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We describe the hyperboloidal compactification for Teukolsky equations in Kerr spacetime. We include

null infinity on the numerical grid by attaching a hyperboloidal layer to a compact domain surrounding the

rotating black hole and the orbit of an inspiralling point particle. This technique allows us to study, for the

first time, gravitational waveforms from large- and extreme-mass-ratio inspirals in Kerr spacetime

extracted at null infinity. Tests and comparisons of our results with previous calculations establish the

accuracy and efficiency of the hyperboloidal layer method.
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I. INTRODUCTION

Black-hole perturbation theory plays a prominent role in
obtaining physical insight into the quantitative behavior of
astrophysical systems [1–8]. In recent years there has been
considerable interest in computing the gravitational wave-
forms emitted by the radiation-reaction driven inspiral of a
small, compact object into a large supermassive black hole.
The waveforms from such extreme-mass-ratio inspirals
(EMRIs) are expected to be observed by future, space-
based, gravitational-wave detectors such as the Laser
Interferometric Space Antenna.

EMRIs provide a rich phenomenology relevant for as-
trophysical and theoretical questions. Observations of
EMRIs would deliver, among others, an accurate mapping
of black-hole spacetimes [9] and tests of the black-hole
uniqueness theorem [10]. On the theoretical side, modeling
of EMRIs poses challenging problems. Because the nu-
merical solution of full Einstein equations for extreme
mass ratios of the order of 10�5 are computationally pro-
hibitive, EMRIs are calculated via approximation tech-
niques. Currently, the most common approximative
methods to study EMRIs are the kludge waveform ap-
proach [11–15], the effective-one-body (EOB) approach
[16–23], and the self-force approach [24–30].

In these methods, the waveforms can be calculated by
numerically solving the equations describing black-hole
perturbations. When the central, supermassive black hole
is assumed to be rotating, the most common approach is to
solve the Teukolsky equations that describe curvature per-
turbations of a Kerr spacetime [4,5].

A difficulty in solving the Teukolsky equations numeri-
cally—especially in the time domain—is the construction
of suitable outer boundary conditions. Typically, the com-
putational domain is artificially truncated to calculate the

solution in a finite domain. One needs to provide boundary
data along the timelike boundary of this domain such that
the artificial boundary is transparent to outgoing waves
from the interior. The outer boundary problem is already
nontrivial for the evolution of scalar waves in Minkowski
spacetime [31–33]. There has been substantial progress in
constructing good outer boundary conditions for wave
equations in Schwarzschild spacetime [34–37], which
have been recently generalized to Kerr spacetime [38].
Such sophisticated boundary conditions, however, can be
difficult to implement. To our knowledge, there is no
numerical implementation of the improved boundary con-
ditions in Kerr spacetime.
Another difficulty in the numerical solution of the

Teukolsky equation is the extraction of gravitational waves
as measured by idealized observers at null infinity.
Astrophysical sources of gravitational radiation are typi-
cally thousands of light years away, whereas the computa-
tional truncation is performed at a few thousand
Schwarzschild radii. One argues that the dynamics in the
asymptotic domain is negligible. However, there are cer-
tain effects, such as the backscattering off curvature
[39,40], where asymptotic properties of the solution
are essentially different from the corresponding properties
at finite distances. Such differences can be relevant to
gravitational-wave astronomy. For example, it has
been found that the asymptotic formula relating the curva-
ture perturbation c 4 to the gravitational-wave strain
[Eq. (25)] is invalid for polynomially decaying solutions
even at large distances used in numerical wave
extraction [41]. Further, we know that the phase of the
gravitational-wave signal measured at null infinity
and at finite distances may differ substantially in EMRIs
[42,43].
A clean solution to both the outer boundary and the

radiation extraction problems is to include null infinity in
the computational domain. No artificial boundary condi-
tions are needed when the solution is calculated globally in
space, and the idealized gravitational-wave signal can be
read off directly at null infinity.
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There are two methods to include null infinity in the
computational domain: the characteristic method and the
hyperboloidal method. These methods correspond to ap-
proaching null infinity along null and spacelike directions,
respectively.

The characteristic method is very well developed [44]. It
has been applied recently to the unambiguous computation
of gravitational waves from binary black-hole mergers
simulated via Einstein equations [45–47]. Concerning the
Teukolsky equation, it has been used in Schwarzschild
spacetime for black-hole collisions in the close limit
[48,49]. The construction of a null foliation in Kerr space-
time, however, is rather complicated [50–53]. As a result,
there is no numerical computation of gravitational pertur-
bations of Kerr spacetime at null infinity.

The second approach to including null infinity in the
computational domain is the hyperboloidal approach [54].
The construction of suitable hyperboloidal foliations is
simpler than characteristic ones because spacelike surfaces
are more flexible than null surfaces [55]. Various studies
have demonstrated the accuracy and efficiency of the
hyperboloidal method in dealing with perturbations of
black-hole spacetimes, but most of them are restricted to
spherical symmetry. For example, numerical studies
have been performed on Yang-Mills equations in a
Schwarzschild spacetime [56,57], spherically symmetric
wormholes [58] and boson stars [59], self-force computa-
tions [60], and gravitational perturbations [41,61], includ-
ing extreme-mass-ratio inspirals [42,43].

The only numerical computations of black-hole pertur-
bations using the hyperboloidal method without spherical
symmetry deal with scalar perturbations [62–65]. One goal
of this paper is to present the application of the hyper-
boloidal method to Teukolsky equations in Kerr spacetime
for the calculation of gravitational waveforms at null in-
finity. The test problem we study to demonstrate the
method is of astrophysical interest. The gravitational wave-
forms we compute are emitted by the perturbations due to a
point particle inspiralling into the central Kerr black hole.

Another goal of this paper is to solve a difficulty with
applying the hyperboloidal method in Kerr spacetime. The
hyperboloidal foliation of Kerr spacetime constructed in
[55] uses a transition zone in which a truncated Cauchy
surface is matched to a hyperboloidal surface. This tech-
nique requires tuning a large number of foliation parame-
ters and results in a sudden drop of characteristic speeds in
the transition zone, decreasing computational efficiency
[41,60,62]. There are two solutions to this problem. One
is to use a single smooth surface avoiding the transition
zone of [55]. This technique has recently been applied by
Rácz and Tóth in a detailed study of polynomial decay
rates of a scalar field in Kerr spacetime [64]. They con-
struct the first smooth, horizon-penetrating, hyperboloidal
foliation of Kerr spacetime for their study. Modifying the
coordinates everywhere smoothly leads to very efficient

numerical computations. However, it may be favorable due
to practical reasons to employ standard coordinates in the
strong field region near the rotating black hole, especially
when particles are present in the computational domain, so
that the description of the particles’ motion does not need
to be changed.
In this paper, we use the recently proposed hyperboloi-

dal layer [66] instead of a transition zone. The new layer
technique has been applied in studies of EMRIs using the
Regge-Wheeler-Zerilli formalism completed by the EOB-
resummed analytical radiation reaction (at linear order in
the mass ratio) [42,43]. Here we demonstrate the construc-
tion and application of a hyperboloidal layer for the
Teukolsky formalism and the kludge approach in Kerr
spacetime.
The paper is organized as follows. In Sec. II we present

the standard Teukolsky formalism with the transformations
typically used in numerical calculations. In Sec. III we
present how the hyperboloidal layer technique is applied
to Kerr spacetime and to the Teukolsky equations as two
simple coordinate transformations. Numerical results ob-
tained with this formalism are presented in Sec. IV. After
describing briefly the numerical method, we present a
comparison of waveforms, an improved agreement of the
energy fluxes with frequency-domain computations for
several circular-equatorial orbits, a discussion of recoil
velocities, and an example simulation that demonstrates
remarkable gains in efficiency with the new method. A
discussion of our results and an outlook can be found in
Sec. V.

II. THE TEUKOLSKY FORMALISM

Curvature perturbations of Kerr spacetime are governed
by a separable equation in the Newman-Penrose formalism
[4,5]. The original calculations involve the Boyer-
Lindquist (BL) representation of the Kerr metric. It is
convenient for numerical applications to introduce certain
transformations of the Teukolsky equation. We review the
common transformations to set up the equations to which
the hyperboloidal method will be applied.

A. Teukolsky equation in Boyer-Lindquist coordinates

The Kerr metric in Boyer-Lindquist coordinates
ðt; r; �; ’Þ reads

gBL ¼ �
�
1� 2Mr

�

�
dt2 � 4aMr

�
sin2�dtd’þ �

4dr2

þ �d�2 þ
�
r2 þ a2 þ 2Ma2rsin2�

�

�
sin2�d’2;

(1)

where � :¼ r2 þ a2 cos�2 and 4 :¼ r2 þ a2 � 2Mr. We
denote the mass of the Kerr spacetime byM and its angular
momentum by aM.
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The Teukolsky equation describes curvature perturba-
tions with spin weight s in an adapted Newman-Penrose
orthonormal frame. The homogeneous Teukolsky equation
in Boyer-Lindquist coordinates reads

D2@2t�¼�4aMr

4 @’@t�þ4�s@rð4sþ1@r�Þ

þ 1

sin�
@�ðsin�@��Þþ

�
1

sin2�
�a2

4
�
@2’�

�2s

�
Mða2�r2Þ

4 þðrþ iacos�Þ
�
@t�

þ2s

�
aðr�MÞ

4 þ icos�

sin2�

�
@’��ðs2cot2��sÞ�;

where D2 ¼ ðr2 þ a2Þ2=�� a2sin2�. In the following,
we review the transformations that are typically applied
to the Teukolsky equation for numerical computations
[13,67,68].

B. Transformations of the Teukolsky equation

Boyer-Lindquist coordinates have undesirable features
for numerical computations. Their time slices intersect
at the bifurcation sphere leading to a singular radial coor-
dinate at the horizon, in a similar way as Schwarzschild
time slices do. There are two ways to deal with the coor-
dinate singularity at the horizon: transform to a horizon-
penetrating time slicing, or push the horizon to infinite
coordinate distance with the tortoise coordinate.

Horizon-penetrating coordinates are regular at the event
horizon. They are typically used in combination with ex-
cision. The numerical treatment of the inner boundary is
clean with this method because there are no characteristics
coming out of the horizon. In addition, the radiation ab-
sorbed by the black hole can be calculated accurately.

The most common approach in perturbation theory, how-
ever, is to use the tortoise coordinate. The tortoise coordi-
nate pushes the horizon to infinite coordinate distance. The
infinite domain is then truncated at a finite distance, where
artificial ingoing boundary conditions are imposed. These
lead to a contamination of the physical solution due to
numerical reflections from the inner boundary. But these
reflections are small because the potential terms in the
Teukolsky equation fall off exponentially fast in the tortoise
coordinate, so the ingoing boundary conditions are quite
accurate. In our study, we focus on the outgoing radiation

and accept small reflections from the inner boundary. The
truncation of the infinite domain at a finite coordinate
implies that the efficiency of the code is not optimal
because a large region in a negative tortoise coordinate
needs to be included in the computational domain.
The relation of the tortoise coordinate to horizon-

penetrating coordinates near the event horizon is similar
to the relation of standard Cauchy coordinates to hyper-
boloidal coordinates near null infinity [41,69]. A funda-
mental difference, however, is that the structure of the
solution in the strong field region can be interesting,
whereas the asymptotic solution is essentially simple in
asymptotically flat spacetimes. The additional resolution
that the tortoise coordinate provides near the black hole can
be relevant in certain studies. This question should be
analyzed in more detail. We choose to employ the tortoise
coordinate, and leave the study of horizon-penetrating
coordinates to future work.
The angular coordinate also needs to be transformed to

cure the infinite twisting near the horizon [5,67]. Further, a
rescaling respecting the fall-off behavior of the curvature
perturbations is necessary. Finally, we separate the azimu-
thal dependence to arrive at a 2þ 1 dimensional system.
These transformations are listed as follows:
(1) Introduce the tortoise coordinate r�,

dr�
dr

¼ r2 þ a2

�
: (2)

(2) Introduce the azimuthal coordinate ~’,

d~’ ¼ d’þ a

4 dr:

(3) Rescale the curvature perturbation of spin weight s
according to its asymptotic fall-off behavior,

� ¼ r�ð2sþ1Þc :

(4) Separate the azimuthal dependence using the mode
number k,

c k ¼ eik~’c :

In the following, we drop the subscript k from c k

for conciseness of notation. The Teukolsky equation
becomes [68]

D2@2t c ¼ðr2þa2Þ2
4 @2r�c þ 1

sin�
@�ðsin�@�c Þþ� 2

4½Msða2�r2Þþrs4þiðas4cos�þ2MarkÞ�@tc þþ 1

r4½4ð8r2þ6a2Þ

þ2rsðr2þa2Þðr�MÞþ2iakrðr2þa2Þ�@r�c þ 1

r24
�
642�r4

�
6Mðsþ1Þ�rð7sþ6Þþ r

sin2�
ðkþscos�Þ2

�

þ2iakr½2rsðr�MÞþ34�
�
c : (3)
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These are standard transformations for numerical com-
putations. Hyperboloidal compactification adds only two
additional transformations to this list: a transformation of
the time coordinate and a compactification of the radial
coordinate.

III. A HYPERBOLOIDAL LAYER FOR THE
TEUKOLSKY EQUATION

We present the hyperboloidal layer method in the lan-
guage of standard transformations to make its application
as straightforward as possible for future studies.

A. Hyperboloidal compactification

A hyperboloidal surface is an everywhere spacelike
surface that approaches null infinity [54]. It has been
known already in the early days of numerical relativity
that such surfaces are beneficial for studying gravitational
radiation [70–73]. A systematic study of the hyperboloidal
initial value problem started with Friedrich’s work, which
showed that future null infinity is smooth for certain non-
trivial classes of initial data [74]. There has been sub-
stantial effort to numerically simulate such data using
Friedrich’s conformally regular field equations [75,76].

Even though the benefits of hyperboloidal surfaces for
radiation problems beyond the Einstein equations have
been clear, it took more than two decades before the hyper-
boloidal method could be applied successfully to systems
other than the conformally regular field equations. The first
application of this kind is the study of magnetic monopoles
by Fodor and Rácz [77,78]. Their hyperboloidal foliation is
based on a scri-fixing gauge in Minkowski spacetime first
explicitly constructed by Moncrief [79] (see also [76]). It
was suggested that scri-fixing gauges should be beneficial
also for studies on black-hole spacetimes, however, the
construction of a good hyperboloidal coordinates turned
out to be difficult [80–85].

The general construction of suitable hyperboloidal, scri-
fixing gauges has been presented in [55]. We follow [55] to
present the hyperboloidal compactification. The technique
consists of introducing a compactifying radial coordinate �
and a suitable time coordinate �.

1. Radial compactification

We map the infinite positive domain in the tortoise
coordinate r� to a finite domain in the compactifying
coordinate � to compute the solution in an unbounded
physical domain using a finite numerical grid. After com-
pactification, the outer boundary of the numerical grid
corresponds to infinity with respect to the physical coor-
dinate. Infinity has a rich structure in spacetime. The part
of infinity that is included in the computational domain
with radial compactification depends on the nature of the
time surfaces, as discussed in the next subsection.

The radial compactification can be performed conven-
iently, with the following definition of a compactifying
coordinate:

r� ¼ �

�ð�Þ : (4)

The choice of � determines the properties of the compac-
tification. Its zero set corresponds to infinity with respect
to r�. For example, a common choice encountered in
the literature is � ¼ 1� �. We need more freedom
in the choice of compactification; therefore, we will state
the general properties that the function � needs to satisfy.
These properties are those that are satisfied by a conformal
factor in the Penrose conformal compactification picture
[86,87]. For all finite r� we require �> 0. Denoting the
zero set of� as S (the �-coordinate location of r� infinity),
we require

�ðSÞ ¼ 0; �0ðSÞ � 0;

where �0 � d�=d�.
It is known that compactifying the radial coordinate

along Cauchy surfaces results in resolution problems
[88]. These problems can be avoided by a hyperboloidal
time transformation that changes the compactification at
spatial infinity to a compactification at null infinity.

2. Time transformation

A suitable time transformation shall leave the exterior
timelike Killing field invariant so that no gauge dynamics
is introduced into the stationary background. The new time
coordinate � satisfies then @� ¼ @t, which is achieved by a
transformation of the form � ¼ t� hðxiÞ, where xi are the
spatial coordinates. The function h is called the height
function. Mostuseful foliations of stationary spacetimes
are given via such a relation. We are interested in radially
outgoing gravitational waves, therefore we choose the
height function to depend only on the tortoise coordinate r�

� ¼ t� hðr�Þ: (5)

The height function is chosen such that the surfaces � ¼
const are hyperboloidal [55]. The specific choice we use is
presented in the next section [see Eq. (7)].
In summary, hyperboloidal compactification consists of

two simple transformations that can be written in the form
(4) and (5) with free functions� and h. The specific choice
of these free functions depends on the background space-
time and its coordinatization. There is a large freedom in
their choice, which allows us to use standard coordinates in
an interior domain as described below.

B. Hyperboloidal layer for Kerr spacetime

An essential advantage of the hyperboloidal method is
that it requires modifications only in the asymptotic do-
main, which allows us to use arbitrary coordinates in the
strong field regime.
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A transition zone is used in [55] for matching arbitrary
coordinates near the central black hole to hyperboloidal
scri-fixing coordinates in the asymptotic domain. Sub-
sequent numerical experiments showed that the transition
zone requires the adjustment of many arbitrary
parameters and leads to a sudden drop of outgoing charac-
teristic speeds decreasing the efficiency of the hyperbol-
oidal method [41,60,62].

A new technique that avoids these deficiencies is the
hyperboloidal layer presented in [66]. The idea is to attach
a radial shell to the truncated computational domain in
which the foliation is hyperboloidal and the radial coor-
dinate is compactified. The layer needs to be attached in a
sufficiently smooth way for the stability of the numerical
computation.

We would like to have the new coordinate � agree with
the tortoise coordinate in the strong field region. Denoting
the location of the interface between the interior domain
and the layer by R�, we set � ¼ 1 for � < R� so that � �
r� in the interior. We also require that the coordinates agree
up to a certain order at the interface. These conditions are
fulfilled by the following expression [43,66]:

� ¼ 1�
�
�� R�
S� R�

�
4
�ð�� R�Þ; (6)

where � denotes the step function and S denotes the
coordinate location of the outer boundary. We emphasize
that various similar choices for the radial compactification
are possible.

The original construction of a height function for a
hyperboloidal layer [66] requires unit characteristic speed
in the layer with respect to the layer coordinates � and �.
An equivalent but more intuitive requirement is that out-
going null rays have the same representation in the layer
coordinates as in the interior coordinates [43]. In
Schwarzschild spacetime, with the tortoise coordinate,
the requirement reads �� � ¼ t� r�. From this relation,
together with (5), we get

h ¼ r� � �ðr�Þ ¼ �

�ð�Þ � �: (7)

In the domain where � ¼ 1, we have h ¼ 0 so that we
obtain the standard coordinates. For the r� derivative of the
height function we get

H :¼ dh

dr�
ð�Þ ¼ 1� d�

dr�
¼ 1� �2

�� ��0 : (8)

We refer to H as the boost function. It vanishes in the
interior domain where standard coordinates are used with
� ¼ 1; it is unity at infinity, where � ¼ 0.

References [43,66] use the prescription (8) in
Minkowski spacetime with standard coordinates, and
in Schwarzschild spacetime with the tortoise coordinate.
In this paper, we apply it for the Kerr spacetime in Boyer-
Lindquist tortoise coordinates. This procedure leads to a

regular hyperboloidal compactification in Kerr spacetime,
even though the outgoing null rays do not have the simple
form t� r�. This is because the Kerr metric in the tortoise
Boyer-Lindquist coordinates has asymptotically the same
form as the Schwarzschild metric in tortoise Schwarzschild
coordinates, or the Minkowski metric in standard coordi-
nates. This feature is another evidence for the flexibility of
hyperboloidal coordinates. Only the asymptotic behavior
of the null cone is relevant for the regularity of hyper-
boloidal compactification, whereas in the characteristic
method the exact local form of the null cone plays an
essential role, thereby restricting the coordinate transfor-
mations [50–53].
The choices (4) and (5) with the free functions explicitly

given in (6) and (7) completely fix the coordinate trans-
formation from ft; r�g to f�; �g, which gives us a hyper-
boloidal layer in Kerr spacetime for the coordinate domain
½R�; S�.

C. Hyperboloidal compactification of the
Teukolsky equation

The transformations discussed in the previous section
can be regarded as additional items in the list of trans-
formations for the numerical solution of the Teukolsky
equation given in Sec. II B:

(5) Introduce a compactifying coordinate �,

r� ¼ �

�ð�Þ : (9)

(6) Introduce a time coordinate �,

� ¼ t� hðr�Þ: (10)

The compactification function �ð�Þ and the height func-
tion hðr�Þ are determined via (6) and (7). With the coor-
dinate transformations at hand, we can now proceed to
transform the Teukolsky equation.
It is a priori not clear that a simple coordinate trans-

formation will lead to a regular hyperboloidal compactifi-
cation of the Teukolsky equations. There are various
possibilities to study the regularity of such compactifica-
tion. One is to derive conformal Teukolsky equations with
respect to a conformally extended, regular Kerr metric. It
has been shown in a previous application of hyperboloidal
compactification using the Teukolsky formalism in
Schwarzschild spacetime (called the Bardeen-Press equa-
tion after [3]) that such an analysis is not necessary [61].
However, the method of [61] still requires the calculation
of the Teukolsky equations ab initio in a general orthonor-
mal Newman-Penrose frame, which is then adapted to a
hyperboloidal scri-fixing gauge to ensure the regularity of
hyperboloidal compactification. The method we use in this
paper is easier to apply.
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A general operator for an equation in the independent
variables ft; r�; �g, such as the Teukolsky equation (3),
can be written as O½c � ¼ 0, where O is the differential
operator

O ¼ Att@2t þ Atr�@t@r� þ Ar�r�@2r� þ A��@2� þ Bt@t

þ Br�@r� þ B�@� þ C:

The coefficients depend on r� and �; they can be read off
from (3). With the transformations (9) and (10) the deriva-
tive operators with respect to the old coordinates can be
written in terms of the new coordinates as

@t ¼ @�; @r� ¼ �H@� þ ð1�HÞ@�:
We used (8) in the expression for @r� . We write the trans-

formed operator as

O ¼ A��@2� þ A��@�@� þ A��@2� þ A��@2� þ B�@�

þ B�@� þ B�@� þ C; (11)

where

A�� ¼ Att �HAtr� þ Ar�r�H2;

A�� ¼ ð1�HÞðAtr� � 2HAr�r� Þ;
A�� ¼ ð1�HÞ2Ar�r� ;

B� ¼ Bt �HBr� � Ar�r�H0ð1�HÞ;
B� ¼ ð1�HÞðBr� � Ar�r�H0Þ;

andH0 :¼dH=d�. All coefficients are functions of�, and �.
The transformed system is by construction equivalent to

the original system (3) in the interior domain � < R� where
we have H ¼ 0. We need to make sure that the hyper-
boloidal compactification is regular at infinity where
H¼1. Note that asymptotically ð1�HÞ��2�r�2� �r�2.
We see by inspection that the coefficients of the Teukolsky
equation (3) have the correct asymptotic behavior, ensur-
ing regularity of the hyperboloidal compactification. The
transformed coefficiencts have explicitly finite values at
future null infinity. We mention that this feature is not
special to the Teukolsky equations. Similar regular hyper-
boloidal compactifications for other wave equations have
been studied as mentioned in the Introduction.

We also need to make sure that the transformed system is
pure outflow at the outer boundary so that no boundary
conditions are required. This condition, along with the
regularity, can be checked by evaluating the transformed
equations at infinity, that is, at f� ¼ Sg. We obtain for
s ¼ �2,

�D@2�c ¼ �SðS� R�Þ@�@�c þ 2@2�c

� 4½4Mþ iaðk� 2 cos�Þ�@�c þ 2 cot�@�c

� 2½3þ k2 � 4k cos�þ cosð2�Þ�c ;

where �D ¼ SðS� R�Þ � 2a2sin2�. The principal part of
the operator is of the form C1@�ð@� þ @�Þ þ C2@

2
� þ 2@2�,

where C1 and C2 are coefficients. Therefore, the modes of
the system propagate either along the boundary at f� ¼ Sg,
or out of the domain along the level sets of characteristics
�� �. As expected, there are no incoming modes.

IV. NUMERICAL RESULTS

In this section, we present tests using the hyperboloidal
compactification of the Teukolsky equation. Our main
result is the efficiency and accuracy of the hyperboloidal
layer method providing unambiguous waveforms at future
null infinity from large- and extreme-mass-ratio inspirals
in Kerr spacetime.

A. The numerical method

For the discretization of the continuous equation we use
a two-step Lax-Wendroff algorithm as in [67]. After per-
forming the transformations presented in the previous sec-
tions, we rewrite the vacuum equation in the form,

@2�c ¼ ~A��@�@�c þ ~A��@2�c þ ~A��@2�c þ ~B�@�c

þ ~B�@�c þ ~B�@�c þ ~Cc ; (12)

where the coefficients with a tilde are obtained by dividing
the coefficients of the operator in (11) by �A��. We put
Eq. (12) in first-order form (in � and �) by defining a new
field variable

� � @�c þ b@�c ; (13)

b � �ð ~A�� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~A��Þ2 þ 4 ~A��

q
Þ=2: (14)

We chose to use this first-order form of the equation for our
numerical evolutions, because it has been discovered
through extensive experimentation [67] that such a form
is ideally suited for long stable evolutions. Then Eq. (12)
with source terms T takes the form

@�uþM@�uþ LuþAu ¼ T; (15)

where

u � fc R; c I; �R; �Ig (16)

is the solution vector. The subscripts R and I refer to the
real and imaginary parts, respectively. The matricesM,A,
and L are obtained from (12) as in [13]. Here it will suffice
to simply indicate the final form taken by these matrices:

M �

b 0 0 0

0 b 0 0

m31 m32 �b 0

�m32 m31 0 �b

0
BBBBB@

1
CCCCCA; (17)

A �

0 0 �1 0

0 0 0 �1

a31 a32 a33 a34

�a32 a31 �a34 a33

0
BBBBB@

1
CCCCCA; (18)
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and

L �

0 0 0 0

0 0 0 0

l31 0 0 0

0 l31 0 0

0
BBBBB@

1
CCCCCA: (19)

The angular derivatives are encoded in L.
The main advantage of casting Eq. (12) into the form

(15) is that the system has advantageous properties in the
variable �. The matrix M has a complete set of linearly
independent eigenvectors with real eigenvalues. This is not
a rigorous statement on the hyperbolicity of the system
because the matrix L contains second-order angular de-
rivatives. Nevertheless, experiments show that the system
is numerically well behaved. A time-explicit evolution
scheme is developed for this system of linear partial
differential equations using the two-step, second-order
Lax-Wendroff finite-difference method. We write (15) as

@�uþD@�u ¼ S; (20)

where

D �

b 0 0 0

0 b 0 0

0 0 �b 0

0 0 0 �b

0
BBBBB@

1
CCCCCA; (21)

S ¼ �ðM�DÞ@�u�Lu�Auþ T: (22)

Each iteration consists of two steps. In the first step, the
solution vector between grid points is obtained from

unþ1=2
iþ1=2 ¼

1

2
ðuniþ1þuni Þ�

��

2

�
1

��
Dn

iþ1=2ðuniþ1�uni Þ�Sn
iþ1=2

�
:

(23)

This is used to compute the solution vector at the next time
step,

u nþ1
i ¼uni ���

�
1

��
Dnþ1=2

i ðunþ1=2
iþ1=2 �unþ1=2

i�1=2 Þ�Snþ1=2
i

�
:

(24)

The angular subscripts are dropped in the above equation
for conciseness. All angular derivatives are computed us-
ing second-order, centered finite-difference expressions.
Symmetries of the spheroidal harmonics are used to deter-
mine the angular boundary conditions: For even jmjmodes
we have @�c ¼ 0 at � ¼ 0, �; for odd jmj modes we have
c ¼ 0 at � ¼ 0, �. We impose ‘‘ingoing’’ boundary con-
ditions at the inner radial boundary. We do not need to
apply any boundary condition at the outer boundary.

The small compact object inspiraling into the central
supermassive black hole is modeled as a point particle in
the large- or extreme-mass-ratio limit. The representation
of the point particle in mathematics is performed typically
by a Dirac delta distribution. More specifically, the particle
energy-momentum tensor takes the form

T�� ¼ �
u�u�
� _� sin�

�½r� � r�ð�Þ��½�� �ð�Þ��½	�	ð�Þ�:

where u� and � refer to the 4-velocity and the rest mass of
the particle, respectively. Note that _� � d�=ds appears in
the denominator of this expression, which tends to1 as the
particle approaches the horizon (we denote by s the proper
time along the particle’s trajectory). Thus, the particle
source term on the right-hand side of (15) smoothly decays
away as the particle approaches the horizon, thereby al-
lowing the evolution equation to gradually transition into
its homogeneous form. This source term is constructed
using the energy-momentum tensor describing a point
particle moving in the Kerr spacetime depicted above.
The explicit expression for T is very lengthy and not
particularly illuminating. Here, we simply point out that
the final expression is built using Dirac delta functions in r
and �, as well as first and second derivatives of the delta
functions in these variables. These terms have coefficients
that are complex functions of the black hole’s physical
parameters and also the trajectory of the point particle.
Details on the particle source term, along with the repre-
sentation of the delta function and its derivatives on a
numerical grid, are given in [13–15,89].
The trajectory of the particle in a decaying orbit around

the central black hole is computed separately and is then
used to calculate the source term mentioned above, which
in turn is fed into the Teukolsky equation solver code. The
computation of the decaying trajectory can be broken into
three distinct pieces: an early time adiabatic inspiral, in
which the particle is approximated as evolving through a
sequence of bound orbits of the central black hole, which
are calculated using an ‘‘energy balance’’ approach; a late
time geodesic plunge, in which the particle falls into
the black-hole and radiation reaction is ignored; and an
intermediate transition regime that smoothly connects
these two pieces. Details on how these steps are handled
and used by the Teukolsky equation solver code can be
found in [15]. It is straightforward to make use of decaying
orbital trajectories from other approaches, such as the EOB
or the self-consistent self-force approaches.

B. Waveforms

After solving the Teukolsky equation with a particle
source in the time domain, we compute the gravitational
waveforms hþ and h� using the simple relationship shown
below that is valid in the far field,

c ! r

2

�
@2hþ
@�2

� i
@2h�
@�2

�
: (25)

Note that in our study we have direct access to the far field
because null infinity is part of the computational domain.
This allows us to use the above relation as an equality and
to extract the waveform cleanly.
Figures 1 and 2 depict the gravitational waveform h‘m

measured at future null infinity, with ‘ ¼ m ¼ 2. The mass
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ratio for this evolved binary system is � ¼ 10�3 and the
spin of the central Kerr black hole is a ¼ 0:5. The system
undergoes a decay due to gravitational-wave emission
over approximately 123 full cycles. The computational
domain is � 2 ½�50; 50� and � 2 ½0; �� with grid sizes
of 3125 and 32, respectively. The hyperboloidal layer starts
at � ¼ 14, therefore the particle’s orbit never crosses into
the layer. There are a total number of 562 500 time steps in
this computation.

The figures depict the waveforms from both the original
Cauchy code [13,89] and the new code with the hyper-
boloidal layer in Kerr spacetime developed in this work.
The Cauchy code approaches spatial infinity, and therefore
cannot provide direct access to waveforms at null infinity.
To obtain data from the Cauchy code to compare with that
from the hyperboloidal layer code, we extract the wave-

forms at multiple radii on the spatial grid and extrapolate
them along fixed values of retarded time, to infinity, using a
simple second-order polynomial expansion. We do not
employ higher-order extrapolation for the Cauchy code
because the truncation error becomes larger than the ex-
trapolation error with the given resolution and second-
order finite differencing. Nevertheless, the waveforms
from the two codes agree so well that it is difficult to
make out any difference between the two in these figures.
In Fig. 3 we show the differences in the waveform ampli-
tude and phase for the same data. The relative difference
between the amplitudes is at the level of 10�3 and the
maximum difference in phase is 0.06 rad. A better agree-
ment between extrapolated and null infinity waveforms can
be obtained with more accurate extrapolation algorithms
and higher-order methods in spherical symmetry [43].

C. Fluxes

Gravitational waves carry energy away from a binary
system, thus causing it to inspiral. The calculation of the
energy carried away by these waves uses the standard
expression,
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FIG. 1. The full waveform amplitude emitted by the inspiral,
plunge, and ringdown of the particle into the central Kerr black
hole calculated both with the hyperboloidal code (black), and the
Cauchy code (dashed red line). The merger time (� ¼ 0) is
defined rather arbitrarily by the time of maximum amplitude.
The codes agree so well that the two curves are on top of each
other (see Fig. 3 for the difference).
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FIG. 3. Relative difference in amplitude (top) and phase dif-
ference (bottom) between the hyperboloidal code and the
Cauchy code. For clarity, it is worth pointing out that the phase
difference reaches a maximum in the ballpark of 0.06 rad near
� ¼ 0.
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FIG. 2. The waveform emitted during the final plunge phase
of the EMRI inspiral with the largest gravitational radiation
emission.
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dE

d�
¼ lim

r!1
1

4�

��������
Z �

�1
c dt0

��������
2

d�; (26)

in a postprocessing step after time evolution. In standard
computations, the limit to infinite radius in the above
equation is approximated by application of the formula at
finite but large radii, and a subsequent extrapolation of the
corresponding values to infinity. One major advantage of
the hyperboloidal method is that the limit in Eq. (26) can be
replaced by the local evaluation of the integral along future
null infinity, which is the boundary of the computational
domain. Therefore, the extrapolation of fluxes is not nec-
essary, and the energy can be computed cleanly. There are
more subtleties in the computation of the fluxes related to
the integration in time from the infinite past [90]. We
ignore these and set the integration constant to zero. We
observe empirically that this procedure does not lead to
large errors.

In Table I we show the numerical values of the energy
fluxes computed at null infinity by the new hyperboloidal
layer code for several circular-equatorial orbits.
Comparing these values with those from very high-
accuracy frequency-domain approaches [91], we note an
agreement at the 99.95% level. We interpret this high level
of agreement with the frequency-domain fluxes as strong
evidence for the accuracy of the code, especially as com-
pared with the original time-domain Cauchy code that
achieves agreement with frequency-domain fluxes at the
level of 99% [13,89].

In Table I, we also show the standard three level con-
vergence rates. We obtain clear second-order convergence,
as expected. The fluxes depicted in the table were obtained
via the Richardson extrapolation using the data from the
different grid resolutions. The computational domain is
� 2 ½�50; 50� and � 2 ½0; �� with grid sizes 1250� 32,
2500� 64, and 5000� 128. The hyperboloidal layer starts
at � ¼ 14; therefore, these orbits never cross into that layer
throughout the simulations.

D. Kick velocities

The asymmetric emission of gravitational waves during
the inspiral of the small black hole into the supermassive
central black hole leads to a recoil due to the conservation

of momentum. We compute this recoil by first computing
the linear momentum flux carried away by the gravitation
waves, and then performing a simple time integral of this
flux [15]. To compute the momentum flux, we use the
expression,

dPi

d�
¼ lim

r!1
1

4�

Z
ni
��������
Z �

�1
c dt0

��������
2

d�; (27)

where the ni is the unit direction vector in spherical coor-
dinates. As for Eq. (26), the limit to infinity is replaced by
the local evaluation of the integral at future null infinity,
which allows us to read off the momentum flux without an
approximation in the radial direction. The integration con-
stant resulting from starting the integration at � ¼ 0 is set
arbitrarily to zero.
In Figs. 4–6 we depict the results from the computation

of linear momentum flux and its time integral. The mass
ratio for this computation is � ¼ 10�3 with the central
black-hole spin a ¼ 0:7. The computational domain is � 2
½�50; 50� and � 2 ½0; �� with grid size 3125� 32. The
hyperboloidal layer starts at � ¼ 14; therefore, the parti-
cle’s orbit never crosses into that layer throughout the
simulation. There are 2 250 000 time steps in this compu-
tation. Once again we superimpose results from the

TABLE I. This table depicts the numerical values of energy fluxes for the jmj ¼ 2 mode from
various circular-equatorial orbits, computed by the time-domain hyperboloidal code) and a high-
accuracy frequency-domain code. The flux values are scaled up with the square of the inverse
mass-ratio (��2) and by a factor of 105. The convergence rate is also presented.

a radius

time-domain

hyperboloidal code

high-accuracy

frequency-domain code % difference convergence

�0:5 10.576 4.5560 4.5584 0.053 1.96

þ0:0 6.0000 73.683 73.720 0.050 2.05

þ0:5 4.2753 284.72 284.88 0.056 2.04

þ0:8 11.627 2.2272 2.2287 0.067 2.04
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FIG. 4. Linear momentum flux measured at f� ¼ Sg with the
hyperboloidal code (black), and extrapolated to infinity with the
Cauchy code (dashed red line).
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Cauchy code and the new hyperboloidal code, which
agree to a very high level. The final values of the recoil
speed from the two different codes, 1:645� 10�8 and
1:641� 10�8, agree to three significant digits, which is
consistent with our previous results.

E. Efficiency

Previous sections provided evidence for the accuracy of
the hyperboloidal method. The gain in accuracy in observ-
ables, such as the waveforms or energy fluxes, is mainly
due to the direct numerical access to asymptotic quantities
at future null infinity, which is part of the computational
domain. The difference in those quantities, however, is
rather small, essentially because the extrapolation in given
background spacetimes already gives reliable results. The
basic advantage of the hyperboloidal method in this con-
text is that it simplifies the accurate extraction of physical
observables from numerical simulations: It eliminates the
extrapolations.

The remarkable feature of the hyperboloidal method is
that it provides improved accuracy at negative cost. The
numerical computation is much more efficient along hy-
perboloidal surfaces than along Cauchy surfaces. One may

think that the calculation of waveforms at null infinity
introduces additional computational expense for numerical
simulations. In fact, the opposite is true: One gains more
accuracy for less computational cost.
The explanation of this property of hyperboloidal evo-

lutions is that the standard method of using truncated
Cauchy foliations with artificial outer boundary conditions
is unnatural for studying radiative solutions. An efficient
computation of the asymptotic gravitational-wave signal
can only be achieved if the surfaces, along which the
solution is computed, follow the outgoing signal closely.
Gravitational waves propagate to infinity along null rays.
Null rays and Cauchy surfaces diverge infinitely from each
other in the asymptotic region. Cauchy surfaces are there-
fore inadequate for computing outgoing asymptotic radia-
tion. Further, their truncation at a finite distance introduces
errors through artificial outer boundary data contaminating
the computation.
To avoid such contamination in a standard Cauchy code

the outer boundary is usually chosen to be causally discon-
nected from the region of interest. This implies that the
duration of the simulation is limited by the size of the
numerical grid. When null infinity is part of the computa-
tional domain, however, no such restriction applies.
Therefore, in principle, we can perform arbitrary long evo-
lutions, only restricted by the accumulation of the numerical
truncation and the physical approximation errors. The effi-
ciency of a hyperboloidal code as compared to a Cauchy-
type code increases with the duration of the simulation.
To demonstrate the efficiency of our hyperboloidal

Teukolsky code, we performed an evolution of an EMRI
that lasts for 1� 106 M. The spin of the central black-hole
is 0.9, the mass-ratio is 10�4. There are about 10 111
orbital cycles in this simulation. The computational do-
main is � 2 ½�50; 50� and � 2 ½0; �� with the grid size
5000� 32. The hyperboloidal layer starts at � ¼ 14;
therefore, the particle’s orbit never crosses into that layer
throughout the simulation. There are over 100� 106 time
steps involved in this computation. In Fig. 7, we show the
amplitude and frequency against time in a half-logarithmic
scale. The amplitude and frequency of the gravitational
waveform at null infinity is fairly constant over most of the
simulation, as expected. The main content of this plot is to
demonstrate that such simulations in the time domain are
now possible with the new method. Using the Cauchy code
for such a simulation, would have required us to place the
outer boundary at least as far as 500 000M. So the Cauchy
code would take 5000 times longer to perform this simu-
lation with equivalent local grid resolution. This number
can be increased even further using horizon-penetrating
coordinates.
A millionM in geometric units for a supermassive black

hole of, say, 6� 106 solar masses corresponds to about one
Earth year in real time. The simulation for Fig. 7 has been
performed on a computer cluster using on the order of 1000
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FIG. 6. Linear momentum in the x direction.
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FIG. 5. Linear momentum flux as in Fig. 4 zoomed into the
final plunge stage of the inspiral.
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processor cores in just under a day. This shows that we can
perform long-time simulations of EMRIs much faster than
the expected real time duration of the events, and that large
parameter studies in perturbation theory are computation-
ally feasible with time-domain codes.

V. DISCUSSION AND OUTLOOK

We presented the first numerical evolution scheme for
computing gravitational perturbations of a rotating black-
hole spacetime including future null infinity. We tested our
method on the inspiral of a point particle into a central
rotating black hole. The main advantages of the method are
(i) an increase in accuracy by direct radiation extraction at
future null infinity, (ii) a clean solution to the outer bound-
ary problem in Kerr spacetime, and (iii) a great gain in
efficiency for long-time simulations.

Our method is based on the hyperboloidal compactifi-
cation of Kerr spacetime presented in [55]. We also
showed, for the first time, how the hyperboloidal layer
developed in [66] can be employed in a Kerr spacetime.
The layer technique allows us to use arbitrary coordinates
in an interior compact domain including the central black
hole and the orbit of the particle, while compactifying the
asymptotic domain along a hyperboloidal foliation.
Because the hyperboloidal layer is attached to the interior
domain sufficiently smoothly, only minor modifications of
existing computational infrastructure is needed (see [43]
for a related study in Schwarzschild spacetime).

We showed that the hyperboloidal compactification of
the Teukolsky equations can be performed by a simple
coordinate transformation. There is no need for studying
a conformally regular Kerr spacetime, or for calculating
the equations ab initio in a general orthonormal Newman-
Penrose frame as has been done in [61]. The coordinate
transformation of the equations as given in Boyer-
Lindquist coordinates leads naturally to a regular hyper-
boloidal compactification. Only the asymptotic behavior of

the null cone is relevant for the hyperboloidal method,
which implies that the simple prescription devised in
Minkowski and Schwarzschild spacetimes can be used in
Kerr spacetime with respect to Boyer-Lindquist tortoise
coordinates. This provides evidence for the flexibility of
the hyperboloidal approach, as opposed to the character-
istic approach which restricts the coordinates locally for
compactification at future null infinity [50–53].
We compared our results to a previous study of EMRIs

in Kerr spacetime [15]. The emphasis in this paper is not on
new physics but on the numerical accuracy and efficiency
of the hyperboloidal method as applied in Kerr spacetime.
The waveforms at null infinity differ only slightly from
their previous computation obtained by extrapolation. We
showed that the hyperboloidal method gives better accu-
racy in the energy fluxes at infinity. Our strongest case
for efficiency is the simulation of an inspiral that lasts
1� 106 M in geometric units, which would have taken
about 5000 times longer using the standard method.
In the future this method should be applied further to

physically interesting problems. One could, for example,
look for the new ringdown frequency mode for perturba-
tions of a Kerr black hole discovered by Mino and Brink
[92] (see also [93]) or for transient resonances expected for
certain orbits in Kerr spacetime [94]. Such studies require
high accuracy, so the description of the particle’s motion
needs to be improved, for example, by including conserva-
tive effects in the kludge approach, by reading off the
source terms from an EOB description, or by computing
the self-consistent evolution driven by the high order in the
mass-ratio self-force of the particle.
It is clear that there is much room for development in the

accurate computations of EMRIs. It would be interesting to
compare the different approaches to the EMRI problem in
the same setting, similar to comparative studies performed
in nonlinear numerical relativity [95]. Comparison of
physical invariants on given background spacetimes is
simpler, therefore, such a study should be easier to perform
in the perturbative setting than in the nonlinear one.
On a numerical level, aside from the technical improve-

ments such as the use of high-order finite differencing or
multidomain pseudospectral methods, implementation of
horizon-penetrating coordinates near the black hole should
lead to a further improvement in efficiency. Horizon-
penetrating, hyperbolodial surfaces have certain advantages
in perturbation theory over the standard Boyer-Lindquist or
Schwarzschild time surfaces that intersect at the bifurcation
sphere and approach spatial infinity [69]. In our context,
horizon-penetrating coordinates should allow us to
calculate accurately the absorbed fluxes at the horizon via
the ingoing radiation represented by the curvature compo-
nent c 0.
Our calculation of an inspiral that corresponds to

roughly a year in real time (depending on the mass of the
central supermassive black hole) but takes only about 1 d
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FIG. 7. An evolution that runs a million M. The frequency is
depicted in red. The top black line representing the amplitude
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NULL INFINITY WAVEFORMS FROM EXTREME-MASS- . . . PHYS. REV. X 1, 021017 (2011)

021017-11



of computation is strong evidence for the efficiency of our
numerical infrastructure (see Sec. IVE). Note that the
situation is reversed when fully nonlinear Einstein equa-
tions are solved for equal-mass, stellar, binary black-hole
mergers. There, a typical computation takes about a month,
but a stellar black-hole merger takes only milliseconds in
real time. Therefore, it is imperative that the efficiency of
nonlinear Einstein codes is increased. Given the physical
simplicity of an equal-mass binary black-hole configura-
tion, a combination of technical improvements including
the hyperboloidal method, along with analytical insight
into the problem, should allow us to simulate such systems
much more efficiently in the near future.

The application of the hyperboloidal method to generic
computations with the fully nonlinear Einstein equations is
an outstanding problem. Recently, there have been studies
on various aspects of the hyperboloidal approach such as
initial data [96] or gauge conditions [97]. There are also
suggestions on the evolution problem that do not require
explicit regularity of the equations at future null infinity
[98–100]. The only successful numerical implementation
of such a formalism is by Rinne in axisymmetry [101], but
no generic computation could be presented so far. We hope
that the insight provided by studies in perturbation theory
will help the application of the hyperboloidal method to
nonlinear Einstein equations.
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