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Bosonic rotation codes, introduced here, are a broad class of bosonic error-correcting codes based on
phase-space rotation symmetry. We present a universal quantum computing scheme applicable to a subset
of this class—number-phase codes—which includes the well-known cat and binomial codes, among many
others. The entangling gate in our scheme is code agnostic and can be used to interface different rotation-
symmetric encodings. In addition to a universal set of operations, we propose a teleportation-based error-
correction scheme that allows recoveries to be tracked entirely in software. Focusing on cat and binomial
codes as examples, we compute average gate fidelities for error correction under simultaneous
loss and dephasing noise and show numerically that the error-correction scheme is close to optimal
for error-free ancillae and ideal measurements. Finally, we present a scheme for fault-tolerant,
universal quantum computing based on the concatenation of number-phase codes and Bacon-Shor
subsystem codes.
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I. INTRODUCTION

Encoding quantum information into bosonic systems
[1–3] is an alternative to conventional error-correcting
codes based on discrete two- (or few-) state systems.
The infinite Hilbert space of a single bosonic mode
provides a playground for redundant digital encodings that
can be tailored to a specific task [4–10]. A natural
application is to use a bosonic code at the ground level
in a concatenated error-correction scheme to suppress
errors below the fault-tolerance threshold of a conventional
qubit-based code [3,11], potentially reducing the total
overhead. Decoders that exploit the continuous-variable
nature of bosonic codes can improve the fault-tolerance
threshold [12–14] and reduce the number of physical
qubits required [15]. From a hardware perspective, well-
controlled, low-loss bosonic modes occur in many quantum
technology platforms, such as electromagnetic modes in
optical cavities [16,17] and free space [18], superconduct-
ing circuits and microwave cavities [19–23], and motional
modes in ion traps [24–26].

Gottesman, Kitaev, and Preskill (GKP) introduced a
seminal scheme for quantum computing with bosonic
codes, based on states with discrete translation symmetry
in phase space [3]. While GKP code words were recently
prepared and manipulated in the laboratory [26], exper-
imental progress with other bosonic codes—especially the
cat [2,5,27,28] and binomial code families [6]—is more
advanced. In a breakthrough experiment, Ofek et al. [29]
demonstrated enhancement in the lifetime of a cat-code
qubit compared to an unencoded qubit using the same
hardware—the so-called break-even point for error correc-
tion. This experiment was the first error-correction scheme
to achieve this milestone in an experiment. A similar
experiment using binomial codes also came very close
to break even [30]. Initial steps toward fault-tolerant error
correction with these codes have been made recently [31].
In this work, we show how cat and binomial codes

belong to a larger family of bosonic codes characterized by
discrete rotation symmetry in phase space, in analogy to the
discrete translation symmetry of GKP codes. Specifically,
we consider codes where a single qubit is encoded into a
subspace in which the discrete rotation operator ẐN ¼
exp ½iðπ=NÞn̂� acts as logical Z̄, where n̂ is the Fock-space
number operator. We refer to these codes as bosonic
rotation codes. The parameter N here quantifies the degree
of discrete rotation symmetry for the code: It immediately
follows that the operator R̂N ¼ Ẑ2

N acts as the identity on
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the code space; i.e., any state in the code space is N-fold
rotation symmetric in the sense that it is invariant under a
rotation by 2π=N.
A consequence of N-fold rotation symmetry is that

an encoded state jψNi has support only on every Nth
Fock state, jψNi ¼

P∞
k¼0 ckN jkNi. The degree of rotation

symmetry N thus quantifies the magnitude of a detectable
shift in number and sets a code distance in Fock space.
A complementary notion of distance for phase-space
rotations, π=N, quantifies detectable rotation errors and
reveals a trade-off between detectable number-shift and
rotation errors.
A special subset of the bosonic rotation codes we

introduce are number-phase codes, which are rotated
superpositions of states with a small phase uncertainty
[32]. We show that a vanishing phase uncertainty is related
to (approximate) number-translation symmetry. In the limit
of vanishing phase uncertainty, the number-phase codes are
analogous to ideal GKP codes, with number and phase
playing dual roles in place of position and momentum.
Interestingly, we show that cat codes, binomial codes, and
the shift-resistant qudit codes introduced in Ref. [3] each
approach this ideal limit of vanishing phase uncertainty as
their average excitation number increases.
We present a scheme for universal quantum computation

for number-phase codes, where the workhorse is an
entangling controlled-rotation (CROT) gate based on a
cross-Kerr interaction (∼n̂ ⊗ n̂). A properly tuned CROT

serves as a logical controlled-Z, ĈZ ¼ diagð1; 1; 1;−1Þ,
between two number-phase codes. Notably, codes with
different degrees of rotation symmetry and of different
type (e.g., cat and binomial) can be fully entangled by the
CROT gate. Similarly, a self-Kerr interaction (∼n̂2) can be
used to enact the single-qubit phase gate Ŝ ¼ diagð1; iÞ.
Augmented with preparation of dual-basis code words
jþNi and destructive measurements in the dual basis, all
Clifford gates can be executed. Universality is achieved
using injected magic states. The gates we introduce have
favorable properties in terms of fault tolerance: Errors are
amplified and spread in a very limited way, such that the
“size” of an error after a gate is proportional to the “size”
prior to the gate.
We also introduce a new error-correction scheme for the

number-phase codes discussed above. The error correction
is based on teleporting the encoded information into a new,
fresh ancilla [33]. A remarkable feature of this approach is
that recovery operations can be tracked entirely in software.
In essence, the need for potentially difficult and highly
nonlinear operations to restore the code space is replaced
by preparation of ancillae in logical basis states.
We perform a numerical study of error-correction per-

formance in the presence of simultaneous loss and dephas-
ing noise on encoded qubits, while assuming noiseless
ancillae. A critical question for a bosonic error-correcting
code is whether it performs better than the “trivial

encoding”—a qubit encoded in Fock states j0i and j1i—
under the same noise model. The point where the error-
corrected qubit performs as well as the trivial encoding is
referred to as the break-even point for error correction. For
the studied noise model, we find that both cat and binomial
codes go beyond break even by several orders of magnitude
for degrees of rotation symmetry in the range N ¼ 2–4 and
dimensionless noise strength for simultaneous loss and
dephasing in the range κt ¼ 10−3–10−2. Remarkably, we
also find that the teleportation-based error-correction
scheme we introduce performs nearly as well as the optimal
recovery map (found numerically), for noise-free ancillae
and idealized measurements.
Finally, we outline a fault-tolerant and universal scheme

based on concatenating number-phase codes with Bacon-
Shor subsystem codes [34–37]. The concatenation serves
three purposes: to deal with errors in state preparation
which are hard to check for, to suppress errors in noisy
measurements by exploiting correlations across multiple
measurement outcomes, and to further lower the logical
error rate by dealing with errors that are too large for the
bosonic code to handle. Our specific example using a
Bacon-Shor code illustrates the broader point that a fault-
tolerant scheme should be tailored to the strengths and
weaknesses of the bosonic code at the ground level.
This paper is laid out as follows. In Sec. II, we detail the

structure of bosonic rotation codes and describe how to
distinguish the code words in the computational and dual
bases using number and phase measurements, respectively.
We introduce a measure of modular phase uncertainty that
quantifies the embeddedphase-measurement error in a given
bosonic rotation code. In Sec. III, we define number-phase
codes, a family of bosonic rotation codeswith smallmodular
phase uncertainty, and we give examples of number-phase
codes, including cat and binomial codes. In Sec. IV, we
present a universal scheme for quantum computing with
number-phase codes. In Sec. V, we give amethod to perform
a modular excitation number measurement, n̂ mod N,
which can be used to detect number errors and to prepare
bosonic rotation code words. In Sec. VI, we study in detail
error propagation and show that the gates in our set map
small errors to small errors and are in that sense fault tolerant.
In Sec.VII, we lay out a scheme for teleportation-based error
correction that can be used for any number-phase code, and
we numerically test the performance of our error-correction
procedure for cat and binomial codes under simultaneous
loss and dephasing. In Sec. VIII, we outline a fault-tolerant
scheme for quantum computing based on the concatenation
of number-phase codes and Bacon-Shor subsystem codes.
Finally, in Sec. IX, we summarize our results and highlight
open problems.

II. BOSONIC ROTATION CODES

Single-mode bosonic codes utilize the large Hilbert
space of a bosonic mode to protect logical quantum
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information. There are countless ways to embed a qubit,
with each encoding comprising a two-dimensional sub-
space spanned by states serving as the logical code words
and the remaining Hilbert space providing the freedom to
detect and correct errors. In many physical implementa-
tions, the dominant sources of noise are loss, gain, and
dephasing. Various bosonic qubit encodings have been
designed specifically to counteract these noise processes,
notably cat [2,5,27,28] and binomial codes [6], which share
the key property that the code words exhibit discrete
rotational symmetry.
We use discrete rotation symmetry to define a class of

single-mode codes called bosonic rotation codes. First, we
say that a code has discrete N-fold rotation symmetry if
any state jψi in the code subspace (code space) is a þ1
eigenstate of the discrete rotation operator [38]

R̂N ≔ eið2π=NÞn̂; ð1Þ
where n̂ ¼ â†â is the Fock-space number operator
(½â; â†� ¼ 1). It follows that the square root of R̂N preserves
the rotation symmetry and acts as a Hermitian operator that
squares to the identity on the code space. We define an
order-N bosonic rotation code, or rotation code for short, to
be a code where the operator

ẐN ≔ R̂2N ¼ eiðπ=NÞn̂ ð2Þ

acts as logical Z̄. The choice of Z̄ over X̄ is just a
convention, but we emphasize that a code where ẐN acts
as a non-Pauli operator is not a rotation code according to

our definition. An example of the latter is a square-lattice
GKP code where Z̄2 acts as a logical Hadamard. This
distinction is important when discussing “easy” and “hard”
gates for different codes. We briefly comment on the
rotation symmetry of GKP codes in the Appendix C.
The logical code words for any order-N rotation code can

be constructed from discrete rotated superpositions of a
normalized primitive state jΘi. In fact, we have that two
states j0N;Θi and j1N;Θi satisfy ẐN jjN;Θi ¼ ð−1ÞjjjN;Θi if
and only if the two states can be written in the following
form:

j0N;Θi ≔
1ffiffiffiffiffiffiffi
N 0

p X2N−1

m¼0

eiðmπ=NÞn̂jΘi; ð3aÞ

j1N;Θi ≔
1ffiffiffiffiffiffiffi
N 1

p X2N−1

m¼0

ð−1Þmeiðmπ=NÞn̂jΘi; ð3bÞ

where N i are normalization constants. There is a technical
constraint on jΘi for the codewords to be nonzero,whichwe
specify precisely in Sec. II A. When the rotated primitives
appearing in Eq. (3) are orthogonal, hΘjðẐNÞmjΘi ¼ 0 for
0 < m < 2N, then N 0 ¼ N 1 ¼ 2N. Generally, however,
they are not orthogonal, and the normalization constants are
different,N 0 ≠ N 1. Regardless, the codewords themselves
are exactly orthogonal for any valid jΘi, and any state in the
code space, jψNi ¼ aj0Ni þ bj1Ni, has N-fold rotation
symmetry, R̂N jψNi ¼ jψNi. Here and henceforth, we sup-
press the Θ subscript when referring to a generic rotation
code of order N unless it is required for clarity.

FIG. 1. Graphical summary of several N ¼ 4 rotation codes: cat and squeezed cat (Appendix B 1), binomial (Appendix B 2), and
Pegg-Barnett (Appendix B 3). Logical code words are þ1 eigenstates of the discrete rotation operator [Eq. (1)] and exhibit N-fold
rotation symmetry. Top row: Ball-and-stick diagrams illustrating jþNi (orange) and j−Ni (blue). Indicated on each is the primitive jΘi
for the code. Bottom row: Wigner functions for the jþNi stateWjþNiðαÞ. Red (blue) is positive (negative), the color scale on each plot is
different, and Q ¼ 1

2
ðαþ α�Þ and I ¼ ð1=2iÞðα − α�Þ are the real and imaginary parts, respectively, of α.
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From the above, we recognize that there are many
different rotation codes with the same degree of rotation
symmetry N. While a given primitive jΘi uniquely defines
an order-N rotation code, there are many possible primi-
tives that give rise to the same code. Several examples of
rotation codes are shown in Fig. 1. The best known
example is cat codes, where the primitive is a coherent
state jΘcati ¼ jαi [5,39]. Another simple example is the
“0N codes” j00Ni ≔ j0i, j10Ni ≔ jNi [40,41], which can be
constructed, e.g., from jΘ0Ni ¼ ðj0i þ jNiÞ= ffiffiffi

2
p

.
The form of Eq. (3) is reminiscent of GKP codes whose

code words are superpositions of translated squeezed states
[3]. However, due to the natural 2π periodicity of rotations,
only a finite number of superpositions are required, and the
resulting code word always remains physical, because the
rotation operator in Eq. (2) conserves the excitation
number, unlike the displacement operator used to define
the GKP code words. In Sec. III, we make a tighter analogy
between GKP codes and a subclass of rotation codes called
number-phase codes.

A. Fock-space structure

Discrete rotational symmetry enforces a spacing of the
code words in Fock space, which underpins (but does not
guarantee) the codes’ robustness to loss and gain errors.
The link between rotation symmetry and spacing in Fock
space can be seen by acting the operator ẐN on an arbitrary
state jψi ¼ P

n anjni: ẐN jψi ¼
P

n e
iπn=Nanjni. Clearly,

jψi is a þ1 eigenstate of ẐN if and only if an ¼ 0 for all
n ≠ 2kN for integer k. Similarly, jψi is a −1 eigenstate if
and only if an ¼ 0 for all n ≠ ð2kþ 1ÞN. This result leads
to the following general form for any�1 eigenstates of ẐN :

j0Ni ¼
X∞
k¼0

f2kNj2kNi; ð4aÞ

j1Ni ¼
X∞
k¼0

fð2kþ1ÞN jð2kþ 1ÞNi: ð4bÞ

The coefficients fkN in Eq. (4) are related to the Fock-state
coefficients of the primitive jΘi ¼ P

n cnjni in Eq. (3) as
follows: f2kN¼c2kN=

ffiffiffiffiffiffiffi
N �

0

p
and fð2kþ1ÞN¼cð2kþ1ÞN=

ffiffiffiffiffiffiffi
N �

1

p
,

where N �
0 ¼

P
k jc2kN j2 and N �

1 ¼
P

k jcð2kþ1ÞN j2. The
normalization factors introduced here are related to the
normalization constants in Eq. (3) as N �

i ¼ N i=ð2NÞ2.
There are no further restrictions on the coefficients fkN
apart from normalization.
To explicitly connect the two representations of rotation-

symmetric code words [Eqs. (3) and (4)], we use the
relation for a Kronecker comb,

1

M

XM−1

m¼0

eið2πmn=MÞ ¼
X∞
k¼0

δn;kM for n ¼ 0; 1; 2;…; ð5Þ

to construct a projector onto the set of Fock states
j2kN þ li for k ¼ 0; 1; 2… [42]:

Π̂l
2N ≔

X∞
k¼0

j2kN þ lih2kN þ lj

¼ 1

2N

X2N−1

m¼0

ðe−iðπl=NÞẐNÞm: ð6Þ

The factors eiπl=N with l ∈ f0; 1;…; 2N − 1g are the
complex 2Nth roots of unity. Acting the projector on a
primitive jΘi ¼ P

n cnjniwith at least one nonzero c2kNþl,

Π̂l
2N jΘi ¼

X∞
k¼0

c2kNþlj2kN þ li; ð7Þ

produces an (unnormalized) eigenstate of the operator ẐN

with eigenvalue eiπl=N [43].
It is now straightforward to see that Eqs. (3) and (4) are

equivalent, since we can write

j0Ni ¼
Π̂0

2N jΘiffiffiffiffiffiffiffi
N �

0

p ; ð8aÞ

j1Ni ¼
Π̂N

2N jΘiffiffiffiffiffiffiffi
N �

1

p ; ð8bÞ

with N �
0 ¼ hΘjΠ̂0

2N jΘi and N �
1 ¼ hΘjΠ̂N

2N jΘi. With the
help of Eq. (6), we recognize these as Eq. (3a) and (3b). For
the code words to be well defined, it is now clear that the
primitive must have support on at least one of the j2kNi
Fock states and one of the jð2kþ 1ÞNi Fock states. This
requirement is the only constraint on jΘi, and the ortho-
gonality of the code words is then easily seen from the fact
that they have support on strictly different Fock states.
The dual-basis code words j�Ni are constructed as

usual via superpositions of the computational basis code
words j�Ni ¼ ðj0Ni � j1NiÞ=

ffiffiffi
2

p
leading to Fock-space

representations

jþNi ¼
1ffiffiffi
2

p
X∞
k¼0

fkN jkNi; ð9aÞ

j−Ni ¼
1ffiffiffi
2

p
X∞
k¼0

ð−1ÞkfkN jkNi: ð9bÞ

Both j�Ni have support on the full set of jkNi Fock states.
From Eq. (4a) and (9a), it is clear that any logical j0Ni state
is also a logical jþ2Ni for a code with twice the rotation
symmetry. In other words, for a given code word j0N;Θi
defined by a primitive jΘi, we have that

j0N;Θi ¼ jþ2N;Θ0 i; ð10Þ
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for some primitive jΘ0i. Whenever the code word normali-
zation constant in Eq. (3) satisfies N 0 ¼ N 1, the above
holds with jΘi ¼ jΘ0i. See Appendix A for further details.
While it is evident that ẐN jjNi ¼ ð−1ÞjjjNi for j ¼ 0, 1,

it is not generally possible to find a similarly simple
operator that acts as a logical X̄ within the code space.
In Sec. III, we present a set of rotation codes whose logical
X̄ is approximately given by a number-translation operator.
The absence of a simple logical X̄ does not fundamentally
pose a problem for quantum computing, since universality
can be achieved without this operator as shown in Sec. IV.
A useful quantity for comparing codes is the average

excitation number of the code,

n̄code ≔
1

2
tr½Π̂coden̂�; ð11Þ

where Π̂code ≔ j0Nih0N j þ j1Nih1N j is a two-dimensional
projector onto the code space [44,45]. By construction, the
average excitation number is the same for each of the dual-
basis code words, n̄code ¼ h�N jn̂j�Ni. Since the rotation
operator commutes with the number operator, ½R̂N; n̂� ¼ 0,
rotations do not increase the excitation number. The
computational-basis code words have different average
excitation numbers due to different phases in the super-
positions in Eq. (3), but it remains bounded. This result is in
contrast to translation-based GKP codes that suffer from the
following: Either the code states are unphysical as they
have infinite excitations, or the discrete translational
symmetry is spoiled by energy constraints.
The 0N codes introduced previously are the order-N

rotation codes with the lowest possible mean excitation
number n̄0N ¼ ðN=2Þ. It is worth noting that the trivial
encoding where a qubit is encoded in the two lowest Fock
states,

j0trivi ≔ j0i; j1trivi ≔ j1i; ð12Þ

is a rotation code with N ¼ 1. The trivial encoding serves
as a useful benchmark against which other codes can be
compared [29,30,44].

B. The phase and Fock grids

With a given primitive jΘi, the order of rotation
symmetry N parameterizes a code both in phase space
and in Fock space, via Eq. (3) and (4). From these two
forms of the code words, it is natural to define a number
distance and rotational distance of a code as [46]

dn ≔ N; dθ ≔ π=N: ð13Þ

respectively. Number and phase-space rotation play dual
roles: Codes of increasing N are further separated in Fock
space but more closely separated in terms of rotations. For
an order-N rotation code, we refer to the set of angles

fmdθg for m ¼ 0; 1;…; 2N − 1 as the phase grid and the
set of Fock states fjkNig for k ¼ 0; 1;… as the Fock grid.
These are in analogy to the position- and momentum-space
grids (or more general quadrature grids) on which GKP
codes are defined. They broadly characterize the types of
error to which the code is naturally resilient. A number-shift
error smaller than dn [e.g., ∼âk or ∼ðâ†Þk with k < N] is
detectable. For rotation errors, the boundary between
detectable and undetectable errors is not as sharp, in
general, but a good code should be able to detect a rotation
which is small compared to dθ (e.g., eiθn̂ with θ < dθ). This
basic idea is illustrated in Fig. 2. Note that the spacing in
Fock space and in terms of rotations, as quantified by
Eq. (13), is not by itself enough to guarantee a code’s
ability to correct errors. This ability depends on both the
noise channel in question and the Fock grid coefficients fkN
(or, equivalently, the primitive jΘi) parametrizing the code
[Eq. (4)]. In fact, the bosonic codes we investigate in this
paper are, in general, only approximate error-correction
codes for the noise channels we are interested in, and one
can typically talk about only “approximately correctable
errors” [47,48]. We return to a more detailed discussion of
“small” vs “large” errors in Sec. VI.

C. Distinguishing the code words

The structure of rotation codes in Fock space [Eq. (4)]
and in terms of rotations [Eq. (3)] suggests a natural way to
distinguish code words in the computational and dual bases
using number and phase measurements, respectively. Phase

(a) (b)

FIG. 2. Graphical summary of the Fock-space and phase-space
structure of code words for an N ¼ 2 rotation code. (a) The
computational-basis code words j0Ni and j1Ni have support on
every 2kN and ð2kþ 1ÞN Fock state for k ¼ 0; 1; 2;…, respec-
tively. Up to N − 1, loss or gain errors can, in principle, be
detected. (b) The dual code words j�Ni are related by a rotation
in phase space by π=2. Rotation errors small compared to dθ ¼
π=2 are detectable with a code-dependent uncertainty.
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measurements play a crucial role in the quantum computing
scheme introduced in Sec. IV.

1. Number measurement

The computational-basis codewords j0Ni and j1Ni can be
distinguished (destructively) by measuring the excitation
number as seen clearly in Eq. (4). For an order-N code, a
number measurement returns an outcome kN for integer k,
where even k corresponds to j0Ni and odd k to j1Ni. In the
presence of errors, such a measurement can still correctly
identify the damaged codewords. For example, ifwe assume
that upward and downward shifts in number (e.g., loss and
gain) are equally likely, a simple decoder to identify the code
word from a number measurement outcome n is to round to
the nearest kN and declare the outcome “0” if k is even and
“1” if k is odd. In practice, the noise model motivates the
decoding scheme. Under pure loss, for example, the decoder
should always round up to the nearest kN.

2. Phase measurement

An approach to distinguishing j�N;Θi with a natural
robustness to rotation errors relies on phase estimation. In
the absence of errors, the task can be formulated as follows:
Given the code word jþN;Θi for a rotation code, we wish to
determine θ in eiθn̂jþN;Θi. If θ mod 2π=N ¼ 0, the state is
jþN;Θi, while if θ mod 2π=N ¼ π=N, the state is j−N;Θi. In
the presence of rotation errors, the phase-estimation prob-
lem is generalized to estimating a continuous variable
θ ∈ ½0; 2πÞ. A decoding procedure rounds θ to the nearest
mπ=N. Then, if m is even, declare the outcome “þ,” and if
m is odd, declare the outcome “−.” This procedure is
exactly analogous to the excitation number decoding
scheme described above. Again, the decoding scheme
should, in general, be adapted to the system’s noise model.
Holevo [32] and Helstrom [49] introduced an optimal

measurement to distinguish states in the one-parameter
family eiθn̂jψ0i for the situation where no prior information
about θ is assumed (and for a specific class of “deviation
functions” quantifying the deviation of the estimated value
from the true value). The positive operator-valued measure
(POVM) elements of this measurement depend on a
fiducial state jψ0i ¼

P
n cnjni that defines the phase-

estimation problem. They can be written in the Fock basis
(Theorem 4.4.1 in Ref. [32]):

M̂canðθÞ ≔ 1

2π

X∞
m;n¼0

γmγ
�
neiðm−nÞθjmihnj; ð14Þ

with completeness relation
R
2π
0 dθM̂canðθÞ¼ Î, and γn ¼

cn=jcnj for cn ≠ 0 and otherwise an arbitrary complex
number with jγnj ¼ 1. In the present context, jψ0i ¼
jþN;Θi ¼ ð1= ffiffiffi

2
p ÞPk fkN jkNi. We refer to the set of

POVMs in Eq. (14) as the canonical phase measurement.

For an order-N rotation code, the relation R̂N jþN;Θi ¼
jþN;Θi implies that phase measurements acquire only
information about the phase θ modulo 2π=N. To quantify
the uncertainty in a phase-estimation measurement where
we care only about the modular phase, we slightly modify
a phase-uncertainty measure introduced by Holevo [32].
We adopt a measure of modular phase uncertainty by con-
sidering the 2π=N periodic random variable eiNθ under the
probability distribution μðθÞ ¼ tr½M̂canðθÞjþN;ΘihþN;Θj�
for θ. We can then define an uncertainty measure

ΔNðθÞ ≔
hΔeiNθi
jheiNθij2 ¼

1

jheiNθij2 − 1; ð15Þ

where heiNθi ≔ R
2π
0 eiNθμðθÞdθ is the mean modular phase

and hΔeiNθi ≔ R
2π
0 jeiNθ − heiNθij2μðθÞdθ.

Even in the absence of external noise, the underlying
primitive endows a code with some level of modular phase
uncertainty. This uncertainty can be found from Eq. (15)
using the following form for the mean modular phase:

heiNθi ¼
Z

2π

0

eiNθμðθÞdθ ¼ 1

2

X∞
k¼0

jfkNfðkþ1ÞN j; ð16Þ

where fkN are the Fock-grid coefficients of the code
[Eq. (4)], as before. Henceforth, we use ΔNðθÞ to quantify
the embedded phase uncertainty in the code words. This
embedded uncertainty is in analogy to the embedded
position or momentum errors in finitely squeezed GKP
code words [3,50]. Note that, in general, the embedded
phase uncertainty depends on the order of rotation sym-
metry. In Sec. III, we show that certain families of rotation
codes have meaningful limits where ΔNðθÞ → 0, which is
akin to the limit of infinite squeezing for ideal GKP codes.
Note that, because the canonical measurement Eq. (14)

assumes no prior knowledge about θ, it might be sub-
optimal if such knowledge exists. If rotation errors are
small, we expect that θ is close to one of the values mπ=N,
and it might be possible to exploit this knowledge in a
phase-estimation measurement. Moreover, since the meas-
urement is defined with respect to the ideal, undamaged
code word jþN;Θi, it might perform less than ideally in the
presence of general noise that includes errors beyond pure
rotation errors. For the numerical simulations of error-
correction circuits in Sec. VII B, we compare the canonical
phase measurement to “pretty good measurements,” as
introduced in Refs. [51–53] (see also Appendix D), which
explicitly take information about the noise model into
account.
When all γn are real in Eq. (14), the measurement can be

approximated using adaptive homodyne measurements
[54] and has been the subject of much theoretical and
experimental study [55–61]. One can similarly define
phase-uncertainty measures analogous to Eq. (15) for other
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phase-estimation schemes. As an example, a heterodyne
measurement also measures the phase but at the
cost of larger uncertainty. An ideal heterodyne measure-
ment is described by measurement operators jαihαj, where
jαi is a coherent state, with completeness relationR ðd2α=πÞjαihαj ¼ Î. The estimated phase for an outcome
α is simply θ ¼ argðαÞ. We can define a phase uncertainty
Δhet

N ðθÞ for a heterodyne measurement analogously to the
canonical phase uncertainty defined above. A heterodyne
measurement gives a larger uncertainty in the estimated
phase than the canonical phase measurement; however, a
heterodyne measurement is nevertheless a likely practical
candidate for distinguishing the logical code words of the
number-phase codes introduced in the next section.
In general, the phase uncertainty in a measurement is a

function of both the code words and the choice of meas-
urement scheme. As long as the phase fluctuations in the
measurement results are small compared to the rotational
distance dθ ¼ π=N, the two code words j�N;Θi can be
distinguished faithfully. This idea is illustrated in Fig. 3.

III. NUMBER-PHASE CODES

The embedded phase uncertainty in Eq. (15), ΔNðθÞ, is
minimized when the distribution of Fock-grid coefficients
is completely flat, i.e., jfkN j ¼ jfðkþ1ÞN j for all k, such that
jheiNϕij ¼ 1 and ΔNðθÞ ¼ 0; cf. Eq. (15)(16). However,
such a state is not normalizable, rendering this limit
unphysical. Formally, we can consider families of physical
codes that in some appropriate limit satisfy ΔNðθÞ → 0. As

we show in the following, this condition is satisfied for a
class of rotation codes very much analogous to GKP codes,
with number and phase playing roles akin to position and
momentum. Perhaps somewhat surprisingly, cat and bino-
mial codes both belong to this class [62].

A. Ideal number-phase codes

In analogy with ideal GKP codes defined in terms of
superpositions of position (or momentum) eigenstates, we
define a family of order-N rotation codes as

j0N;phasei ≔
X2N−1

m¼0

����ϕ ¼ mπ

N

�
; ð17aÞ

j1N;phasei ≔
X2N−1

m¼0

ð−1Þm
����ϕ ¼ mπ

N

�
; ð17bÞ

where jϕi ≔ ð1= ffiffiffiffiffiffi
2π

p ÞP∞
n¼0 e

inϕjni are known as phase
states and are not normalizable [67,68]. In the Fock basis,
the code words are simply j0Ni ∝

P
k j2kNi and j1Ni ∝P

k jð2kþ 1ÞNi. Note that we can write the POVM for the
canonical phase measurement in Eq. (14) (for real coef-
ficients γn ¼ 1) as M̂canðϕÞ ¼ jϕihϕj. Equation (17) fol-
lows from Eq. (3) by replacing jΘi ∝ jϕ ¼ 0i.
Any state in the code space spanned by Eq. (17) is, of

course, a þ1 eigenstate of R̂N . The code words are also þ1
eigenstates of a number-translation operator

Σ̂N ≔
X∞
n¼0

jnihnþ 2Nj: ð18Þ

We have that R̂NΣ̂N ¼ Σ̂NR̂N , and the operator

X̂N ≔ Σ̂N=2 ¼
X∞
n¼0

jnihnþ Nj ð19Þ

satisfies X̂NẐN ¼ −ẐNX̂N , while both ẐN and X̂N commute
with R̂N and Σ̂N . Finally, for the code Eq. (17), we have that
X̂N j�Ni ¼ �j�Ni, and this operator thus acts as logical X̄.

B. Approximate number-phase codes

Ideal number-phase codes as defined in Eq. (17) are
unphysical, as they require an infinite excitation number and
are not normalizable. Nevertheless, certain families of
rotation codes approach ideal number-phase codes, in a
sense to be defined below, in limits of a large excitation
number.
We first recognize that, for any rotation code with

positive, real Fock-grid coefficients ffkNg [Eq. (4)], we
have h�N;ΘjX̂N j�N;θi ¼ �heiNθi. As a consequence,

h�N;ΘjX̂N j�N;θi → �1 ð20Þ

(a) (b)

FIG. 3. Distinguishing the j�Ni code words. By design,
j−Ni ¼ eiðπ=NÞn̂jþNi, such that distinguishing the code words
can be viewed as a phase-estimation problem. The phase
precision ΔNðθÞ depends on the measurement scheme, with a
canonical scheme given by the POVM in Eq. (14). (a) Measuring
θ to distinguish the code words for an N ¼ 2 code (dθ ¼ π=2). If
the measurement result falls in a white wedge, we declare “þ,”
and in a gray wedge, we declare “−.” (b) The same procedure for
a code word that has undergone a rotation error eiθn̂jþNi. For
large rotations θ ∼ dθ=2, the logical state is misidentified. If the
noise model is biased in such a way that clockwise rotations are
more likely than counterclockwise (or vice versa), the decoder
should be biased accordingly by rotating the white and gray
wedges.
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if and only if ΔNðθÞ → 0, where ΔNðθÞ and heiNθi are
defined in Eqs. (15) and (16), respectively. It follows that
the condition of vanishing phase uncertainty defines a
family of codes that, in this limit, are stabilized by Σ̂N

[Eq. (18)] and for which X̂N [Eq. (19)] acts as logical X̄.
An interesting property of number-phase codes arises

from the fact that, in the limit of Eq. (20), the two code-word
normalization constants are equal (N 0 ¼ N 1) in Eq. (3). It
follows that the dual-basis code words also become equal-
weight superpositions of the primitive [see Eq. (A4)]:

jþN;Θi →
1ffiffiffiffi
N

p
XN−1

m¼0

eið2mπ=NÞn̂jΘi; ð21aÞ

j−N;Θi →
1ffiffiffiffi
N

p
XN−1

m¼0

ei½ð2mþ1Þπ=N�n̂jΘi: ð21bÞ

A stronger number-phase duality is apparent for number-
phase codes than for generic rotation codes: The dual-basis
code words j�Ni are separated from each other by exactly
dθ ¼ π=N in terms of phase-space rotations but have
support on the same Fock states; cf. Eq. (9). Conversely,
the computational-basis code words j0N=1Ni are separated
from each other by dn ¼ N in Fock space but supported on
the same set of phases fmπ=Ng.
There are many examples of rotation codes that

limit to ideal number-phase codes in the sense of
Eq. (20). A straightforward example is codes constructed
using normalized Pegg-Barnett phase states, jϕ; si ≔
ð1= ffiffiffi

s
p ÞPs−1

n¼0 e
inϕjni [64,66,69], as the primitive jΘi. As

the parameter that sets their truncation in Fock space
becomes large (s → ∞), Pegg-Barnett codes approach ideal
number-phase codes (up to normalization). With the con-
straint s ¼ p × 2N for integer p ≥ 1, the Pegg-Barnett
codes are identical to the shift-resistant qudit codes
introduced in Ref. [3], embedded in the infinite Hilbert
space of a bosonic mode [70]. Further details about Pegg-
Barnett codes can be found in Appendix B 3.

Cat codes (Appendix B 1) and binomial codes
(Appendix B 2) also satisfy Eq. (20) in the limit of large
α and large truncation K, respectively. Table I summa-
rizes the three examples of number-phase codes we

TABLE I. Three codes—cat, binomial, and Pegg-Barnett—whose phase uncertainty vanishes in an appropriate limit (see Appendix B
for definitions and details of each code). The second and third columns give a primitive and the Fock-grid coefficients [Eq. (4)],
respectively (for cat codes, N �

i is the normalization factor N �
0 for even k and N �

1 for odd k). The fourth column shows the limit where
each code becomes the 0N encoding (which is the trivial encoding [Eq. (12)] for N ¼ 1), and the fifth gives the limit where ΔNðθÞ → 0.
The sixth column gives an asymptotic form of the Fock-grid coefficients, and the last column gives an asymptotic form for the mean
modular phase. For each code, the mean modular phase uncertainty approaches zero: ΔNðθÞ → 0. The function ϑ3ðr; τÞ is the Jacobi
elliptic theta function of the third kind.

Code jΘi fkN
0N
code Limit Limiting fkN

Limiting mean
modular phase heiθNi

cat jαi ffiffiffiffiffi
2
N �

i

q
e−jαj2=2αkNffiffiffiffiffiffiffiffi

ðkNÞ!
p α → 0 α → ∞ ð2N2

πα2
Þ1=4 exp½−ðkN−α2Þ2

4α2
� e−

N2

8α2ϑ3½Nπ
2
ð1 − 2α2

N Þ; e−2π2 α
2

N2 �
binomial jΘN;K

bini
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2K−1 ðKkÞ
q

K ¼ 1 K → ∞ ð 8
πKÞ1=4 exp½−ðk−K=2Þ2

K � e−
1
2Kϑ3½π2 ð1 − KÞ; e−Kπ2

2 �
Pegg-Barnett jϕ ¼ 0; si ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=⌈s=N⌉
p

s ¼ N þ 1 s → ∞
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=⌈s=N⌉

p
1 − 1=⌈s=N⌉

(a)

(b)

FIG. 4. (a) Magnitude of the Fock-state amplitudes for a jþNi
state for N ¼ 3 cat, binomial, and Pegg-Barnett codes with
parameters that give n̄code ¼ 19.5 for each. The amplitudes are
nonzero only on Fock states j3ki for k ¼ 0; 1; 2;…. (b) The
embedded phase uncertainty [Eq. (15)] for each family of N ¼ 3
codes as n̄code increases. For each code, a proper asymptotic
limit, given in Table I, yields no embedded phase uncertainty,
ΔNðθÞ → 0. In the opposite regime, n̄code → 3

2
, all three codes

limit to the 03 encoding. Note that N ¼ 3 codes with n̄code < 3
2

do not exist and that binomial and Pegg-Barnett codes are defined
only at discrete excitation numbers; connecting lines are guides
for the eye.
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discuss here. For these codes, the embedded phase
uncertainty approaches zero when the relevant code
parameter is large enough, as shown in Fig. 4 for some
example N ¼ 3 codes.
Colloquially, we refer to any family of rotation codes that

satisfies ΔNðθÞ → 0 in an appropriate limit as a number-
phase code. In practice, the specific form of the Fock-grid
coefficients ffkNg can make a significant difference in
the embedded phase uncertainty for small to moderate
excitation numbers. Phase measurements play a critical role
in the quantum computing scheme of Sec. IV and the
error-correction procedures of Sec. VII. As a consequence,
although different number-phase codes behave identically
for large excitation numbers, they can have different perfor-
mance at experimentally relevant excitation numbers [44].
This difference is apparent in Sec. VII B, wherewe compare
the error-correction performance of cat and binomial codes.

IV. SYMMETRY AS A RESOURCE: QUANTUM
COMPUTING WITH NUMBER-PHASE CODES

We introduce a quantum computing scheme based on
three basic ingredients: preparation of code words in the
state jþNi, a small number of unitary gates, and (destruc-
tive) measurement in the logical X̄ basis. Our focus is on
operations that are, in a certain sense, fault tolerant. For
unitary gates, fault tolerance means that the gates should
not amplify errors too badly, a notion that is made precise
later in Sec. VI, while for the measurement it means that the
code words j�Ni should be distinguishable in the presence
of small errors. As already discussed in Sec. II C 2, the
latter can be achieved with phase measurements, given that
the codes have a small inherent phase uncertainty.
Vanishing phase uncertainty is equivalent to (approximate)
translation symmetry in Fock space, as we showed in
Sec. III, such that the existence of a robust X̄-basis
measurement can be said to be a consequence of this
number-translation symmetry. On the other hand, the
unitary gates we introduce rely only on rotation symmetry.
We show that, given a supply of encoded basis states jþNi,
these two symmetries imply the ability to enact any gate in
the logical Clifford group, using physically reasonable
operations that are fault tolerant in the above sense. The
situation can be compared to GKP codes, where (approxi-
mate) discrete quadrature translation symmetry leads to any
logical Clifford being (approximately) implementable by a
Gaussian operation [3].
While state preparation is in general code dependent,

flexible techniques have already been developed in various
physical platforms, such as circuit QED [29,30] and ion
traps [71], that can be applied to prepare code words for a
wide range of codes. It is beyond the scope of the present
work to discuss state preparation in detail, but we briefly
comment on a few approaches in Sec. IV B. All of the
known approaches are limited by noise in the preparation
procedure, and one cannot rule out code words with large

errors. The issue of faulty state preparation is postponed
until Sec. VIII, and for the time being we simply assume
that jþNi states can be prepared.
Because of the existence of a robust X̄-basis measure-

ment, our main focus is on approximate number-phase
codes from here on. That said, the unitary gates introduced
below apply to any rotation code, such that the scheme can
be extended to any such code where a practical X̄-basis
measurement can be found.

A. Universal operations for number-phase codes

The quantum computing scheme introduced in the
following is based on the universal set

fS̄; C̄Zg ∪ fPjþNi;PjTNi;MXg; ð22Þ

where S̄ is an encoded version of the phase gate
Ŝ ¼ diagð1; iÞ, C̄Z is an encoded ĈZ ¼ diagð1; 1; 1;−1Þ,
PjψNi stands for preparation of an encoded state jψNi, and
MX stands for measurement in the logical j�Ni basis. The
state jTNi ∝ j0Ni þ eiπ=4j1Ni is used for gate teleportation
of the non-Clifford T̂ ¼ diagð1; eiπ=4Þ gate.
A remarkable feature of the following scheme is that

the required unitary gates are agnostic to the specific
details of the rotation code in question. The encoded
fS̄; C̄Zg gates depend only on the degree of rotation
symmetry and, consequently, apply equally to all rotation
codes. This feature allows entangling operations between
different rotation codes, e.g., cat and binomial, and tele-
portation from one code to another.

1. Unitary gates

We have already shown that logical Z̄ for an order-N
rotation code can be implemented through a simple rotation
ẐN ¼ eiπn̂=N . The next gate in our set is the following two-
mode gate that implements a controlled rotation between an
order-N and an order-M rotation code [2,72]:

CROTNM ≔ eiðπ=NMÞn̂⊗n̂. ð23Þ
To understand its action on the code space, we recognize
that CROTNMjkNi ⊗ jlMi ¼ eiπkljkNi ⊗ jlMi for Fock
states jkNi and jlMi. Since kl is even unless both k and l
are odd, it follows from Eq. (4) that the action on an
encoded state jiNi ⊗ jjMi is

CROTNMjiNi ⊗ jjMi ¼ ð−1ÞijjiNi ⊗ jjMi ð24Þ
for i, j ¼ 0, 1. Thus, the CROT gate acts as a C̄Z gate on the
code space of any two rotation codes.
A logical Ŝ ¼ diagð1; iÞ can similarly be enacted by a

quartic (in â; â†) single-mode Hamiltonian:

S̄ ¼ ŜN ≔ eiðπ=2N2Þn̂2 : ð25Þ
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The action of ŜN on the code space can be seen by acting
on the Fock states in Eq. (4): ŜN j2kNi ¼ eðiπ=2Þ4k2 j2kNi ¼
j2kNi, since 2k2 is even. On the other hand, ŜN jð2kþ
1ÞNi ¼ eðiπ=2Þð4k2þ4kþ1Þjð2kþ 1ÞNi ¼ ijð2kþ 1ÞNi.
In principle, Hamiltonians of even higher order in n̂

can be used to generate diagonal non-Clifford gates. In
particular, a logical T̄ gate could be enacted by

T̂N ≔ eiðπ=4N4Þn̂4 ; ð26Þ

as is easily checked by acting on the code words j0Ni and
j1Ni in Eq. (4). However, in addition to the experimental
challenge of engineering an octic Hamiltonian, the T̂N gate
can amplify errors in damaging ways as we show in Sec. VI.
It is therefore unlikely to be of practical use, and we propose
a scheme based on gate teleportation instead.

2. Teleported gates

The CROT gate and logical MX measurements, together
with appropriately prepared ancillae, allow us to complete a
universal set of operation with a gate-teleported logical
Hadamard H̄ and T̄ gate.
An ancilla prepared in jþMi allows execution of the

Hadamard gate, using the following teleportation circuit
[36,73,74]:

ð27Þ

where jψNi ¼ aj0Ni þ bj1Ni and jψMi ¼ aj0Mi þ bj1Mi
represent the same encoded qubit state (but not necessarily
in the same code). The measurement is in the j�Ni basis,
and we use i ¼ 0 for the outcome “þ” and i ¼ 1 for the
outcome “−.” The notation X̄iH̄ thus means that, depending
on the outcome, an H̄ (þ) or X̄ H̄ (−) is applied to the data.
Since our scheme for quantum computation is based only
on Clifford gates and magic-state injection, rather than
correcting the conditional Pauli X̄, the simplest solution is
to keep track of it in a Pauli frame [33,75]. Alternatively,
the process can be repeated until the desired outcome is
achieved [73].
The set fC̄Z; H̄; S̄g generates the Clifford group. To

achieve universality, we teleport the gate T̂ ¼ diagð1; eiπ=4Þ
by consuming an ancilla prepared in jTMi ¼ ðj0Miþ
eiπ=4j1MiÞ=

ffiffiffi
2

p
[76]:

ð28Þ

In order to teleport the T̄ gate, we need an encoded jTMi state.
Arbitrary encoded states can be injected assuming we have

universal control over two-level ancillae in the trivial encoding
j0trivi ¼ j0i, j1trivi ¼ j1i: The circuit in Eq. (27) can be
used to teleport an arbitrary ancilla state into a rotation code,
where the top rail represents the two-level ancillawithN ¼ 1.
The procedure is not fault tolerant, because an error on the
ancilla propagates into the rotation code. Preparation of jTi
states can bemade fault tolerant usingmagic-state distillation,
assuming high-quality Clifford operations are avail-
able [78,79]. As we discuss in Sec. VIII, this result can be
achievedbyconcatenationwith a second code andperforming
state distillation at the level of the top code.
If needed, we can also execute an Ŝ ¼ diagð1; iÞ gate

in a similar fashion by consuming an ancilla prepared in
jþ iMi ¼ ðj0Mi þ ij1MiÞ=

ffiffiffi
2

p
:

ð29Þ

Again, the outcome-dependent factor X̄i can be kept track
of using a Pauli frame. The circuit in Eq. (29) can be an
alternative to using the unitary gate in Eq. (42) directly,
which might be more practical experimentally than con-
trolling a self-Kerr Hamiltonian ∼n̂2.

B. State preparation

State preparation is a crucial ingredient for quantum
computing with bosonic codes and can also be the most
difficult part. Here, the logical jþNi state plays a key role in
both the gate teleportation and state injection needed
for teleported T̄ gates. A large literature exists on state
preparation of GKP code words [50,80–83], while rela-
tively less theoretical work has been done for rotation
codes, and the optimal way to prepare code words, in
general, depends on the code in question. This topic is
therefore broad, and we do not address it in detail in
this work.
One experimental approach to preparing logical basis

states involves a strong dispersive interaction between the
mode and an ancilla qubit (in circuit QED, these could be
a cavity mode and a transmon qubit). Combined with
displacement operations, such an interaction is, in prin-
ciple, universal [84,85], in the sense that any state of the
mode can be prepared in the absence of errors. Optimal
control can be used to generate a sequence of control
operations that maximizes the fidelity of a target state in
the presence of errors, which has been performed in the
circuit QED setting [29,30]. An alternate approach could
be to prepare a primitive jΘi and then measure excitation
number mod N, using the measurement introduced below
in Sec. V. For either of these approaches, the fidelity of the
state preparation is limited by noise in the preparation
procedure, and one cannot rule out corrupted code words
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with large errors. We postpone a discussion of how to deal
with faulty state preparation until Sec. VIII.

1. Breeding rotation symmetry

We here present a method to “breed” logical states for an
order-N rotation code from code states with lower order
rotation symmetry. In analogy to a scheme for producing
GKP states from Ref. [80], each stage of the breeding
consists of coupling the bosonic mode to an ancilla mode
followed by measurement of the ancilla. When successful,
a j02N;Θi state is produced from a j0N;Θi state, and the
whole process can be repeated as required.
We begin with a code word j0N;Θi and an ancilla qubit

prepared in a state jþMi coupled via CROT interaction

CROT2N;M ¼ eiðπ=2NMÞn̂⊗n̂: ð30Þ

Critically, we note that the ancilla could be a two-level
system in the state jþtrivi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

(M ¼ 1) or
encoded in a rotation code of any order M. The ancilla is
then measured in the j�Mi basis. When the þ outcome is
obtained, the state becomes superposed with a rotated
version to create a code word of higher rotation
symmetry:

1

2
ðÎ þ Ẑ2NÞj0N;Θi ¼

ffiffiffiffiffiffiffi
Pþ

p j02N;Θi; ð31Þ

with outcome probability Pþ ¼ 1
2
ð1þ h0N;ΘjẐ2N j0N;ΘiÞ.

Beginning from a primitive jΘi, n successful rounds of
breeding produce a logical state with 2n-fold rotation
symmetry, j02n;Θi. Just as in Ref. [80], the success proba-
bility falls off exponentially in n, but this probability could
be improved by making use of higher-dimensional ancillae
such as in Ref. [50]. The relation Eq. (31) can likewise be
used on a low-order jþN;Θi (or a dual primitive—see
Appendix A) to breed a higher-order jþ2N;Θi state.
It is also worth noting here that for number-phase codes

discussed in Sec. III, which are our main focus, we have the
approximate relation (see also Appendix A)

j0N;Θi ≃ jþ2N;Θi: ð32Þ

Thus, preparation of j0N;Θi states is equivalent to prepa-
ration of approximate jþ2N;Θi states for these codes.

V. MODULAR NUMBER MEASUREMENT

The CROT gate is a fundamental building block for the
universal gate set, state breeding, and the error-correction
scheme we introduce in Sec. VII. Here, we show that the
CROT gate can also be used to perform a nondestructive
modular measurement of excitation number n̂. In addition
to being a novel measurement for a bosonic mode, the

modular number measurement can be used both to detect
number-shift errors on an encoded state and to condition-
ally prepare N-fold rotation-symmetric code words from a
primitive jΘi. The measurement we present here is a natural
generalization of previous schemes where a two-level
ancilla (transmon qubit) is used to detect the number
mod 2 for cat and binomial codes [29,30].
A nondestructive measurement of n̂ mod N can be

performed with the following circuit:

ð33Þ

where the controlled-R̂N gate is defined as

ĈRN
≔ CROTNM=2 ¼ eið2π=NMÞn̂⊗n̂; ð34Þ

and the measurement is to be understood as a phase
measurement as described in Sec. II C 2. To see how this
circuit works, consider the action of the ĈRN

gate on a Fock
state jni for the data rail and jþMi for the ancilla:

ĈRN
jni ⊗ jþMi ¼ jni ⊗ eiðl=NÞð2π=MÞn̂jþMi; ð35Þ

where l ≔ n mod N and we use that eið2πp=MÞn̂jþMi ¼
ðR̂MÞpjþMi ¼ jþMi for any integer p. The net result is a
rotation of the ancilla state jþMi by an angle
θanc ¼ 2πl=ðNMÞ, which takes the ancilla out of its code
space. This rotation can be detected using a destructive
phase measurement of the ancilla with a resolution set by
the ancilla’s embedded phase uncertainty ΔMðθÞ relative
to 2π=ðNMÞ. For illustration, Fig. 5 shows a n̂ mod 4
measurement using two different ancillae: (a) a coherent
state and (b) a two-lobe cat state. These can be interpreted

(a) (b)

FIG. 5. Measurement of n̂ mod 4 using an ancilla prepared in
(a) a coherent state and (b) a two-lobe cat state. Shown are the
initial ancilla states (solid circle), and each circle is a potential
rotation of the ancilla that depends on the data-rail state being
measured. They are labeled by outcomes l for a measurement of
n̂ mod 4. In both (a) and (b), the specific ancilla rotation shown,
θanc, corresponds to an l ¼ 1 outcome indicating that the data rail
is off the order-N Fock grid.
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(for large enough αÞ as a jþMi code word for M ¼ 1 and
M ¼ 2, respectively. The motivation for using ancillae with
higher M is the fact that errors may occur during the ĈRN

gate, as discussed below.
After the measurement, the value of l is known, and the

data rail is (in the ideal case) projected into an N-fold
rotation-symmetric subspace: ρ̂ → Π̂l

N ρ̂Π̂l
N , where the pro-

jector Π̂l
N is given in Eq. (6). Thus, a n̂ mod N measure-

ment can be used to prepare code words for an N-fold
rotation code in the following way: First, prepare the
primitive associated with the code, jΘi, and then measure
the excitation number mod 2N. Conditional on the ancilla
phase being undisturbed (l ¼ 0), the primitive undergoes
the transformation Π̂0

2N jΘi ∝ j0N;Θi. Similarly, an ancilla
outcome corresponding to l ¼ N conditionally pre-
pares Π̂N

2N jΘi ∝ j1N;Θi.

A. Error propagation in modular number measurement

Rotation errors on the ancilla during the n̂ mod N
measurement do not propagate to the data rail (because
they commute with the CROT gate) and are not problematic
beyond reducing the measurement fidelity. However, any
ancilla error that does not commute with n̂, such as loss or
gain, can induce a rotation error on the data rail (see Sec. VI
for a detailed discussion of error propagation). For exam-
ple, a loss error at a random time during the measurement
leads to a rotation error of the data rail by an angle
θdata ∈ ½0; 2π=NMÞ. Thus, using an ancilla with small M
brings along the danger of propagating a large rotation error
back to the data qubit. In particular, for an M ¼ 1 ancilla,
such as the coherent state in Fig. 5(a), a loss error at an
unknown time during the CRN

gate completely randomizes
the data rail’s phase. The maximum magnitude of the
rotation error induced by a single ancilla loss or gain event
scales as 1=M and, thus, can be reduced by using large-M
ancillae. The drawback of using higher-M ancilla is a larger
measurement uncertainty in the phase measurement in
Eq. (33). This result can be seen in Fig. 5(b) for the
two-lobe cat state ancilla.
We note that an improved number-parity syndrome for

N ¼ 2 rotation codes was recently demonstrated exper-
imentally, where the ancilla is encoded in a simple
rotation code using three levels of a transmon qubit
[31]. In place of a CROT gate, the level-dependent cross-
Kerr interaction eiπn̂⊗ðj1ih1jþj2ih2jÞ is engineered using
sideband drives. The interaction exactly commutes with
the dominant ancilla error j1ih2j, such that there is no
backaction from the ancilla onto the data at all for this
error. This syndrome detection scheme can be said to be
fault tolerant to a single loss event on the ancilla [31].
Further suppression of state preparation errors can be
achieved using a concatenated error-correction scheme, as
discussed in Sec. VIII.

VI. ERRORS AND ERROR PROPAGATION

As was emphasized in the original description of GKP
codes inRef. [3], the discussion of fault tolerance is somewhat
different for bosonic codes than for conventional qubit
stabilizer codes. For bosonic codes, it is entirely acceptable
for everymode involved in the quantum computation to have
small errors. In fact, it is unavoidable in practice. In the context
of number-phase codes, the “smallness” of errors is relative to
a code’s number and rotational distance [cf. Eq. (13)], as we
explain in more detail below. Therefore, the propagation of
small errors is not a major issue. What is catastrophic,
however, is if initially small and approximately correctable
errors are amplified to the point where the probability of
logical errors become likely. Gates that turn small errors into
large errors should therefore be avoided.
As we show in the following, the gates introduced in the

previous section behave nicely in terms of error amplifica-
tion. They do not amplify the magnitude of a number-shift
error of the form ∼âk (∼â†k), although they might map a
number-shift error onto a number-shift error plus a rotation
error, eiθn̂. The upshot is that the new rotation error is
proportional to the size of the number-shift error relative to
the Fock-space distance, i.e., θ ∼ k=dN . In this sense, the
new error is proportional in size to the initial error, and,
importantly, small errors remain small. Restricting to gates
with such well-behaved error propagation properties is
likely to be a prerequisite for bosonic codes to have an
advantage over unencoded qubits. We return to this point in
Sec. VIII, where we discuss a fault-tolerant concatenated
quantum computing scheme.

A. Error bases and large vs small errors

There are two single-mode operator bases that are
particularly useful in the context of rotation codes. The
first is the set [86]

fn̂lâk; ðâ†Þkn̂lg; ð36Þ
where k;l ≥ 0 run over all non-negative integers. A stra-
ightforward way to show that this set is an operator basis is
to first expand the displacement operator in a normal
ordered form:

D̂ðαÞ ¼ eαâ
†−α�â ¼ eαâ

†
e−α

�âe−ð1=2Þjαj2

¼ e−ð1=2Þjαj2
X∞
m;n¼0

αmðα�Þn
m!n!

ðâ†Þmân: ð37Þ

Since we can write ðâ†Þkâk ¼ P
k
l¼0 ckln̂

l by reordering
operators, it follows that D̂ðαÞ can be expanded in terms of
the set Eq. (36) [87]. And, since the displacements form an
operator basis, so does the set in Eq. (36), and the Kraus
operators of any single-mode channel can therefore be
expanded in terms of such operators.
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A second useful operator basis is

feiθn̂âk; ðâ†Þke−iθn̂g; ð38Þ
where k ≥ 0 is an integer and θ ∈ ½0; 2πÞ. That this
set is a basis follows from Eq. (36), since n̂l ¼R
2π
0 ðdθ=2πÞclðθÞeiθn̂, where clðθÞ ¼

P∞
m¼0m

le−imθ

[88]. We make use of this basis heavily in the following,
and it is therefore convenient to introduce a shorthand
notation:

ÊkðθÞ ≔
�
eiθn̂âjkj for k < 0;

ðâ†Þjkjeiθn̂ for k ≥ 0.
ð39Þ

A negative k thus denotes a downward shift in number and a
positive k an upward shift.
An error ÊkðθÞ with 0 < jkj < N is detectable for any

rotation code, which follows from the Fock-space separa-
tion of N between j0Ni and j1Ni. In general, we cannot
make a similarly sharp distinction between detectable and
undetectable rotations, but for the ideal number-phase
codes introduced in Sec. III, a pure rotation error E0ðθÞ
with 0 < θ < π=N is formally detectable.
Intuitively, an error with a small jkj compared to dn=2 ¼

N=2 and small jθj compared to dθ=2 ¼ π=ð2NÞ is a small
error and should be correctable to a good approximation for
a number-phase code with N-fold rotation symmetry.
Typically, the codes discussed in this paper are only
approximate error-correcting codes for physically relevant
noise channels [47].

B. Error propagation

To show that our gates do not amplify errors too badly
and to introduce the error-correction schemes in the next
section, we need to understand how the errors propagate
through the gates introduced in Sec. IV. Here, we describe
errors using ÊkðθÞ given in Eq. (39). The fŜN;CROTNMg
gates are generated by quadratic powers of the number
operator, and, although they are non-Gaussian, we show
that they do not amplify errors too badly. In contrast, the
gate T̂N ¼ expðiπn̂4=4N4Þ is highly nonlinear, and, as we
show below, this gate amplifies errors in a more damaging
way, which is why we do not rely on using this gate in the
scheme introduced in Sec. IV.
All of the unitary gates in our scheme commute with pure

rotation errors eiθn̂. For number-shift errors, we can use that
the commutation relation of an operator ecn̂

l
with a power

of â is given by the general formula

ecn̂
l
âk ¼ ec½nl−ðnþkÞl�âkecn̂l : ð40Þ

A similar commutation relation for ðâ†Þk follows straight-
forwardly by Hermitian conjugation. We use Eq. (40) to
determine how each of the unitary gates in our set amplifies
a general error ÊkðθÞ; a summary is given in Fig. 6.

For gates with l ¼ 1, such as ẐN in Eq. (2), the prefactor
in Eq. (40) is a global phase. Explicitly,

ẐNÊkðθÞ ¼ eiðπk=NÞÊkðθÞẐN: ð41Þ
Recall that we are labeling the errors with an index k < 0 for
an error ∼âjkj and k > 0 for an error ∼ðâ†Þjkj. We see that
propagating an ÊkðθÞ error through the Gaussian ẐN gate
only leads to a phase factor, and the error is not amplified
at all.
Gates with l ¼ 2, such as ŜN in Eq. (42), on the other

hand, introduce new rotation errors:

ŜNEkðθÞ ¼
8<
:

e−iðk2π=N2ÞÊk

�
θ þ πk

N2

�
ŜN for k < 0;

eiðk2π=N2ÞÊk

�
θ þ πk

N2

�
ŜN for k ≥ 0.

ð42Þ

The initial rotation error θ is amplified by an amount
proportional to the initial number-shift error k. Recall that
the angular distance of the code is dθ ¼ π=N and the
number distance is dn ¼ N. If jkj < dn=2 is a small,
approximately correctable number-shift error, then the
additional rotation error πjkj=N2 < dθ=2 is small as well.
Thus, if k and θ are sufficiently small and approximately
correctable, we expect the error after the gate to be
approximately correctable as well. This behavior is akin
to a gate implemented by a constant depth circuit on a qubit
stabilizer code, where an initial error can spread at most
within a constant-size light cone [89–91].
Commuting an error through the CROT gate spreads

errors between the two modes involved in the gate. Label
the two modes a and b, where a is encoded in an order-N
rotation code and b in an order-M rotation code.
Commuting CROT through an error on mode a gives

CROTNMÊ
a
kðθÞ ¼ Êa

kðθÞÊb
0

�
πk
NM

	
CROTNM; ð43Þ

where the superscript a=b indicates the mode that an
operator acts on. Here, the initial number-shift error on
mode a spreads to a rotation error on mode b. If jkj < N=2
is small with respect to the number distance of mode a,

FIG. 6. Propagation of errors through gates. An error ÊkðθÞ at
the input of a gate (left column) is propagated to new errors at the
output (right column). The circuit identities hold up to an overall
phase factor (see the text for the exact relations). The new error
Ê0ðθkÞ for ŜN and CROT is a pure rotation error with
θk ¼ ðπk=NMÞ, with N ¼ M for ŜN.
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mode b is rotated by an angle πjkj=ðNMÞ < π=ð2MÞ,
which is small compared to its angular distance. In other
words, even though the error has spread to a new rotation
error on mode b, the error remains small relative to its
rotational distance. In the context of ½½n; 1�� qubit codes with
a single logical qubit encoded in n physical qubits [92], the
CROT gate is analogous to a logical C̄Z gate enacted
transversally between two code blocks. How errors propa-
gate through the gate set fẐN; ŜN;CROTNMg is summa-
rized in Fig. 6.
Finally, we show that gates generated by n̂l for l > 2,

such as the T̂N gate in Eq. (44), are unlikely to be useful for
fault-tolerant quantum computing, because errors are
amplified and spread in a potentially damaging way.
Propagating an error through T̂N produces additional linear
and nonlinear rotation errors,

T̂NEkðθÞ ¼
8<
:

F̂k
NÊk

�
θ þ k3π

N4

�
T̂N for k < 0;

Êk

�
θ þ k3π

N4

�
ðF̂k

NÞ†T̂N for k ≥ 0;
ð44Þ

where F̂k
N ≔ e−iðk4π=4N4Þe−iðπ=4N4Þð4jkjn̂3þ6k2n̂2Þ is a nonlinear

rotation error. The precise consequences of such nonlinear
errors on relevant codes require further study; however,
we expect it to be rather damaging—see, e.g., Ref. [93].
As already discussed in Sec. IV, we do not use this gate in
our scheme, instead relying on gate teleportation for a
logical T̄.

VII. ERROR CORRECTION

Number-phase codes, introduced in Sec. III, are naturally
robust to shifts in number with higher-N codes tolerating
larger shifts. On the other hand, their robustness to phase
errors is directly related to the rotational distance
dθ ¼ π=N, and rotations reasonably small compared to
dθ=2 can be corrected. Here, we introduce a constructive
and practical error-correction scheme for number-phase
codes and study its performance numerically.
In a well-designed error-correction scheme, one needs to

(i) use gates that do not amplify errors such that they
become uncorrectable, (ii) use measurements that are
robust to noise, and (iii) carefully construct ancilla inter-
actions such that errors do not spread from ancilla qubits to
data qubits in a catastrophic way. In the context of ½½n; k��
qubit stabilizer codes, where k logical qubits are encoded
in n physical qubits, two common approaches to fault-
tolerant error correction are Steane (Steane-EC) and Knill
(Knill-EC) error correction [92].
In an adaptation of these schemes to single-mode codes

(i.e., codes with each logical qubit encoded in a single
bosonic mode), ½½n; 1�� code blocks are replaced by bosonic
modes, and gates and measurement are replaced by fault-
tolerant bosonic counterparts. For example, in Ref. [3],
Steane-EC is adapted to GKP codes by replacing transversal

CNOTs by the fault-tolerant (linear) SUM gate and logical
X̄ and Z̄ measurements by quadrature measurements.
Rotation codes, on the other hand, do not, in general,

have a fault-tolerant CNOT (or Hadamard), due to the
highly nonlinear nature of the X̄ operator. Steane-EC can
therefore not be used directly. We get around this issue by
adapting a version of Knill-EC to number-phase codes.
This approach turns out to have many salient features. As
an alternative, we also present a hybrid Steane-Knill
scheme in Appendix E.

A. Error correction by teleportation

We present a bosonic version of Knill-EC [33,94,95]
for number-phase codes. Its implementation requires CROT

gates, phase measurements, and preparation of jþNi states,
as illustrated in Fig. 7(a). The measurements attempt
to distinguish between damaged logical code words in
the dual basis [96]. Similar schemes have been considered
previously in the context of measurement-based quantum
computing [95], where it is occasionally referred to
as telecorrection due to the teleportation-based error-
correction circuit: The circuit in Fig. 7(a) can be recognized
as two consecutive one-bit teleportations.
A particular feature of the teleportation-based error-

correction scheme makes it desirable for number-phase
codes. Natural errors for bosonic modes include loss and
gain errors that shift the code words off the Fock grid jkNi.
Actively correcting such errors generally requires difficult,
nonlinear shift operations up or down the Fock ladder; see,
e.g., Ref. [97]. In contrast, for the circuit in Fig. 7(a), the

(a)

(b) (c)

(a)

(b) (c)

FIG. 7. (a) Schematic illustration of telecorrection using num-
ber-phase codes, where MX are phase measurements with
outcomes xi. The scheme is based on how errors spread through
the CROT gate. An arbitrary error ÊkðθaÞ on the order-N data rail
(b) induces a rotation of the order-M upper ancilla rail by θb ¼
ðπk=NMÞ (c). Phase measurements on the data rail and the upper
ancilla rail extract information about θa and θb ∼ k. By the end of
the circuit, the logical information is teleported to the bottom
order-L ancilla rail (typically, L ¼ N).
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damaged state is teleported into a fresh ancilla, thus
restoring the code space, with only a logical error channel
remaining (assuming error-free ancillae). Whether one can
correct this remaining logical error depends on the magni-
tude of the initial error and the error-correcting properties of
the code.
The ability to correct errors using teleportation is based

on the following circuit identity (cf. Fig. 6):

ð45Þ

where the labels N, M, and L indicate the order of rotation
symmetry for each encoded rail, Ê ¼ ÊkðθÞ is an arbitrary
error as defined in Eq. (39), and R̂ ¼ Ê0ðπk=NMÞ is a pure
rotation error. Crucially, although the initial error Ê on the
top rail spreads to a rotation error R̂ on the second rail, it
does not spread to an error on the third rail because R̂
commutes with CROT. By measuring the first and the second
rail, we can teleport the state from the first to the third rail
[cf. Eq. (27)] and remove the error in the process. The
teleportation is successful as long as one is able to correctly
distinguish between code words in the dual basis in the
presence of the errors.
We consider the action of the error-correction circuit in

more detail for error-free ancillae. Consider an encoded
logical state ρ̂N ¼ P

1
i;j¼0 ρijjiNihjN j that is sent through an

arbitrary single-mode noise channel N ðρ̂NÞ followed by
the error-correction circuit in Fig. 7(a). One can show that
the corresponding quantum channel can be written

EKnill ∘N ðρ̂NÞ ¼
1

4

X3
i;j¼0

X
x⃗

cijðx⃗ÞP̄iρ̂LP̄
†
j ; ð46Þ

where ρ̂L ¼ P
1
i;j¼0 ρijjiLihjLj on the right-hand side rep-

resents the same logical state as ρ̂N on the left-hand side but
now encoded in the order-L number-phase code of the
bottom ancilla rail (in general, this code can be different).
The operators P̄i ∈ fĪ; Z̄; X̄; X̄ Z̄g are logical Paulis acting
on the encoded order-L output state.
The weights cijðx⃗Þ ≔ tr½M̂x1 ⊗ M̂x2 σ̂ij� in Eq. (46)

are set by the measurement scheme and the noise
channel: Here, M̂xi are POVM elements for the two
measurements in Fig. 7(a), and the sum over outcomes,
x⃗ ¼ ðx1; x2Þ, should be understood as an integral for
continuous measurement outcomes. We also introduce
σ̂ij≔UCROT∘N ∘U†

CROTðjiihjjÞ with jii≔ H̄jaNi⊗ H̄jbMi
with ab being the binary representation of i (i.e., jii runs
over jkNi ⊗ jlMi with k;l ¼ �). Here, UCROT• ≔
CROT • CROT† and U†

CROT• ≔ CROT† • CROT. The

operator σ̂ij thus represents a damaged two-mode logical
dual basis, where the noise channel N is commuted
through the CROT gate.
Crucially, Eq. (46) shows that after error correction the

remaining error channel acts entirely in the logical sub-
space of the output mode, for any noise channel N acting
on the input mode. In principle, a measurement-dependent
Pauli recovery P̄x could be applied, but the simplest
solution is to track the most likely Pauli correction P̄i� in
a Pauli frame. The right Pauli correction can be guessed
using, for example, a maximum likelihood decoder

i�ðx⃗Þ ¼ argmaxitr½M̂x1 ⊗ M̂x2 σ̂ii�: ð47Þ

B. Numerical results for loss and dephasing
with error-free ancillae

In a recent work, Albert et al. [44] investigated the error-
correction performance of several bosonic codes including
cat and binomial under pure loss. In that work, a recovery
map was found by numerical optimization, and it was
shown that bosonic codes can heavily suppress loss errors,
in principle. While it sets a useful bound, numerical
optimization does not provide any information about
how to implement the recovery map in practice. An
important step forward is therefore to compare an explicit
error-correction scheme to the numerically optimal recov-
ery map for relevant noise channels. To make this com-
parison, we focus in this section on a setting with noise-free
ancillae and idealized measurements. Dealing with faulty
ancillae and measurement noise is a nontrivial problem
which we return to in a qualitative discussion in Sec. VIII.
One of our main results is that the teleportation-based error-
correction scheme presented above is close to optimal in the
relevant region of small noise, with a gap from the optimal
scheme arising primarily from inherent noise in the phase
measurements.
In this section, we numerically compute the average gate

fidelity [98] for a channel composed of an ideal encoding of
a qubit into a number-phase code, followed by a single-
mode noise channel, and finally error correction using
noise-free ancillae and ideal gates [99]. We have confirmed
that the Knill-EC scheme from the previous section and the
hybrid Steane-Knill scheme presented in Appendix E
perform identically for the codes and parameter ranges
we investigate.
In the idealized situation where the ancillae are noise-

free, one can use, e.g., a simple M ¼ 1 cat code with
j0cati ∝ jαi þ j−αi, j1cati ∝ jαi − j−αi for the middle
ancilla rail in Fig. 7(a). For large enough α, rotations of the
state jþcati can be detected arbitrarily well with
phase measurements, giving essentially perfect syndrome
measurements for this rail. Moreover, we set L ¼ 1 for the
bottom (output) rail and use the trivial encoding,
j0trivi ¼ j0i and j1trivi ¼ j1i, for this mode. The
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error-correction circuit therefore also decodes the encoded
information.
The total quantum channel we consider is

EKnill ∘N ∘S; ð48Þ

where S• ≔ Ŝ • Ŝ†, with Ŝ ≔ j0Nih0j þ j1Nih1j, is the ideal
encoding map for a given code,N is a noise map, and EKnill

is the error-correction circuit. This is a logical channel with
qubit input and qubit output, due to the use of a trivial
encoding for the final output mode of the error-correction
circuit. Note that EKnill ∘N is given by Eq. (46) in the case
when recoveries are tracked in software rather than applied
explicitly. To compute the average gate fidelity, we explic-
itly apply a correction P̄†

i� to undo the most likely Pauli
error using the decoder in Eq. (47).
The noise channel we consider consists of simultaneous

loss and dephasing. Specifically,N ðρ̂Þ is the solution to the
master equation

_̂ρ ¼ κD½â�ρ̂þ κϕD½n̂�ρ̂; ð49Þ

integrated up to some unitless time κt, with D½L̂�ρ̂ ≔
L̂ ρ̂ L̂† − 1

2
L̂†L̂ ρ̂− 1

2
ρ̂L̂†L̂. A Kraus-operator decomposi-

tion of N is given in Appendix F.
We wish to quantify the performance of the telecorrec-

tion scheme from Sec. VII A. To this end, we compare the
average gate fidelity for the channel in Eq. (48) with a
channel where the error-correction map is replaced by the
completely positive trace-preserving map Eopt that

maximizes the fidelity. The latter can be found by solving
a semidefinite program [44], and we refer to this recovery
as OPTIMAL. The discrepancy between the teleportation-
based scheme and the optimal is due in large part to the
inherent uncertainty of the phase measurements—
cf. Sec. II C 2—and is especially prominent for small
average excitation numbers. We obtain further insight into
the origin of this gap by comparing canonical phase
measurements to “pretty good measurements” (see
Appendix D) for the data rail in the circuit [Fig. 7(a)].
The measurement on the middle ancilla rail is in both cases
a canonical phase measurement as defined in Eq. (14)
[100]. We refer to these two error-correction schemes as
PHASE and PRETTY GOOD, respectively, depending on
which measurement is performed on the data rail. We
emphasize that the PRETTY GOOD scheme is used in our
numerics purely to gain insight into the origin of the gap
between PHASE and OPTIMAL.
We focus here on cat and binomial codes as examples of

number-phase codes. As expected, these codes have a
similar performance for large average excitation number
n̄code [Eq. (11)] but can show significant differences for
smaller n̄code [48]. Remarkably, we find that the PHASE

error-correction scheme approaches OPTIMAL for large
n̄code and small noise strength and that the PRETTY

GOOD scheme is near OPTIMAL for almost all n̄code and
small noise strengths.
In Fig. 8, we show examples of the average gate

infidelity 1 − F [98,101] for an N ¼ 3 cat code (top
row) and N ¼ 3 binomial code (bottom row) as a function
of n̄code. We fix the dephasing rate to be equal to the loss

FIG. 8. Average gate infidelity as a function of the average excitation number in the code, n̄code [Eq. (11)], for an N ¼ 3 cat code (top
row) and binomial code (bottom row). We compare the theoretically optimal error-correction scheme found numerically (OPTIMAL) to
our telecorrection scheme using pretty good measurements (PRETTY GOOD) and canonical phase measurements (PHASE). The encoded
data rail is subject to noise through evolution under the master equation in Eq. (49) with equal loss and dephasing strength, κϕt ¼ κt.
Each column shows results for a different amount of total noise κt before error correction is performed. A code performs better than
break even (the uncorrected trivial encoding) whenever the gate infidelity is below the dashed line (falls outside the shaded region).

GRIMSMO, COMBES, and BARAGIOLA PHYS. REV. X 10, 011058 (2020)

011058-16



rate κϕ ¼ κ and compare three different noise strengths
parameterized by κt. The dephasing rate κϕ models both
natural dephasing and additional uncertainty in the phase
measurements, which motivates choosing a fairly large κϕ.
The dashed line in the figures shows the average gate
infidelity using the trivial encoding j0trivi ¼ j0i and
j1trivi ¼ j1i on the data rail with no error correction.
This line marks the break-even point above which, in the
pink region, encoding and error correction perform worse
and provide no advantage.
There are several takeaway messages from the results in

Fig. 8. First, as advertised, both the PRETTY GOOD and
PHASE error-correction schemes are near optimal for large
n̄code. While for PHASE there is a significant gap at small to
moderate n̄code, the PRETTY GOOD scheme performs very
close to optimal except for very small n̄code and/or large
noise strengths. Second, for all schemes, the codes exhibit
an optimal n̄code where the infidelity reaches a minimum.
Under small loss rates, the optimal n̄code for PHASE is much
larger than for PRETTY GOOD and OPTIMAL, due to the poor
ability of phase measurements to distinguish states with
small n̄code. Third, we see that the binomial codes gen-
erally outperform cat codes for small n̄code and low noise
strength, while the performance is identical for large n̄code.
We note that, for smaller dephasing rates, binomial codes
have an increasing advantage over cat codes, since a more
loss-dominated noise channel generically favors smaller
n̄code [44].
Figure 8 also shows that there is a significant potential

for going beyond break even, at least within the idealized
error model considered here. To investigate this potential
further, we compare cat and binomial codes with different

N in Fig. 9. For each N and each code, we choose the
optimal n̄code. We then plot the logical infidelity 1 − F as a
function of the noise strength for the three different error-
correction schemes OPTIMAL, PRETTY GOOD, and PHASE.
There are two main observations from Fig. 9. First, both

cat and binomial codes break even by orders of magnitude
for all error-correction schemes under the simplified noise
model considered here. We can identify break-even pseu-
dothresholds, defined as the noise strength ðκtÞbe, where the
infidelity is equal to that of the trivial encoding with no
error correction (i.e., where the lines in Fig. 9 cross the
boundary between the pink and the white region). The
break-even thresholds are fairly high, falling in the
1%–10% range, for the range of N considered, but they
decrease with larger N. The second observation is that the
logical infidelity 1 − F falls off more rapidly with higherN,
over a range of κt. However, the gain in performance is
diminishing with increasing N. We do not expect the
infidelity to become arbitrarily small with increasing N,
since the protection against phase noise decreases. The
relatively large reductions in infidelity with increasing N
seen in Fig. 9 suggest that the performance is not limited by
dephasing for the noise parameters and codes consid-
ered here.
The results presented in this section have consequences

for the prospects of using number-phase codes for fault-
tolerant quantum computing. On one hand, the large break-
even potential motivates further study of these codes under
realistic noise models including noisy ancillae, noisy
encoding, more realistic measurement models, and noise
during gates. A pertinent question is how sensitive the
performance is to nonlinear unitary errors such as those

FIG. 9. Average gate infidelity as a function of noise strength κt for cat codes (top row) and binomial codes (bottom row). For each N
and each κϕt ¼ κt, the optimal average excitation number n̄code is used for each code. A code performs better than break even whenever
the gate infidelity is below the dashed line (outside the shaded region). We show only results for 1 − F ≥ 2.5 × 10−8, κt ≥ 0.5 × 10−3,
and N ≤ 4 due to the prohibitively large Fock-space truncation needed for numerical simulations and numerical accuracy issues for very
small infidelity.
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from unwanted self-Kerr interactions. On the other hand,
the expectation that arbitrarily low infidelities cannot be
reached means that cat and binomial codes must ultimately
be concatenated with a second code to suppress errors
further.

VIII. ROAD MAP TO FAULT TOLERANCE

In this section, we outline a scheme that achieves a long-
standing goal for number-phase codes such as cat and
binomial: a fault-tolerant universal set of operations. First,
let us summarize the challenges that need to be overcome
for fault tolerance with number-phase codes (and rotation
codes more generally).

(i) We touch upon some of the challenges with state
preparation in Sec. IV B. A modular excitation-
number measurement (Sec. V) can be performed
to check a state for loss and gain errors but not
without the risk of introducing new rotation errors.
Unfortunately, we have not been able to find a
practical, nondestructive measurement to check for
rotation errors. If only number-shift errors are
checked for, state-preparation noise is biased toward
rotation errors [102].

(ii) Realistic syndrome measurements are going to be
rather noisy. A standard approach, especially in
topological stabilizer codes, is to repeat the syn-
drome measurements multiple times and decode
based on a record of measurement outcomes [77].
However, due to the destructive nature of the
measurements in Fig. 7, they cannot straightfor-
wardly be repeated.

(iii) We expect that logical error rates can be suppressed
only up to a point for realistic error channels. In
particular, there is a trade-off between resilience to
number-shift and rotation errors; cf. Eq. (13) [103].

One way to overcome these issues is to concatenate the
bosonic code with a conventional qubit code so that the
qubit code can deal with errors not handled by the bosonic
code, which is broadly the approach taken recently for GKP
codes, e.g., in Refs. [11,13,14]. Tailoring fault-tolerant
gadgets to the respective strengths and weaknesses of the
bosonic code is, however, not a trivial task. If this process is
not done carefully, the advantage of using a bosonic code at
the ground level is diminished, and any performance
benefits over using bare qubits might be lost. Simply,
we want to optimize the concatenated scheme to maximally
exploit the error-correction properties and noise resilience
of the ground-level bosonic code.
In the following, we outline how this goal can be

achieved using concatenation with a Bacon-Shor subsys-
tem code [34,35,104]. This specific choice serves to
illustrate the broader point of how a fault-tolerant concat-
enated scheme can be tailored to exploit the strengths of the
underlying bosonic code.

A single Bacon-Shor code can have a high fault-tolerant
pseudothreshold at an intermediate code size, even though
the threshold vanishes in the limit of an infinitely large
system size [37,105,106]. Bacon-Shor codes are attractive
candidates for near- and intermediate-term logical qubits
due to their geometrically local layout in two dimen-
sions and weight-two gauge operator checks [37,104,107].
Specifically, we make use of a teleportation-based scheme
developed by Aliferis and Preskill for repetition codes in
Ref. [36] and generalized to Bacon-Shor codes by Brooks
and Preskill in Ref. [37]. We refer to these two works
collectively as the Aliferis-Brooks-Preskill (ABP) scheme.
The key to our fault-tolerant gadgets is to use only

bosonic operations that do not amplify errors within a mode
and do not spread small errors to larger errors at the bosonic
level. The error-correction properties of the bosonic code
can then be exploited fully. The bosonic code operations we
make use of are

Gbosonic ¼ fPjþNi;MX;CROTg: ð50Þ

We also assume universal control over two-level ancillae
or, equivalently, bosonic modes in the trivial encoding
j0trivi ¼ j0i, j1trivi ¼ j1i, and CROTN1 gates between
the two-level ancillae and order-N rotation codes. Using the
ABP scheme, this assumption together with the operations
in Eq. (50) suffice for universal quantum computing.
Remarkably, the bosonic error correction is seamlessly
integrated into the Bacon-Shor error correction with our
approach, such that minimal overhead is incurred. The
bosonic error correction is in this sense highly efficient.

A. Parallel teleportation

Let us start with the issue of measurement errors in the
error-correction scheme in Fig. 7, as an entry point into the
ABP scheme. As already stated, because the syndrome
information is extracted using destructive measurements,
the measurements cannot simply be repeated. However,
since the measurements and state preparation in Fig. 7 are
all in the X̄ basis, a simple remedy is to concatenate with a
length-n repetition code (for n odd) in the dual basis:

j�Li ≔ j�Ni⊗n: ð51Þ

Logical X̂L measurements and state preparation for the
repetition code are then simply independent phase mea-
surements and independent preparation of the n bosonic
modes using a number-phase encoding.Measurement errors
are suppressed by performing a majority vote on the n
outcomes [108]. This fact means that, if we can generalize
the teleportation circuit in Fig. 7 to teleportations of
repetition code blocks, we can use the simple encoding in
Eq. (51) to suppress measurement errors. Equation (51) is
essentially a classical encoding, and the repetition code
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plays a role analogous to repeated measurements in topo-
logical codes [77].
A useful observation is that a ĈZ gate enacted between

each qubit in a repetition code block and a single ancilla
qubit acts as a logical ĈZ between the repetition code block
and the one ancilla. So, for example, the red CROT gates
between the upper block and the ancilla in Fig. 10(a) gives a
logical ĈZ between this block and the ancilla, leading to the
identity with Fig. 10(b), where the thick lines represent
repetition code blocks of length n. The circuit in Figs. 10(a)
and 10(b) represents a nondestructive measurement of
ẐL ⊗ ẐL, where ẐL is a logical Pauli-Z for the repetition
code block. To increase robustness to ancilla measurement
errors, we can repeat this circuit r times, as illustrated in
Figs. 10(c) and 10(d) to get a robust MZLZL

gadget. Error
correction is performed, following Ref. [36], by the logical
one-bit teleportation circuit in Fig. 10(e). Note that, with
n ¼ r ¼ 1, the error-correction gadget in Fig. 10(e) is
identical to that in Fig. 7(a). The scheme outlined in
Fig. 10 is thus a direct generalization of the scheme we
introduced above in Sec. VII, and the error-correction circuit
performs both bosonic-code and repetition-code error cor-
rection in one step.
Let us pause at this point to clarify what is achieved by

concatenating with a repetition code. First of all, the
repetition code is used to suppress measurement errors,
but it also protects against rotation errors more generally.

The latter is especially useful if state-preparation noise is
biased toward rotations, as is the case if number-syndrome
checks are used in this step.
To further understand the concatenated bosonic-

repetition code’s robustness to number-shift errors, con-
sider for the sake of concreteness an N ¼ 2 number-phase
code and a noise channel biased toward loss with negligible
gain. An N ¼ 2 number-phase code can on its own be
robust against a single loss error when gain is negligible.
Say, for example, a single loss error occurs on one of the
ancilla rails in theMZLZL

gadget in Fig. 10. It will spread to
a clockwise rotation error of magnitude π=4 on all of the
upper and lower data rails. This error-spread is acceptable,
because the number-phase code with angular distance dθ ¼
π=2 can deal with rotation errors of this magnitude (note
that, under the assumption of no gain, one should bias the
decoding procedure in Fig. 3 toward clockwise rotations).
Confidence in detecting this loss error is increased by the
fact that it is present in all n phase measurements on the
upper data rails.
On the other hand if, say, two of the r ancillae in the

MZLZL
have a single loss error, this error will propagate to

a rotation error of magnitude π=2, which is too large for an
N ¼ 2 number-phase code to handle. Consequently, this
error leads to a logical error at the repetition-code level with
high likelihood. The number of ancillae r and the repeti-
tion-code length n thus have to be chosen dependent on the
order of rotation symmetry of the number-phase code,N, as
well as the physical loss rate.
We note that concatenation with a repetition code has

recently been proposed in the context of N ¼ 1 cat codes
[109,110]. An N ¼ 1 cat code does not provide any
protection against loss or gain errors but gives rise to a
highly biased effective noise model, because transitions
jαi → j−αi are exponentially suppressed in jαj2. In this
situation, no active error correction is performed at the
bosonic-code level, and the purpose of the repetition code is
to protect against loss and gain errors, which is orthogonal
to what we propose here.

B. Cats of cats and repetitions of repetitions

The above concatenated error-correction scheme can be
improved following Ref. [37]. The techniques presented
there can be adopted straightforwardly to the present
context, so we only briefly comment on the main ideas here.
Despite the scheme already described above being robust

to both loss and rotation errors, it may be impractical to
prepare number-phase codes with very large N. This
constraint limits the number of ancilla measurements, as
explained above, because a single ancilla loss or gain error
spreads to all of the data rails, and vice versa. This problem
can be overcome by replacing each of the r jþNi middle-
rail ancillae in Fig. 10 by logical jþ0

Li for a repetition code
which is dual to Eq. (51):

(a)

(c) (d)

(b)

(e)

FIG. 10. Building blocks of the error-correction scheme from
Ref. [36]. (a) Thewires represent number-phase codes, and the ĈZ

gates are CROT gates. A Ĉ⊗n
Z gate enacted between a repetition code

block and a single ancilla acts as a logical ĈZ. (b) The same circuit
as in (a), where the thick wires represent length-n repetition code
blocks. (c),(d) By repeating a nondestructive measurement of
ẐL ⊗ ẐL r times, we get a robust MZLZL

gadget. (e) The error-
correction gadget from Ref. [36]. Here, jþLi ¼ jþNi⊗n, and the
X̂L measurement is independent, destructive phase measurement
of each mode in the repetition code block.
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j�0
Li ≔

1ffiffiffi
2

p ðj0Ni⊗n � j1Ni⊗nÞ: ð52Þ

The logical Pauli-X for this code is X̂⊗n. However, since we
require only destructive measurements of the ancillae, one
can perform a destructive phase measurement to measure
each of the n ancilla modes in the j�Ni basis, as in Fig. 3,
and take the parity of the digitized outcomes.
The purpose of using the dual repetition code [Eq. (52)]

for themiddle-rail ancillae is that a fully transversal Ĉ⊗n
Z gate

enacted between the two codes [Eqs. (51) and (52)] performs
a logical ĈZ gate between the two code blocks. The basic
building block of the error-correction gadget then simply
becomes an encoded version of the scheme fromFig. 7(a), as
illustrated in Fig. 11. The error-correction scheme is other-
wise identical to that in Fig. 10. The crucial difference is that,
since the ĈZ gates are now fully transversal, an error on any
mode in the circuit spreads to at most two other modes.
The state ð1= ffiffiffi

2
p Þj0i⊗n þ ð1= ffiffiffi

2
p Þj1i⊗n is sometimes

referred to as a “cat state.” Since any bosonic rotation
code is also a generalized cat code, according to Eq. (3),
we can refer to the state jþ0

Li as a “cat of cats.” Of
course, preparing these cat states also incurs overhead. As
explained in Ref. [37], this preparation can be done fault-
tolerantly using only the basic operations Gbosonic (with
about 2n CROT gates and n extra ancillae for a length-n cat
of cats).
As explained in Ref. [37], one can also use cat of cats

jþ0
Li of any length 1 ≤ p ≤ n. For p < n, some ancilla

modes interact with multiple data modes. The two extremes
p ¼ 1 and p ¼ n are shown in Fig. 10, 11, respectively. In
general, both the cat-of-cats length p and the number of
repeated measurements r should be optimized to the noise
model [37].
The last extension from Ref. [37] is to replace the

repetition code with a Bacon-Shor subsystem code.
A Bacon-Shor code can be thought of as a concatenation

of a length-n repetition code with a second, length-m,
repetition code. While the code in Eq. (51) gives protection
only against rotation errors (beyond the protection provided
by the bosonic code), a Bacon-Shor code with m > 1
provides additional protection against loss and gain errors.
In general, one can optimize the ratio m=n to the noise
model and the capabilities of the bosonic code at the ground
level. Error correction is still performed with a gadget as in
Fig. 10(e) using a relatively straightforward generalization
of the MZLZL

measurement and where logical jþLi for the
bosonic-Bacon-Shor code is now a product of cat-of-cats
states [37]. Crucially, the only operations ever needed are
CROT gates between pairs of modes, preparation of jþNi
states, and destructive phase measurements to measure each
mode independently in the j�Ni basis.

C. Universality

In the ABP scheme, a logical CNOT gate is built out
of the fundamental operations in Eq. (50) [36,37]. Univer-
sality is furthermore achieved by injecting noisy states
j þ ii ¼ ðj0i þ ij1iÞ= ffiffiffi

2
p

and jTi ¼ ðj0i þ eiπ=4j1iÞ= ffiffiffi
2

p
directly into the Bacon-Shor (or repetition) code block. In
the present context, state injection can be performed by
preparing the two lowest levels of an ancilla, e.g., a trans-
mon, in the desired state jψi and using a cross-Kerr
interaction between the ancilla and a bosonic mode to
perform a CROTN1 gate. The one-bit teleportation gadget
in Fig. 10(e) is then used to teleport the ancilla state into a
code block. In this case, the upper rail in Fig. 10(e) is the
unencoded two-level ancilla in the state jψi, and the lower
rail is the Bacon-Shor code block. This circuit prepares
the code block in an encoded state jψLi up to a known
measurement-dependent logical Pauli. Several noisy jþ iLi
or jTLi states can be distilled to higher fidelity using
standard state distillation protocols, as analyzed in Ref. [37].
As a final remark, we emphasize that, although the full-

blown scheme using Bacon-Shor codes and cat-of-cats
ancillae is quite complex, the simplest repetition code with
single-mode ancillae should already be able to demonstrate
all the key ingredients of a fault-tolerant scheme. It is
therefore a promising candidate to realize small-scale
logical qubits in near-to-medium-term experiments [107].

IX. CONCLUSIONS AND DISCUSSION

We have presented a broad class of bosonic error-
correcting codes characterized by discrete rotation sym-
metry, which we call bosonic rotation codes or simply
rotation codes for short. Several well-known codes, includ-
ing cat, binomial, and 0N codes, are rotation codes. Cat and
binomial codes, moreover, belong to a subset of rotation
codes, the number-phase codes, which are characterized by
vanishing phase uncertainty for large excitation numbers.
Another member of this subset is Pegg-Barnett codes,
which can be interpreted as the shift-resistant qudit codes

FIG. 11. An extension of the error-correction scheme from
Ref. [36] where each ancilla is encoded in the state jþL

0i
[Eq. (52)]. On the left, the rails represent number-phase codes,
the ĈZ gates are CROT gates, and the measurement is an
independent destructive phase measurement of each mode in a
block. The parity of the n digitized measurement outcomes is
computed to perform a measurement in the j�L

0i basis. On the
right, the thick lines represent repetition code blocks, and the
gates are logical ĈZ between the code blocks. Error correction is
otherwise performed exactly as in Fig. 10: The circuit is repeated
r times, and, finally, the upper data block is measured MX

⊗n,
with the lower data block prepared in jþNi⊗n.
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introduced in Ref. [3] embedded in the infinite-dimensional
Hilbert space of a bosonic mode.
The theoretical framework we present here for number-

phase codes allows a natural comparison with GKP codes,
summarized in Fig. 12. First, number-phase codes are
analogous to approximate GKP codes, with the number
and phase playing dual roles in place of position and
momentum [111]. Second, the fact that the GKP stabilizers
are generated by Hamiltonians linear in annihilation and
creation operators leads to Gaussian Clifford gates. In
contrast, number-phase codes have one symmetry generated
by a quadratic Hamiltonian (R̂N) and one non-Gaussian
symmetry (Σ̂N). As a consequence, a subset of the Clifford
group—the diagonal Cliffords—can be generated by
Hamiltonians that are quartic in annihilation and creation
operators, while the full Clifford group contains highly
nonlinear gates. The smaller set of natural unitary gates
and the higher degree of nonlinearity is a disadvantage
compared to GKP codes. However, the issue of nonlinearity
is not entirely clear cut. Self- and cross-Kerr interactions
are very natural in some platforms [19,113], and some of the
GKP Cliffords require underlying physical nonlinearities

as well—for example, to realize the shear gate S̄ and the
two-mode gate C̄Z.
A feature of number-phase codes is that phase meas-

urement is a natural candidate for a robust logical meas-
urement in the dual basis. In practice, phase measurements
are realized by heterodyne and homodyne measurements as
well as adaptive homodyne schemes [67,115]. The exist-
ence of a robust dual-basis measurement is crucial for the
quantum computing and error-correction schemes pre-
sented in Secs. IV and VII.
The entangling gate (CROT) in our scheme is a con-

trolled-rotation gate based on a cross-Kerr interaction
between two modes. The CROT gate plays a central role
in many pieces of our quantum computing scheme includ-
ing gate teleportation, modular number measurement, and
error correction. An attractive feature of the CROT gate is
that it can be used to interface any two rotation codes. In
fact, the CROT gate can even be used as an entangling gate
between any bosonic rotation code and a square- or
hexagonal-lattice GKP code, due to the underlying rotation
symmetry of the GKP code lattices; see Appendix C. This
fact could be used in hybrid schemes employing multiple
encodings and for switching between codes using telepor-
tation. The generality of the CROT gate is similar in spirit to
that of the exponential-SWAP (eSWAP) gate [116,117],
which is agnostic to code type but makes no guarantees
about error propagation. In contrast, the Kerr-based inter-
actions that underlie CROT gates amplify errors only in a
very limited way and are, thus, attractive candidates for use
in a fault-tolerant scheme.
There are two particularly salient features of the tele-

portation-based error-correction scheme we introduced in
Sec. VII. The first is that, for a large average excitation
number in the code, the performance (as measured by
average gate fidelity) is near that of the optimal recovery
map allowed by the laws of quantum mechanics. For a
small average excitation number, the gap from optimal
stems mainly from the inability of phase measurements to
accurately distinguish the logical code words in this limit.
The second is that teleportation-based error correction does
away with the need for explicit recovery operations to
restore the code space, and logical recoveries can be
tracked entirely in software. Since explicit recovery oper-
ations would require highly nonlinear implementations,
this is a major simplification.
Finally, we outlined an approach to universal fault-

tolerant quantum computing with number-phase codes in
Sec. VIII. Given the highly nonlinear nature of the number-
translation symmetry Σ̂N [Eq. (18)], one may wonder
whether fault-tolerant error correction is possible. We
showed that fault tolerance can indeed be achieved, through
concatenation with a Bacon-Shor code and exploiting
schemes that were originally developed to deal with highly
asymmetric noise [36,37,106]. Our scheme illustrates the
broader point of how a concatenated scheme can be tailored

FIG. 12. Comparison between the number-phase codes intro-
duced in this work and GKP codes [3]. For simplicity, we
consider the square-lattice GKP code. The cartoon shows code
words for an N ¼ 4 number-phase code, with dn ¼ 4 and
dθ ¼ π=4, and a GKP code, with dq ¼ dp ¼ ffiffiffi

π
p

. For each code
type, there are unitary gates that are “natural” in the sense that
they are generated by physically natural Hamiltonians and that
they map small errors to small errors. To achieve universality, the
unitary gates are supplemented with state preparation and Pauli
measurements for both code types. Note that it was recently
shown that the GKP magic state jTgkpi can be distilled using only
Gaussian operations [114]. The number-phase-code analogs to
the envelopes in the approximate GKP code words are number-
amplitude envelopes such as those in Fig. 4.
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to the strengths and weaknesses of the underlying bosonic
code. We showed how bosonic-code error correction can be
seamlessly integrated with the qubit-code error correction
and furthermore how fault-tolerant gadgets can be con-
structed using bosonic operations with minimal error
spread or amplification. In this way, one can hope to
maximize the advantage of using bosonically encoded
qubits over bare qubits at the ground level.
It is worth reiterating that no additional syndrome

measurements are required to perform error correction at
the bosonic level beyond those needed for the qubit
subsystem code itself. In other words, error correction at
both levels is performed in one step, such that no additional
resources are used compared to if bare qubits were used at
the ground level. This situation is an interesting contrast to
other recent work on concatenation of GKP codes with
topological qubit codes [13,14]. In these latter works,
dedicated ancillae and syndrome-measurement circuits
are introduced to perform bosonic-code error correction,
thus incurring more overhead.
It is still largely an open problem to quantify the

performance of bosonic codes for fault-tolerant error
correction and computing and, thus, their potential to give
an improvement over bare qubits. An important part of
future research on bosonic codes is therefore to quantita-
tively study different schemes in a fault-tolerant setting.
Our scheme based on concatenation with Bacon-Shor
codes illustrates some of the key issues a fault-tolerant
scheme for bosonic rotation codes must overcome. An
interesting direction for future research is to explore this
path further with other concatenated codes, in particular, to
develop schemes based on concatenation with topological
codes and compare bosonic rotation codes to GKP codes at
the ground level, following the work in Refs. [13,14]. It is
noteworthy that decoders tailored to bosonic codes at the
ground level have already shown promise in theoretical
work on GKP codes [12,13,15].
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APPENDIX A: DUAL-BASIS PRIMITIVES

The dual-basis code words j�Ni can themselves be
described by a set of rotated dual primitives eiθn̂jΘ0i
parameterized by N equally spaced angles θ ¼ 2mπ=N
for m ¼ 0;…; N − 1:

jþN;Θi ≔
1ffiffiffiffiffiffiffiffi
N þ

p XN−1

m¼0

eið2mπ=NÞn̂jΘ0i; ðA1aÞ

j−N;Θi ≔
1ffiffiffiffiffiffiffiffi
N −

p XN−1

m¼0

ei½ð2mþ1Þπ=N�n̂jΘ0i: ðA1bÞ

The dual primitive jΘ0i is a weighted superposition of the
original primitive jΘi with itself rotated by π=N,

jΘ0i ¼ 1ffiffiffiffiffiffiffiffiffi
N Θ0

p ðcþ þ c−eiðπ=NÞn̂ÞjΘi; ðA2Þ

where c� ≔
ffiffiffiffiffiffiffi
N 1

p
�

ffiffiffiffiffiffiffi
N 0

p
, and the normalization is

N Θ0 ¼ 2ðN 0 þN 1Þ þ 2ðN 1 −N 0ÞhΘj cos
�
2π

N
n̂

	
jΘi:

ðA3Þ

Note that, for a fixed primitive jΘi, the dual primitive jΘ0i
is, in general, different for each N.
When the normalization constants satisfy N 0 ¼ N 1, the

computational- and dual-basis primitives coincide. This
equality holds for the number-phase codes in Table I in the
large average excitation-number limit. An example is cat
codes in the limit α → ∞. In this case, the code states in
Eq. (A1) can be expressed simply as

jþNi →
1ffiffiffiffi
N

p
XN−1

m¼0

eið2mπ=NÞn̂jΘi; ðA4aÞ

j−Ni →
1ffiffiffiffi
N

p
XN−1

m¼0

ei½ð2mþ1Þπ=N�n̂jΘi; ðA4bÞ

with a set of anglesmð2π=NÞ that are twice the size of those
in the computation-basis code words. Moreover, we have
that codes of different order are related via

j0N;Θi ¼ jþ2N;Θi ðN 0 ¼ N 1Þ: ðA5Þ

APPENDIX B: EXAMPLES OF ROTATION
CODES

The angular and Fock-space structures that characterize
rotation codes leave freedom to define different codes
through the coefficients ffkNg [Eq. (4)] that arise from a
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choice of primitive jΘi. Several rotation codes are pre-
sented in the literature, such as cat codes [5] and binomial
codes [6] and modified versions of these codes that improve
their error-correcting capability by changing the relative
phases of their Fock-grid coefficients [10]. Their structure,
properties, and error resilience have been studied recently
in Ref. [44]. We summarize cat and binomial codes here
and introduce two other examples. The first is a generali-
zation of cat codes to include squeezing. The second is a
new class of code based on the phase states introduced by
Pegg and Barnett [69]. For each, we give a primitive jΘi
and the Fock-grid coefficients ffkNg associated with an
order-N code. For binomial codes, the primitive itself
depends on N, while the other code families use the same
primitive for all N. Note that in the main text we are
primarily interested in the subset of rotation codes that have
approximate number-translation symmetry—the number-
phase codes introduced in Sec. III. Each of the codes
introduced here can serve as a number-phase code in an
appropriate limit.

1. Squeezed cat codes

Cat codes consist of coherent states superposed in phase
space, which can be generalized in a straightforward way to
include squeezing. A displaced, squeezed vacuum state is
given by

jα; r;ϕi ≔ D̂ðαÞŜðζÞj0i; ðB1Þ

where D̂ðαÞ ¼ eαa
†−α�a is the displacement operator and

ŜðζÞ ¼ eð1=2Þðζa†2−ζ�a2Þ is the squeeze operator with squeez-
ing parameter ζ ¼ re−2iϕ, where r is the squeezing
amplitude and ϕ the squeezing angle. The Fock-space
representation for a single displaced squeezed vacuum
state, jα; r;ϕi ¼ P∞

n¼0 c̃njni, is given by the coefficients

c̃n ¼
X∞
l¼0

Dn;lðαÞSl;0ðr;ϕÞ; ðB2Þ

where the squeezed vacuum coefficients are Sl;0ðr;ϕÞ ¼ 0

for l odd and

Sl;0ðr;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
sechr

p �
−
1

2
e2iϕ tanh r

	
l=2

ffiffiffiffiffi
l!

p

ðl=2Þ! ðB3Þ

for l even. In the limit of no squeezing, Sl;0ðr → 0;ϕÞ ¼
δl;0. The coefficients for a displaced number state are

Dn;lðαÞ ¼ e−ð1=2Þjαj2
�
l!
n!

	
1=2

αn−lLn−l
l ðjαj2Þ; ðB4Þ

with associated Laguerre polynomials Lk
lðxÞ.

The j0Ni and j1Ni code words are constructed using a
displaced squeezed state as the primitive jΘscati ¼
jα; r;ϕ ¼ 0i with α real and positive. From Eq. (3a), the
computational basis states are given by [118]

j0N;scati ≔
1ffiffiffiffiffiffiffi
N 0

p X2N−1

m¼0

����αeimðπ=NÞ; r; m
π

N

�
; ðB5aÞ

j1N;scati ≔
1ffiffiffiffiffiffiffi
N 1

p X2N−1

m¼0

ð−1Þm
����αeimðπ=NÞ; r; m

π

N

�
: ðB5bÞ

The Fock-grid coefficients can be found readily from the c̃n
in Eq. (B2); see Sec. II A for details.
Two code subclasses can be identified by specific

parameters: Cat codes emerge in the limit that squee-
zing vanishes, r ¼ 0, and squeezed vacuum codes arise
when the displacement vanishes, α ¼ 0 [120]. For the
smallest cat code (α → 0; r ¼ 0), the trivial encoding in
Eq. (12) is realized. The Fock-grid coefficients for cat
codes are

fkN ¼
ffiffiffiffiffiffiffi
2

N �
i

s
e−ð1=2Þjαj2

αkNffiffiffiffiffiffiffiffiffiffiffiffiðkNÞ!p ; ðB6Þ

where N �
i indicates the Fock-space normalization factor

N �
0 (N �

1) (see Sec. II A) for k even (odd).
Note that the cat codes we consider in this work are

distinct from the two-mode cat codes in Ref. [48] and the
single-mode cat codes in Refs. [4,121], where the code
words are manifestly nonorthogonal while still exhibiting
discrete rotational symmetry.

2. Binomial codes

Binomial codes are introduced in Ref. [6] as a class of
codes that can exactly correct loss, gain, and dephasing
errors up to a certain order. The code words are most
straightforwardly defined in the conjugate basis [122]:

jþN;bini ≔
XK
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2K

�
K

k

	s
jkNi; ðB7aÞ

j−N;bini ≔
XK
k¼0

ð−1Þk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2K

�
K

k

	s
jkNi: ðB7bÞ

The Fock-grid coefficients ffkNg can be read off from the
computational basis states:

j0N;bini ¼
XbK=2c
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2K−1

�
K

2k

	s
j2kNi; ðB8aÞ
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j1N;bini ¼
XbK=2c−1

k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2K−1

�
K

2kþ 1

	s
jð2kþ 1ÞNi; ðB8bÞ

where bxc is the floor function that gives the largest integer
less than or equal to the real number x. There are many
binomial codes with N-fold rotation symmetry, one for
each value of K ¼ 1; 2;…, which sets the truncation level
in Fock space. The mean excitation number is n̄bin ¼ 1

2
NK

[44], and the mean modular phase can be simplified to

heiθNi ¼ 1

2K

XK−1
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
K − k
kþ 1

r �
K

k

	
: ðB9Þ

Binomial codes are defined explicitly at the code word
level, leaving freedom to describe associated primitives.
However, each binomial code, specified by its rotational
order N and truncation parameter K, has a different set of
primitives. An example primitive can be defined as

jΘN;K
bini ¼

1ffiffiffiffiffiffiffiffiffiffiffi
N bin

p XKN
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2K−1

�
K

bn=Nc

	s
; ðB10Þ

withN bin a normalization constant. The smallest binomial
codes (K¼ 1) yield the 0N code jþNi¼ð1= ffiffiffi

2
p Þðj0iþjNiÞ,

which is the trivial encoding [Eq. (12)] for N ¼ 1.

3. Pegg-Barnett codes

A Pegg-Barnett phase state is given by [69]

jϕ; si ≔ 1ffiffiffi
s

p
Xs−1
n¼0

einϕjni; ðB11Þ

where the parameter s sets the truncation level. The
set of states fjϕm ¼ 2πm=s; sig with m ¼ 0;…; s − 1
forms an orthonormal basis for the s-dimensional truncated
Fock space.
We use a specific phase state as a primitive,

jΘpbi ¼ jϕ ¼ 0; si, to define Pegg-Barnett codes. To
ensure adequate Fock space for the code words, the
truncation s − 1 is required to be at least N. Given that
eiθn̂jϕ; si ¼ jϕþ θ; si, the code words can be expressed
simply as

j0N;pbi ≔
1ffiffiffiffiffiffiffi
N 0

p X2N−1

m¼0

����ϕ ¼ m
π

N
; s

�
; ðB12aÞ

j1N;pbi ≔
1ffiffiffiffiffiffiffi
N 1

p X2N−1

m¼0

ð−1Þm
����ϕ ¼ m

π

N
; s

�
: ðB12bÞ

Note that if the truncation of the Pegg-Barnett phase state
used as a primitive is commensurate with the order of the

code, s ¼ p × 2N for p ¼ 1; 2; 3;…, then the rotated
primitives are automatically orthogonal, hϕ ¼ mðπ=NÞ;
sjϕ ¼ m0ðπ=NÞ; si ¼ δm;m0 . In this case, the conjugate-
basis code words and the dual-basis code words are simple
superpositions of the primitive; cf. Eq. (A4). For
s ¼ p × 2N, we also have that the Pegg-Barnett codes
can be recognized as the shift-resistant qudit codes from
Ref. [3], with d ¼ s, n ¼ 2, r1 ¼ N, and r2 ¼ p, using the
notation from Ref. [3].
The Fock-grid coefficients, in general, are fkN¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=⌈s=N⌉

p
, where ⌈x⌉ is the ceiling function that gives

the least integer greater than or equal to the real number x.
The mean excitation number is n̄pb ¼ ðN=2Þð⌈s=N⌉ − 1Þ,
and the mean modular phase is

heiNθi ¼ 1 −
1

⌈s=N⌉
: ðB13Þ

The Pegg-Barnett code ½N; s ¼ N þ 1� is the 0N code, and
the smallest Pegg-Barnett code ½N ¼ 1; s ¼ 2� is the trivial
encoding [Eq. (12)].

APPENDIX C: ROTATION SYMMETRY FOR
GOTTESMAN-KITAEV-PRESKILL CODES

Logical Pauli gates for GKP codes are realized by
discrete translations in phase space. As a consequence of
translation symmetry, all GKP codes also exhibit N ¼ 2
discrete rotation symmetry, as we show below. However,
GKP codes are not rotation codes as we define them in
Sec. II, because the operator Ẑ2 does not act as a Pauli
operator. Depending on the underlying lattice defining the
GKP code words, ẐN may nevertheless act as a logical
Clifford operator for some values of N. Two notable GKP
codes where such is the case are the square- and hexagonal-
lattice GKP codes, which means that these codes exhibit
some properties of rotation codes. We briefly elucidate
this point.
The code space of a single-mode ideal GKP qubit is

defined to be the þ1 eigenspace of the stabilizers

ŜXgkp ≔ D̂ð2αÞ; ŜZgkp ≔ D̂ð2βÞ; ðC1Þ

where D̂ðζÞ ¼ eζâ
†−ζ�â is the displacement operator [123]

and α and β are complex numbers satisfying

α�β − αβ� ¼ iπ: ðC2Þ

The stabilizer group consists of all powers ðŜXgkpÞn1ðŜZgkpÞn2
for n1, n2 ∈ Z. The shift operators that act as logical Paulis
for the GKP qubit are

X̂gkp ≔ D̂ðαÞ; ðC3aÞ

Ẑgkp ≔ D̂ðβÞ; ðC3bÞ
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Ŷgkp ≔ iẐgkpX̂gkp ¼ D̂ðαþ βÞ; ðC3cÞ

where the form of Ŷgkp follows from the general
identity D̂ðαÞD̂ðβÞ¼eð1=2Þðαβ�−α�βÞD̂ðαþβÞ. The constraint
Eq. (C2) ensures that the stabilizers in Eq. (C1) commute
and that X̂gkp and Ẑgkp commute with the stabilizers and
anticommute with each other.
From the identity e−iθn̂D̂ðζÞeiθn̂ ¼ D̂ðe−iθζÞ, we see that

the discrete rotation operator R̂N for N ¼ 2 has the
following action on the Pauli shift operators:

R̂†
2X̂gkpR̂2 ¼ D̂ð−αÞ ¼ X̂†

gkp; ðC4aÞ

R̂†
2ẐgkpR̂2 ¼ D̂ð−βÞ ¼ Ẑ†

gkp: ðC4bÞ

Since X̂†
gkp ¼ X̂gkpðŜXgkpÞ−1 and Ẑ†

gkp ¼ ẐgkpðŜZgkpÞ−1,
they are equivalent up to stabilizers and have the same
action on the code space. Thus, R̂2 acts as the identity
operator on the code space of an ideal GKP code. In other
words, all GKP codes have twofold discrete rotation
symmetry.
The computational-basis code words can be written as a

superposition of coherent states:

jjgkpi ¼
X

n1;n2∈Z
D̂½ð2n1 þ jÞα�D̂ðn2βÞj0i

¼
X

n1;n2∈Z
e−iπðn1n2þjn2=2Þjð2n1 þ jÞαþ n2βi; ðC5Þ

with j ¼ 0, 1. It is natural to define state lattices in the
complex plane for the computational-basis code words,

Lj ¼ fð2n1 þ jÞαþ n2βjn1; n2 ∈ Zg; ðC6Þ

as well as the code space lattice, L ¼ L0 ∪ L1, consisting
of all points n1αþ n2β. As described in Ref. [44], the code
word lattices are basis dependent, while the code space
lattice L is not. Note that Eq. (C2) means that the unit cell,
or fundamental parallelogram, of L has area π=2 [124].
We consider two canonical examples of ideal GKP codes

defined on square (gkps) and hexagonal (gkph) lattices.
The codes can be defined in terms of their respective lattice-
basis translations α and β:

gkps∶ α ¼
ffiffiffi
π

2

r
; β ¼ i

ffiffiffi
π

2

r
; ðC7aÞ

gkph∶ α ¼
ffiffiffiffiffiffiffi
πffiffiffi
3

p
r

; β ¼ eið2π=3Þ
ffiffiffiffiffiffiffi
πffiffiffi
3

p
r

: ðC7bÞ

Code space lattices for gkps and gkph are shown
in Fig. 13.

Depending on the lattice, specific discrete rotations can
act as nontrivial logical Clifford gates. In particular, for
square-lattice GKP, N ¼ 4 rotations transform the Paulis:

R̂†
4X̂gkpsR̂4 ¼ Ẑ†

gkps; ðC8aÞ

R̂†
4ẐgkpsR̂4 ¼ X̂gkps: ðC8bÞ

Thus, R̂4 ¼ Ẑ2 ¼ eiðπ=2Þn̂ (the Fourier transform operator)
acts as a logical Hadamard H̄ for gkps. It follows that the
eigenstates of H̄ for this code can be written in the form
Eq. (4), a fact that is recognized in Ref. [3]. It is also
suggested there that the measurement of number mod 4 can
be used to prepare Hadamard eigenstates, which are
equivalent to the magic state jTgkpsi up to Cliffords.
Since mapping logical H̄ to Z̄ is a non-Clifford operation,
this mapping is not a trivial change of basis for a GKP code,
and we therefore do not classify the square-lattice GKP
code as a rotation code.
For hexagonal-lattice GKP, N ¼ 6 rotations perform

logical π=3 rotations around the XYZ axis:

R̂†
6X̂gkphR̂6 ¼ Ẑ†

gkph; ðC9aÞ

R̂†
6ẐgkphR̂6 ¼ Ŷgkph; ðC9bÞ

giving a cyclic permutation of the logical Pauli operators.
Thus, R̂6 ¼ Ẑ3 acts as the logical Clifford gate H̄S̄† [125].
An N ¼ 3 rotation, given by R̂3 ¼ R̂2

6, acts as the logical
gate ðH̄S̄†Þ2 ¼ e−iðπ=4ÞS̄ H̄, which performs a cyclic per-
mutation of the Paulis in the opposite order.
The fact that the square- and hexagonal-lattice GKP

codes have nontrivial Cliffords implementable as discrete
rotations also implies that the CROT gate can be used
between a bosonic rotation code and these two GKP codes.

(a) (b)

FIG. 13. Code lattices L0 (filled circles) and L1 (open circles)
in the complex plane for (a) square-lattice GKP and (b) hexago-
nal-lattice GKP. The area of the lattice parallelogram is π=2. The
code space lattice L is also apparent in the Wigner function
WgkpðαÞ of the completely mixed state 1

2
Π̂gkp. Using quadrature

axes Q and I, as defined in Fig. 1, WgkpðαÞ is identical to the
above plots with positive δ functions at each point in L. For the
Wigner functions, arrows indicate the direction of displacement
for X̂gkp and Ẑgkp.
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In particular, CROTN4 (CROTN6) implements a controlled-
H̄ (controlled-H̄S̄†) between an order-N rotation code and a
square (hexagonal) GKP code, with the rotation code as the
control and the GKP code as the target.
In contrast to square- and hexagonal-, the rectangular-

lattice GKP code does not benefit from additional Clifford
gates performed via discrete rotations. Last, we note that
the crystallographic restriction theorem implies that no
lattice can have higher than sixfold rotation symmetry, and
R̂6 is the highest degree rotation operator that can preserve
the code space of a GKP code.

APPENDIX D: PRETTY GOOD MEASUREMENTS

As we allude to in Sec. II C 2, the canonical phase
measurement might not be the optimal measurement to
distinguish the code words j�Ni. Even in the absence of
noise, two orthogonal code words cannot, in general, be
perfectly distinguished by a canonical phase measurement
due to embedded phase uncertainty ΔNðθÞ. Moreover, in a
realistic scenario where the code words may be damaged,
defining a phase-estimation problem with respect to the
ideal code words is suboptimal. We do not attempt to find
an optimal scheme, in general, as this must likely be done
on a case-by-case basis for different codes and noise
models. Instead, we introduce a measurement that performs
well for all the codes and noise models we study in this
paper. This measurement is the “pretty good measurement”
introduced in Refs. [51–53]. The “pretty good measure-
ment” perfectly distinguishes orthogonal states and is
designed to also distinguish fairly well states with small
nonzero overlaps. The measurement is defined through the
POVM elements

M̂pretty good
i ≔ σ̂−1=2N ðjiihijÞσ̂−1=2; ðD1Þ

where jii runs over the states to be distinguished and N
represents an arbitrary noise channel. The operator σ̂ ¼
N ðP̂Þ with P̂ ¼ P

i jiihij represents the projector onto the
subspace in question sent through the noise channel. The
POVM elements satisfy

P
i M̂i ¼ P̂σ, where P̂σ is a

projector onto the support of σ̂. To have a complete
measurement, one can add a POVM element Î − P̂σ

projecting onto the complement of P̂σ . Note that, in
contrast to the canonical phase measurement, the pretty

good measurement explicitly exploits knowledge about the
noise N .

APPENDIX E: HYBRID STEANE-KNILL ERROR
CORRECTION

Here, we introduce an error-correction circuit, depicted
in Fig. 14, as an alternative to the circuit in Fig. 7. We call
this error-correction method “hybrid” (hybrid-EC), because
the first CROT gate and the measurement of the top ancilla
rail can be recognized as identical to one of the two steps of
Steane-EC, while the second CROT and the measurement on
the data rail is a one-bit teleportation, identical to one of the
steps in Knill-EC. Essentially, this circuit uses Steane-EC
for one of the syndromes (number-shift errors) and Knill-
EC for the other (dephasing errors).
This error-correction scheme is based on the circuit

identity

ðE1Þ

where Ê ¼ ÊkðθÞ is again an arbitrary initial error and the
two rotation errors R̂ ¼ Ê0ðπk=NMÞ and R̂0 ¼ Ê0ðπk=NLÞ
are both proportional to k. A phase measurement on the top
rail thus estimates k, and a recovery operation can be
applied to the bottom rail to undo the leftover error R̂0.
The first step of the circuit in Fig. 7(b), involving only

the top ancilla,

ðE2Þ

performs a nondestructive measurement of the excitation
number mod N on the data rail, as explained in Sec. V. The
second step of the circuit,

ðE3Þ

teleports the data to a fresh new ancilla, thus restoring the
code space up to a known rotation error as per Eq. (E1).
More explicitly, we consider an encoded state ρ̂N

in an order-N rotation code sent through a noise channel
N • ¼ P

n Ân • Â
†
n, followed by the error-correction circuit

in Fig. 14. In this case, it is convenient to expand the noise
Kraus operators as Ân ¼

P
k

R
dθcnkðθÞÊkðθÞ ¼

P
k Ênk,

where we define Ênk ¼
R
dθcnkðθÞÊkðθÞ. The state after

the error-correction circuit can be written
FIG. 14. A hybrid Steane-Knill error-correction scheme for
rotation codes.
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Ehybrid ∘N ðρ̂NÞ ¼
1

2

X
a;b¼�

X
x⃗

X
n;k;k0

tr½M̂x1 σ̂
nkk0
ab �tr½M̂x2 τ̂

kk0 �

× Ê0

�
πk
NL

	
C̄aρ̂LC̄

†
bÊ

†
0

�
πk0

NL

	
; ðE4Þ

where

σ̂nkk
0

ab ≔ ÊnkjaNihbN jÊ†
nk0 ; ðE5Þ

τ̂kk
0 ≔ Ê0

�
πk
NM

	
j0Mih0MjÊ†

0

�
πk0

NM

	
ðE6Þ

represent damaged code words for the data and ancilla,
respectively, and C̄þ ≔ H̄; C̄− ≔ X̄H̄ are logical Cliffords.
We again use a notation where ρ̂L on the right-hand side
represents the same logical state as ρ̂N on the left-hand side
but where the latter is encoded in the order-L number-phase
code of the bottom ancilla in Fig. 14.
The most likely rotation error on the output,

Ê0ðπk�=NLÞ, as well as the most likely logical Clifford
error C̄a� can be deduced using, e.g., a maximum likelihood
decoder. The rotation error is straightforward to correct or,
alternatively, can be tracked by updating later phase
measurements. The error C̄a� is not a Pauli error; however,
by performing the error-correction circuit twice, the most
likely error will be a Pauli from the set P̄i ∈ fĪ; Z̄; X̄; X̄ Z̄g
which can be tracked in a Pauli frame.
We have verified in numerical simulations that the

hybrid-EC scheme performs identically to the Knill-EC
scheme presented in Sec. VII A; i.e., the results in
Sec. VII B are identical for both schemes. In fact, there is
arguably a slight advantage of the hybrid-EC scheme in the
case of noiseless ancillae, becausewe can use an unencoded
state jαi for the upper ancilla rail in Fig. 14. This state give
slightly better phase resolution compared to an M ¼ 1 cat
code, as used in Sec. VII B, at the same value of α.

1. Relation to recent experiments

The hybrid-EC scheme generalizes the experimental
protocol used in the two experiments in Refs. [29,30],
where error correction for N ¼ 2 cat and binomial codes
is implemented, respectively. The scheme employs the
error-syndrome circuit Eq. (E2) with the ancilla replaced by
an unencoded qubit in the state jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

,
and the CROT gate in their case is CROT ¼ CROTN1=2 ¼
eið2π=NÞn̂⊗n̂. An error EkðθÞ on the data qubit is thus
imprinted as a phase on the ancilla, i.e., jþi → j0i þ
eið2πk=NÞj1i, and the syndrome measurement attempts to
estimate this phase. Note that, with N ¼ 2, an initial
error prior to the gate with jkj mod 2 ¼ 1 on the data
qubit flips the ancilla to j−i, while an error with
jkj mod 2 ¼ 0 leaves the ancilla in the state jþi. This
syndrome does not detect dephasing errors, nor does it
restore the state back to the Fock grid jkNi. For cat codes,

loss events can be tracked in software so that recoveries for
this particular error are not necessary (this does not include
the no-jump part of the bosonic loss channel, however)
[29]. For binomial codes, optimal control is employed in
Ref. [30] to find a unitary that approximately restores the
code space. In the hybrid-EC scheme we propose, both
the detection of dephasing errors and the restoration of the
code space are performed by the second step of the error-
correction circuit [Eq. (E3)]. The difficulty of restoring the
code space has thus been replaced by the ability to prepare
copies of encoded jþNi states.

APPENDIX F: LOSS AND DEPHASING
CHANNEL

We seek a convenient representation of the channel that
describes simultaneous loss and dephasing:

N ¼ etðLκþLκϕ
Þ; ðF1Þ

where Lκ ≔ κD½â� and Lκϕ ≔ κϕD½n̂�; cf. Eq. (49). First,
we note that the pure dephasing channel can be written

etLκϕ ρ̂ ¼
Z

∞

−∞
dθpκϕtðθÞeiθn̂ρ̂e−iθn̂; ðF2Þ

where pκϕt ¼ ð2πκϕtÞ−1=2e−θ2=ð2κϕtÞ is a Gaussian with zero
mean and variance κϕt. This result can be shown by first
considering the small κϕt limit:

eLκϕ
tρ̂ ≃

Z
∞

−∞
dθpκϕtðθÞð1þ iθn̂Þρ̂ð1 − iθn̂Þ

≃
Z

∞

−∞
dθpðθÞ½eiθn̂ρ̂þ ρ̂e−iθn̂ þ θ2n̂ ρ̂ n̂−ρ̂�

¼ e−ð1=2Þκϕtn̂2 ρ̂þ ρ̂e−ð1=2Þκϕtn̂2 þ κϕtn̂ ρ̂ n̂−ρ̂

≃ ρ̂ −
1

2
κϕtn̂2ρ̂ −

1

2
ρ̂κϕtn̂2 þ κϕtn̂ρn̂; ðF3Þ

and thus

_̂ρ ¼ lim
t→0

etLκϕ ρ̂ − ρ̂

t
¼ Lκϕ ρ̂; ðF4Þ

as required.
Returning to Eq. (F1), we can write the solution ρ̂ðtÞ ¼

N ðρ̂0Þ in terms of a generalizedDyson expansion [126,127]:

ρ̂ðtÞ ¼
X∞
k¼0

Z
t

0

dtk

Z
tk

0

dtk−1…
Z

t2

0

dt1

× eðt−tkÞSJ…J eðt2−t1ÞSJ et1S ρ̂0; ðF5Þ
whereJ ρ̂ ¼ κâ ρ̂ â† andS ¼ Lκϕ þ Lκ − J . Next, note that
the no-jump part of the evolution factorizes as

etS ¼ etðLκϕ
þLκ−J Þ ¼ etLκϕetðLκ−J Þ; ðF6Þ
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where etLκϕ is given by Eq. (F2) and

etðLκ−J Þρ̂ ¼ e−κn̂t=2ρ̂e−κn̂t=2: ðF7Þ

Using this result, it is straightforward to pull the jump
superoperators J through all the no-jump superoperators
in Eq. (F5):

J etLκϕ ¼ etLκϕJ ; ðF8Þ

J etðLκ−J Þ ¼ e−κtetðLκ−J ÞJ : ðF9Þ

After pushing all the J ’s to the right, rewriting the k time-
ordered integrals as k integrals over [0; t], and performing the
integrals, one readily finds

ρ̂ðtÞ ¼ etLκϕ

X∞
k¼0

Âkρ̂0Â
†
k; ðF10Þ

where Âk is given by

Âk ≔
ð1 − e−κtÞk=2ffiffiffiffi

k!
p e−κn̂t=2âk: ðF11Þ

One can, of course, also find a Kraus-operator representation
of etLκϕ using exactly the same method:

etLκϕ ρ̂ ¼
X∞
l¼0

B̂lρ̂B̂
†
l; ðF12Þ

with

B̂l ≔
ðκϕtÞl=2ffiffiffiffiffi

l!
p e−ð1=2Þκϕn̂2tn̂l: ðF13Þ

We, however, do not need such a Kraus-operator represen-
tation of the dephasing channel for our purposes in Sec. VII,
since the dephasing channel commutes with all the CROT

gates. We find it more convenient to solve the master
equation

_N κϕ ¼ LκϕN κϕ ðF14Þ

numerically, withN κϕð0Þ ¼ I the identity superoperator as
the initial condition, to find the pure dephasing chan-
nel N κϕðtÞ ¼ etLκϕ .
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