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To maximize average information gain for a classical measurement, all outcomes of an observation

must be equally likely. The condition of equally likely outcomes may be enforced in quantum theory by

ensuring that the system’s state � is maximally different, or complementary, to the measured observable.

This requires the ability to perform unitary operations on the state, conditioned on the results of prior

measurements. We consider the case of measurement of a component of angular momentum for a qudit

(a D-dimensional system, with D ¼ 2Jþ 1, where J is the total angular momentum). For weak or

continuous-in-time (i.e., repeated weak) measurements, we show that the complementarity condition

ensures an average improvement in the rate of purification of only 2. However, we show that, by choosing

the locally optimal control protocol of this type, one can attain the best possible scaling, OðD2Þ, for the
average improvement. For this protocol, the acquisition of information is nearly deterministic. Finally, we

contrast these results with those for complementarity-based protocols in a register of qubits.
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I. INTRODUCTION

In the classical world, predictability is associated with
intimate knowledge of a system, while unpredictability
implies surprise. In information theory, the surprisal of
an outcome k is defined as IðkÞ � �log2ðPkÞ, where Pk

is the probability of that outcome [1]. The surprisal is an
important quantity because it quantifies the amount of
information one learns from an outcome of a measurement.
When the average surprisal of an experiment is maximized,
the observer maximizes the extraction of information from
the experiment.

In quantum theory, the relationship between predictabil-
ity and knowledge is not so clear cut. Even when an
observer has maximal knowledge about a quantum system
(that is, the observer’s state of knowledge is pure), mea-
surement outcomes may be unpredictable. This is the case
if measurements on the system are performed in a basis
which is not the eigenbasis of the state. (The eigenbasis is
the basis in which the operator under consideration, e.g., �,
has entries only on the diagonal.) Nevertheless, pure quan-
tum states are the most predictable states available. It is for
this reason, and for other reasons eloquently explained in
Ref. [2], that we take the impurity to be a measure of
information. These considerations have led to information
[2], and they control [3] theoretic formulations of informa-
tion–disturbance relations.

Inspired by this work, Jacobs asked the question: How
quickly on average can information be extracted from a
quantum system using continuous quantum measurements
in a complementary basis [4]? (Other ways of quantifying
the rate of information gain can also be considered [5,6].)
He found that, for a widely applicable continuous-
measurement model, measuring in a complementary basis
led to a speeding-up in the purification by a factor of 2 for a
two-level system [4]. (Practically, such a rapid purification
protocol can be a primitive for a rapid state preparation
protocol [6,7].) Later this was generalized to complemen-
tary bases forD-dimensional systems. In Ref. [8], the lower
bound on the speeding-up for D-dimensional systems was
found to be SLB ¼ ð2=3ÞðDþ 1Þ when the monitoring was
performed in a complementary basis. Recently, in Ref. [9],
the upper bound SUB was proven to be bounded above by
D2=2 for measurement in any complementary basis.
In this paper, we give an explicit construction of a

complementary-measurement protocol for a qudit (that
is, a D-dimensional system, with D ¼ 2J þ 1, where J is
the total angular momentum) based on the quantum
Fourier transform (QFT), which achieves a speeding-up
of 0:2D2. Furthermore, we show that transforming the
state’s eigenbasis so that it is complementary with respect
to the measurement eigenbasis is not sufficient to achieve
this speeding-up; the speeding-up can be as low
as 2. In addition, we show, numerically, that unbiased bases
can achieve the upper bound, saturating the inequality
S � D2=2, when D is an even number. To define these
speeding-ups rigorously, it is necessary to derive rigorous
bounds on the information-extraction rate for commuting
measurements without control, so we also do that in this
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paper. (For the rate of commuting measurements with
control, see Refs. [5,7].) Finally, we consider measure-
ments in commuting and complementary bases for a regis-
ter of qubits (where a qubit is a D ¼ 2 qudit). The
complementary-measurement scheme based on the QFT
protocol appears to give a speeding-up of only 2 in the case
of a register.

II. FURTHER BACKGROUND
AND STRUCTURE OF THIS PAPER

In this section, we explain the structure of our paper by
reviewing the relevant prior work on the subject and relat-
ing it to the work presented in this paper.

In the quantum-information context, information–
disturbance relations were inspired by the epistemic
interpretation of quantum states (that is, by the states of
knowledge of an agent, i.e., an observer; see Ref. [10] and
references therein) as applied to quantum cryptography
[2]. The idea was that information gathering and distur-
bance should be grounded with respect to an observer’s
state of knowledge, not some preexisting property of the
system. To formalize this intuition, Fuchs and Jacobs in
Ref. [2] considered something like the following game.
Two observers, Alice and Bob, initially agree that the state
of some quantum system is �0, an impure state. At some
later time, Charlie performs a measurement along a ran-
domly chosen axis and asks Alice and Bob to predict the
outcome of the measurement. After repeating this many
times, Charlie rewards the individual who makes the most
correct guesses. Alice, being clever and resourceful, has
the ability to perform one unitary operation followed by a
two-outcome measurement. Her aim is to refine her state of
knowledge about the quantum system, thus increasing its
predictability and accordingly the likelihood of receiving
the reward. However, Alice’s morals prevent her from
intentionally sabotaging Bob for the pecuniary reward.
Thus Alice would like to increase the accuracy of her
own predictions without affecting those of Bob.

This formulation suggests (intuitively) that weak mea-
surements are the right way to probe the system. From the
point of view of the weak-measurement formalism, a pro-
jective measurement corresponds to a measurement of
infinite strength [2]. For finite-strength measurements on
a single qubit, a nontrivial tradeoff is found between
Alice’s information-gathering actions (the refinement of
her predictability) and the disturbance to Bob’s predict-
ability (his state of knowledge).

For a fixed-measurement rate, the interval of the non-
trivial tradeoff may be characterized by the angle between
the Bloch vector and the measurement axis. There are two
extremes of this tradeoff. Minimal disturbance and minimal
average information gain occur when Alice’s axis is aligned
with the Bloch vector, that is, when the measurement eigen-
basis and the state’s eigenbasis commute. On the other hand,
maximal disturbance andmaximal average information gain

are attained when Alice’s axis is orthogonal to the Bloch
vector. This strategy corresponds to making the outcomes
equally likely, that is, to maximizing the surprisal [1] of the
measurement result. In this situation, the bases are said to be
complementary, maximally noncommuting, or unbiased.
Thus we conclude that quantum theory does not allow
Alice to succeed. The ability to measure in different bases
is an essential feature of quantum mechanics that provides
richness to the problem considered here.
It is easy to understand how noncommuting measure-

ments provide maximal information gain and maximal
disturbance through the following picture. Consider a
mixed qubit state with its Bloch vector aligned along the
þjzi direction. If we measure in the jxi basis, the Bloch
vector will be elongated regardless of the measurement
outcome. This point is illustrated in Fig. 1(a). Furthermore,
both outcomes (M� in Fig. 1(a)) are equally likely, which
means that the average information extraction is maximal.
Unfortunately, the postmeasurement state is not pointing in
the same direction as the premeasurement state, so it will
not commute with the original state. Conversely, if the
measurement basis and the state are both along the jzi
direction, then, due to the stochastic nature of the mea-
surement outcomes, the average elongation of the Bloch
vector will be minimal [6,11]. In any particular measure-
ment, the impurity may increase or decrease, but the
disturbance to the state will be minimal [2]. In Fig. 1(b),
we illustrate that one of the possible measurement out-
comes causes the Bloch vector to shrink while the other
outcome elongates it.
While information–disturbance relations are interesting

for single measurements, the subject has been thoroughly
explored. Less exploration has been undertaken in
continuous-measurement settings because of the increased
difficulty of the analysis. To make progress, the focus has

(b)(a)

FIG. 1. A Bloch-sphere depiction of the extremes of informa-
tion–disturbance tradeoffs. In both panels, the dark arrow rep-
resents the Bloch vector of the premeasurement state. The arrows
labeled with M� correspond to the postmeasurement states
conditioned on the random outcome of a weak measurement.
(a) The measurement of a state in a complementary or unbiased
basis; in this case, the measurement axis is along the x direction.
When this occurs, the Bloch vector always elongates, as indi-
cated by the light gray arrow (the plus outcome rotated for easy
visual comparison). (b) The commuting measurement. In this
case, if the measurement result M� is obtained, the Bloch vector
decreases in length.
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mostly been on information gathering, while disturbance
has largely been ignored (for good reason, as we shall see).
This restriction has led to an interesting development in the
theory of continuous quantum measurements [12–14].

To demonstrate an improvement in the extraction of
information, the extraction rate of a standard continuous
measurement must be defined. We follow Jacobs and define
the standard measurement as a measurement in a commut-
ing basis [4]. This is sensible for a number of reasons. First,
the measurement will rapidly destroy the coherence of any
state that does not commute with the measured observable
[15]. This can be understood as the projection of the state
to the eigenbasis of the observable by the measurement. To
counter this effect, an adaptive measurement or closed-loop
feedback control is required. Second, a continuous mea-
surement in a commuting eigenbasis is essentially a classi-
cal continuous measurement.

The analysis of disturbance and information gain is
significantly harder for continuous measurements of
D-dimensional systems [8,16]. Minimal disturbance still
occurs when measuring in the same eigenbasis as the state
(a commuting basis). A full analysis of this situation would
require characterization of the distribution of information-
extraction rates, allowing calculation of the average infor-
mation extraction, median, minimal case, and maximal
case. In Sec. III, we derive the average purification rate
for a commuting measurement of a D-dimensional system
and provide an asymptotic expression. In the Appendix, we
rigorously derive these expressions. Additionally, in
Appendix A 4, we give exact results for bounds on the
spread of the distribution of purities, which were heuristi-
cally derived in a previous work [16].

Now that we have defined what a standard measurement
is, we can explore what it means to increase the rate of
extraction of information. In the context of control theory,
one might be interested in revealing or acquiring the
value of some parameter; that is the domain of adaptive
measurements [14,17]. But more typical control
objectives are to drive the evolution of the state or to
stabilize the state against noise [14,16,18–20]. Thus, dis-
turbing the prior state is not a problem. This is why
disturbance is not usually considered in feedback control.
What becomes important is the noise introduced by the
measurement to the system. Doherty, Jacobs, and Jungman
in Ref. [3] showed that, for a continuously monitored qubit,
the measurement noise is maximal when the eigenbases of
the state and measurement axis are unbiased.

The study of Wiseman, Mancini, and Wang in Ref. [20]
explored state stabilization in a qubit. The result relevant to
the present discussion fromRef. [20] relates to the difficulty
of stabilizing a state that is complementary to the measure-
ment basis. They showed that stabilization can be achieved
in the limit of infinite-strength ‘‘Bayesian’’ feedback, but
not in simpler ‘‘Markovian’’ feedback procedures. This is a
consequence of the increased measurement noise as pre-

dicted by Doherty et al. [3]. Later, Jacobs showed how
continuously monitoring the state of a qubit in a comple-
mentary basis (assuming infinite-strength feedback) leads
to a doubling rate of information extraction over monitoring
in a commuting basis asymptotically [4].
Recently, a number of studies have examined the use of

weak (and continuous) measurement in a complementary
basis in systems of dimension D greater than two. The first
study showed that the lower bound on the improvement in
the rate of information extraction when measuring in any
complementary basis is ð2=3ÞðDþ 1Þ [8]. The second
study showed that this speeding-up is bounded from above
by a factor D2=2 [9]. We summarize these results in
Sec. IVA of this paper. In Secs. IVB, IVC, and IVD, we
construct explicitly, for an arbitrary finite-dimensional sys-
tem, an unbiased-basis protocol based on the quantum
Fourier transform (QFT). We derive upper and lower
bounds on the speeding-up of the QFT protocol.
Surprisingly, the numerics show that the protocol saturates
the upper bound—when D is even. For completeness, we
mention the recent work of Ruskov et al. [21], which
showed monitoring a qubit in three complementary bases
and which claimed a speeding-up of a factor of approxi-
mately 3. We are currently exploring this relationship, so
we will not discuss it further in this paper.
Motivated by some of the above investigations, Jacobs

and Lund argued that the task of state stabilization in the
regime of strong feedback is best accomplished by mea-
surement in a complementary basis [19]. Foundational
issues aside, this is one reason to continue investigations
into maximal information extraction. In Ref. [19], the
authors raised two interesting questions: First, are all com-
plementary bases equally good for information extraction
whenD � 4? Second, is measurement in a complementary
basis best for information extraction?
We reexamine these questions in Secs. V and VI. We

show that complementarity of the measurement basis, i.e.,
the equal-likelihood condition, is not sufficient to guaran-
tee maximum information extraction. Our analysis pro-
vides an insight into the mechanism for information
extraction, which is quantum mechanical backaction.
From this analysis, we explain how maximum information
extraction is achieved by enforcing the complementary
condition and arranging the eigenvalues in phase space
so that measurement backaction can have maximum effect.
We provide further evidence for the claim that not all bases
are equally good. Because Jacobs and Lund did not exam-
ine permutations of the unbiased basis, it was still unclear
from their analysis whether all unbiased bases are equally
powerful for information extraction. So, in Sec. VI, we also
consider the role of permutations. Our results show that,
even after maximizing information extraction over permu-
tations of the unbiased basis, not all unbiased bases are
equally good at information extraction.
In Sec. VII, we examine complementary measurements

in a register of qubits using the QFT. We start our analysis
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in Sec. VII A, with the case of commuting measurements
[9]. Then, in Sec. VII B, we review the results of Ref. [9],
where it was shown that the speeding-up bounded by
2nð2n � 1Þ�1 � S � 2n. In Sec. VII C, we construct a
protocol based on the QFT and present results which
suggest that the speeding-up is at most 2. We conclude in
Sec. VIII.

III. COMMUTING MEASUREMENTS

Later in this paper, we will investigate strategies that
increase the rate at which information can be extracted
from quantum systems. Before these strategies are exam-
ined, however, we must fully characterize this rate in the
absence of feedback to provide a benchmark for assessing
the performance of the strategies that aim to increase the
rate of information extraction.

In this section, we restrict our attention to a conditional
continuous measurement of a single D-dimensional quan-
tum system, also called a qudit, monitored by a single
output channel. This output channel is monitored in such
a way that it results in a diffusive quantum trajectory
[12,14]. This monitoring can be thought of as a sequence
of short-duration, weak measurements. Following Fuchs
and Jacobs [2], our notion of information is characterized
by the impurity: L½�ðtÞ� � 1� Tr½�ðtÞ2�. Accordingly, we
derive an exact expression for the average impurity hLðtÞi,
which must be integrated numerically. Then we derive a
simpler approximate expression, which will be used in the
remainder of this paper’s analysis.

In the Appendix, we give a detailed derivation of these
equations and a detailed discussion of the approximations
that we use here in Sec. III. There is much new work in the
Appendix, so we will briefly summarize it now. In
Appendix A 1, we give a detailed derivation and analysis
of the exact and approximate expressions for the average
conditional impurity. In Appendixes A 2 and A 3, we
examine the validity of our approximate expression through
numerics. To completely characterize the rate of informa-
tion extraction from commuting measurements, we look at
bounding the distribution of purities in Appendix A 4.
Finally, we summarize the key messages in Appendix A 5.

A. Qudit: Impurity analysis

The starting point for the current analysis is similar to
that presented in Refs. [8,9,22]. We use a widely applicable
model that describes the evolution of the state � of a
quantum system due to repeated weak measurements of a
dimensionless observable X. This model is described by
the stochastic master equation (SME) [14,23–25],

d� ¼ dtLc½X�� � 2�dtD½X��þ ffiffiffiffiffiffi
2�

p
dWH ½X��; (1)

where D½A�� � A�Ay � 1
2 ðAyA�þ �AyAÞ, H ½A�� �

A�þ �Ay � Tr½ðAy þ AÞ��� [14], and dW is the incre-
ment of aWiener noise process [26]. It should be noted that

we have moved to a frame that has enabled us to factor
out the Hamiltonian evolution. The measurement rate, �,
determines the rate at which information is extracted, and
thus the rate at which the system is projected onto a single
eigenstate of X [16,27,28]. (This means that, for times
� � ��1, we may say that we have performed a projective
measurement of the observable X.) The measurement
result in a small time interval ½t; tþ dtÞ is denoted

dRðtÞ ¼ ffiffiffiffiffiffi
4�

p hXðtÞidtþ dWðtÞ; (2)

where dW is the same Wiener noise process that appears in
Eq. (1) and hXðtÞi ¼ Tr½X�ðtÞ�. A quantum trajectory is a
continuous-in-time description of the state conditioned on
themeasurement result. Thus, to specify a trajectory over the
interval ½0; TÞ, we must be given the measurement results
over that interval. Then the Itō definition �ðtþ dtÞ ¼
�ðtÞ þ d�ðtÞ may be used recursively to generate a trajec-
tory. Clearly, a singleweakmeasurement is described by one
application of this relation.
We will denote the continuous-measurement record ob-

tained by the observer integrated up until time t as

RðtÞ ¼
Z t

0
dRðt0Þ: (3)

The unnormalized version of Eq. (1) is known as the linear
SME. We denote this linear SME as [14,29–31]

d �� ¼ dt �Lc½X� �� � 2�dtD½X� ��þ ffiffiffiffiffiffi
2�

p
dR �H ½X� ��: (4)

Here, �H ½A�� � A�þ �Ay, and the bar over � denotes
the lack of normalization at all but the initial time. We take
the initial state to be �� ¼ �ð0Þ ¼ I=D, where I is the
D�D identity matrix. Because the initial-state matrix
commutes with X at all times, this makes obtaining the
solution to Eq. (4) simple. This solution is [24]

��ðR; tÞ ¼ expð�4�X2tÞ exp½2 ffiffiffiffiffiffi
2�

p
XRðtÞ�I=D: (5)

This state is normalized by N ðR; tÞ ¼ Tr½ ��ðR; tÞ�, so that
� ¼ ��=N . Thus the impurity may be written as

�ðR; tÞ ¼ 1� Tr½�ðR; tÞ2�: (6)

The impurity averaged over all possible measurement re-
cords R is given by

hLðtÞi ¼
Z 1

�1
�ðt; RÞP ðR; tÞdR; (7)

where P ðRÞ is the probability to obtain the state �ðR; tÞ at
time t. (This is explained in great detail in Appendix A 1.)
To calculate this integral, one must perform numerical
integration. It would be useful to have a fully analytic
expression for hLðtÞi. Now we will make some approxima-
tions to obtain a simple analytic expression for Eq. (7).
The approximate expression is arrived at by noting that,

in the long-time limit, �ðt; RÞP ðR; tÞ is sharply peaked in
(D� 1) places, which means that the integral in Eq. (7) can

JOSHUA COMBES AND HOWARD M. WISEMAN PHYS. REV. X 1, 011012 (2011)

011012-4



be simplified into a sum of (D� 1) integrals. At long
times, these integrals are essentially the same; thus the
integral is now (D� 1) times the integral for one region:

ðD� 1Þ
�

e��t

D
ffiffiffiffiffiffiffiffi
8�t

p
Z
M

e�ðR2=2tÞ

coshð ffiffiffiffiffiffi
2�

p
RÞdR

�
; (8)

where M 2 ½�1;1� is the region of integration.
Furthermore, the distribution in the numerator of Eq. (8)
is broad compared to the distribution in the denominator
for t � ��1. Thus we can make the approximation:Z

M
dRe�R2=2t= coshð ffiffiffiffiffiffi

2�
p

RÞ 	
Z
M
dR= coshð ffiffiffiffiffiffi

2�
p

RÞ

¼ �=
ffiffiffiffiffiffi
2�

p
:

The final expression for the impurity is thus

hL2ðtÞiLT ¼ 2ðD� 1Þ
D

�e��tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�t�

p ; (9)

where the subscript 2 denotes the particular approximation
used to derive this expression (see Appendix A 1 for de-
tails) and the subscript LT denotes that it is only valid in the
long-time limit. This is the analytic expression for hLðtÞi
that we had set out to find, and it is the key result of this
section.

IV. INFORMATION ACQUISITION IN
DIMENSION D AND ITS RELATIONSHIP

TO COMPLEMENTARITY

A. Previous results

In this subsection, we briefly summarize the results of
previous studies on information acquisition by measure-
ment in a complementary basis. The original articles on the
subject are found in Refs. [2,4,8,9]. The basic idea is to use
quantum feedback control to continuously keep the eigen-
basis of the state complementary to the measurement basis.
By analogy with the intuition presented in Fig. 1, this
procedure is expected to enhance information extraction.

From Eq. (1), it is easy to show using Itō calculus that
the information acquired [2], as characterized by the
change in impurity, about the state due to measurement
of infinitesimal duration is [9]

dL ¼ �8�dtðTr½�X�X� � 2Tr½X��Tr½X�2�
þ Tr½�X�2Tr½�2�Þ � 4

ffiffiffiffiffiffi
2�

p
dwfTr½X�2�

� Tr½�X�Tr½�2�g: (10)

We wish to study the effect of measuring in a complemen-
tary basis. In order to measure in a complementary basis
throughout the measurement process, one must use quan-
tum feedback control [14] to continually adjust the basis.
We will not labor on those details here, as they have been
adequately discussed before [4,8,9,14]. The required trans-

formation of the measurement basis is XðtÞ ! �XðtÞ, such

that jh �xjiij ¼ 1=
ffiffiffiffi
D

p
, for all �x, and i where jii is an eigen-

state of � and j �xi is an eigenstate of �X. Replacing all the

X’s by �X in Eq. (10) considerably simplifies the expression
to [8,9]

dL ¼ �8�Tr½ �X� �X��dt; (11)

or equivalently

dL ¼ �8�dt
X
r;c

j �Xr;cj2�r�c: (12)

Observe that the unbiased condition that simplified
Eq. (10) to Eq. (11) leaves a permutational degree of free-
dom in Eqs. (11) and (12) because a permutation of the

eigenstates of � does not affect jh �xjiij ¼ 1=
ffiffiffiffi
D

p
. This

means that we should optimize over permutations in the

expression dL ¼ �8�Tr½ �XPy
m�Pm

�XPy
m�Pm�dt, wherePm

is a permutation matrix, to maximize the decrease in
impurity. To obtain a lower bound jdLj of the optimal
permutation, we average over all possible permutations:

dL¼�8�
P

mTr½ �XPy
m�Pm

�XPy
m�Pm�dt. The average gives

a lower bound because the sum of a sequence is always less
than or equal to the greatest term in the sum.
It was shown in Refs. [8,9] that a tight lower bound on

Eq. (11), for the optimal permutation, is

dL � � 2

3
�tðDþ 1ÞLðtÞ; (13)

while the upper bound was recently found to be

dL � � 1

2
�tD2LðtÞ (14)

for D � 1 [9]. Eqs. (13) and (14) hold for measurement in
any complementary basis. Using these bounds, one may
compare the time that it takes for a commuting measure-
ment [i.e., Eq. (9)] to extract a certain amount of informa-
tion (i.e., to attain hLi ¼ �) to how long a complementary
measurement may take to extract that same amount of
information. That is, we equate Eq. (9) and the solutions
of Eqs. (13) and (14), and solve for the ratio of tcomplementary

and tcommute. We call this ratio the speeding-up in informa-
tion acquisition. For tcommute � ��1, the speeding-up is
bounded by

2

3
ðDþ 1Þ � S � D2

2
(15)

for D � 1 [9].
While these results show the usefulness of feedback in

rapid purification, some important issues have not yet been
addressed. First, does an explicit construction of such a
complementary-measurement strategy exist? Second, is
actual performance of such a strategy OðDÞ or OðD2Þ?
Third, what is the mechanism of the speeding-up? The first
and second questions are answered in Secs. IVB and
IVCrespectively. We defer the third question until Sec. V.
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B. Complementarity via quantum
Fourier transform for D¼2, 3, 4

In this subsection, we explore implementing a
continuous-complementary measurement in systems of
dimension three and four. There are many unbiased bases,
so to make our analysis concrete we must choose one. It
has been noted elsewhere [19] that, for D> 3, not all
unbiased bases are equally good at reducing the impurity.
Nevertheless, we choose a particular complementary basis,
the one generated by the quantum Fourier transform
of the logical basis. The construction of the continuous-
complementary measurement then consists of:
(a) calculationally diagonalizing the state matrix;
(b) calculationally ordering (permuting) those eigenvalues
to maximize jhdLij after a measurement; and (c) applying
the appropriate permutation and the QFT unitary to the
state. This whole procedure is an example of quantum
feedback control [14]. The D-dimensional QFT can be
represented by this matrix:

T ¼ 1ffiffiffiffi
D

p

1 1 1 . . . 1

1 q q2 . . . q1ðD�1Þ

1 q2 q4 . . . q2ðD�1Þ

..

. ..
. ..

. . .
.

1 qðD�1Þ q2ðD�1Þ qðD�1Þ2

0
BBBBBBBBB@

1
CCCCCCCCCA
; (16)

where q ¼ expð2�i=DÞ. The matrix elements of T are

Trc ¼ 1ffiffiffiffi
D

p exp

�
2�i

D
ðr� cÞ

�
; (17)

where r, c 2 ð0; . . . ; D� 1Þ.
For D ¼ 2, Jacobs’ protocol [4] turns out to be equiva-

lent to the QFT protocol. The transformation unitaries in
both cases are

TJac ¼ exp

�
i
�

2
Jy

�
¼ 1ffiffiffi

2
p 1 1

�1 1

� �
; (18)

TQFT ¼ 1ffiffiffi
2

p 1 1
1 �1

� �
: (19)

The effect of these transformations on dL is identical:
�X ¼ TJacJzT

y
Jac ¼ TQFTJzT

y
QFT ¼ Jx. Because this scheme

is equivalent to Jacobs’, we will not analyze this D ¼ 2
case any further.

For a system of dimension D ¼ 3, the transformed
measurement is

�X ¼ TJzT
y ¼ 1

3

0 1� q 1� q


1� q
 0 1� q

1� q 1� q
 0

0
BB@

1
CCA; (20)

where q ¼ expð2�i=3Þ. Taking the state to be � ¼
diagð�0; �1; �2Þ, where �r > �c when r < c, and solving
the equation for dL, using the fact that L ¼ P

r�c;c�r�r�c,

we find

dL ¼ �8�dt
X
r;c

j �Xr;cj2�r�c

¼ �8�dt

�
2

3
ð�0�1 þ �0�2 þ �1�2Þ

�
(21)

¼ �8�dt
1

3
LðtÞ; (22)

which coincides with the bound of Eq. (13). The above
expression can be easily integrated to give

LðtÞ ¼ e�ð8=3Þ�tLð0Þ: (23)

In Fig. 2, the weights j �Xr;cj2 between the �r�c’s are plotted.

The weights in this case are all equal, so it is obvious that
permuting the eigenvalues will not change the decrease of
impurity. This explains why we did not have to find an
optimal permutation.
Now we compare the above calculation to numerics. The

average impurity for the continuous-complementary-
measurement protocol and the continuous-commuting-
measurement protocol are calculated by stochastic
simulations and Eq. (7), respectively. Figure 3 shows that

λ0

λ2 λ1

FIG. 2. The only possible permutation for D ¼ 3. The solid
lines between the eigenvalues represent the weighting of the
multiplying factors in Eq. (21). That is, 2

3 ¼ j �Xr;cj2;8r; c.

FIG. 3. Trajectory simulations of the impurity for a D ¼ 3
system subject to feedback every �t ¼ 10�3��1 in order to
keep the state and measurement eigenbases complementary.
The ensemble size is 100. The dashed line is hLi for a
continuous-commuting measurement (D ¼ 3), i.e., Eq. (7).
The solid line is the numerically calculated ensemble average
of hLi for the complementary measurement; it is plotted in green,
and error bars are plotted at times ð0:5; 1; 1:5; 2Þ � ��1. The
analytic expression for the average impurity, Eq. (23), is indis-
tinguishable from the results of the simulation.
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the stochastic simulations of the complementary-
measurement protocol give a deterministically decreasing
hLi, as predicted by Eq. (23).

We numerically investigate the effect of varying the
frequency, 1=�t, of the operation applied (feedback) to
keep the state and measurement eigenbases complemen-
tary in Fig. 4. The stochastic fluctuations in the simulations
arise from the finite size of �t in the simulations. This
effect can also be found in simulations of the Jacobs’ qubit
feedback protocol [32]. As �t ! 0, the numerically calcu-
lated average impurity for complementary measurement
approaches Eq. (23). For �t � 10�3��1, numerical simu-
lations are indistinguishable from the analytically calcu-
lated (and then interpolated) speeding-up, which is the
solid line in Fig. 4.

We now consider complementary measurement using
the QFT for the case when D ¼ 4. The increment for the
impurity is

dL¼�8�dt
X
r;c

j �Xr;cj2�r�c

¼�8�dt

�
�0�1þ1

2
�0�2þ1

2
�1�3þ�0�3

þ�2�3þ�1�2

�
: (24)

Unfortunately, it is not possible to factor out an expres-
sion for the impurity on the right-hand side of the above
equation. It is obvious from Eq. (24) that permuting the
eigenvalues will affect jdLj. Our task is to maximize
the decrease in dL. From Eq. (24) it is possible to intuit
the form of the best and worst permutations, which
are depicted in Fig. 5. An optimal permutation is �opt¼
diagð�0;�1;�3;�2Þ. This permutation is not uniquely opti-
mal; the permutation diagð�1; �0; �2; �3Þ is also optimal.

One of theworst permutations is�worst¼diagð�0;�3;�1;�2Þ.
Unfortunately, knowing the optimal permutation does not
help us simplify the expression. Because we cannot solve
this case analytically, we invoke the procedure developed in
Refs. [5,9] to find the bounds on jhdLij (and hence S) for the
QFT protocol for all D. These bounds are calculated in
Sec. IVC.
Figure 6 depicts the numerically calculated speeding-up

forD ¼ 4. The speeding-up is larger than that of theD ¼ 3
case [33]. Furthermore, for reasonably frequent feedback,
the numerically calculated speeding-up lies between the
analytical bounds predicted by Eqs. (13) and (14).
We also briefly compare the complementary-

measurement protocol to the rapid-measurement (RM)
algorithm of Ref. [5] in Fig. 7. The decrease in the en-
semble average of the impurity seems to be of the same
order. However, the trajectories in the RM case have a large
variance. This is because the trajectories are not differ-
entiable. By comparison, even for a finite �t the L in the
complementary measurement is very close to determinis-
tic. Although L is still stochastic, it is also differentiable for
�t ! dt so the noise in the simulations is reduced.
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FIG. 4. Short-time numerically calculated speeding-up for
D ¼ 3. The dashed line is the analytically calculated asymptotic
speeding-up S ¼ 8=3 ¼ 2: _6. The solid magenta line is the ideal
speeding-up, calculated numerically from Eqs. (7) and (23). The
circles and triangles are numerical calculations of the speeding-
up with finite �t ¼ 10�3��1 and 10�2��1, respectively; the
ensemble size is 100. As �t ! 0, the numerically calculated
speeding-up approaches the solid line and the error bars vanish.
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FIG. 5. (a) The weights jXr;cj2 in Eq. (24) after diagonalization
and in descending ordering. (b) The optimal permutation for
D ¼ 4. (c) The worst permutation for D ¼ 4. The solid line
represents the maximum weighting of multiplication in Eq. (24);
the dashed lines represent minimum weights corresponding to 1
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FIG. 6. Short-time numerically calculated speeding-up for
D ¼ 4. The dashed lines are the bounds on the speeding-up
given by Eqs. (27) and (31). The circles, squares, and triangles
are numerical calculations of the speeding-up with finite
�t ¼ 10�3��1, 10�2��1, 10�1��1, respectively. In order to
keep the error bars roughly the same size, the ensemble size
was varied. The ensemble sizes for circles, squares, and triangles
are 100, 400, and 6400, respectively.
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C. Bounds on the QFT complementary-measurement
protocol for all D

1. Lower bound

From Eq. (15) it is clear that the lower bound on
the optimal speeding-up for the measurement of any com-
plementary basis is S ¼ 2

3 ðDþ 1Þ. Nevertheless, it is in-

teresting to work this out explicitly for a particular
complementary basis. The method we use to find the lower
bound was first presented in Ref. [9]. This method uses a
fictitious state �F with the same purity as the state under
consideration, i.e., L½�� ¼ L½�F�. The fictitious state
�F is defined as �F¼diagð1��;�;...;�Þ, where 1� � is
the largest eigenvalue of �F and � ¼ �=ðD� 1Þ. The
equation for dL is invariant under permutations of the
eigenvalues �F. Substituting �F into the right-hand side

of Eq. (12) gives 2ð1��Þ �
ðD�1Þ

P
r�1j �Xr1j2 þ �2

ðD�1Þ2 �P
r�1c;c�rj �Xrcj2. This expression is further simplified by

explicitly calculating the matrix elements. For the QFT, we
have

X
r�1

j �Xr1j2 ¼
XD�1

m¼1

1

4sin2ð�m=DÞ ¼ ðD2 � 1Þ=12; (25)

using the identity
P

D�1
m¼1 csc

2ð�m=DÞ ¼ ðD2 � 1Þ=3 [34].
Also, we have

X
r�1;c�r

j �Xr;cj2 ¼ Dþ 1

12
ðD� 1ÞðD� 2Þ; (26)

using the above identity and the fact that
csc2½�ðD�1Þ=D�¼csc2ð�=DÞ. After some simplification,

the final expression is an upper bound on the decrease in
impurity:

dLF � �2
3ðDþ 1Þ�dtLðtÞ; (27)

which implies that the lower bound on the asymptotic
speeding-up is

SF � 2
3ðDþ 1Þ; (28)

as found in Refs. [8,9] for a general complementary
measurement.

2. Upper bound

To find the upper bound on the speeding-up for the QFT
protocol we again use the method of Ref. [9]. This instance
requires a different fictitious state �2, again with L½�� ¼
L½�2�, which was termed the binary distribution. The
binary distribution is defined as �2¼diagð1��0;
�0;0;...;0Þ, where 1� �0 is the largest eigenvalue. It is
known that dL is most sensitive to permutations of the
eigenvalues of �2 [9].
Substituting �2 into Eq. (12) gives only two terms. Now

there is a choice about where to situate the two eigenvalues
so that dL is maximized. By calculating the element

j �Xr;cj2, using the QFT, we find that

j �Xr;cj2 ¼ 1

2½1� cos2�D ðr� cÞ� : (29)

This allows us to optimize the change in impurity over the

permutations by finding maxjPy
m �Xr;cPmj2. The largest ele-

ment of the matrix is j �X01j2 ¼ 1=2ð1� cos2�D Þ. From this,

it is clear that dL will be maximized provided the two
eigenvalues from �2 are in succession. The change in the
impurity for the binary distribution is

dL2 ¼ �8�dtð2�0�1Þ
2ð1� cos2�D Þ

¼ �4�dt

ð1� cos2�D Þ
L2ðtÞ: (30)

Thus, the asymptotic upper bound for the speeding-up is

S2 � 4

1� cos2�D
: (31)

For D � 1, one finds

S2 ¼ 2D2

�2
	 0:2D2: (32)

In Fig. 8 we depict the conjectured optimal and worst permu-
tations of eigenvalues of a D-dimensional state �. The opti-
mal permutation is � ¼ diagð�0; �1; �3; �5; . . . ; �6; �4; �2Þ.
In Fig. 9 the numerically calculated asymptotic speeding-

up as a function ofD is plotted. As expected, it is within the
lower bound of Eq. (28) and the upper bound of Eq. (31).
Further, it confirms a very nearly quadratic speeding-up: the
fit shown is S ¼ 0:189D2 þ 0:109Dþ 0:248. If, however,
we choose to fit only the quadratic term, the fit is

S ¼ 0:19D2: (33)

FIG. 7. A comparison between the complementary-
measurement protocol and RM feedback (of Ref. [5]) for
D ¼ 4, �t ¼ 10�4��1, and an ensemble of 20 trajectories in
each case. The dashed lines are the analytically calculated bounds
on dL for complementary feedback [Eqs. (27) and (30)]. The
dash-dotted green line (inset) is the ensemble average for L with
the QFT feedback. The solid dark green line is the ensemble
average for the RM feedback. The light brown lines are the
trajectories for the RM feedback. The analytical bounds suggest
that both feedback strategies have the same order of speeding-up.
Inset: All of the complementary-measurement trajectories
(gray lines) lie within the predicted bounds. The trajectories are
very nearly deterministic.
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ForD � 10 this is a good approximation and is very close to
Eq. (32), which was derived for long times and largeD. The
numerically calculated asymptotic speeding-up is only a
multiplicative constant away from the ultimate upper bound
on all complementary-basis purification protocols, the
dashed line (S ¼ 0:5D2), i.e., Eq. (15).

D. Discussion

The results presented in Secs. IVA, IVB, and IVC raise
a number of questions which we now elucidate further.

Because of symmetries, for dimensions two and three,
permuting the basis of � was unnecessary to maximize dL.
The intuitive thinking is that, for maximizing information
gain, the complementary measurement marginalizes the
significance of which eigenvalue is the largest. For D> 3,
we must permute the basis of �, after diagonalization and
before applying TQFT, to maximize dL. The permutations

applied do not increase the signal-to-noise ratio of the
measurement, unlike the rapid-measurement protocol of
Ref. [5]. In Secs. IVB and IVC 2 we argued that the
permutations should be chosen to maximize the product
of the two largest eigenvalues in Eq. (12). While this recipe

is operationally sound, it lacks physical insight. For ex-
ample, this recipe does not explain what the mechanism of
the purification is and why the permutations can dramati-
cally affect the rate of purification. These questions are
addressed in Sec. V.
The final open question concerns the efficacy of differ-

ent complementary bases to change the rate of purification.
In a previous work, Lund and Jacobs suggested that not all
complementary bases were equally good at entropy reduc-
tion [19]. That is, they claimed that one particular unbiased
basis can reduce entropy more quickly than another. If this
were true, then the S ¼ 0:2D2 upper bound we derived
from the QFT basis would not necessarily be the true upper
bound, which could be closer to S ¼ 0:5D2. We numeri-
cally investigate this question in Sec. VI.

V. WHY COMPLEMENTARITY IS NOT ENOUGH

How is it that rotating to an unbiased basis provides any
speeding-up? Naı̈vely following the reasoning applied to
qubits in Refs. [2–4] suggests that, bymaking each outcome
equally likely (i.e., maximizing the surprisal [1]), one max-
imizes the average amount of information a measurement
extracts. From this one might argue that the speeding-up
observed can be explained by theD-dimensional version of
this argument. However, it is not clear how this argument
would explain why the arrangement of eigenvalues in �
(permutations) is important to attain the best speeding-up.
To address this, we examine a phase-space representation of
the optimal and worst permutations that are schematically
depicted in Fig. 8.
Defining a phase-space picture for a discrete variable is

not trivial. In Ref. [35] it was shown that a spin Wigner
function Wð�;	Þ can be defined in terms of Clebsch-
Gordan coefficients and spherical harmonic functions.
This spin Wigner function is a pseudoprobability distribu-
tion on the Bloch sphere, with � and 	 the usual Euler
angles. The spin Wigner function is a little counterintui-
tive; for example, unlike the original Wigner function
Wðx; pÞ, for position and momentum, the marginal distri-
bution for 	 is not the true phase distribution Pð	Þ.
However, for large D, the marginals are a good approxi-
mation to the true phase distribution [36]. We plot the
Wigner function using the equal-area projection (described
by coordinates 	 and J cos�).
The conjectured best and worst permutations were de-

picted on a ring in Fig. 8 and explained in terms of the
weighting factors jXr;cj2. We now have an intuitive under-

standing of the angle around this ring as being the phase	 in
the angular representation of spin states. The eigenstates of
� in the measurement (Jz) basis are jri (Dicke states [37]).
These are transformed by the QFT to the states j	ri,
where 	r :¼2�

D ðJ�rÞ. The states j	ri¼ 1ffiffiffi
D

p P
J
m¼�J�

expð�im	rÞjJ;mi are equivalent to the Pegg-Barnett phase
states [38,39]. If the QFT were an easy operation in some
physical system, then our protocol would be a procedure for
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FIG. 9. The asymptotic speeding-up for reaching a given level
of purity as a function of the system dimension. The solid black
line indicates the fit in Eq. (33). The dashed magenta lines are the
upper, Eq. (31), and lower, Eq. (28), bounds derived in the text
for the QFT protocol. The dash-dotted green line is the upper
bound on all unbiased-basis purification strategies, which is
shown on the right-hand side of Eq. (15).
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FIG. 8. (a) Weighting factors in Eq. (12) after the feedback
has diagonalized and ordered the eigenvalues in �. (b) The
conjectured general optimal permutation. (c) The conjectured
worst permutation. The weights are shown only from the �0

perspective.
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rapidly preparing a Pegg-Barnett phase state.We note that in
some spin systems it should be possible to construct the
desired unitary [40].

Consider the long-time-limit state. The worst case, for
purification purposes, is when the eigenvalues are equal.
Under this two-eigenvalue approximation, the worst per-
mutation corresponds to putting the second largest eigen-
value, �1, the maximal distance away from �0 in phase
space (	 ¼ ��). The spin Wigner function for this
configuration of the mixture is plotted in Fig. 10(a) for
D ¼ 10. The optimal permutation is when the two largest
eigenvalues are next to each other in the phase space; see
Fig. 10(b). It is now apparent that the schematic diagrams
in Fig. 8 represent a slice through the unwrapped Bloch
sphere, and the positions of the eigenvalues are their ar-
rangements of the phase states corresponding to the origi-
nal eigenvalues. This phase-space picture suggests that it
might be possible to explain why these are the best and
worst cases and how the speeding-up is generated. To
explain these two features, we move away from exact
calculation of Wigner functions and move to a schematic
representation of the Wigner function.

In Fig. 11(a) we represent schematically the bulk of the
Wigner function by a rectangle of width 2�=D (corre-
sponding to the 	 coordinate) and height D� 1 ¼ 2J
(which corresponds to the J cos� coordinate). In
what follows, one may loosely think of the rectangle as

representing the uncertainties in an observer’s knowledge
about two conjugate variables; according to the Heisenberg
uncertainty relation, the area of the rectangle must be
constant for pure states. Now, consider the effect of a
weak measurement of Jz. In our protocol this is of infini-
tesimal duration, but here we exaggerate the effect to
illustrate our point. In Fig. 11(b) we have taken the result
of the measurement to be positive. Because the result is
positive, the Wigner function does not have much support
on the lower part of the plot. As the positive result contains
information about the distribution of j, the uncertainty in
this variable is reduced. In keeping with the Heisenberg
uncertainty relation, the conjugate variable (	) suffers an
increase in variance. For Wigner functions, the purity is
proportional to the inverse of the area under the function
[41]. Here there has been no change in the total area and
hence no change in the total purity. Because this is only a
heuristic for understanding protocol, the previous state-
ment is not entirely true; the final paragraph of this section
will explain the actual result.
In Fig. 11(c) the optimal permutation in the QFT basis is

depicted. The total area of the two rectangles before the
measurement is�4�. After a positive measurement result,
the phase distributions for the two eigenvalues significantly
overlap. The total area is now �3�; this reduction in
area leads to an increase in purity; see Fig. 11(d). Now
the intuitive understanding for the speeding-up and the
permutation sensitivity is apparent. The permutations are

FIG. 10. An equal-area plot of the Wigner function of an equal
mixture of two eigenstates after the QFT, D ¼ 10. (a) The worst
permutation; cf. Fig. 8(c). The dashed vertical lines correspond
to the locations of the peaks of the D-transformed eigenstates.
The dotted box around the peak at	 ¼ 0 corresponds to the bulk
of the Wigner function for this state. (b) The conjectured general
optimal permutation; cf. Fig. 8(b).
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FIG. 11. Schematic Wigner functions for the mixtures of two-
phase eigenstates for D ¼ 20. (a) The worst permutation;
cf. Fig. 8(c). We have rotated the entire sphere by �=2 about z
to simplify the explanation of the speeding-up. (b) The worst
permutation after a positive measurement result (modulo �=2).
The total area is constant in (a) and (b), and it is equal to 4�.
(c) The optimal permutation; cf. Fig. 8(b). (d) The optimal
permutation after a positive measurement result. The total area
is reduced in (d) to 3�, which gives rise to a purifying effect.
(The purity is inversely proportional to the area underneath the
Wigner function.) The striped region 	 2 ð��=D; 0� denotes
that the red and green rectangles are overlapping in this region.
From these figures, it is apparent that the circles in Fig. 8 can be
thought of as showing 	.
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important so that the large eigenvalues in � may ‘‘bleed’’
into each other after a measurement. The ‘‘bleeding’’ is due
to measurement backaction in the variable conjugate to J.
It is the reduction in area that this bleeding effects that
causes the purification; however, it only works if the largest
two eigenvalues are adjacent in phase space. Although this
picture is crude, it captures the essence of the protocol.

So far we have given an intuitive explanation of the
mechanism underlying the purification. Now we provide
an intuitive explanation for the speeding-up. Consider the
integrated measurement resultZ t

0
dRðtÞ ¼

Z t

0

ffiffiffiffiffiffi
4�

p
XðsÞdsþ

Z t

0
dWðsÞ: (34)

This expression contains a term corresponding to the signal
of interest (the first term) and a term representing the noise
(the second term). We may define the signal-to-noise ratio
as SNR ¼ signal2=noise2. In this case, we have signal2 ¼
4��t2hX2i and noise2 ¼ hð�WðtÞÞ2i ¼ �t. Thus, the ratio
becomes SNR ¼ 4��thX2i. Now we wish to estimate the
time taken to evolve from the Wigner functions in the first
row of Fig. 11 to those in the second row. Note that an
observer gains 1 bit of information about Jz between the
first and second rows. From the Shannon-Hartley theorem,
bits ¼ log2ð1þ S=NÞ, we infer that this implies SNR ¼ 1.
Now we solve for time and take X ¼ Jz consequently
hJ2z i ¼ ðD2 � 1Þ=12 (see Appendix C in Ref. [9]) to find

�t ¼ 3

�ðD2 � 1Þ : (35)

Recall that the purity is approximately inversely proportional
to the phase-space area. The initial purity inFig. 11(c) isPi /
1=4�, and we know that the state is an equal mixture of two
eigenstates,whichmeans that the purity equals one-half. This
allows us to determine the proportionality constant to be 2�,
so Pi ¼ 1

2 . The final purity is thus Pf ¼ 2=3, which means

the change in purity is �P ¼ 1=6. Consequently,

1

P

�P

��t
¼ 1

2

ð1=6Þ
3=ðD2 � 1Þ ¼

1

9
ðD2 � 1Þ: (36)

This can be compared to Eq. (32), that is,

1

L

dL

�dt
¼ � 2D2

�2
	 � 1

5
D2: (37)

Considering the crudeness of the arguments we have
employed, the agreement between Eqs. (36) and (37) is
surprisingly good. This gives weight to the intuition that
the effect of purification for the QFT protocol comes from
measurement backaction, and the role of the permutations is
to maximize the backaction by placing the eigenvalues close
in phase space.

We now return to the worst permutations for purifica-
tion. All one can conclude from the equal likelihood of all
outcomes is that there should be a speeding-up of at least 2
(in a discrete-outcome measurement model, which is

equivalent to our current measurement model). Let us
confirm this intuition now. Returning to the two-eigenvalue
approximation, consider the worst permutation. It is pos-
sible to determine the upper bound on the speeding-up
resulting from this permutation by substituting r� c ¼
D=2 into Eq. (29). We find that S ¼ 2, which confirms
the intuition above. This is why complementarity is not
enough to guarantee maximal information extraction.

VI. ARE ALL COMPLEMENTARY BASES
EQUALLY GOOD FOR ENTROPY REDUCTION?

We now address the question raised by Jacobs and Lund
[19]: Are all unbiased bases equally good for rapid purifi-
cation? Their answer was no. However, at the time of their
analysis, the role of permutations was not clearly under-
stood. Thus, it is worthwhile to reexamine this question.
Because of rotational symmetry of the unbiased bases and
the permutational symmetry of the density operator, the
answer in the cases D ¼ 2 and 3 is yes. However, for
D ¼ 4, it is easy to find a counterexample to this trend.
For example, measuring in any of the four mutually un-
biased bases (MUBs) [42] gives

dL ¼ �8�dt
X
r;c

j �Xr;cj2�r�c

¼ �8�dt

�
2�0�1 þ 1

2
ð�1�2 þ �0�3Þ þ 2�2�3

þ 0ð�0�2 þ �1�3Þ
�
; (38)

where �X ¼ My
i JzMi, where Mi is a transformation to one

of the MUBs. (Explicit expressions of the five MUBs when
D ¼ 4 are given in Ref. [42], for example. For convenience
we have reproduced them in endnote [43].) As before, we
may use �2 to obtain a lower bound on dL (and hence an
upper bound on the speeding-up). Doing so gives dL ¼
�8�dtLðtÞ, which implies a speeding-up of S ¼ 8. This
saturates the upper bound on the speeding-up found in
Eq. (15). The factor of 2 improvement over the QFT can
be understood from the difference in weights of the largest
terms �0�1 between Eqs. (24) and (38).
To get more intuition about the purification process using

the MUB transform, we look at the Wigner function of the
four states in one of the fourMUBs, which, for convenience,
we denote fj0i; j1i; j2i; j3ig in Fig. 12. The states plotted in
Figs. 12(a) and 12(d) look like the states in the QFT basis
(Pegg-Barnett phase states). TheWigner functions plotted in
Figs. 12(b) and 12(c) are, however, quite different—they
contain a hole which is more negative than the dips
in Figs. 12(a) and 12(d). The states plotted in Figs. 12(b)
and 12(c) can be said to be highly nonclassical because of
this.
We now compare the MUB transform to the QFT using

the Wigner function in an attempt to get an intuitive expla-
nation of the advantage of theMUB transform. To make the
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analysis simple, we restrict our consideration to states that
have two large eigenvalues only (as we did above). From
Eq. (38), we see that permuting these states in the
logical basis so that they correspond to j0i and j1i
(or j2i and j3i) is the optimal thing to do. Recall that
permuting the two largest eigenvalues to j0i and j1i was
also optimal for the QFT protocol; see Fig. 13(a). There we
found that doing so created two peaks close in phase space,
so the purification could be explained by measurement
backaction. In Fig. 13(c) the Wigner function of the opti-
mally permuted state for the MUB transform is depicted.
[It is an equalmixture of Figs. 12(a) and 12(b).] Herewe can
no longer attribute the purification mechanism to backac-
tion. In fact, it seems as though the purification effect comes
from distinguishing the two peaks in the Jz distribution. The
worst QFT permutation also corresponds to a poor MUB
transform, as evidenced in Figs. 13(b) and 13(d).

Interestingly there is a permutation that is worse for the
MUB transform than the permutation depicted in Fig. 13(d).
It is � ¼ diagð1; 0; 1; 0Þ=2; the transformed state of this
permutation is depicted in Fig. 13(e). This permutation
results in no purification at all. We can see this by substitut-
ing �0 ¼ 1

2 and �2 ¼ 1
2 into Eq. (38) to get dL ¼ 0. This

complete lack of purification may have application in the
state stabilization of states with an arbitrary purity [19].

We would like to know if the upper bound on the
speeding-up is saturated in all dimensions. To answer this
question, we resort to a numerical search for D 2 ½2; 10�.
We do not claim that our search is exhaustive. Recall that
the stochastic simulations show that the speeding-up
predicted by �2 is close to the achievable amount. It seems
reasonable to assume this to be true in other complemen-
tary bases. This greatly simplifies the analysis by making
the optimization of permutations superfluous. For this
reason, we may numerically search over all unbiased bases

for the basis which has the largest element j �Xr;cj2.

Converting the element j �Xr;cj2 to a speeding-up gives the

following trend. The speeding-up for even D attains the
upper bound, i.e., D2=2, and the speeding-up for odd D
equals ðD� 1Þ2=2, as seen in Fig. 14. In either case, this is

FIG. 13. AWigner function comparison between the QFT (top
row) and MUB transform (bottom row) for D ¼ 4. We plot an
equal mixture of two eigenstates with the optimal permutation
[(a) and (c)] and a poor permutation [(b) and (d)] for each
transform. In (a) through (d), the dashed black line is the
zero contour. (a) The optimally permuted state for the QFT
� ¼ diagð1; 1; 0; 0Þ=2. (b) The worst permutation for the QFT
� ¼ diagð1; 0; 1; 0Þ=2. (c) The optimally permuted state for the
MUB transform � ¼ diagð1; 1; 0; 0Þ=2. (d) Apoor permutation
for the MUB transform � ¼ diagð1; 0; 0; 1Þ=2. Note that cases
(b) and (d) are actually identical. Unlike the QFT case, the
mixture of optimally permuted MUB states has two peaks which
could be distinguished by a measurement of Jz. (e) The worst
permutation, i.e., � ¼ diagð1; 0; 1; 0Þ=2, after the transform to
the M1 unbiased basis, which results in no purification.
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FIG. 14. The asymptotic speeding-up for reaching a given
level of purity as a function of the system dimension. The dashed
green lines are the upper and lower bounds on all unbiased-basis
purification strategies, i.e., Eq. (15). The dotted black line is
the maximum achievable speeding-up for the QFT protocol, i.e.,
Eq. (31). The solid circles are the results of a numerical search
over unbiased bases to maximize the asymptotic speeding-up.
See the text for more details.

FIG. 12. Equal-area plots of the Wigner function resulting
from transforming four different states to the M1 unbiased basis
(D¼4). (a) The transform of �0 ¼ diagð1; 0; 0; 0Þ, (b) �0 ¼
diagð0; 1; 0; 0Þ, (c) �0¼diagð0;0;1;0Þ, and (d) �0¼diagð0;0;0;1Þ.
Unlike the unbiased basis generated by the QFT, not all of the
resulting states are like the Pegg-Barnett phase states; see, for
example, (b) and (c).
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much larger than the speeding-up of the QFT protocol,
which was S ¼ 0:2D2. For D � 1, it is reasonable to
believe that the achievable speeding-up does indeed scale
like the predicted S ¼ 0:5D2 [9].

VII. INFORMATION ACQUISITION IN A
REGISTER OF QUBITS AND ITS RELATIONSHIP

TO COMPLEMENTARITY

Finally, we consider complementary measurements of a
register of n qubits, where each qubit is independently and
weakly (or continuously) measured, as introduced in
Ref. [5]. Instead of one observable X, there are now n,

given by XðrÞ¼Ið1Þ
Ið2Þ
...
ðrÞ
z ...
IðnÞ, where r labels the

r-th qubit. The SME describing such a measurement is

d� ¼ X
r

2�dtD½XðrÞ��þ ffiffiffiffiffiffi
2�

p
dWðrÞH ½XðrÞ��: (39)

The combined state of the n qubits exists in a
D ¼ 2n-dimensional Hilbert space.

A. Commuting-measurements analysis

Herewewill not analyze the commutingmeasurements of
a register of qubits with the same detail as we did for the
qudit in Sec. III. Instead, we rely on a result from Ref. [9]
where an expression for the evolution of the average
impurity of a register undergoing a continuous-commuting
measurement was found. In the long-time (LT) limit, the
impurity is

hLðnÞðtÞiLT ¼ n�e�4�t

8
ffiffiffiffiffiffiffiffiffi
��t

p : (40)

We will use this expression in this section to calculate the
speeding-up. For this purpose, only the asymptotic scaling is

important: hLðnÞðtÞi � e�4�t.

B. Complementary measurements

It was shown in Ref. [9] that the change in impurity for a
register of qubits monitored in an unbiased basis is

dL ¼ �8�dt
Xn
r¼1

Tr½ �XðrÞ� �XðrÞ��; (41)

¼ �8�dt
Xn
r¼1

XðD�1Þ

i;j¼0

j �XðrÞ
i;j j2�i�j: (42)

Here we define the complementary observable to be
�Xðr;mÞ¼PmTX

ðrÞTyPy
m. As before, the T’s are conditional

unitarities that introduce the unbiasedness [between �

and XðrÞ], and the Pm’s are the permutation operators.
It was found that the upper bound on the impurity was

LðnÞ
UBðtÞ ¼ exp½�8�nt=ðD� 1Þ�Lð0Þ; (43)

while the lower bound was

LðnÞ
LBðtÞ ¼ expð�8�ntÞLð0Þ: (44)

From these equations, we can infer the following bounds
on the asymptotic speeding-up factor:

2n

D� 1
� S � 2n: (45)

For all n � 3, the lower bound on the speeding-up becomes
less than unity. For large n, the slowing-down implicit in
the lower bound is�n2�nþ1. (The interested reader should
also see the related study of Hill and Ralph [44].)

C. Complementarity via the quantum
Fourier transform

From Eq. (45) it is not clear if measurements in a
complementary basis provide any benefit in information
extraction. In this subsection, we present some progress
toward answering this question.
We begin our analysis by considering the speeding-up

when n ¼ 2. The bounds on the speeding-up are 4=3 �
S � 4. In order to see if the upper bound is achievable, we
perform stochastic simulations. In Fig. 15 we numerically
determine the advantage of the QFT feedback protocol in a

FIG. 15. (a) Impurity for a two-qubit register. The small-
dashed blue line indicates a continuous measurement; the solid
green line, the average impurity for feedback; the solid gray
lines, individual trajectories; the dashed magenta lines, the upper
[Eq. (43)] and lower [Eq. (44)] bounds, respectively.
(b) Speeding-up is indicated by the solid blue line, and the lower
bound by the dashed magenta line. The upper bound is not
shown, as it is well above the numerical result. The ensemble
size is 20, and feedback was applied at times �t ¼ 1� 10�3��1.
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register of two qubits. The permutation used for simulating
the evolution was � ¼ ð�0; �4; �3; �1Þ.

In Fig. 15(a), the QFT protocol clearly does not saturate
the bound on hLi given in Eq. (44). One may randomly
permute the eigenvalue arrangement at times �t before
applying the QFT feedback to deterministically achieve
the lower bound of Eq. (45). From Fig. 15(b), it seems as
though the speeding-up is approaching asymptotically to-
ward 2 rather than the upper bound specified by Eq. (45),
i.e., 4. For comparison, we note that the speeding-up found
for the locally optimal rapid-measurement protocol in
Ref. [5] was SRM 	 1:4 in the long-time limit.

The structure of unbiased bases for a register of qubits is
quite complicated [45–47]. Even for the QFT, the optimal
permutation is not obvious for n > 2. It is for this reason
that we plot the two-eigenvalue approximation to the
asymptotic speeding-up for the QFT in Fig. 16 as a func-
tion of n. The values were obtained by finding the largest

term in Eq. (42). This term will be denoted by Xmax :¼
maxi;j

P
rjXðrÞ

i;j j. The feedback places the two eigenvalues at
imax and jmax. Thus, Xmax is proportional to the speeding-
up. Curiously, the speeding-up,

S 	 2; (46)

appears to be independent of the size of the register. It is
not clear if this is true for any unbiased basis in a register.
Our arguments from Sec. VI indicate that it might be
higher by a multiplicative constant.

VIII. DISCUSSION

Prior to this work, it has been shown that it is possible to
speed up the extraction of information from a quantum
system using a continuous-complementary measurement
[4,8,9]. In this paper, we have given an explicit method for

constructing such a protocol, using the QFT, that achieves a
speeding-up of S ¼ 0:2D2 for a qudit. This explicit con-
struction allowed us to show that complementarity between
the state and measurement observable is not enough to
guarantee maximal information extraction. Choosing the
right permutation of eigenstates, before Fourier transform-
ing the state—see Fig. 8—is needed to guarantee maximal
information extraction. This finding is contrary to what one
might expect from classical information theory [1]. The
effect of the permutation can change the speeding-up in
information extraction from its minimal value 2 to 0:2D2.
We also argued that, in the case of the qudit, the maximum
possible speeding-up, predicted in Ref. [9], S�D2=2
should be achievable. One interesting upshot of our inves-
tigation (see Sec. VI) is an explicit example of using an
unbiased basis for state stabilization [19].
In this paper, we demonstrated that measurement back-

action is fundamental to the purification process for the
QFT protocol. We did not, unfortunately, find an informa-
tion theoretic explanation of the measurement process as
was found in Ref. [48]. It is not clear, at present, that the
bounds presented in Sec. IVC could be obtained frommore
elementary reasoning about uncertainty relations [49].
In a related work, Shabani and Jacobs [50,51] found the

globally optimal (in time) protocol for D ¼ 3 and the
locally optimal protocol for all dimensions for the reduction
of a quantity related to impurity. Their calculated bounds on
the speeding-up were 2ðD� 1Þ � SSJ � 2ðD� 1Þ2.
Naı̈vely comparing their bounds to ours suggests that an
unbiased protocol is not optimal. However, it is not yet clear
if their upper bound is achievable for D> 4.
It is possible to perform a simple calculation, indepen-

dent of the one presented in Ref. [50], for the absolute
upper bound on the speeding-up. First, we calculate a
lower bound on E½dL�,

E ½dL� ¼ �8�dtfTr½� �X� �X� � 2Tr½ �X��Tr½ �X�2�
þ Tr½� �X�2Tr½�2�g; (47)

by using the trace inequalityTr½ABAB� � Tr½A2B2�, where
A andB are Hermitian matrices. The breve onX denotes the

unitary transformation �X ¼ UyXU, whereU is any unitary.
Note that all but the first term, Tr½X�X��, are Oð1� L2Þ
[orOðL2Þ]. Consequently, the first term dominatesE½dL� as
it is OðLÞ. Next we make a two-eigenvalue approximation
to �. We find

E ½dL2� ¼ �8�dtTr½�2
�X�2

�X� (48)

� �8�dtTr½X2U�2
2U

y� � 2ðD� 1Þ2: (49)

This implies an upper bound on the speeding-up of
S ¼ 2ðD� 1Þ2, as found by Shabani and Jacobs [50]. The
results of a numerical search, like the one performed in
Fig. 14, indicates that this bound is indeed achievable.
Furthermore, we can confidently say that the speeding-up
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FIG. 16. Bounds on the asymptotic speeding-up for a register
of qubits. The dashed magenta lines are the upper and lower
bounds derived in the main text, Eq. (45). The solid line is the

largest element of Xmax ¼ maxi;j
P

rjXðrÞ
i;j j. The element Xmax is

conjectured to be a good indicator for maximum achievable
speeding-up with the QFT in a register of qubits.
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of the time-optimal control strategy for impurity reduction
is bounded above by S ¼ 2ðD� 1Þ2. This is justified by
making a two-eigenvalue approximation to �2 and then
using the proof that Jacobs’ protocol [4] is optimal [11,50–52].

It is interesting that the rapid-measurement protocol
(considered in Refs. [5,7]) and the complementary-
measurement protocols both afford at most a speeding-up
OðD2Þ. They work in very different ways. The rapid-
measurement protocol is essentially classical in nature. It
uses operations that ensure that the state and measurement
commute at all times. In particular, the operations are
permutations of the state in the measurement basis. The
phase-space picture for the rapid-measurement protocol, in
the long-time limit (i.e., under the two-eigenvalue approxi-
mation), would be two Jz eigenstates (Dicke states) placed
at �J. As the measurements are in the z basis, the mecha-
nism for the rapid-measurement speeding-up is an increase
in signal-to-noise ratio in the measurement record. In
this paper, we have shown that the complementary-
measurement protocol is essentially quantum mechanical
in nature. The mechanism for the purification and
speeding-up is measurement backaction (at least for the
QFT protocol). The two approaches also have different
advantages. Rapid measurement has the advantage of en-
abling one to obtain information about the initial state. The
complementary-measurement protocol presented here has
the advantage of providing a nearly deterministic improve-
ment in information gathering of the current system state.
In future work, we will explore if it is possible to obtain
information about the initial state for a continuous-
complementary measurement.

Finally, we will speak to the practicality of implement-
ing QFT-based protocols. In a recent work, we showed how
to analyze imperfections in a purification protocol using a
feedback master equation [53], so we will not discuss such
issues further here. Instead, we will focus on the imple-
mentation the QFT. For qubits, the QFT is a fundamental
quantum logic gate known as the Hadamard gate [54] and
is typically easy to implement. For D> 2, implementing
the QFT is more difficult, as it involves multiple logic gates
(for n-qubit systems) [55] or multilevel coherent opera-
tions (for a qudit). Earlier we mentioned that in some
atomic spin systems it should be possible to construct the
desired QFT unitary [40]. We think, however, that solid-
state systems are the most likely candidate for which it
would be useful to implement the ideas presented in this
paper. This is because, in solid-state systems, the measure-
ment strength � is typically much smaller (by an order of
magnitude or more) than the maximum control strength j�j
(e.g., in Ref. [56], 1=� is on the order of microseconds and
1=j�j is of order nanoseconds). Consequently, it is possible
to imagine applying feedback continuously through the
measurement process so that the eigenbasis of the state
and observable are QFT pairs. Alternatively, if the maxi-
mum control strength is large enough, the feedback could

be applied impulsively at discrete times, which can gives
results surprisingly close to the continuous version
(as noted in Fig. 6 and Ref. [7]). Further, the exciting
results in the field of superconducting qudits (D 2
½3; 5�), where the measurement and full unitary control
have been demonstrated for a number of systems [57,58],
lead us to speculate that our proposals could be experi-
mentally tested within the next decade.
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APPENDIX: DETAILS OF COMMUTING
MEASUREMENTS

1. The exact expression for impurity and the
approximate expression

Using the linear trajectory (see Refs. [29–31]) solution,
i.e., Eq. (5), we now explicitly calculate the form of the
D-dimensional state matrix. We take the observable X to be
the z component of the angular momentum (represented by
the operator Jz); thus D ¼ 2J þ 1. In matrix form, the Jz
operator is Jz ¼ diagðJ; J � 1; . . . ;�J þ 1;�JÞ. Using this
representation of Jz, the unnormalized solution of the state
evolution can be written as matrix elements exponentiated:

��ðR; tÞ ¼ 1

D
diag½e�4�J2te2

ffiffiffiffiffi
2�

p
JR; e�4�ðJ�1Þ2t

� e2
ffiffiffiffiffi
2�

p
ðJ�1ÞR; . . . ; e�4�ð�JÞ2te�2

ffiffiffiffiffi
2�

p
JR�: (A1)

The normalization factor can be written with a nonsym-
metric sum or a symmetric sum:

N � Tr½ ��� ¼ 1

D

X2J
m¼0

e�4�ðJ�mÞ2te2
ffiffiffiffiffi
2�

p
ðJ�mÞR (A2)

¼ 1

D

XJ
s¼�J

e�4�s2te2
ffiffiffiffiffi
2�

p
sR: (A3)

For later discussions, we also calculate the probability
distribution of the result R and choose the symmetric
sum for the normalization

dRP ðRÞ ¼ dRTr½ ��ðR; tÞ�PðRÞ (A4)

¼ dR
1

D
ffiffiffiffiffiffiffiffi
2�t

p XJ
s¼�J

e�ðR�2
ffiffiffiffiffi
2�

p
stÞ2=2t: (A5)

Here PðRÞ has been called the ostensible distribution for R
[14,30]. It is given by PðR; tÞ ¼ expð�R2=2tÞ= ffiffiffiffiffiffiffiffi

2�t
p

. By
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choosing the symmetric summation for the normalization,
one can see that the probability distribution for R contains
D peaks centered around the values / s, where s 2 ½J; J �
1; . . . ;�J þ 1;�J�. For times t � ��1, the distribution is
sharply peaked about these D values. Each of these peaks

has a FWHM of 2
ffiffiffiffiffiffiffiffiffiffi
2 ln2

p ffiffi
t

p 	 2:35
ffiffi
t

p
. This seems para-

doxical; one would expect that as time increases the dis-
tribution would get narrower, reflecting the fact that the
observer is more confident about which eigenstate they
actually have. This paradox is resolved when one realizes
that the distance between the peaks increases at a rate
greater than the increase in the width of the peaks. This
time-dependent scaling of the distance between the peaks
can be removed by changing variables to V � R=ð2 ffiffiffiffiffiffi

2�
p

tÞ.
Under this transformation, the probability distribution is

dVP ðVÞ ¼ dV
1

D

ffiffiffiffiffiffiffiffi
4�t

�

s XJ
s¼�J

e�ðV�sÞ2=ð1=4�tÞ: (A6)

Now the FWHM of each peak scales as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2=ð�tÞp 	

0:83=
ffiffiffiffiffi
�t

p
, which clearly illustrates that the probability

distribution becomes sharply peaked about the D values
for long times. In Fig. 17 the dashed curve is a plot of
Eq. (A6) for D ¼ 5 and t ¼ 4��1. All of the peaks are
clearly distinguishable with a measured FWHM 	 0:418.
This agrees with the prediction given by 0:83=

ffiffiffiffiffi
�t

p
.

Returning to the nonsymmetric sums, i.e., Eq. (A2), for
the remainder of this calculation, the purity is

Tr ½�2� ¼ 1

D2N 2

X2J
m¼0

e�8�ðJ�mÞ2te16�tðJ�mÞV: (A7)

The impurity, for a particular value of V, is given by

�ðV;tÞ¼
�
1�

P
2J
m¼0e

�8�ðJ�mÞ2te16�tðJ�mÞV

D2N 2

�
(A8)

¼
�
D2N 2�P

2J
m¼0e

�8�ðJ�mÞ2te16�tðJ�mÞV

D2N 2

�
: (A9)

The solid curve in Fig. 17 is a plot of Eq. (A9) for D ¼ 5
and t ¼ 4��1. To find the average value of impurity for a
continuous measurement of Jz, one must integrate this
function over the scaled measurement record V, weighted
by PðVÞ [8]:

hLðtÞi ¼
Z 1

�1
�ðt; VÞN ðVÞPðVÞdV: (A10)

When using this result to calculate the measurement-
induced evolution of the mean linear entropy, one should
use the kernel in Eq. (A9) rather than the kernel in Eq. (A8).
This is because it will reduce the numerical error that occurs
when subtracting from one a number very close to 1.
To calculate this integral, one must perform numerical

integration. It would be useful to have a fully analytic
expression for hLðtÞi in the D-dimensional case. Now we
will make some approximations to obtain a simple analytic
expression for Eq. (A10). We will show that the approx-
imations allow one to place a bound on the full expression.
Then we will confirm our approximations with numerical
simulations in Appendices A 2 and A 3.
The first approximation involves truncating the state

matrix to two eigenvalues and then renormalizing. We
call this the two-eigenvalue approximation. The motivation
for the truncation stems from the following observations. In
the long-time limit (t � ��1), the true probability distri-
bution,P ðVÞ ¼ N ðVÞPðVÞ, is sharply peaked inD places;
see Fig. 17. Also in this limit one finds that �ðV; tÞ,
Eq. (A9), is sharply peaked in ðD� 1Þ places; the peaks
are between peaks of P ðVÞ. Wiseman and Ralph have
pointed out that, for a qubit, this arrangement leads to
poorly purifying trajectories dominating hLðtÞi [6]. In a
qubit, the poorly purifying trajectories are those trajectories
with eigenvalues of the same magnitude [VðtÞ 	 0] in the
long-time limit. Physically, this means that the measure-
ment has not projected, or the filter has not decided, if
the state is in z ¼ � 1

2 . In qudits, there are ðD�1Þ regions
like this, where VðtÞ	r for r2½J�1

2;J�3
2;...;Jþ3

2;�Jþ1
2�.

In any of these regions only two eigenvalues contribute
significantly to the integrand. Consequently, it is reasonable
to truncate the state to the two eigenvalues in a particular
region and renormalize.
The effect of the two-eigenvalue approximation is two-

fold: it increases the purity of the state, and it makes it
possible to derive a fully analytic expression for the impu-
rity. The eigenvalues of the truncated state matrix are
ð�0; �1Þ=ð�0 þ �1Þ [59], where �0 is the largest eigenvalue
of � and �a > �b when a < b. It is easy to show that � is
majorized [54] by �2 (that is, � � �2), meaning that the
original state is more mixed than our two-eigenvalue ap-
proximation to it. From the fact that the purity is Schur
convex [60], it follows that Tr½�2� � Tr½�2

2�. This means
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FIG. 17. The dashed green curve is the probability distribution
P ðVÞ, Eq. (A6); the solid blue line is �ðV; tÞ, Eq. (A9), shown
for D ¼ 5 at t ¼ 4��1. The dotted red curve is
�ðV; tÞN ðVÞPðVÞ (multiplied by 20 so that it can be viewed
on the same scale). Also plotted are regions for the two-
eigenvalue expression for the impurity integral.
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that the impurity of the two-eigenvalue approximation
is a lower bound on the true impurity: Lð�Þ � Lð�2Þ.
In the long-time limit, it is reasonable to expect that
Lð�Þ 	 Lð�2Þ from the arguments above.

Now we calculate the impurity of the truncated state
matrix hL2ðtÞi. We split the integral in Eq. (A10) into
regions such that the same two eigenvalues are the largest
two eigenvalues for all values of V in each region. The
integration is then performed in each of these regions, and
then the regions are summed. Figure 17 illustrates how the
regions should be split forD ¼ 5. After a coordinate trans-
form (for example, in region I it would be V 0 ¼ V � 1=2),
the integral in region I becomes

R I ¼ e��t

D

ffiffiffiffiffiffiffiffi
4�t

�

s Z 1=2

�ð1=2Þ
e�4�tV 02

coshð4�tV0ÞdV
0: (A11)

After a similar transformation, the integral in region II
becomes

R II ¼ e��t

D

ffiffiffiffiffiffiffiffi
4�t

�

s Z 1

�ð1=2Þ
e�4�tV 02

coshð4�tV0ÞdV
0: (A12)

The total integral is thus

hL2ðtÞi ¼ 2RII þ ðD� 3ÞRI: (A13)

For t � ��1, the integrands become sharply peaked about
V 0 ¼ 0 with negligible contributions to the integrals from
the region outside the interval V 0 2 ½� 1

2 ;
1
2�, so that RII ’

RI. In this limit, we have

hL2ðtÞi’ðD�1Þe
��t

D

ffiffiffiffiffiffiffiffi
4�t

�

s Z 1=2

�ð1=2Þ
e�4�tV02

coshð4�V0ÞdV
0: (A14)

The final approximation is arrived at by noting that,
in the long-time limit, the distribution in the numerator is
broad compared to the distribution in the denominator
for t � ��1. Thus, we can make the approximation:

Z 1

�1
dVe�4�tV 02

= coshð ffiffiffiffiffiffi
2�

p
VÞ 	

Z 1

�1
dV= coshð ffiffiffiffiffiffi

2�
p

VÞ

¼ �=
ffiffiffiffiffiffi
2�

p
:

The final expression for the impurity is thus

hL2ðtÞiLT ¼ 2ðD� 1Þ
D

�e��tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�t�

p : (A15)

This is the analytic expression for hLðtÞi that we set out to
find, and is the key result of this section.

Because previous work has used the exact qubit results,
we write it out for future reference:

hLðtÞiqubit ¼ e��t

2

ffiffiffiffiffiffiffiffi
4�t

�

s Z 1

�1
e�4�tV 02

coshð4�tV 0ÞdV
0: (A16)

The long-time limit of this expression is

hL2ðtÞiqubit-LT ¼ �e��tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�t�

p : (A17)

As could reasonably be expected for a qudit under the two-
eigenvalue approximation (effectively a two-level system),
the resulting average impurity is proportional to the qubit
impurity with the proportionality depending on the qudit
dimensionality. In Appendix A 2, we examine the accuracy
and validity of this approximation.

2. Comparison with numerics

In Fig. 18(a), one can see that, for t * ��1, the impurity,
found by numerically evaluating Eq. (A10), is better ap-
proximated by Eq. (A13) than by Eq. (A16). Moreover, for
all times, the qubit impurity equation (A16) is a lower
bound on the true impurity. However, when calculating
the speeding-up, one is interested in times where �t � 1,
which are plotted in Fig. 18(b).
Equation (A13) is not plotted in Fig. 18(b) because on

this scale it is practically indistinguishable from hLi at long
times. (It approaches hLi from below.) But hL2ðtÞiLT, that
is, Eq. (A15), approaches hLi from above. Thus, the ap-
proximations made to obtain Eq. (A15) from Eq. (A13)
increase the impurity. This effect is easily understood once
one realizes what the approximations amount to: throwing
away parts of the integral, Eq. (A14), and overestimating
the integral by approximating expð�4�tV 02Þ ¼ 1. The next
closest curve is that of the long-time-limit expression
for a qubit, Eq. (A17), and below that is the exact result,
Eq. (A16).
From these curves, we infer the following: the long-time

expression for the two-eigenvalue approximation,
hL2ðtÞiLT, is closer to hLi than the qubit long-time limit;
hL2ðtÞiLT is approaching hLi in the same way that
hLðtÞiqubit-LT is approaching hLðtÞiqbit. This is important,
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FIG. 18. A comparison of approximations to the evolution of
hLi, forD ¼ 3. (a) hLi, i.e., Eq. (A10), is shown by green circles;
hL2i, i.e., Eq. (A16) with the integrals evaluated numerically, is
shown by magenta triangles; hLiqubit, i.e., Eq. (A10), is shown by
the solid black line. (b) hL2iLT, i.e., Eq. (A15), is shown by
magenta triangles; hLi, i.e., Eq. (A10), is shown by green circles;
hLiqubit-LT i.e., Eq. (A17), is shown by the dashed black line; and

hLiqubit, i.e., Eq. (A16), is shown by the solid black line.

Equation (A13) is not plotted in (b) because, on this scale, it
is indistinguishable from hLi.

MAXIMUM INFORMATION GAIN IN WEAK OR . . . PHYS. REV. X 1, 011012 (2011)

011012-17



as previously in the literature it has been common to use
the qubit long-time-limit expression as a lower bound
for hLi any dimension [5,8]. It is clear that, for all times
t � ��1, hL2ðtÞiLT is a better approximation to hLi than
the qubit expression. Of course, asymptotically, the ex-
pressions decay at the same rate. Therefore, there is noth-
ing in this work to suggest that the speeding-up calculated
in previous works is incorrect.

3. Stochastic simulations

We now compare the analytic solutions from Sec. III A
and the exact numerics from Appendix A 2 to stochastic
nonlinear trajectory simulations of Eq. (1). We used an
Euler integration method with the following parameters:
�t¼1�10�4��1, D¼5, ensemble size ¼ 20. The en-
semble size is small because we will plot all of the trajec-
tories so that we may gain some qualitative understanding
from them.

Figure 19(a) shows that the L of all of the trajectories is
bounded from above by 1

2 for t � ��1. Intuitively, this

effect can be understood from the two-eigenvalue approxi-
mation; in the long-time limit a poorly purifying trajectory
has two eigenvalues and thus these trajectories are bounded
from above by L ¼ 1

2 . A more rigorous explanation is

given in Appendix A 4. Figure 19(a) also plots the numeri-
cally calculated ensemble average impurity and the linear
trajectories solution, Eq. (A10).

There is some difficulty in obtaining convergence for hLi
in the stochastic simulations, even with very large ensemble
sizes. The convergence problem is due to a small number of
poorly purifying trajectories first noted for a qubit inRef. [6].
These poorly purifying trajectories are evident in Fig. 19(b)
wheremany trajectories touch the dash-dotted line atL ¼ 1

2 .

For moderate ensemble sizes, the whole region of possible
impurities is filled by the ensemble even at t ¼ 2��1. As
noted above, the major contributions to hLi are from the
regions where V ¼ r (see Fig. 17), that is, for results V that
are as far as possible from the most likely values of V [the
peaks of P ðVÞ]. Thankfully, one can use Eq. (A10) to
calculate the evolution of themean impurity. The advantages
of this method are twofold: the computation time is greatly
reduced, and it is exact to numerical precision.

Figure 19(b) shows that many trajectories also touch the
dashed line corresponding to a scaling L� expð�4�tÞ.
The reason for this clustering, and that at L ¼ 1

2 , will be

explained in Appendix A 4.

4. The distribution of impurities

In Ref. [16], Stockton, van Handel, and Mabuchi gave
reasonable but nonrigorous arguments for a bound [their
Eq. (41)] on the degree of the spreading of trajectories (that
is, on the width of the distribution of trajectories) for the
model of Eq. (1). We now use linear trajectories to rigor-
ously derive the bounds that they found. In all cases, it is
easy to obtain an analytic expression, but the exact form of

the expression depends onD. Therefore, we quote only the
long-time asymptotic scaling of the bounds.
Central to our explanation of the bounds of the distribu-

tion of trajectories is the intuition gained by examining
Fig. 20, where we have replotted portions of Fig. 17 on
two separate axes. In Fig. 20(a) P ðV; tÞ is plotted. This
probability-density plot is significant in the current analysis
because it showswhich recordsV are likely (the peaks ofP )
andwhich are unlikely (the troughs). In Fig. 20(b) the kernel
�ðV; tÞ, that is, Eq. (A9), is plotted on a log scale. The key
features of this plot are (1) the peaks at V ¼ � 3

2 ,� 1
2 ,

1
2 ,

3
2 ,

which represent very impure trajectories and correspond to
unlikely records, and (2) the troughs atV ¼ �1, 0, 1, which
coincidewith some of the purest trajectories and correspond
to minima of P ðV; tÞ. We will elaborate on other relevant
features of this graph below as each bound is explained.

(1) The upper bound.—This is obtained by substituting
VðtÞ¼r (recall that r2½J�1

2;J�3
2;...;Jþ3

2;�Jþ1
2�)

FIG. 19. Short-time impurity dynamics for D ¼ 5. We plot 20
impurity trajectories (gray) and the ensemble average of the
trajectories (dark blue). The error bars for the ensemble average,
�
mean, are smeared around the mean (light blue). Time is
measured in units of ��1. (a) Linear abscissa. The dashed
magenta and dash-dotted black lines are approximate upper
bounds on the L trajectories; see Appendix A 4 for further
explanation. The solid black line is the exact mean impurity for
the case of a qubit, i.e., Eq. (A16). The circles are hLi for D ¼ 5,
i.e., Eq. (A10). (b) The impurity is plotted on a logarithmic axis;
this helps to show the approximately exponential decrease in
impurity predicted by Eq. (A10). The approximate upper bound
on the spread of L trajectories is the dash-dotted black line. The
dashed black line corresponds to the most likely trajectories.
Below the solid magenta line, there is only 1=D of the ensemble
of trajectories at long times. These lines are explained in
Appendix A 4.
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into Eq. (A1), normalizing, and then calculating the
impurity. This procedure gives the upper bound
because these records correspond to the most im-
pure trajectories, that is, peaks in Fig. 20(b).
Because this procedure also corresponds to a
worst-case scenario of the two-eigenvalue approxi-
mation, it can also be interpreted as the filter being
unable to decided between the eigenvalues �r�ð1=2Þ
and �rþð1=2Þ. For D ¼ 5, the records of interest

correspond to V ¼ � 3
2 , � 1

2 ,
1
2 ,

3
2 (see Figs. 17 and

20). In the long-time limit, all solutions give

LLT ¼ 1
2; (A18)

which is also the bound predicted by Stockton et al.
[16]. For small times, there is some variation be-
tween the bounds given by V ¼ r ¼ � 1

2 and V ¼
r ¼ � 3

2 . This is because P ðVÞ is broad at short

times so that more eigenvalues contribute to the
impurity when, for example, V ¼ 1

2 . Conversely,

when V ¼ 3
2 , there is only one eigenvalue to the

left of this record. Accordingly, it is reasonable to
expect that at short times the bound given by V ¼
� 1

2 will produce a bound that is more impure than

the bound given by V ¼ � 3
2 . This behavior is con-

firmed in Fig. 19(a), where the dashed line is V ¼
� 3

2 and the dash-dotted line is V ¼ � 1
2 .

(2) A pseudolower bound.—When VðtÞ ¼ s for s 2
½J � 1; . . . ;�J þ 1�, the record corresponds to
the inner peaks of the probability distribution, as

depicted in Fig. 20(a) (the peaks at �J are not
included in this analysis). These peaks of P ðVÞ are
the most likely records and coincide with some of
the purest trajectories, the minima in Fig. 20(b). For
D ¼ 5, the peaks of interest are those corresponding
to V ¼ �1; 0; 1 in Fig. 20. By substituting VðtÞ ¼ s
into Eq. (A1), normalizing, and then calculating the
impurity, one obtains the lower bound without any
approximations. These solutions can be obtained for
any dimension D. By making a two-eigenvalue
approximation, one can solve the evolution of the
impurity analytically, giving

LLT � expð�4�tÞ: (A19)

Equation (A19) corresponds to the lower bound
quoted by Stockton et al. [16]. In their case, their
bound appeared to be a true lower bound as their
initial state was a coherent spin state (a collection of
D=2 spin one-half particles where D ¼ 2J þ 1with
a mean spin vector, J, aligned along the x axis in this
case). This has a small population in j � Ji, and it is
therefore unlikely in their case that jVj> jJj. For
our analysis, we see clearly that the bound is not a
true lower bound [see Fig. 19(a)], because a maxi-
mally mixed state has equal populations in all ei-
genstates. However, because these records VðtÞ ¼ j
are the most likely records, many of the trajectories
touch or cluster around this bound. This will be
further explored in point 4. below.

(3) Physically likely trajectories.—In our case there is
no lower bound, although a trajectory that purifies
infinitely fast is infinitely unlikely [61]. It is possible
to give a natural bound on the physically likely
trajectories based on the probability distribution
P ðVÞ. In the lower-bound section above, we did
not include the peaks of the probability distribution
found at V ¼ �J. It is clear from Fig. 20(b) that
there is no corresponding minimum of the kernel
�ðV; tÞ in this region. When �ðV; tÞ is evaluated at
VðtÞ ¼ �J, one finds that it gives impurities smaller
[see the solid red line in Fig. 20(b)] than those which
correspond to the inner peaks [the dashed red line in
Fig. 20(b)]. From the shaded regions in Fig. 20(a), it
is apparent that only 1=D of the probability density
is found for jVj � J. This means that, in the long-
time limit, only a proportion 1=D of the trajectories
will have purities greater than the bound we now
present. One obtains the bound using the linear
trajectory solution with VðtÞ ¼ �J and solving for
the impurity. By making a two-eigenvalue approxi-
mation, one finds that the bound scales asymptoti-
cally as

LLT � expð�4�tÞ: (A20)

The scaling in Eqs. (A19) and (A20) is precisely the
same. The difference in the bounds is only apparent
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FIG. 20. (a) Probability distribution P ðV; tÞ, Eq. (A6), for
D¼5 and t ¼ 4��1. The shaded regions of the probability dis-
tribution contain 1=D of the total probability at long times. (b) The
solid blue line is�ðV; tÞ, Eq. (A9), plottedwith a logarithmic scale
on the abscissa for D ¼ 5 and t ¼ 4��1. The dashed red line
is a projection onto the abscissa of the minima of �ðV; tÞ at V ¼
�1; 0; 1. The solid red line is a projection onto the abscissa of the
�ðV; tÞ evaluated at V¼�2; notice that this projection is purer
than the dashed line. The shaded regions in (b) depict the impurity
of records that have jVj � J. As these regions concur with the
regions in (a), they can be interposed as saying that only a
proportion 1=D of the trajectories will have impurities smaller
than those given by the projection �ð�J; tÞ.
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when the calculation is exact; see Fig. 19(b). The
dashed black line is Eq. (A19), while the thin solid
magenta line is Eq. (A20) (also see Fig. 21).
Obviously, for a qubit (D ¼ 2), the bound given
by V ¼ � 1

2 corresponds to the median of the distri-

bution of impurities, denoted by }ðL; tÞdL, at all
times, and the mode at long times.

(4) Distribution of impurities—The distribution of
impurities can be calculated analytically for D ¼ 2
[6]. However, we will change variables to the
log-impurity so that we may clearly see the
feature discussed above. The required change of
variables from Eq. (24) in Ref. [6] is ‘ � log10L ¼
log10½12 ð1� z2Þ� so that z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2� 10‘

p
. The dis-

tribution of log-impurities is thus

d‘}ð‘;tÞ

¼d‘
e��t lnð10Þcosh½arctanh2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2�10‘

p
Þ�

2
ffiffiffiffiffiffiffiffiffiffiffi
8��t

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2�10‘

p

�expð�arctanh2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2�10‘

p
Þ=4�tÞ: (A21)

In Fig. 21, this distribution is plotted at t ¼ 2��1

(the dashed red curve). The peak of this distribution
at ‘ ¼ �0:301 becomes less prominent at long
times. This is when, as Wiseman and Ralph pointed
out [6], considering the average log-impurity is a
good way to find an approximation to the mean time
to a fixed L.

The poorly purifying trajectories affect hLi, and a large
number of these trajectories cluster around the upper

bound (as seen in Fig. 19). This motivates the consideration
of another measure of mixedness which deemphasizes the
peaks of the distribution [5,6]. However, in this paper, we
will remain focused on hLi.
For D> 2, the distribution of ‘ can be numerically

calculated from the probability distribution P ðVÞ and
�ðV; tÞ as follows. First, one splits the distribution �ðV; tÞ
into regions fð�1;�jÞ; ½�j;�jþ 1

2Þ; . . . ; ½j;1Þg. These

regions are chosen because ‘ is always monotonically
increasing or decreasing in these regions; see Fig. 20(b).
This is required in order to perform the numerical interpo-
lation required by the following procedure. In each region
one discretizes the range of ‘ and then finds the values of V
that correspond to this ‘. The probability distribution P ðVÞ
is then integrated over this region to give d‘}ð‘; tÞ. This is
then summed over all regions.
In Fig. 21, the solid curve is the probability distribution

for D ¼ 5 at t ¼ 2��1; this distribution was obtained
using the above method. The upper bound and pseudo-
lower bound described in the text above are quite apparent
in distribution; they correspond to the two sharp features at
‘ ¼ �0:301 and ‘ ¼ �2:87. It is also apparent that h‘i is a
more faithful central-tendency measure than log10hLi, as
the line corresponding to h‘i is closer to the bulk of the
distribution.

5. Conclusion

We conclude our study of information extraction from
commuting measurements by summarizing the key points.
It is possible to characterize the average amount of infor-
mation extracted using the average impurity. We found a
simple expression for the average impurity, hL2ðtÞiLT �
expð��tÞ, which is valid when t � ��1. Additionally,
we found that in this asymptotic limit a portion (1�1=D)
of the trajectories would be bounded by c expð�4�tÞ �
L � 1

2 for a constant c that we can determine for a particu-

lar D. It is the existence of rare but poorly purifying
trajectories which explains both the upper bound of 1

2 and

the difference between the scaling of the mean and that of
the lower bound, c expð�4�tÞ. Indeed, other measures
of central tendency, such as the median, or the exponential
of the mean log, exhibit the same scaling as the lower
bound, � expð�4�tÞ, which is also reflected in the mean
time to attain a given purity [7].
Despite its limitations, we have used hLi, which scales as

expð��tÞ, as our measure of average information in the
main text of the paper. Here, we briefly comment on what
would change if we were to have used a more faithful
measure of central tendency such as the median. In
Sec. IVB we found that the spread of trajectories for the
QFT protocol was small for sufficiently frequent feedback.
This feature is true, in general, for measurement in an
unbiased basis [9]. The main consequence of this, for
complementary-continuous measurements, is that the
mean impurity is approximately equal to the median
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FIG. 21. The distribution of log-impurities at t ¼ 2��1. The
solid blue curve is the distribution for D ¼ 5. The dashed red
curve is for D ¼ 2, i.e., Eq. (A21), and is plotted for comparison
only. The dashed green line with the circles is log10ðhLiÞ ¼
�1:46 at t ¼ 2��1, according to Eq. (A10). The dashed blue
line with the squares is h‘i ¼ �2:41 at t ¼ 2��1. Only a
proportion 1=D of the trajectories has purity lower than (to the
right of) the dashed magenta line with the crosses (plotted at ‘ ¼
�3:1736), as explained in the main text. The two features on the
graph at ‘ ¼ �0:3010 and ‘ ¼ �2:87 correspond to the upper,
Eq. (A18), and the pseudolower, Eq. (A19), bounds on the
distribution of impurities, as described in the main text.
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impurity. Thus, we can directly compare the results ob-
tained for hLi in the main part of the paper to the scaling for
the median impurity, � expð�4�tÞ, for the commuting-
measurement protocols. The result, obviously, is a dimi-
nution in the speeding-up offered by the latter by a factor of
4: 16ðDþ1Þ�Smedian� 1

8D
2. For small systems (D¼2 or 3),

this implies a slowing-down, or at best a modest speeding-
up. But for large D, the scaling with D implies that using
feedback to construct suitable measurements in an un-
biased basis will beat the no-feedback protocol even in
terms of the median impurity or mean time.
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