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By analysis of student use of mathematics in responses to conceptual physics questions, as well as

analogous math questions stripped of physical meaning, we have previously found evidence that students

often enter upper-level physics courses lacking the assumed prerequisite mathematics knowledge and/or

the ability to apply it productively in a physics context. As an extension from this work on students’

mathematical competency at the upper level in physics, we report on a preliminary investigation of

mathematical understanding of fundamental concepts of slope and derivative among students in a third-

semester multivariable calculus course. Among the first published findings of physics education research

are investigations on students’ understanding of kinematics, with particular attention to graphical

representations of position-, velocity-, and acceleration-versus-time graphs. Underlying these physical

quantities are relationships that depend on derivatives and slopes. We report on our findings as we attempt

to isolate students’ understanding of these mathematical concepts.
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I. INTRODUCTION

Among the earliest findings in the physics education
research (PER) literature are those difficulties reported
by Trowbridge and McDermott concerning student under-
standing of kinematics [1,2]. A significant portion of this
work was done through the analysis of student ideas about
graphical representations of various kinematic processes
and was followed a few years later by the work of
McDermott et al. [3], which further analyzed student
thinking of these concepts. A decade later, Beichner
developed a multiple-choice survey to assess student
knowledge of graphical representations in the context of
kinematics called the Test of Understanding Graphs–
Kinematics (TUG-K) [4]. Beichner’s results corroborated
findings previously reported by McDermott et al., includ-
ing ‘‘slope/height/area confusion’’ in the context of
kinematics among students in the introductory physics
sequences.

The work we present here grew out of a broader study on
the learning and teaching of thermal physics, dealing with
identifying and addressing student conceptual difficulties
with the physics content. A major subtheme of our research
into students’ understanding of thermal physics involves
investigating the extent to which any mathematical con-
ceptual difficulties may affect students’ understanding of
associated physics concepts in thermodynamics [5,6]. In
this area, as with many physics areas, we expect that

specific mathematical concepts are required for a complete
understanding and appreciation of the physics. Although
several of the mathematical concepts we probed are not
taught until the third-semester of calculus, a number of
those which are essential to junior-level thermal physics
(e.g., derivatives, integrals) are also considered essential
for calculus-based introductory physics. Our research
question in this context is, to what extent can students
answer conceptual math questions that appear identical to
conceptual physics questions that are stripped of their
physical context?

II. METHODOLOGY

We sought to probe students’ ideas about a few of the
mathematical concepts that we expect them to use in the
physics classroom. This led to creating questions that
looked like physics questions but were simply stripped of
their physical context. Since these questions often involve
representations that deviate from those typically used in
the mathematics domain, we have labeled them ‘‘physics-
less physics questions’’ [7].
We have asked physics-less physics questions about

integrals and line integrals, based on findings in the context
of P-V diagrams [7,8] and about partial differentiation and
the product and chain rules based on findings related to
material properties in thermodynamics [5,9]. Our findings
suggested that these questions were challenging to a
significant population of physics students at the upper
division.
While these questions were originally developed for

physics students, we realized that an interesting compari-
son, and one that could provide insight on issues of epis-
temic framing [10], transfer [11–13], and/or disciplinary
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conventions, would be to ask these questions to students in
a third-semester calculus course, after all relevant mathe-
matics instruction. Results should capture student thinking
about many concepts that had been taught up to that point
(e.g., slope, derivative, integration, partial differentiation,
etc.). We designed a short written, free-response survey
containing only the physics-less questions. This survey has
been given to more than 150 students over multiple semes-
ters of the University of Maine’s third-semester calculus
course, Multivariate Calculus, always in the last week of
class.

The data here are not matched across questions.
Instructor participation decreased after the first semester,
which accounts for the sample size nearly halving from
semester 1 to semesters 2 and 3. Many students did not
answer every question in the survey, usually due to time
constraints, so that for any given semester the numbers are
slightly different from one question to the next. We also
assume that, on average, the students from the three differ-
ent semesters are samples drawn from the same population.

III. ASSESSMENT TASKS AND RESULTS

Given our results on other physics-less physics questions
in physics classes, we did not want to make any assump-
tions about multivariable calculus students’ understanding
of slope and (single-variable) derivatives. Therefore, we
included physics-less physics questions about concepts of
slope and derivative on our survey in order to shed addi-
tional light on student thinking regarding these concepts
without the burden of the physics context. The result was

two questions that are effectively physics-less versions of
questions from the PER literature: the Slope Ranking Task
and the Derivative Sign and Ranking Task.

A. Slope Ranking Task

In the Slope Ranking Task (Fig. 1), students are asked to
order the slope of the drawn function at four different
values of x. In other words, we wanted students to identify
the value of the instantaneous slope at each point. The
question attempts to dissuade ranking absolute values and
contains a great deal of language explaining the desired
form of the response. A correct response on the Slope
Ranking Task requires students to associate slope with
the steepness of the tangent line of the curve at the four
given points.

Difficulties in mathematics consistent with physics
difficulties among introductory students

Over three semesters, roughly 85% of students were able
to complete this task successfully (see Table I). Fewer than
half of the students with correct rankings provided any
reasoning for their ranking. Any mention of steepness of
the curve, or the slope at the curve at the points, was
considered a correct explanation. We do not presume that
this is the full extent of students who are able to explain this
response, but rather that many students simply did not
write anything down.
Although the incidence of incorrect rankings was small

(roughly 15%), a few commonalities could be determined,
though none of them accounted for more than 5% of the
total responses. The most common incorrect response was
a ranking that is consistent with the average slope between
points rather than the instantaneous slope at a point. A line
segment drawn between the values of the function from
points 0 to a would have a larger slope than a line segment
drawn between the values from c to d. (See Fig. 2 for a
sample response of this nature.)
This type of confusion—students interchanging

average and instantaneous velocity for objects that are

f is a function of the variable x, i.e. f = f(x).  Consider 
the graph of f(x) versus x shown on the right. 

Rank the value (NOT absolute value!) of the slope of 
f(x) at each of the four values of x (i.e., a, b, c, d)
from greatest to least. Keep in mind that positive 
values are greater than negative values, and that a 
larger negative value is less than a smaller negative 
value.  If two slopes are equal, state this explicitly. 
If there is not enough information to decide, state so 
explicitly.  Explain your reasoning. 

FIG. 1. Slope Ranking Task.

TABLE I. Student performance on slope ranking task, by
semester of administration.

Slope of fðxÞ at (a > d > c > b)

Semester 1 (N ¼ 70) 79%

Semester 2 (N ¼ 31) 90%

Semester 3 (N ¼ 37) 89%

FIG. 2. Student response from the Slope Ranking Task indi-
cating a ranking consistent with the average slope between
points rather than the instantaneous slope at each point.
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not experiencing constant acceleration—has been docu-
mented in the PER literature among first-semester
calculus-based physics students in the context of kinemat-
ics [4,14].

The second most common incorrect response given was
a ranking consistent with the value of the function at each
point rather than the slope at each point. This confusion has
been previously reported in the PER literature by Beichner
in the context of graphical interpretation of kinematics [4].
It is unclear to what extent the errors reported by Beichner
may occur due to student confusion with the mathematics
rather than the physical context, but it seems highly plau-
sible that some students are struggling simply with the
mathematics implicit in the question.

While only a few students (� 5%) in the population of
third-semester calculus enrollees are making this kind of
error, it seems reasonable that students exiting a first-
semester course might be displaying similar or increased
difficulty. We are currently exploring the extent of these
difficulties among introductory students to further illus-
trate these findings.

B. Derivative Sign and Ranking Task

The Derivative Sign and Ranking Task (Fig. 3) asks
students to determine the signs of and compare the magni-
tudes of the derivatives of three different functions of the
independent variable x at the same value of x, based on a
set of graphs of the three functions. This question requires
students to make a connection between a derivative and
either the slope or the change in the function, which must
then be interpreted from the graph. This task was specifi-
cally written to overlay the assessed concept in the pre-
vious question, while also identifying students who could
rank the slopes of a line but might not be able to connect
‘‘derivative’’ with the slope of the line.

The curves of the three functions were drawn to allow
common incorrect reasoning to be more clearly determi-
nable. We found that more than half of the students were
able to state that the derivatives for all three functions were
positive (see Table II). Because of the potentially mislead-

ing flatness of curve hðxÞ, some students stated the deriva-
tive at x ¼ a was zero or not determinable, which we
allowed as correct in our analysis.
A curve with a more clearly positive slope was added

in place of hðxÞ after the first administration, which
seemed to effectively eliminate this ‘‘alternative’’ correct
explanation.

1. Results of the derivative tasks

The responses of signs and ranking tasks were fairly
consistent, and most student reasoning was easily inferred
from the paired set of responses. The most common

Three functions have been graphed on the graph shown 
at right [below], and are labeled f(x), g(x), and h(x).

Consider the derivatives df

dx x=a

,

axdx

dg

=

, and 

axdx

dh

=

.

a) For each of the derivatives listed above, state 
whether the derivative is positive, negative, zero, or 
there is not enough information to decide.  Please 
explain your reasoning. 

b) Rank the absolute values of the three derivatives 
using the following possible terms: greater than or
equal. If there is not enough information to decide, 
please say so explicitly.  Explain your reasoning.

FIG. 3. Original Derivative Sign and Ranking Task. [Later
versions featured a curve with a more clearly positive slope
for hðxÞ at x ¼ a; see Fig. 5.]

TABLE II. Response distribution for Derivative Sign and Ranking Task. Percentage in the ‘‘All correct responses’’ row are the sum
of the ‘‘Preferred’’ and ‘‘Alternative correct responses’’; 2nd derivative responses are those students whose sign choice is consistent
with that of the 2nd derivative, but not necessarily identified by the student as a 2nd derivative response.

Semester 1 (N ¼ 82) Semester 2 (N ¼ 34) Semester 3 (N ¼ 39)
Original version Modified version

All correct responses 71% 62% 77%

Preferred correct response

df=dx, dg=dx, dh=dx are positive

51% 62% 69%

Alternative correct response

df=dx, dg=dx are positive; dh=dx
is zero or not enough information

20% 0% 8%

2nd derivative response 7% 18% 13%
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incorrect response (7% of all responses) on the original
version was a set of signs and a ranking consistent with that
for the values of the 2nd derivatives of these curves. A
student categorized as such would give the signs as (posi-
tive, zero, and negative) for the derivatives at fðaÞ, gðaÞ,
and hðaÞ, respectively. This is consistent with the rate of
change of the slope of the function at x ¼ a rather than the
rate of change of the function itself. Most responses
in this category had very little, if any, accompanying
reasoning. One student did seem to correct himself in the
middle of his response, using ‘‘curvature’’ to justify his
signs (see Fig. 4), and then switching to reasoning about
the function(s) ‘‘increasing’’ to decide about the derivative.

We were concerned that the question wording may have
been unclear. The first version stated, ‘‘For each of the
derivatives listed above, state whether the derivative is
positive, negative, zero or there is not enough information
to decide.’’ In response, we altered the language to indicate
more clearly that we sought the signs of the derivatives of
the functions and gave the expressions for the derivatives in
the response area for emphasis (Fig. 5). However, the
semester 2 students gave 2nd derivative responses at the
much higher rate of 18% (the rate in semester 3 was 13%)
with the modified version (see Table II), implying that the
question wording and presentation were not the issue, and
that this is still a significant difficulty for students even
after multivariable calculus.

2. 2nd derivative responses are not likely to be
an issue of reading the slope of the curve

We can cast additional light on the thinking of those
students that gave responses consistent with 2nd derivative
reasoning by examining their responses to the Slope
Ranking Task.
Nearly all (95%) of those students who gave a 2nd

derivative response on the derivative tasks gave a correct
ranking on the Slope Ranking Task. This suggests that
these students are able to make sense of the slope of a
curved surface, but do not match the idea of derivative with
the instantaneous slope of the curve. One possible expla-
nation (among many) would be that a student might carry
two notions of derivative: that of the rate of change of the
function and that of the slope of the function. Students may
use one notion or the other as they see fit in a given context,
but may, at times, use them simultaneously. Thus, a ques-
tion about derivative may cause them to think of the
‘‘change in the slope’’ and give a 2nd derivative response.
Additional research would be necessary to fully reveal this
phenomenon.
Analysis of the responses to the derivative ranking por-

tion of the task [see part (b) in Fig. 5] revealed only one
noteworthy result. Most students who gave a correct sign
for the derivatives in part (a) correctly ranked the values of
the derivatives in part (b). Among those responses that had
all positive in part (a), there were some instances (< 5%)

FIG. 4. Example of student response to derivative sign task that started to use 2nd derivative reasoning—note the ‘‘positive
curvature’’ in the response—but switched to the correct reasoning.

FIG. 5. Modified Derivative Sign and Ranking Task, to have more explicit wording and a greater slope for hðxÞ at x ¼ a.
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of student rankings that were consistent with a ranking of
the areas under the curves of the functions, with at least
two instances of students explicitly justifying their answers
as ‘‘areas under the curve.’’ If this question were given in a
kinematics context, researchers would likely identify
student confusion with the associated kinematics quanti-
ties; instead, this physics-less physics question points to
at least a few students who use notions about area to
answer questions about derivatives independent of physical
context.

IV. CONCLUSIONS

Preliminary results from questions about slopes and
derivatives administered in a multivariable calculus course
suggest that students have difficulties conceptualizing
mathematics tasks that are common to the ways in which
we ask questions in physics courses. There is a growing
body of work on transfer [11–13], with findings that stu-
dents have difficulties transferring mathematical ideas
across disciplines. The type of mathematical tasks we
want our students to do in a physics class may simply be

foreign to their mathematical ways of thinking. Some of
their demonstrated difficulties seem to have origins in the
understanding of the math concepts themselves. These
results are consistent with results from questions about
integrals in thermodynamics contexts [8]. This aspect of
our results will be explored further in future research. We
are continuing to collect and analyze data from written
questions with an eye toward expanding the scope of our
investigation to additional populations at the introductory
level, both in physics and in mathematics.
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