδðωþ ωRm
Þ; ðA7Þ

where am is the complex amplitude of the mth mode in the
expansion. This result is because AH satisfies Eqs. (A3) and
(A4) for Ain ¼ AI ¼ 0 and, therefore, consists only of
discrete spatial (kz;Rm) and temporal (ωRm) frequency
contributions that satisfy the resonance condition of the
structure

rðkz;Rm
;ωRm

Þ ¼ ∞; ðA8Þ

which is by definition the dispersion relation of resonant
modes [3,9]. In particular, HH lacks an incident wave
component in the substrate that could laterally transfer
energy from the driving source into the structure and
transfers energy only within or out of the structure.
To account for the inhomogeneous field component HI ,

additional nonmodal degrees of freedom are required, and
those are generally described by a continuum of radiation
states (e.g., using a Green’s function formalism) [3,9,53].
Yet out of this nonmodal continuum, there is only a discrete
subset of field solutions that complements the modes by
performing their exact opposite function: transferring all
energy from an outside source into the structure (Ain ≠ 0
but Aout ¼ 0). Its contribution to HI can thus be encapsu-
lated into the driving field

Ãin ≜
X
m

bm
2
δðkz − kz;Am

Þδðω − ωAm
Þ

þ
X
m

b∗m
2
δðkz þ kz;Am

Þδðωþ ωAm
Þ; ðA9Þ

over the discrete spatial (kz;Am) and temporal (ωAm)
frequencies that satisfy the antiresonance condition shared
between the structure and its driving source (perfect
impedance matching)

rðkz;Am
;ωAm

Þ ¼ 0; ðA10Þ

where bm is the amplitude of the mth antiresonant field
solution.
The forced field solution HF can therefore be expanded

into three distinct contributions by discrete modes (HH),
discrete antiresonant solutions (HI;D), and a remaining
continuum of radiation states (HI;C):

HHðx ≤ 0; z; tÞ ¼ y
X
m

Refameþjkx;Rmxejðωz;Rm t−kz;RmzÞg;

ðA11Þ

HI;Dðx ≤ 0; z; tÞ ¼ y
X
m

Refbme−jkx;Amxejðωz;Am t−kz;Am zÞg;

ðA12Þ

HI;C ¼ HI −HI;D: ðA13Þ

The independence of the resonant (HH) and antiresonant
(HI;D) field contributions stems from the linear inde-
pendence of the homogeneous (AH) and inhomogeneous
(AI) parts of the linear system response Aout. Namely, for
the case of an antiresonance field solution (Aout ¼ 0), both
AH and AI independently vanish, so its homogeneous field
component HH contributed by resonant modes (derived
from AH) must vanish. Consequently, resonant modes do
not contribute to antiresonant field solutions (and vice
versa)—and, in particular, these two distinct types of field
solutions are linearly independent.

APPENDIX B: METHODS

This appendix covers all details related to the exper-
imental setup, sample preparation and characterization, and
data analysis.

1. Experimental setup

Our measurement setup is schematically illustrated in
Fig. 1(a). It consists of a J.A. Woollam variable angle
spectroscopic ellipsometer (VASE) operated in RT data
acquisition mode using focusing lenses. The light source is
a wideband xenon lamp, which is filtered by a mono-
chromator to a spectral width of about 5–10 nm (depending
on the automatically set monochromator exit slit width),
coupled into an optical fiber, and collimated at the fiber tip
so that the emerging beam is roughly 3 mm in diameter.
The emerging beam is then TM polarized and propagates in
free space until it is focused by a lens to roughly 0.7 mm in
diameter, when it impinges on the coupling prism.
The sample is mounted on a rotation stage, such that

the specular reflection is collected by a correspondingly
rotating detection arm. The collected signal is integrated
over rotating analyzer orientations to produce a reflectance
measurement at each incidence angle and illumination
wavelength. Measurements are taken for incidence angles
between 40° and 50° at a Δθ ¼ 0.1° step size and
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illumination wavelengths between 300 and 2000 nm at a
Δλ ¼ 10 nm step size.
The spectral range of measurement is limited by the

transmission band of the optical fiber, whereas the angular
range is limited by a systemic offset error caused by
refraction inside the coupling prism. The beam coming
out of the prism is laterally shifted compared to the
hypothetical beam that would have been directly reflected
from a thin flat target, which the detection arm is designed
to collect (Fig. 6). This lateral shift produces a signal drop if

the reflected beam partially overlaps with the detector
instead of being fully collected. The angular range for full
collection is defined by the condition that the angle-
dependent lateral shift plus the beam radius be smaller
than half the detector length dimension. For right-angle
glass coupling prisms, this angular range is roughly �8°
around θ ¼ 45°.

2. Sample preparation

We prepare three samples consisting of a thin gold film
fabricated atop a right-angle 10 mm fused silica prism
using thermal evaporation in three separate sessions.
Typically, evaporation of gold over glass substrates requires
an adhesion layer several nanometers thick of a transition
metal such as Ti or Cr. However, we avoid the use of such
bulky and lossy adhesion layers, as their material loss alters
the optical properties of the fabricated sample and they act
as an additional layer that would add coherent effects
associated with three-layer structures. While these effects
may be negligible for 50 nm gold film samples, they
become significant for ultrathin gold films such as our
11-nm-thick gold film.
Instead, we follow the process described in Ref. [54].

We treat the prism surface with (3-Mercaptopropy1)trime-
thoxysilan to create a molecular coating of an insulating
organic coupling agent that acts as a single-atom-thick
adhesive. As we experimentally verify for our films, this
monolayer does not significantly affect the optical proper-
ties of the sample [54]. Measuring the ellipsometric
parameters of glass cover slides (Schott D263) before
and after treatment [Fig. 5(a)] and fitting the measured data
using a Cauchy model [Fig. 5(b)], we observe no signifi-
cant change in the refractive index n of the glass substrates
(jΔnj ≤ 2.5 × 10−3). This procedure ensures that the sig-
natures we measure arise from the ultrathin gold film and
are not artifacts of an additional layer.

3. Sample characterization

Alongside each of the three prism samples, we fabricate
control samples on flat glass cover slides and silicon
wafers. These are used to measure the gold film thickness
of each sample as well as its refractive index in the
300 nm–2 μm spectral range using a J. A. Woollam
VASE spectroscopic ellipsometer and accompanied W-
VASE fitting software. The gold film thicknesses of those
samples are measured to be 44, 21, and 11 nm. The
measured values for the real (n) and imaginary (k) parts of
the refractive index for each of the three samples can be
found in Supplemental Material [42], see data files. The
relative permittivity values ε2ðλÞ ¼ ðn − jkÞ2 of the thin
gold films used in all our calculations are extrapolated from
these files. In calculating ε2ðλÞ for gold films of thickness d
other than 44, 21, or 11 nm, a linear interpolation is used (d
is in nanometers):

FIG. 5. Ellipsometry of chemically treated glass substrates.
(a) Measured ellipsometry parameters ψ (blue, left axis) and δ
(orange, right axis), for treated (hollow circles) and nontreated
(dots) cover glass substrates as a function of illumination wave-
length λ at three incidence angles θ (noted inset). (b) Real (blue,
left axis) and imaginary (orange, right axis) parts of the refractive
index n of the treated (dashed line) and nontreated (solid line)
glass covers fitted from the measured data in (a). The change in n
is smaller than 2.5 × 10−3 over the 300 nm–2 μm spectral range.

NONMODAL PLASMONICS: CONTROLLING THE FORCED … PHYS. REV. X 10, 011071 (2020)

011071-11



ε2;d ¼

8>>><
>>>:

ε2;11nm; d ≤ 11;

ε2;11nm þ ðε2;21nm − ε2;11nmÞ d−11
21−11 ; 11< d ≤ 21;

ε2;21nm þ ðε2;44nm − ε2;21nmÞ d−21
44−21 ; 21< d ≤ 44;

ε2;44nm; 44< d;

ðB1Þ

as in the case of solving Eqs. (B4) and (B5) for the long-
range SPP and APP root locus or calculating Eq. (B3) to
retrieve r for Figs. 4 and 7 and Movie 4.
The relative permittivity of the glass coupling

prisms ε1 is calculated from a Sellmeier equation for
uncoated fused silica provided by the prism manufacturer
(ThorLabs):

ε1ðλÞ ¼ 1þ
X3
m¼1

bmλ2

λ2 − cm
; ðB2Þ

where b1 ¼ 0.6961663, b2 ¼ 0.4079426, b3 ¼ 0.8974794,
c1 ¼ 0.0684042, c2 ¼ 0.11624142, c3 ¼ 9.8961612, and λ
is the wavelength in microns. The relative permittivity of air
ε3 and the relative permeabilities of all media μi
(i ¼ 1; 2; 3) are taken to be 1.

4. Calculating the long-range SPP
and APP dispersion relations

The field amplitude reflection coefficient of a thin gold
film can be derived by summing reflected wave contribu-
tions from the front interface with those of internal
reflections from within the film [3,9]:

rðkz;ωÞ ¼ r12 þ
t12t21
r21

X∞
m¼1

ðr21r23e−2jkx2dÞm

¼ r12 þ r23e
−2jkx2d

1 − r21r23e
−2jkx2d ; ðB3Þ

where rij ¼ ðkx;i=εi − kx;j=εjÞ=ðkx;i=εi þ kx;j=εjÞ and
tij ¼ 1þ rij are Fresnel reflection and transmission coef-
ficients from medium i to medium j, εi and μi are the
relative permittivity and permeability of the glass substrate
(i ¼ 1), gold film (i ¼ 2), and free space (i ¼ 3), respec-
tively, d is the gold film thickness, ω is the angular
frequency, c is the speed of light in vacuum, and kz and
kx are the parallel (z) and normal (x) wave-vector compo-
nents to the front interface, respectively, satisfying the
relation k2x;i þ k2z ¼ ðω=cÞ2εiμi imposed by the wave equa-
tion in each medium.
The electromagnetic modes are the field solutions for

which all internal reflections constructively interfere such
that r diverges (resonant field solutions):

1 − r21r23e
−2jkx2d ¼ 0; ðB4Þ

whereas the antiresonant field solutions satisfy that all
internal reflections destructively interfere with the initial
reflection from the front interface such that r vanishes:

r12 þ r23e
−2jkx2d ¼ 0: ðB5Þ

The long-range SPP and APP dispersion curves and root
loci, plotted in Figs. 3, 4, and 7 and Movie 4, are calculated
by numerically solving Eqs. (B4) and (B5) over the
appropriate wave-vector and spectral (300 nm–2 μm)
ranges. The method to determine the appropriate wave-
vector range for a given angular range is detailed in
Appendix B 6. The film thickness and permittivity values
used in calculations are experimentally measured as
detailed in Appendix B 3.

5. Calculating the predicted reflectance signature

To calculate the predicted reflectance from our samples,
we follow the primary beam path inside the coupling prism,
as depicted in Fig. 6. The beam collected by the detection
arm is obtained by a sequence of three scattering inter-
actions: a transmission into the prism through its first front
facet, a subsequent reflection from the prism back facet on
which the thin gold film is fabricated, and a final trans-
mission out of the prism through the second prism
front facet.
Consequently, the intensity of the beam along its path is

reduced compared to that of the impinging beam at three
separate instances. Initially, the beam propagates in free

FIG. 6. Path traveled by light in the coupling prism. The
reflected beam (red) undergoes the primary beam path in the glass
prism, consisting of transmission through the first front facet
(t31), reflection from the back facet (r), and transmission through
the second front facet (t13). The incidence (θi) and transmission
(θt) angles in each passage are taken as positive if the beam
propagation direction is counterclockwise to the facet normal
(dashed black lines) and negative otherwise.
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space at a predefined angle θ relative to the prism back facet
normal (vertical black dashed line). It then impinges on the
prism front facet at an angle θf;i ¼ θ − α relative to that
front facet normal (inclined black dashed line), where α ¼
45° is the prism base angle, and is partially transmitted into
the prism at an angle θf;t determined by Snell’s law
ðε3μ3Þ1=2 sinðθf;iÞ ¼ ðε1μ1Þ1=2 sinðθf;tÞ. Hence, its ampli-
tude is reduced by a factor of the Fresnel transmission
coefficient t31ðkz0 ;ωÞ ¼ 1þ r31ðkz0 ;ωÞ calculated for the
wave-vector component parallel to the prism front facet
kz0 ¼ ðω=cÞðε3μ3Þ1=2 sinðθf;iÞ. Subsequently, the beam pro-
pagates within the prism until it impinges on the thin gold
film at an incidence angle θb;i ¼ θf;t þ α relative to the
prism back facet normal. Its amplitude is therefore again
reduced by the thin gold film reflection coefficient rðkz;ωÞ
calculated using Eq. (B3) for the wave-vector component
parallel to the back facet kz ¼ ðω=cÞðε1μ1Þ1=2 sinðθb;iÞ.
Because the prism is symmetric, the beam escapes the
prism at an opposite angle θ to which it enters, and its
amplitude is yet again reduced by t13ðkf;ωÞ. Overall, the
reflected beam collected by the detector is therefore
reduced in intensity relative to the incident beam by a
factor of the reflectance:

Rðθ; λÞ ¼ jt31ðkz0 ;ωÞrðkz;ωÞt13ðkz0;ωÞj2: ðB6Þ

The predicted reflectance signatures, plotted in Figs. 3, 4,
and 7 and Movie 4, are all derived using Eq. (B6).

6. SPP-APP pair trajectory in momentum-energy space

The reflectance at each incidence angle θ is determined
by the magnitude of the thin film field amplitude reflection
coefficient rðkz;ωÞ at a corresponding point kz that satisfies
(see Appendix B 5)

kz ¼ ðω=cÞ ffiffiffiffiffiffiffiffiffi
ε1μ1

p
sinðθb;iÞ;

sinðθ − αÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε1μ1=ε3μ3

p
sinðθb;i − αÞ; ðB7Þ

following Eqs. (B3) and (B6). Assuming a lossless glass
prism, the values of rðkz;ωÞ over the real kz axis are
therefore sufficient to predict the reflectance. Our approach
is to identify how rðkz;ωÞ over the real kz axis is affected
by the distribution of its discrete modes and discrete
antiresonant field solutions, associated with the poles
and zeros over the complex kz domain, respectively. The
closer a pole or zero is to the real kz point associated with a

FIG. 7. Closed-loop root locus of colocalized SPP-APP pairs. (a)–(c) Measured (red) and predicted (green) reflectance of a gold film
illuminated through a glass coupling prism as a function of incidence angle θ at illumination wavelength λ ¼ 800 nm for film thickness
(a) 44, (b) 21, and (c) 11 nm. (d)–(j) Field amplitude reflection coefficient magnitude jrj of the respective gold films (log scale) as a
function of the complex longitudinal wave vector kz, calculated in the topological neighborhood of the two observable real-axis
segments (red dashed lines): (d)–(f) above and (h)–(j) below the critical angle. White curves denote the calculated root locus of the
reflection pole (magenta) and zero (cyan) points, corresponding to the long-range SPP and APP, as the film thickness decreases from
∞ → 0 (points 1 → 2). Vertical black lines in (a)–(c) and black dots in (d)–(j) denote the critical [θ ≈ 43°, kz ¼ k0 ¼ ðω=cÞðε3μ3Þ1=2]
and grazing [θ ≈ 135°, kz ¼ ðω=cÞðε1μ1Þ1=2] angles. The wideband absorption dip formation is illustrated by yellow regions in (c) and
(f). The orange rectangle in (d) marks an enlarged section. The jrj ¼ 1 contour line in (d)–(j) is colored yellow. Movie 4 shows the
continuous transition from points 1 → 2.
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given incidence angle, the stronger its signature over the
observed reflectance at that angle.
This measure of closeness is not obvious due to the

nontrivial topology of the complex wave-vector domain.
The quadratic relation between parallel and normal wave-
vector components k2x;i þ k2z ¼ ðω=cÞ2εiμi implies that
rðkz;ωÞ is a multivalued function of kz, so Eq. (B3) yields
four different values for the multiple root branches of kx;1
and kx;3. The standard mathematical procedure for retriev-
ing a single-valued function for rðkz;ωÞ is to extend the kz
domain over four separate Riemann sheets, associated
with the proper (Imkx ≤ 0) and improper (Imkx ≥ 0)
root branches for each of kx;1 and kx;3. These sheets are
topologically connected at the two branch cuts (Imkx;1 ¼ 0

and Imkx;3 ¼ 0) across which rðkz;ωÞ is continuous [9].
Hence, rðkz;ωÞ becomes a continuous single-valued func-
tion over a topologically nontrivial wave-vector domain.
The real kz point associated with any given incidence

angle must lie in the kx;1-proper kx;3-proper sheet to describe
physical waves that carry energy along their direction of
propagation in the substrate and superstrate. However, the
spatial decomposition of the total field [Eqs. (A1) plus (A2)]
requires only that the −∞ to ∞ integration end points be in
the proper-proper sheet to recover a physical field. The
integration path itself can be continuously deformed in the
complex kz domain across all sheets with the field remaining
unchanged [9]. Hence, while the Fourier spectrum (real kz) is
unique, the Laplace spectrum is not (complex kz), and so
complex poles and zeros across all sheets can contribute to
the observed field. To evaluate the contribution of each pole
or zero, we introduce a notion of topological proximity to the
directly observable part of the wave-vector domain, as
illustrated in Fig. 7.
There are two distinct segments of the real kz axis

that are directly accessible from the far field using the
coupling prism (red dashed lines). The first segment shown
in Figs. 7(h)–7(j) runs along the branch cuts of both kx;3 and
kx;1, up to the branch point of kx;3 at the free-space light line
kz ¼ ðω=cÞðε3μ3Þ1=2. It corresponds to incidence angles
ranging from normal incidence onto the prism (θ ¼ 0°)
to the critical angle for total internal reflection at the
prism back facet (θ ≈ 43°). The second segment shown in
Figs. 7(d)–7(f) runs only along the branch cut of kx;1
between the branch points of kx;3 and kx;1, ending at the
glass substrate light line kz ¼ ðω=cÞðε1μ1Þ1=2. It corre-
sponds to incidence angles ranging from the critical angle
(θ ≈ 43°) to the grazing angle at the prism back facet
(θb;i ¼ 90°, θ ≈ 135°), in between the two vertical black
lines in Figs. 7(a)–7(c).
Each of the two directly observable wave-vector seg-

ments has a different topological neighborhood in the
complex kz domain for which rðkz;ωÞ remains continuous
across branch cuts. While toward the upper half space
(Imkz > 0) the topological neighborhood of both segment
consists of the proper-proper sheet (Imkx;1 ≤ 0, Imkx;3 ≤ 0),

to continuously reach the lower half space (Imkz < 0)
through each segment requires crossing different branch
cuts and, therefore, arrives at different sheets. The first
segment crosses both branch cuts into the improper-
improper sheet (Imkx;1 ≥ 0, Imkx;3 ≥ 0) [Figs. 7(h)–7(j)],
whereas the second segment crosses only the kx;1 branch
into the improper-proper sheet (Imkx;1 ≥ 0, Imkx;3 ≤ 0)
[Figs. 7(d)–7(f)]. Consequently, the two observable seg-
ments probe different poles and zeros, as each segment is
affected only by those poles and zeros topologically
adjacent to it.
To map the contribution of the long-range SPP and APP

to the reflectance, we track the path of their associated pole
and zero points in the topologically nontrivial complex kz
domain [Figs. 7(d)–7(j)]. The root loci (white curves) of
their respective pole (magenta) and zero (cyan) points
jointly form a semiclosed loop: They originate in common
creation or annihilation at the thick film limit (yellow
point 1) and end in coalescence over the Brewster angle of
the emerging glass-air interface at the vanishing film limit
(yellow point 2). At point 1, both the pole and zero lie in the
improper-proper sheet and so cancel as they meet, signify-
ing that both resonant and antiresonant plasmonic degrees
of freedom are eliminated once the gold-air interface on
which they are localized becomes inaccessible. Conversely,
at point 2, the zero has already crossed the real axis into the
proper-proper sheet, so the pole and zero occur at the same
kz but on opposite sheets. Consequently, reciprocity dic-
tates that their associated field solutions become identical,
and the two degrees of freedom localized on the vanishing
gold-air interface coalesce into the single antiresonant
degree of freedom available for the emerging glass-air
interface at the Brewster angle.
The contribution of the long-range SPP and APP to the

reflectance depends on which stage the pole and zero are
located along their closed-loop root locus. There are three
stages connecting four critical points: the creation point, the
point at which the zero crosses between sheets along the
real kz axis, the point of maximum momentum splitting
between the zero and pole, and the coalescence point. In the
first stage, the zero moves in close topological proximity to
the real axis segment observable above the critical angle
[44 nm, Fig. 7(d)], and the narrow Kretschmann reflectance
dip emerges as a result [Fig. 7(a)]. In the second stage, the
zero and pole lie on opposite sheets at comparable topo-
logical proximity to that same observable segment [21 nm,
Fig. 7(e)], so the dip-dominated reflectance gives way to a
combined peak-and-dip signature [Fig. 7(b)]. In the third
stage, the zero and pole move away from the topological
neighborhood of that segment, retrieving the flat total
internal reflection response of a bare glass prism above
the critical angle, while the zero also moves into close
topological proximity of the other observable real axis
segment retrieving the standard Brewster angle signature
below the critical angle.
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The strong wideband absorption we observe for ultrathin
gold films [Fig. 3(c)] originates in the rapid approach of the
zero and pole to the point of maximal momentum splitting
[11 nm, Fig. 7(f)], prior to their exponential convergence
toward the coalescence point in the vanishing film thick-
ness limit. In the process, the reflectance peak squeezes
onto the critical angle, because (i) the influence of the
pole shifts to lower incidence angles as it travels to smaller
wave vectors under the free-space light line, while (ii) its
influence is also cut off at the critical angle, as it travels in
the improper-proper sheet disconnected from the topologi-
cal neighborhood of the real axis segment observable below
the critical angle. Conversely, the influence of the zero
extends over the entire angular range, because it travels in
the proper-proper sheet. Consequently, the reflectance dip
extends over most of the angular range above the critical
angle [Fig. 7(f), highlighted in yellow], giving rise to strong
angularly and spectrally wideband absorption: an approx-
imately 83% absorption dip with a FWHM angular
bandwidth of Δθ ≈ 47° [Fig. 7(c), highlighted in yellow,
shown for λ ¼ 800 nm] and spectral bandwidth of Δλ >
1.34 μm [Fig. 3(c), from λ ≈ 655 nm and extending beyond
our measurement range]. Appendix B 9 details how to
design for this effect.

7. The excitation direction dependence of APPs

In principle, each plasmonic interface in a structure
contributes a pair of resonant (SPPs) and antiresonant
(APPs) degrees of freedom that are jointly created and
annihilated in momentum-energy space, excluding the
interface facing the source. For example, the thin gold
film has two plasmonic interfaces, supporting one resonant-
antiresonant pair that originates from its back interface
relative to the direction of illumination. As shown in Fig. 8,
when illuminated from the glass side, one APP exists, and it
is paired to the long-range SPP localized on the metal-air
interface. However, when illuminated from the air side, one
different APP exists, and it is paired to the short-range SPP
localized on the gold-glass interface. These two separate
APPs can be termed “long-range” and “short-range” by
association, and, while the former can be observed in the far
field using a coupling prism (Fig. 3), the latter typically
requires excitation with larger momentum. This example
illustrates that, unlike resonant DOFs, antiresonant DOFs
are directional and depend on the direction from which the
structure is illuminated.

8. Mutual deflection in the line
shape of an SPP-APP pair

An isolated complex reflection pole or zero projects an
extremum onto the angular line shape at the angle corre-
sponding to the real part of its wave vector. In contrast,
when both a complex pole (SPP) and zero (APP) are
present, the extrema they project become offset from the
real part of their wave vectors by an amount that grows with

the imaginary part. For instance, taking a simple rational
function approximation to the reflection coefficient
Eq. (C2) yields that the maximum (þ) and minimum
(−) in the reflectance Eq. (C3)

Ω� ¼ −Q
2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
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≈
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are offset from the real part of their normalized wave
vectors by an amount that scales with the imaginary part
(�Q−1), where Q ¼ qþ ðb − 1Þ=q using the quantities
defined in Eq. (C4). This mutual deflection is evident from
tracing contour lines in Figs. 4(h) and 4(f) for the 11 nm
gold film, at which the long-range SPP and APP wave
vectors attain much larger imaginary parts compared to the
21 and 44 nm films. It also explains the offset in Fig. 3(f)
between the measured high and low reflectance areas and
the calculated real part of the dispersion. In principle,
therefore, to understand a forced optical response in terms
of discrete SPP-APP pairs, one needs to consider their full-
fledged complex dispersion.

FIG. 8. Dependence of APPs on the direction of illumination.
The field amplitude reflection coefficient r of an 11 mn gold film
at illumination wavelength λ ¼ 800 nm calculated over the
complex wave-vector range kz observable when illuminating
from (a) the glass prism side and (b) the air side. SPPs and APPs
correspond to exact reflection pole (magenta) and zero (cyan)
wave vectors (white circles), respectively. Unlike SPPs, the
supported APPs depend on the illumination direction: In (a), a
“long-range” APP is paired to the long-range SPP, and in (b), a
different “short-range” APP is paired to the short-range SPP
(white curves denote their calculated root locus as the film
thickness decreases from ∞ → 0). The reflection coefficient is
calculated in the topological neighborhood of the real wave-
vector axis for illumination with wave vectors exceeding the light
line in air (left dashed red line) and glass (right dashed red line),
with branch cuts denoted by black lines. The jrj ¼ 1 contour line
is colored yellow.
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9. Designing for the black gold film effect

The phenomenon of wideband absorption by ultrathin
gold films can be predicted from the shape of the long-
range SPP-APP pair root locus as the film thickness
decreases (Fig. 9). This shape is dictated by the root locus
end points, at the asymptotic film thickness limits when the
gold-air interface on which the pair is localized becomes
inaccessible to the source. As illustrated in Fig. 9(a), the
root locus starts with generation of the reflection pole-
zero pair at the gold-air single-interface SPP wave
vector kz;d→∞ ¼ k0½ε2ε3=ðε2 þ ε3Þ�1=2 in the improper-
proper sheet and ends with a coalesce at the glass-air
Brewster angle kz;d→0 ¼ k0½ε1ε3=ðε1 þ ε3Þ�1=2 to which the
pole and zero converge from opposite sheets (see
Appendix B 6).
At any stage along the root locus, the pole-zero pair

must be tilted with respect to the real wave-vector axis
(Refkz;LR−APPg > Refkz;LR−SPPgÞ to satisfy a smaller than
one reflectance (see Supplemental Material [42]). Hence,
as illustrated in Fig. 9(b), there exists a range of thick-
nesses d1 ≤ d < d2 for which the zero crosses under the
branch point of total internal reflection in the prism
(Refkz;LR-SPPg ≤ k0n3), but the zero does not yet cross
above it (Refkz;LR-APPg > k0n3). In that range, the pole is
blocked from strongly projecting onto the observable
(proper-proper) angular range anywhere away from the
critical angle, while the zero remains to dominate the entire
range from the critical angle to grazing angle in the prism.
Solely based on that, one can predict a wide absorption dip
for a narrow range of film thicknesses in the ultrathin
regime.
The film thickness achieving the strongest wideband

absorption within that range satisfies the condition that the

pole is located under the total internal reflection branch
point [film thickness d1 in Fig. 9(b)]:

Refkz;LR-SPPg ¼ k0n3; ðB9Þ

where n3 is the refractive index of the superstrate (n3 ¼ 1
for air). This condition maximizes Refkz;LR-APPg in the
range d1 ≤ d < d2 [Fig. 9(b)] and with it the projection
strength of the zero over the angular range above the critical
angle—maximizing absorption (a maximally split state).
One thus needs to solve Eq. (B4) under the constraint
Eq. (B9), finding the root of a scalar real-valued function of
one real variable

fðaÞja∈Rþ ¼ Reflnðr21r23Þ=kx;2gjkz¼k0ðn3−jaÞ ¼ 0; ðB10Þ
and substitute the solution in the closed-form expression

d1 ¼ lnðr21r23Þ=2jkx;2jkz¼k0ðn3−jaÞ; ðB11Þ

which yields a real value, since kz now solves Eq. (B4).
We design the ultrathin gold film that exhibits strong

wideband absorption [Figs. 3(c) and 7(c)] using Eqs. (B10)
and (B11). Subject to fabrication process variation, we aim
for a film thickness at which the long-range SPP-APP pair
satisfies Eq. (B9) at λ ¼ 800 nm, so the resulting pole-
zero positions in Figs. 7(f) and 7(h) mimic condition d1 in
Fig. 9(b). Despite fixing the wavelength, this procedure
also yields spectrally wideband absorption, because gold
dispersion decreases monotonically at larger wavelengths
away from the interband transitions at 520 nm. Con-
sequently, it takes a wide spectral range for the SPP-
APP locations to move across the entire range of positions
suitable for wideband absorption (d1 ≥ d < d2). As seen in
Fig. 3(f), the fabricated sample satisfies condition d1 at
λ ¼ 1718 nm when Refkz;LR-SPPg (solid black curve)
crosses the light line k0n3 (dashed curve) and satisfies
condition d2 at λ ¼ 546 nm when Refkz;LR-APPg (white
curve) crosses the light line—a bandwidth of about Δλ ¼
1.17 μm (FWHM estimation is larger).
One can further increase the spectral bandwidth by

maximizing the path d1 → d2, that is, finding the film
thickness at which Refkz;LR-APPg under condition d1 is
maximized over a range of wavelengths

max
λ in range

ðRefkz;LR-APPgjd¼d1ðλÞÞ; ðB12Þ

adding an optimization layer on top of Eq. (B10) that
maximizes a real function over a bounded domain. In
each iteration, Eq. (B10) is solved at a given wavelength
for kz;LR-SPP that satisfies condition d1, followed by
extracting kz;LR-APP by solving Eq. (B5) using k�z;LR-SPP
as an initial guess for fast convergence. The entire calcu-
lation can be completed with the computational complexity
of O½log ðerror−1Þ2�, as the root finding Eq. (B10) can be
implemented with at least a quadratic convergence rate and

FIG. 9. SPP-APP pair location range for wideband absorption.
(a) Sketch of the long-range SPP-APP pair (red-green) closed-
loop root locus in the complex wave-vector domain (kz) as the
film thickness decreases (∞ → 0), from creation or annihilation
at the gold-air single-interface SPP wave vector to coalesce at the
glass-air Brewster angle (1 → 2). (b) The tilt of their associated
pole-zero pair (circles) with respect to the real axis ensures a film
thickness range d1 → d2 for which the pole crossed under the
total-internal-reflection (TIR) branch point and is mostly blocked
from the observable (proper-proper) real (angular) axis, but the
zero has not yet crossed above it, thus imprinting an absorption
dip ranging from the critical angle to the grazing angle.
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the maximization Eq. (B12) with at least a linear con-
vergence rate. Moreover, it may suffice to solve Eq. (B10)
once at a single wavelength, since performing the maxi-
mization over a spectral range changes our planned film
thickness by only about 1 nm (comparable to fabrication
error), improving the expected wavelength-averaged
absorption cross section by less than 1%.

APPENDIX C: INABILITY OF THE FANO
MODEL TO DESCRIBE ULTRATHIN

FILM REFLECTANCE

The notion of a Fano resonance is often invoked to
explain asymmetrical peak-and-dip line shapes in the
spectrum of driven optical systems. It is defined by the
following spectral line shape formula [10,11]:

σðEÞ ¼ D2
ðqþΩÞ2
1þ Ω2

; ðC1Þ

where E is the energy, q is the Fano parameter, Ω ¼
2ðE − E0Þ=Γ is the dimensionless frequency, Γ and E0 are
the resonance width and energy, respectively, and D ¼
2 sin δ is related to the Fano parameter by q ¼ cot δ. The
Fano resonance emerges in the response of two coupled
oscillators (states) to a driving force acting on one of them.
However, such a response conforms to the Fano line shape
only if the two oscillators are weakly coupled and have
vastly different damping rates, corresponding to a discrete
state and a continuum [10].
While the Fano model typically relates to spectral line

shapes, it can also be fitted to angular line shapes, meaning
to scattering responses that depend on momentum rather
than energy. Such a Fano model has been invoked to
explain the asymmetric angular line shape occurring in the
reflectance of thin metal films in attenuated total reflection
conditions, specifically those associated with the zero-
reflectance Kretschmann dip [50,51]. It associates the
asymmetric Kretschmann dip signature with a Fano reso-
nance emerging from the coupling between the long-range
SPP mode (a narrow discrete state) and the continuum of
scattered background radiation. However, as shown below,
the Fano model cannot predict nor explain the wideband
absorption we observe for ultrathin gold films.

1. Approximating the angular reflectance
with a Fano model

To argue that the asymmetric reflectance signature of
thin metal films arises from a Fano resonance, the field
amplitude reflection coefficient r is approximated in the
angular range of observation as a function of momentum to
include only the straightforward contribution of a nearby
zero and pole [50]:

rðkzÞ ≈D
kz − kz;zero
kz − kz;pole

; ðC2Þ

where kz is the complex parallel wave-vector component
defined in Appendix B 5 and kz;pole and kz;zero are complex
parameters that should fit the dominant reflection pole and
zero locations in the wave-vector domain, respectively.
This approximation produces the angular reflectance line
shape given by the squared absolute value of Eq. (C2),
which obeys a generalized Fano equation

RðθÞ ≈D2
ðkz − Rekz;zeroÞ2 þ ðImkz;zeroÞ2
ðkz − Rekz;poleÞ2 þ ðImkz;poleÞ2

¼ D2
ðqþΩÞ2
1þΩ2

þD2
b

1þΩ2
; ðC3Þ

in which the dimensionless frequency Ω and Fano param-
eter q are joined by a screening parameter b:

Ω ≜ ðkz − Rekz;poleÞ=Imkz;pole;

q ≜ Refkz;pole − kz;zerog=Imkz;pole;

b ≜ ðImkz;zero=Imkz;poleÞ2; ðC4Þ

and kz is real to correspond to incidence angles θ according
to Eq. (B7) in Appendix B 6.
Before discussing the invalidity of this approximation for

ultrathin films, we emphasize that the generalized line
shape Eq. (C3) differs from the exact Fano line shape
given by Eq. (C1): In addition to the Fano contribution, it
includes a non-negative Lorentzian term that depends on
the screening parameter. While not affecting the resonance
width, the screening parameter does determine its contrast
and prevents it from reaching zero [55]. Hence, the gen-
eralized line shape Eq. (C3) is dominated by the Fano
resonance term only if the imaginary part of the pole is
significantly larger than that of the zero (high contrast):

jImkz;zeroj ≪ jImkz;polej: ðC5Þ

Moreover, within a finite angular range (�jImkz;zeroj) of
the Fano resonance dip (kz ¼ Rekz;zero), the dominant
contribution to the line shape is necessarily from the peak
of the Lorentzian term

jkz − Rekz;zeroj < jImkz;zeroj; ðC6Þ

and that range broadens as the contrast deteriorates.
The asymmetric zero-reflectance Kretschmann dip forms

(roughly 50 nm in gold) at the film thickness for which
the zero crosses the real axis [Imkz;zero ¼ 0, Figs. 7(d)
and 7(h)], coinciding with the condition under which the
approximate reflectance Eq. (C3) reduces to an exact Fano
line shape Eq. (C1) (b ¼ 0). The high contrast emerging in
that case allows the Fano resonance term to be well fitted to
the pronounced reflectance dip. However, for thinner films
(below 25 nm in gold), the strong coupling between the
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adjacent metal-dielectric interfaces causes the pole and
zero to acquire imaginary parts of comparable magnitude
[Fig. 7(e)], especially for ultrathin films where the imagi-
nary part of the zero becomes larger than that of the pole
[Fig. 7(f)]. This strong coupling, therefore, violates con-
dition Eq. (C5) and broadens the Lorentzian-dominated
angular range Eq. (C6). Hence, even if one falsely assumes
that Eq. (C3) is a valid approximation to the reflectance at
those film thicknesses, the necessarily poor contrast
(b > 1) limits the capacity of the Fano resonance term
to account for pronounced features in the line shape, such
as the wideband absorption of ultrathin gold films.

2. Failure of the Fano model for ultrathin films

From a strictly quantitative standpoint, neither the Fano
line shape Eq. (C1) nor its generalized form Eq. (C3) fit the
reflectance signature of gold films that are thinner than
25 nm. This failure is shown in Fig. 10, comparing the
exact reflection pole and zero wave vectors with those
extracted from fitting the analytic reflectance to the
generalized Fano line shape, for gold film thickness ranging
from 0 to 80 nm. The fitting is performed using the

procedure described in Ref. [56], for all five coefficients
c1−5 of the generalized Fano line shape

RðkzÞ ¼ c1

�
1 − c2 þ c3ðkz − c4Þ

ðkz − c4Þ2 þ c25

�
; ðC7Þ

from which the fitted pole and zero wave vectors can be
extracted by comparing Eqs. (C2) and (C6):

c1 ¼ D2;

c2 ¼ ðImkz;poleÞ2 − ðImkz;zeroÞ2 − ðRefkz;pole − kz;zerogÞ2;
c3 ¼ −2Refkz;pole − kz;zerog;
c4 ¼ Rekz;pole; c5 ¼ Imkz;pole: ðC8Þ

The exact reflection pole and zero wave vectors are
attained from numerically solving Eqs. (B4) and (B5), and
the analytic reflectance is calculated from the squared
absolute value of the field amplitude reflection coefficient
Eq. (B3), substituting the experimentally extracted film
thicknesses and material permittivities, as described in
Appendix B 3. The wave vector kz is used as the

FIG. 10. Comparison of the exact and Fano fitted dispersion. (a) The exact (solid curves) and fitted (dotted curves) values of the
reflection pole (red) and zero (green) complex wave vectors as a function of gold film thickness d at illumination wavelength
λ ¼ 800 nm. Inset: A top view showing their closed-loop trajectory (yellow points 1 → 2). (b)–(e) Projections of the pole and zero wave
vectors in (a) over the real and imaginary axes separately. The narrow wave-vector region in which the generalized Fano line shape fits
the exact calculated reflectance with a reasonable coefficient of determination (R2 > 0.7) is highlighted in yellow, corresponding to
films thicker than 25 nm (solid black line). The maximally split momentum state of the pole and zero that gives rise to wideband
absorption is highlighted by black dots (11 nm) and lies outside of this region.
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independent fitting parameter, and fitting is performed over
the wave-vector range that corresponds to the angular range
we cover in our experiment (40° ≤ θ ≤ 50°), according to
Eq. (B7) in Appendix B 6.
Figure 9 shows that the fitted pole and zero wave vectors

(dotted curves) cease to track the exact values (solid curves)
for gold films thinner than 25 nm. Moreover, in that
ultrathin film range, the reflectance signature cannot be
fitted to the generalized Fano line shape Eq. (C3) with a
reasonable coefficient of determination (R2 > 0.7, denoted
by the yellow region). Consequently, the Fano model does
not track the close-loop trajectory that the pole and zero
follow in the wave-vector domain, most of which is
traversed in the ultrathin film range. Instead, out of the
wide range of wave vectors this trajectory covers, the Fano
model tracks the pole and zero only across a narrow region
at the vicinity of the real axis [noted by the yellow rectangle
in Fig. 10(a)]. The maximally split state of the pole and zero
wave vectors (11 nm, black dots), which gives rise to
wideband absorption by ultrathin films [Appendix B 6
and B 9, Figs. 7(c), 7(f), and 9(b)], lies outside of this
region. Therefore, the Fano model cannot reconstruct it and
explain the wideband absorption we observe for ultrathin
gold films.

3. Intrinsic limitations of the Fano model

The Fano model fails to explain the reflectance of
ultrathin films because it is oversimplified and does not
encompass the underlying physics. In principle, the

generalized Fano line shape Eq. (C3) attempts to reduce
the angular line shape to a straightforward contribution of a
dominant pole and zero, resulting in a leading term
attributed to a Fano resonance. However, while the angular
line shape is indeed dominated by a reflection pole (SPP)
and zero (APP), their contribution is not at all straightfor-
ward, because the complex wave-vector domain is topo-
logically nontrivial (Appendix B6, Fig. 7). Hence, as
shown in Fig. 11, fitting the generalized Fano line shape
(blue) to the reflectance of ultrathin films (green) produces
not only false values for the dispersion of the excited
physical states, i.e., the pole and zero locations (black
circles), but also values that strongly depend on the
particular angular range over which fitting is performed
(black arrows 1–3)—a clear indication that the model is
underfitted and has little predictive capacity [Figs. 11(c)
and 11(f)].
Beyond its inability to predict the dispersion of the

excited physical states, the Fano model also qualitatively
fails to track important features in the reflectance. For
instance, it cannot track the shape of the narrow peak
emerging just above the critical angle (solid black line at
θ ≈ 43°), especially for ultrathin gold films when it
becomes pronounced [Fig. 11(c)]. This failure is because
a straightforward contribution of a pole and zero cannot
describe how the pole is topologically cut off from affecting
the reflectance below the critical angle due to the light-line
branch point, while the zero continues to affect the entire
angular range (Appendix B6, Fig. 7). The former keeps the

FIG. 11. Dependence of the Fano model on fitting range. Calculated reflectance of (a) 44, (B) 21, and (c) 11 nm gold films (green
curve) at illumination wavelength λ ¼ 800 nm, compared to the generalized Fano line shape (blue curves) fitted over three incidence
angle ranges (black arrows): the range covered in our experiment (solid curve, noted 1), the subset of the former lying above the critical
angle (dashed curve, noted 2), and the entire angular range accessible above the critical angle (dotted curve, noted 3). (d)–(f) The field
amplitude reflection coefficient r calculated over the complex wave-vector range kz corresponding to the angular range and film
thicknesses in (a)–(c), showing the exact reflection pole (magenta) and zero (cyan) wave vectors (white circles) over their closed-loop
trajectory (white curve), compared to the fitted pole and zero wave vectors (black circles) extracted from the Fano model fitted over the
angular ranges 1–3. Enlarged sections are highlighted by orange rectangles. For a genuine comparison, the reflectance RðθÞ in (a)–(c)
equals jrðkzÞj2 and is not corrected for partial transmission at the entry and exit from the coupling prism.
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peak narrow, while the latter makes it pronounced on both
sides of the critical angle for ultrathin films. This dynamic
cannot be captured by a Fano model [Figs. 11(a)–11(c),
blue curves 1–3], regardless of the angular range used for
fitting (black arrows 1–3).
In principle, the Fano intensity line shape [jrj2, Eq. (C3)]

not only identifies the amplitude transfer function of a
system with a rational function having a complex pole and
a complex zero [r, Eq. (C2)], but also assumes these
singularities project in a topologically trivial manner from
the complex parameter space (wave vectors) onto its
observable subspace of interest (incidence angles). When
this underlying assumption is violated, such as in the case
of reflectance from ultrathin gold films, even a system
dominated by one pole and one zero need not obey a Fano-
like behavior.
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