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We use visualization to find patterns in educational data. We represent student scores from high-stakes

exams as flow vectors in fluids, define two types of streamlines and trajectories, and show that differences

between streamlines and trajectories are due to regression to the mean. This issue is significant because it

determines how quickly changes in long-term educational patterns can be deduced from score changes in

consecutive years. To illustrate our methods, we examine a policy change in Texas that put increased

pressure on public school students to pass several exams, and gave them resources to accomplish it. The

response to this policy is evident from the changes in trajectories, although previous evaluation had

concluded the program was ineffective. We pose the question of whether increased expenditure on

education should be expected to correspond to improved student scores, or whether it should correspond to

an increased rate of improvement in student scores.
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I. INTRODUCTION

Students have always taken tests in school, but since
2002 the United States has stored unprecedented numbers
of test results and made them available for evaluation of
schools and for research. One result is a huge quantity of
data describing students over time. Our aim in this article is
to present new ways to analyze these data.

Our methods draw heavily upon traditions of analysis
from statistical and fluid mechanics. This is the reason that
we have submitted the work to a journal concerned with
physics education research. Our topic does not directly
concern the improvement of the teaching of physics, but
it does involve the improvement of education on a broad
scale, and the technical details may be most accessible to
an audience with a background in physics.

We have four motivations to develop new methods of
analysis for longitudinal student data.

Patterns.—A general advantage of visualization in sci-
ence is that it enables researchers to detect patterns that
might otherwise go unobserved. Visualization can serve
the same function in education research as well.

Accessibility.—Because of our emphasis upon visual
representations, the primary results of our analysis will
be more transparent and accessible to the broad public
than methods whose end product is a set of coefficients
in a linear model.

Long observation times.—Our approach makes it natural
to ask and answer questions about educational progress

over long periods of time, rather than mainly focusing on
changes in the course of a single year.
Causality.—We are able to inquire into the causal effects

of educational interventions in new ways.
These claims are unlikely to be persuasive in the

abstract. For this reason we will present an example using
data from Texas where our methods enabled us to detect
the influence of a large-scale educational initiative that
previously had been thought to have failed. Similar meth-
ods could be used to follow students within colleges, or to
track them between secondary schools and colleges,
although this has not yet been done.
The structure of this article is as follows. In Sec. II we

provide a brief overview of high-stakes testing and some
reasons that traditional methods for establishing causality
in education should be regarded with caution. In Sec. III
we provide conceptual definitions of snapshot and cohort
velocity plots, snapshot and cohort streamlines, and trajec-
tories. These are supplemented by mathematically formal
definitions of the same plots in Appendix A. In Appendix B
we present a statistical model that allows us to compute
the difference between cohort streamlines and trajectories,
and we show explicitly how the difference is related to
the phenomenon of regression to the mean. In Sec. IV we
describe the data set we have employed. In Sec. V we
present visual evidence for a large and abrupt change in
the flow properties of Texas students in mathematics. In
Sec. VI we make the case that a particular statewide initia-
tive was responsible for the change in the student flow
pattern. In Sec. VII we pose final questions and conclude.

II. HIGH-STAKES TESTS AND CAUSALITY

School reform in the United States is a quantitative
subject. The results of high-stakes tests are used to judge
not just the students themselves but also teachers, schools,
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and districts. Schools have to reach numerical benchmarks
each year. Steadily increasing fractions of disaggregated
student populations must reach benchmark scores, or else
students must make adequate yearly progress towards the
benchmarks [1]. Schools and districts obtain labels such as
acceptable and unacceptable in connection with these tar-
gets. The labels are significant both because they commu-
nicate to the public how well schools are doing and because
schools that fail to meet standards 5 years in a row can be
reorganized, meaning that the personnel can be replaced.
Usher [2] estimates that 48% of public schools failed to
meet adequate yearly progress standards in 2011; thus, half
of the nation’s public schools had started down the path to
dismissing their teachers and administrators.

These pressures coincide with a flood of reform efforts:
new technologies, new forms of school organization, new
routes for teacher certification, new evaluation and com-
pensation policies for teachers, and new policies at the
state and national level [3,4]. It is natural to ask which, if
any, of these changes have had positive effects. These
inquiries lead to further questions about how one can
establish causal effects in education.

Several reports have laid out guidelines for establishing
causation. The National Research Council produced
reports in 2002 [5] and 2005 [6], and the American
Educational Research Association produced a White
Paper in 2007 [7] specifically designed to provide guidance
to the National Science Foundation on educational
research. All of these reports take the position that cau-
sality is best established through carefully controlled
experiments involving random assignment or, upon failing
that ideal, through designs such as regression discontinuity.
They also discuss practices for analyzing large educational
data sets, almost exclusively using linear modeling.

The visualization techniques in this article were partly
stimulated by worries that conventional quantitative meth-
ods in education research are more limited than many
proponents recognize, that they are prone to certain sorts
of errors that are rarely acknowledged, and that under-
standing educational data should accommodate the crea-
tion of specific alternatives with complementary strengths
and defects.

We briefly relate some of our concerns.
(1) The Institute for Education Sciences has been pro-

moting random controlled trials for a decade, and
the What Works Clearinghouse has carried out
exhaustive searches for articles satisfying its meth-
odological requirements. Searching theWhat Works
Clearinghouse forMathematicsAchievement (9–12)
in April 2012, one finds seven curricula [8]. In five
cases the extent of evidence is small [9–13]. In two
cases the extent of evidence is medium to large but
the improvement index is 0 or slightly negative
[14,15]. Thus adhering to the greatest methodologi-
cal rigor for studying mathematics achievement in

high school only restricts attention to a small number
of suggested curricula, and only a few of those are
slightly preferable to others.

(2) Researchers do recognize that the study of one
population does not trivially generalize to another
(Ref. [7], p 29). A random controlled trial placing
low-income students from Manhattan in charter
schools does not necessarily provide guidance on
how charter schools will serve low-income students
in rural Iowa. Nevertheless, studies involving ran-
dom assignment to treatment are often uncritically
claimed to establish causality. For example, see the
discussion of case I, pp. 59–69 in Ref. [7] that
investigates whether there are ‘‘teacher effects on
student achievement.’’

(3) Analyses of large data sets tend to focus on very
small numbers of outcome variables analyzed with
linear methods such as hierarchical linear modeling.
The results of the modeling are expressed as tables
of coefficients and have to be interpreted by experts.
This makes it possible for technical problems to
creep in. For example, models sometimes compen-
sate for large effects with linear terms, even if a
simple scatter plot shows them to be highly non-
linear. Figure 1 provides an example showing that
score changes of students in Texas depend on prior
year scores, but in a large and highly nonlinear
fashion. Yet, controlling for prior year score with a
linear term appears to be common; for example, see

FIG. 1 (color online). Average score changes of eighth-grade
Texas students on Texas’ high-stakes mathematics exam
(TAKS), as a function of score in eighth grade, and as a function
of student economic status measured by eligibility for free or
reduced lunch. Average score changes across the whole state are
treated as independent random events and used to construct
standard error bars. That is, using data from 2003 to 2010, there
are seven independent measurements of student score changes.
The point to note here is that controlling for prior year score with
a single straight line would be a technical error, yet some
statistical models of student performance do just that.
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the formula for the New York City value-added
model [16].

Because of these concerns, we will explore alternatives.
Here we develop visual representations of student scores

using a method inspired by fluid mechanics [17]. In fluid
mechanics one must keep track of large numbers of vari-
ables in space and time. Fluid particles undergo compli-
cated motions that involve a mixture of deterministic and
diffusive effects. The motion of students through time,
grades, and scores lends itself to a similar representation.
The role of visualization in science is to make it possible to
examine large quantities of data and find patterns that may
or may not be expected. The role we assign to visualization
in education is similar.

III. DEFINITIONS

A. Conceptual descriptions

The public supports education so that U.S. citizens can
graduate high school with a certain level of skills and knowl-
edge. Fifth-grade students no longer leave school for the
workplace. The success of educational interventions eventu-
ally should be tested through their effect on the final outcome.

The country gathers educational data at time intervals on
the order of a year. In some cases (e.g., the Texas mathe-
matics exams we will discuss later in detail), the scores
form a time series. In other cases (e.g., the end-of-course
exam in a particular science), a single score is all one has to
indicate student knowledge. Nevertheless, exam scores
always reflect to some extent the growth in student knowl-
edge and skill over time.

For the cases where exam scores constitute a detailed
time series, we have developed a representation in flow
plots. A flow plot is like a weather map for student scores.
It provides an immediate overview of how student scores
develop from grade to grade for a variety of starting points.

B. Snapshot flow plots

A snapshot flow plot is constructed from data obtained
over two consecutive years. As an example of how it
works, take a group of students and organize them into
bins or cells that have two indices. One index describes the
student’s grade level in a given year. The other index
describes the student’s score level in that same year. We
typically index score levels by the fraction of maximum
possible score that the student obtains in that year; we will
discuss later the implications of focusing on raw scores in
such a simple fashion. Next, for each cell, compute the
average score change for all students who also took the
mathematics exam the next year. Plot an arrow in the cell
whose area is proportional to the number of students and
whose direction points to the new average score. In this
particular representation, every cell describes a different
collection of students from every other cell.

Figure 2 displays examples of snapshot flow plots. All
the White students from Texas have now been placed in
one of the 72 bins of Fig. 2(a) according to their grade level
and mathematics score level in the spring of 2009; for
example, one of the bins contains all White fifth graders
who obtained a score of between 70% and 79% on a
mathematics exam. Figure 2(b) provides another example
of a snapshot flow plot, but for Hispanic students in the
state of Texas.
We provide a few observations about Fig. 2 that apply

generally. We draw two lines in each plot that correspond
to panel recommendation and commended scores, respec-
tively. We will discuss the definitions of these two terms in
further detail in Sec. IV, but essentially 90%–100% is a
commended score, and the panel recommendation line
indicates that 70%þ is a passing score in elementary
school and 60%þ is a passing score in middle and high
school. We typically present subsets of students in such

FIG. 2. (a) Example of a snapshot flow plot computed from
statewide mathematics scores on the TAKS (see Sec. IV), show-
ing average score changes of White students from spring 2009 to
spring 2010. The area of each arrow is proportional to the
number of students. (b) Same plot but for Hispanic students.
Lines indicate commended and panel recommendation score
cutoffs.
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plots; in this case we examine White and Hispanic stu-
dents. Figure 2 shows the relative performance of two
groups of students on a common assessment across all
grades and levels of performance [18]. One feature that
stands out is the large downward motion of Hispanic
students when moving from eighth to ninth grade. One
sees that White students similarly moved downward, but
there were proportionally far fewer of them. In particular,
we single out the cell corresponding to eighth graders
scoring between 70% and 79%. The magnitude of the score
drop in this cell for Hispanic students is 12.5%, while
for White students it is 9.0%; the difference is statisti-
cally significant with approximately 22 600 students
(p < 10�345). Thus the plot suggests that Hispanic stu-
dents are particularly impacted by the transition from
middle to high school, and those with scores between
60% and 90% are particularly at risk. We use this example
to illustrate a natural way to interpret flow plots. When a
feature stands out to the eye, one can turn to other sources
of information and other tools to investigate it further. This
is the normal function of scientific visualization. Its goal is
not to test hypotheses, but to suggest them.

C. Cohort flow plots

A cohort flow plot is constructed similarly, but with one
difference. The first column contains all third graders
grouped according to their score in a given year. The
second column contains all fourth graders grouped accord-
ing to their score in the next year. The third column
contains all fifth graders grouped according to the score
in the year after that, and so on. If all students advanced by
one grade each year and students never entered or left the
testing system after third grade, then each column would
contain the same cohort of students as every other column.
However, the number of students in each class is not the
same from column to column, due to students entering or
leaving the school system, students who are not promoted
to the next grade, or students who are not tested for some
other reason. Thus, unlike most physical systems, particle
number in this flow is not conserved. The space of grades
and scores has been divided into cells and the plot com-
putes the rate of score change in each cell [this description
is like an Eulerian description of a fluid (Ref. [17], p. 3)].
Figure 3 is an example of this kind of plot.

In these examples, the lowest scoring bin has been omit-
ted. Our analysis has shown that very few students score less
than 10%, but there is an overwhelming number of tests that
are marked zero. These zeros do not represent a lack of
knowledge; a student may have been absent and missed the
test, or the test may have been exempt from scoring [19].
Therefore, we have suppressed these bins in our plots.

D. Streamline plots

A streamline plot can be constructed from either a snap-
shot flow plot or a cohort flow plot. From a given starting

grade, we draw a line that follows the direction of the flow
plot arrows. We vary the thickness of the line to represent
the number of students present at any given time. This is
almost exactly like the definition of a streamline in fluid
mechanics, but it is important to remember that the arrows
of a snapshot flow plot correspond to several different
cohorts of students. Consequently, they are only an estimate
of the likely path that students take through our score-grade
continuum. Figure 4 shows an example of streamlines.

E. Trajectory plots

Our final flow plot is a trajectory plot. In this plot,
students are divided into score bins in a starting grade
such as grade three. These collections of students are fixed
and do not change; we display the average mathematics
score of each group for all subsequent years up through
grade 11 [this representation is like a Lagrangian descrip-
tion of a fluid (Ref. [17], p. 5)]. Figure 7 shows an example
of trajectory plots.

FIG. 3. (a) Example of a cohort flow plot, again from TAKS
mathematics scores, showing average annual score changes of
White students in the class of 2012. Lines indicate commended
and panel recommendation score cutoffs. (b) Same plot, but for
Hispanic students.

ANTHONY J. BENDINELLI AND M. MARDER PHYS. REV. ST PHYS. EDUC. RES. 8, 020119 (2012)

020119-4



Thinking about the aims of education, trajectory plots
are the ones of fundamental interest. They provide the
record of how students starting at any particular level of
performance in some starting grade turn out by the end of
schooling. The reason to develop other sorts of plots is that
the trajectories take so long to obtain. Following students
all the way from third to 11th grades takes 9 years. Seeing
whether whole trajectories change will take even longer.
This is a very long time scale to wait to understand the
effectiveness of educational interventions.

Snapshot plots require only 2 years of data. They pro-
vide a vector field one can sum up across grades to obtain
an estimate of trajectories; that is, they provide an estimate
of where students will end up by the end of schooling. This
estimate arrives quickly enough to provide timely infor-
mation for policy decisions. But is the estimate reliable?
What are some of the technical problems that can under-
mine the correspondence between snapshot streamlines
and trajectories? We begin to address these questions in
Appendixes A and B.

IV. STUDY SETTING

A. Features of specific example

Our hope is that our methods of analysis will
prove useful to the education community, and we there-
fore devote the remainder of this article to a specific
example. We analyze an educational reform with the
following characteristics.

(1) The reform was a linked set of policies and pre-
scriptions in Texas involving almost all students. It
would have been possible at its inception to assign
students randomly to treatment groups, but this was
not done.

(2) The study population is all public school students in
Texas over the course of 8 years. Texas has nearly
10% of the population of the United States and has
large populations in urban, rural, and suburban com-
munities. Ethnic and racial ‘‘minorities’’ make up a
majority of the school-age population. Thus one can
plausibly interpolate from the results to a wide range
of communities and student groups in the United
States.

(3) Positive effects of the reform were not mentioned in
evaluation reports, and it was canceled.

We were initially unaware of the existence of this educa-
tional reform and learned of it while trying to understand
the change in flow visible in Fig. 5. Using our visualization
methods, we are now able to ask many worthwhile ques-
tions about what the intervention did and did not accom-
plish. However, before coming to the intervention, we need
to discuss the exams we were studying and the way they
were constructed.

B. Texas Assessment of Knowledge and
Skills (TAKS) examinations

The Elementary and Secondary Education Act of 2002
(No Child Left Behind, or NCLB) requires that each state
adopt challenging academic standards and hold schools
accountable to meeting these standards [1]. NCLB requires
schools to show adequate yearly progress for all public
elementary schools and secondary schools, with separate
annual objectives for economically disadvantaged stu-
dents, students from major ethnic groups, students with
disabilities, and students with limited English proficiency.
NCLB also requires that within 12 years of the 2001–2002
school year, 95% of all students in each of these groups
should meet or exceed each state’s definition of proficiency
in the form of a standardized test. In other words, by the
2013–2014 school year, all students (within 5%) must be
able to pass each state’s version of its standardized test.
In Texas, the standardized assessment used since 2003 is

the Texas Assessment of Knowledge and Skills (TAKS).
TAKS evaluates students between third and 11th grade in
mathematics, reading, writing, science, and social studies,
although not every subject is tested in each year. Only
mathematics and reading are tested at each grade level,
and reading is combined with writing in 10th and 11th
grade. We use the mathematics portion of TAKS to con-
struct a longitudinal record of the progress of students over
the course of several years. Using the methods described in
Sec. III, we can then use this longitudinal profile to calcu-
late score distribution and snapshot flows, cohort flows,

FIG. 4 (color online). These streamlines were obtained from
snapshot flow plots similar to those in Fig. 2 using TAKS
mathematics scores in 2005 and 2006 for low-income and
well-off children, as determined by eligibility for free and
reduced lunch. We disaggregate by poverty here rather than by
race to illustrate the variety of comparisons that are possible. The
comparisons seem rather extreme. By 11th grade, low-income
students who started in the 90th score percentile at third grade
are below well-off students who started at the 60th score per-
centile at third grade. We will show later in this article that this
type of plot exaggerates differences between groups and that real
trajectories do not diverge as much.
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streamlines, and trajectories (careful definitions of the
quantities appearing in the plots are contained in
Appendix A).
We applied for access to the TAKS data set from the

Texas Educational Research Center and used the data to
construct multirank tensors containing information about
Texas students from which all plots could be constructed.
The dimensions of the tensors disaggregate the students
into various ethnic and socioeconomic groups, as well as
grades, years, and score bins. The complete TAKS data set
through 2010 consists of over 29� 106 individual exami-
nations in its raw form. Each student is identified in the
data set with a unique, anonymous number. Our PYTHON

scripts condense these files into a more manageable form
where each row of the data set corresponds to a single
student’s progress over the time period of 2003–2010. In
the case of retests, we look for the student’s highest score
for each subject. There are defects that our scripts attempt
to reconcile, such as when math scores for a given student
are in one row but the reading scores are located in another
row. After reconciling as many defects as possible and
combining retests with the main tests, we end up with
approximately 23� 106 individual examinations corre-
sponding to 6� 106 unique students.
Some of the data set’s defects cannot be remedied.

For the first year of the test in 2003, scores of third graders
were very incomplete and therefore we cannot use them.
There are over 27 000 students with invalid records that
have the same unique identifying number. Fortunately, the
number of entries with invalid student identifiers is very
small in comparison with the 23� 106 valid entries.
Another problem with the data arises from the termination
of the State-Developed Alternative Assessment II
(SDAA II) in 2008. Prior to 2008, students taking the
SDAA II were exempt from having their tests scored.
When the SDAA II was discontinued, approximately
60 000 students had their scores counted for the first
time. This ‘‘source’’ of students is again relatively minor
compared to the millions of students present in the data set,
but it does provide a visible source of students appearing
seemingly from nowhere between 2007 and 2008.

C. Raw scores versus scaled scores

We now address a number of questions that have to do
with the legitimacy of making comparisons between scores
in consecutive years and our use of raw rather than scaled
scores.
We assume that within a single subject and at a single

grade level, TAKS is equatable over time. That is, exams in
different years contain problems of equivalent nature and
difficulty. This assumption can be challenged. In particular,
some assert that the methods from item-response theory
used to select exam problems (see Appendix B) preserve
statistical features of student responses over time rather
than the inherent difficulty and nature of the problems [20].

FIG. 5. The flow pattern of Texas students changed with the
class of 2012. We display a series of cohort flow plots. Each
arrow indicates the average one-year change in mathematics
scores of students with the same starting score. The size of
each arrow is proportional to the number of students. Upper and
lower lines indicate commended and panel recommendation
scores, respectively. Students eligible for free and reduced lunch
(low-income students) depicted only; well-off students showed
similar improvement.
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A primary use to which we put flow plots is to compare
subgroups of students. These comparisons remain valid
even if the exam is not equatable from one year to the
next. However, in what follows wewill examine changes in
flow patterns over time, and these changes are most per-
suasive if the exam is equatable.

Two separate issues must be considered in the compari-
son of exams. One is whether the exams at any given grade
are equatable over time. The second is whether they are
vertically scaled. At least prior to 2009, TAKS was not
vertically scaled. For example, if a student got a lower
score on sixth grade mathematics than on fifth grade
mathematics, it did not automatically mean that the student
did not make progress over the year. Exams from one grade
level to another were not directly comparable.

The Texas Education Agency also advises against com-
paring raw score on exams within one grade level from one
year to another. The agency provides a scaled score for this
purpose. Nevertheless, we present raw score percentages in
our plots. The reason for this decision is that the scaled
score leads to a great loss of transparency, and it is not even
available for every year.

To address concern over this issue, we summarize the
procedures used to equate the exam from one year to
another. More details can be found in Chap. 18 of
Ref. [21]. The scale for the mathematics exam at each
grade level was set during the construction of the original
exam when large numbers of items were field tested, and
the difficulty of each item was ascertained. Items were also
examined for content validity and grade appropriateness by
a variety of experts, and passing scores for each grade were
determined by a panel. Each subsequent examination con-
tained a mixture of questions: some determined the stu-
dent’s score, while others were new and were undergoing
field testing. From the field tests, the difficulty of each new
item was ascertained. This made it possible to construct an
exam of comparable difficulty each year. That is, exam
items were chosen so as to equate the exams from year to
year. Each TAKS mathematics exam was subject to an
additional equating procedure after it was given that
resulted in the final scaled score. The precise algorithm
used in this process is proprietary. The net result of the
postequating procedure is a correspondence between raw
and scaled scores for each examination. If the preequating
process is successful, then the conversion between raw and
scaled scores should be stable over time.

We examined every conversion table from raw to scaled
score for every grade available from 2003 to 2010, and
observed that the raw score corresponding to panel recom-
mendation varies by at most two raw score points from year
to year. In the few cases where the panel recommendation
score differs from the most typical value by more than
5%, the tests are alternate versions of the TAKS test (e.g.,
online tests, retests administered in months other than
April). We found one instance, ninth grade mathematics

in 2010, where the panel recommendation score was three
points lower than in prior administrations. This is the most
problematic case for our use of raw scores, and plays a role
in the score drops of high-performing ninth graders in
Fig. 9.

V. CHANGE IN FLOW

While examining flow plots for individual cohorts of
students (Fig. 5), we were surprised to see that the patterns
for the Texas graduating classes of 2012 and 2013 differed
dramatically from the flow pattern for the class of 2011 and
before. Starting in the 2004–2005 school year, mathematics
scores of fifth graders leaped up to such an extent that the
percentage of low-income students failing the mathematics
exam dropped from 36% the year before to 28%. A second
leap is visible when these students arrive in eighth grade.
The graduating class of 2013 shows an essentially identical
pattern of improvement relative to the class of 2011.
We averaged together the available average score

changes for students from the classes of 2005 through
2011 and compared it to the average score changes for
students from the classes of 2012 through 2016. From these
averages we integrate over time to compute streamlines, as
shown in Fig. 6. A strong difference is apparent after the
class of 2012 passes through school. However, we were
skeptical of potential inaccuracies resulting from the pro-
cess of integration, and found no completely satisfactory
way to allocate numbers of students to particular stream-
lines as time progressed.
Therefore, we turned to trajectories, as shown in Fig. 7.

We follow particular cohorts over time, starting in fourth
grade, and can therefore speak unambiguously about their
mean scores and the numbers of students present on the
trajectory at any given time. Comparison of Figs. 6 and 7
shows that the two computations are similar in overall
features but rather different in detail. The trajectories are
clearly superior to the streamlines, since they literally
report the mean score over time of a particular cohort of
students. Streamlines computed from flow snapshots have
the advantage that they can be computed from just 2 years’
worth of data, but unfortunately they perform only a quali-
tative job of providing trajectories. The streamlines are
compressed and regress towards the mean, as explained
by Eq. (B11).
We refer to students scoring 60% or less in fourth grade

as low performing. One sees that after their scores rose in
fifth grade, low-performing students held on to score gains
in sixth and seventh grades, rising again in eighth grade.
This does not mean that their scores remained constant; the
mean scores dropped in sixth and seventh grade for all
groups of students shown in the plot. Rather, it means that
in sixth and seventh grades, low-performing students from
the class of 2012 onward achieved score gains relative to
the class of 2011. The gains were initially around 10%,
then dropped, but not to zero, and stabilized at 2%–4%. To

VISUALIZATION OF LONGITUDINAL STUDENT DATA PHYS. REV. ST PHYS. EDUC. RES. 8, 020119 (2012)

020119-7



display the magnitudes of the gains sustained by students,
we display them explicitly in Fig. 9, which incorporates
data from all available cohorts.

Even more striking is a dramatic shift in the numbers of
students that populate different trajectories. This shift had
already occurred by the time students reached fourth grade,
presumably due to interventions in earlier grades for which
we do not have data. We focus on the topmost trajectory in
Fig. 7. This trajectory can be identified as the one for which
fourth graders had a raw score between 90% and 100%.
The students do not continue to score over 90% as time
goes forward; their mean score rises and falls over the
years, eventually ending up near 80% in 10th grade for
the low-income students. However, what is noteworthy is
that in moving from the class of 2011 to the class of 2012,
the number of students in this upper trajectory increased by
over 50% without the shape of the trajectory changing.
There are both red and blue lines running along the top of
the figure, but they track so precisely that the red obscures
the blue. In particular, for the class of 2011, 22 662 low-
income students in fourth grade were in the highest trajec-
tory, and of those 19 300 reached 10th grade. For the class
of 2012, 36 403 students scored between 90% and 100% in
the fourth grade, and of those 30 600 students reached 10th

grade. This increase from one cohort to the next is not
explained by population growth, which was at the level of
around 2% per year for Texas [22]. In Fig. 8 we show the
distributions of low-income and better-off students at
fourth and 10th grades explicitly.

VI. STUDENT SUCCESS INITIATIVE

What produced these results? At any given time Texas is
funding many education initiatives. However, the score
gains we observe have the fingerprints of a particular
policy on them: the Accelerated Reading Instruction/
Accelerated Math Instruction (ARI/AMI) component of
the Texas Student Success Initiative (SSI). In 1999–2000
ARI was implemented for struggling reading students, and
in 2003–04 AMI was implemented for students struggling
with mathematics. ARI/AMI allowed all students who
failed either the TAKS reading or the TAKS mathematics
exams to receive ‘‘accelerated instruction,’’ which is to say
intensive tutoring that continued into the summer for some
students [23]. When the class of 2012 reached third, fifth,
and eighth grades, they had to pass the mathematics and

FIG. 7 (color online). Trajectories computed by tracing explic-
itly the average scores over time of cohorts of fourth graders
grouped by their fourth-grade mathematics scores, before and
after the introduction of SSI (ARI/AMI). Comparison with Fig. 6
shows that following cohorts of students in time explicitly rather
than integrating up year-to-year changes produces trajectories
that compress less towards the mean.

FIG. 6 (color online). Streamlines computed by averaging over
the data from the classes of 2005 through 2011, and from the
classes of 2012 through 2016, in the cohort flow plots of Fig. 5.
The thickness of the streamlines is proportional to the number of
students.
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reading exams or they would not be allowed to advance to
the next grade level. However, students who failed these
TAKS exams in these years could take them a second and a
third time.

For the class of 2012 the TAKS mathematics exam at
third, fifth, and eighth grades not only could label a school
as low performing, it also had high stakes for students.
Students were given multiple chances to learn the material,
and extra instruction to do so. It appears to have worked.
The evidence lies not so much in the fact that the number of
students failing at fifth and eighth grade dropped, but that
score gains were retained, the number of low-income
students passing through school in the highest performance
trajectory nearly doubled in the space of a year, and these
results were sustained without any drop in scores. The only
signs of negative results come from high-scoring students
at ninth grade (maybe the result of a difficult exam in
2010), but these losses did not persist to 10th grade and
can be balanced against the large increase in the numbers
of students in the higher trajectories.

How large were the gains? Score gains are frequently
discussed in terms of standard deviations; the standard
deviations of scores on Texas mathematics exams range

from 15% to 20% of the raw score. Annual student gains
that could supposedly be obtained by replacing teachers in
the 25th percentile of the quality distribution by teachers in
the 75th percentile are 0.2 standard deviations [24], or
around a 3%–4% score increase on the exams. Our data
show that low-performing students across Texas in the
class of 2012 on average made gains of this order in fifth
grade and afterwards.
In searching for alternative explanations, wewondered if

low-scoring students were being pushed out of the data set,
perhaps moving to take the State-Developed Alternative
Assessment II, which is allowed for special education
students. We did not find evidence that low-scoring stu-
dents vanished from the TAKS data set more frequently for
the class of 2012 and after than for the prior cohorts. We
also could find no reason to believe that Texas’ mathemat-
ics exams became systematically easier precisely so as to

FIG. 9 (color online). Low-performing low-income students
saw gains in all grades. Standard error bars follow from averag-
ing data over several cohorts. For before ARI/AMI, all data are
employed. For after ARI/AMI, all cohorts graduating in 2012 and
after are used. However, for students in eighth grade and below,
2010 data are excluded since funding for the program dropped
by a factor of 3 in 2009–2010. Data for students above eighth
grade are retained on the grounds that they received the boost
ARI/AMI provided, and it is reasonable to see if they retain
momentum or not. The data in ninth grade, which include a
contribution from 2010 when funding dropped, show a strong
decrease.

FIG. 8 (color online). Distribution of student scores for the two
cohorts before and after ARI/AMI. The distributions are shown
for fourth and 10th grades. Note that the number of low-scoring
students drops when moving from the first cohort to the second,
while the number of high-scoring students increases. This trend
appears for both better-off and low-income students, and it
persists for both fourth grade and six years later in 10th grade.
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correspond to the shifting flow plots of the class of 2012
and beyond.

Although the ARI/AMI was evaluated every two years,
the observations we present here appear to be new. The
Texas Education Agency evaluated the initiative by look-
ing for score gains between successive cohorts of students
in the same grade after the policy was in effect [25]. The
policy had produced a new steady state, but steady states do
not change over time, and the policy was judged a failure
[26]. Funding was moved elsewhere in 2009–2010 [26],
and the changes in funding over time are shown in Table I.
It should be noted that despite the reduction in funding,
schools are still required to identify struggling students and
provide them with additional instruction.

VII. CONCLUSIONS

In closing, we emphasize two of our main points.
� Streamlines, even cohort streamlines that require

many years of data to construct, are quite different
from trajectories. Streamlines (Fig. 6) strongly over-
state the divergence in performance of different
groups and give a false impression that students at
many different starting points will regress to the
mean. For example, the top streamline for better-off
kids drops nearly 20 points from fourth to 10th grade,
while the top trajectory (Fig. 7, which due to details
of construction starts in a slightly different place)
drops only around 5 points over the same span of
grades. The difference between the top streamline for
better-off and low-income kids by 10th grade is
around 12 points; the corresponding difference for
trajectories is 6 points. Putting it another way, trying
to deduce long-term results (in the simple way we
first tried) from year-to-year changes produces errors
on the order of a factor of 2.

� Test score increases in early grades can persist over
long periods of time. The strongest evidence for this
claim comes from the upper trajectories of Fig. 7. The

number of low-income fourth graders in the class of
2012 with a fourth grade score above 90% in mathe-
matics increased over 50% in comparison with the
previous year, and the students’ scores then tracked
those from the cohort before almost perfectly, despite
the increase in number. This is not a trivial achievement.
Furthermore, this growth came at the expense of student
population of lower trajectories, while mean scores of
the lower trajectories went up. We note that the inter-
vention of ARI/AMI began in early grades, particularly
in third grade, for which we do not have usable test data.
However, we find it plausible that the large rise in high-
scoring fourth graders is due to this cause.

An interesting question raised by these observations is how
the cost effectiveness of educational interventions should
be judged. An implicit assumption of No Child Left
Behind is that by spending essentially fixed amounts per
year, student performance can increase steadily until all
students in the United States reach proficiency in mathe-
matics and reading in 2014 [1]. The evaluation reports for
the Texas Student Success Initiative appear to expect effects
of this type: steady increases in performance in each grade
level, with the rate of increase proportional to expenditure of
funds. This sort of change is very easy to check. ‘‘This year
73% of third graders passed mathematics, while last year
70% of them passed.’’ What is easy to overlook is that
different cohorts of students are being compared, and the
changes can correspond tomany things, including small shifts
in the difficulty of the exams due to technical challenges
involved in year-to-year equatability. Public reports on the
comparisons can focus on either the absolute numbers being
achieved or the changes, and accountability laws use both.
Our analysis looks at changes of a different sort. We look

at the long-term trajectories of cohorts of students. What
we found was that the Student Success Initiative produced
a change in trajectories and that the change itself
responded to expenditure, rather than the rate of change.
Table I shows the history of funding for the ARI/AMI
component of the Student Success Initiative. The changes
in student scores correspond to the increased funding in the
2004–2005 school year, but once trajectories shifted
upwards, they did not keep shifting year after year, but
simply stayed at a new elevated location. One might argue
that this shows the initiative was in fact defective as it
produced a static increase in scores and nothing more.
Initial examinations of the TAKS data suggest that in fact
scores began to decrease again when the program was
defunded in the 2009–2010 school year, but further data
will be required to accurately determine the impact. Our
tentative prediction is that cuts in public funding in Texas
that started in 2009–2010 will result in actual declines in
student performance that will display themselves as
cohorts move upwards through the school system. The
cuts in funding happen to coincide with a change in the

TABLE I. Funding history of initiative we associate with score
gains. (M$ refers to millions of dollars.)

Year Funding (M$) Year Funding (M$)

1999–2000 65.2a 2005–2006 149.5

2000–2001 57.5a 2006–2007 144.2

2001–2002 106.4a 2007–2008 124.9e

2002–2003 75.1a,b 2008–2009 123.3

2003–2004 80.9c 2009–2010 44.2f

2004–2005 144.1d 2010–2011 44.4f

aAccelerated Reading Initiative (ARI) funding only.
bFirst year grade three had to pass.
cAccelerated Mathematics Initiative (AMI) funding begins.
dFirst year grade five had to pass.
eFirst year grade eight had to pass.
fARI/AMI defunded; Student Success Initiative only [23].
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Texas high-stakes accountability system from TAKS to
end-of-course exams in high schools. Thus, if this tentative
prediction can be tested, it will have to be through state-
level results on the National Assessment of Educational
Progress, as TAKS will no longer be administered.

We arrive in the end at a set of simple questions.
(1) When funding for education increases or decreases,

does it affect the level of student scores in a given
grade, or does it affect the rate of increase of student
scores in a given grade? Do some interventions
increase levels while others increase rates?

(2) When a cohort of students experiences an educa-
tional intervention, how does it play out over time?
Are there some interventions that have positive
effects on students in one grade but negative effects
as the students proceed? Are there some interven-
tions that are inherently durable? Are there some
that last longer than others?

(3) What is the minimum number of years of longitu-
dinal data that is necessary to entertain predictions
about changes in student outcomes all the way out to
the end of schooling, and therefore to determine the
long-term effects of interventions? Results we pre-
sented here suggest that a minimum of three years of
student data are necessary, but we do not yet know
whether three years are sufficient.

Visualization methods provide a powerful technique for
evaluating the progress of students over time. They make
no a priori assumptions about linearity, and instead allow
the data to describe the system. They suggest new forms of
mathematical models, which we are refining in order to
improve predictions about long-term consequences of per-
turbations such as the Student Success Initiative. But pre-
diction is always likely to have limits. We should have the
patience to watch for the consequences of policy changes,
and should be willing to give credit to hard work by
teachers and schools in cases where it is deserved.
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APPENDIX A: FORMAL DEFINITIONS OF
SNAPSHOT FLOW, COHORT FLOW, AND

TRAJECTORY PLOTS

Table II records the notation used to describe scores and
grade levels in this article. We first describe the velocity or
mean score change of students over time. We select a
collection of students in a single year t who are in the
same grade g and whose score falls in bin k (bins corre-
spond to 90% and above, 80%–90%, etc.). Our choice of
the bins deliberately intends to exploit the frequent under-
standing that 90%–100% is an A, 80%–90% is a B, etc.,
along with the levels of competence these gradations
imply. We further select the subset of these students who,
in the next year tþ 1, advance to the next grade gþ 1 and
have a nonzero score;we call this subset of studentsAt;g;k. In

addition to specifying grade, year, and score, the set might
also include restriction to a particular ethnic or economic
group (e.g., White, or eligible for free and reduced lunch),
butwe have chosen not to put an additional index onA or the
other symbols to denote subgroups. Then the mean score
change of students in set A from year t to year tþ 1 is

vt;g;k �
P

�2At;g;k
ðs�tþ1 � s�t Þ
Nt;g;k

; (A1)

where Nt;g;k is the number of students in At;g;k. In Ref. [27]

we showed that this definition arises formally when one
analyzes the change of student test scores using procedures

TABLE II. Notation and conventions used to define flow plots in this article.

Symbol Meaning

t An integer denoting the year in which a test is taken. When a test is taken in an academic year such

as 2009–2010, we use t ¼ 2010.
st A test score in year t, in units of percentage of maximum score.

s�t The test score of student � (an integer) in year t in units of percentage of maximum score. When students take

multiple administrations of the exam during the year, we choose the maximum.

g�t The grade level of student � in year t.
SðkÞ The kth boundary of bins used to make scores discrete: SðkÞ ¼ ðk=10Þ100%, k 2 ½0; 1; . . . ; 10�. A score st is in bin k

when SðkÞ< st � Sðkþ 1Þ.
At;g;k A set of students who in year t are in grade g, whose test score is in bin k � 0, who advance to grade gþ 1

the following year, and who have nonzero score the following year.

Nt;g;k The cardinality of the set At;g;k (i.e., the number of students in year t, grade g, and bin k).
vt;g;k The average score change of students in year t, grade g, and bin k (in set At;g;k).

�sk0;g0;t0!t The average score in year t of students who in year t0 had score given by k0 and were in grade g0.
Ss;t
t0 The score in year t0 of a trajectory passing through score s in year t.
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from statistical mechanics to derive a Fokker-Planck
equation [28]. However, they are the most obvious defini-
tions one could adopt, quite independent of any formalism.

A snapshot flow plot is a visual representation of vt;g;k

and Nt;g;k. All the data in the plot come from data in two

consecutive years, t and tþ 1. The horizontal axis gives
grade level g; we put grades g and gþ 1 into the tick labels
to clarify the starting and ending points for each arrow. The
vertical axis gives score level k. Every cell indexed by k
and g in the plot has an arrow. Arrows point at an angle so
that if their horizontal length is 1, their vertical height is
vt;g;k; that is, the arrows point towards the mean score of

students the following year. The area of each arrow is
proportional to the number of students involved in Nt;g;k.

Figure 2 provides examples of snapshot flow plots.
A cohort flow plot makes use of the same ingredients, but

instead of plotting vt;g;k for a single year t, each successive

column of the plot advances the year by 1. It is a plot of
vt;gþt�t0;k and the precise cohort under investigation can be

tuned by selecting the offset t0. Thus the plot follows a
cohort of students advancing through school together, sub-
ject to corrections due to students who leave and enter
school or students who are retained a grade. Figure 3 gives
examples of these plots. This kind of plot provides a more
accurate representation of progress through school than a
snapshot, but it requires many years of data to produce,
while the snapshot can be produced with two years of data.
The two versions of plots are the same when schools are in
steady state, and differ when schools change substantially
over time. Figures 2 and 3 are quite similar, but Fig. 2 needs
two years of data while Fig. 3 requires eight years.

From either snapshot or cohort flow plots, one can derive
streamlines. These are obtained in exactly the same way
that particle streamlines in a fluid can be obtained from a
velocity vector field. For any grade level, we use linear
interpolation across the vt;g;k values to construct a series of

continuous functions vt;gðxÞ, where the score x varies con-
tinuously from 0 to 1. This allows us to estimate the
average score change for a student regardless of what he
or she scored in year t. The value of vt;gðxÞ for x ¼ 1 is

determined by linear extrapolation, and if it ever turns out
to be positive, it is set to zero, since students getting a
perfect score on the mathematics exams cannot improve
any further. A similar correction is made if vt;gðxÞ for

x ¼ 0 is negative. To get streamlines, we pick a starting
score in third grade and use vt;g;k to calculate the average

score of those students in fourth grade. From there, we use the
continuous vt;gðxÞ to estimate the scores of those students in

fifth grade and all grades after that. In snapshot and cohort
flow plots, we set the area of the arrows to be proportional to
Nt;g;k; similarly, we set the width of the streamlines to be

proportional to Nt;gðxÞ. Figure 4 provides an example of

streamlines computed from a snapshot flow plot for well-
off and low-income children, determined by whether the

student is eligible for free or reduced lunches or not. As we
will show in Appendix A, the striking difference between the
streamlines of the two groups exaggerates their actual differ-
ences, and is partly an artifact of regression to the mean.
Finally, we can derive trajectories from the data set. We

start by selecting the subset of students At0;g0;k0 that are

initially in score bin k0, grade g0, and year t0. Instead of
using interpolated velocities to estimate their scores in
future years, we follow this cohort of students explicitly
and record their actual scores in all years t > t0. By plot-
ting the average scores �sk0;g0;t0!t of this subset of students

over several years, we track their path through our score-
time continuum.

APPENDIX B: DIFFERENCE BETWEEN
STREAMLINES AND TRAJECTORIES

We have raised the question of the conditions under
which it is possible to make predictions about nine years
of progress through school by measuring two years of data.
In order to address this question, we establish a formal
structure that resembles the structure of classical testing
theory. However, it is conceptually somewhat different.
Classical testing theory posits that every student has an

underlying knowledge state Ti [29]. When the student
takes a test, he or she gets a score si that differs from his
or her underlying knowledge by a random error term �i:

si ¼ Ti þ �i: (B1)

What is the underlying knowledge state Ti? Assuming that
�i has mean zero, it can be obtained by posing sufficient
numbers of tests. There can be many different opinions on
what really constitutes underlying knowledge. Perhaps the
random error results only from students randomly bubbling
in questions when they do not know the answers. In this case
the error could be reduced to any desired level by making
the test long enough. Perhaps it results from fluctuations in
student mood from day to day. In this case, testing would
need to be spread over several days. Perhaps the underlying
knowledge means the student’s true knowledge of mathe-
matics, and the random error includes a contribution from
biased test construction, which should be compensated by
having completely independent groups prepare tests. All of
these conceptual constructs are consistent with Eq. (B1).
The TAKS mathematics exam is based upon a more

complicated statistical framework, one-parameter item-
response theory [21]. In this framework, every item i on
an exam has a difficulty �i and every student n has a
proficiency �n; the probability Pni of student n correctly
solving item i is

Pni ¼ expð�n � �iÞ
1þ expð�n � �iÞ : (B2)

The computations involved in deducing student proficien-
cies over time and testing hypotheses about whether
they have changed can become extremely elaborate,
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particularly since both proficiencies and problem difficul-
ties must be estimated from the data.

There is another community of practice in statistics that
we should mention, the study of longitudinal data. In
contrast to physics, where the introduction of time has
been fundamental to the field since inception, in statistics
the practice is newer. As recently as 1970, Cronbach and
Furby said that researchers trying to study change should
‘‘frame their questions in other ways’’ [30]. The subject
has been developed since, but we have not yet found results
that resemble those we present here. The closest resem-
blance is from hazard models (Ref. [31], Chap. 11). These
involve the probability of observing binary events over
time, and have a considerably different flavor.

When we compute cohort streamlines and trajectories
explicitly, we find in Figs. 6 and 7 that they are quite
different. Snapshot streamlines can be expected to differ
from trajectories simply because of changes in the flow
over time. Explaining a difference between cohort stream-
lines and trajectories is more difficult because time depen-
dence in the flow seems at first to be present in both of them
in the same way. Here we carry out a formal analysis of a
stochastic system designed to analyze this difference.

We emphasize that although we are now introducing a
formal framework with a random component, it is different
from testing theory. We take test scores at face value and
simply aim to supply a compact mathematical description
with a deterministic component and a random component.
The random component does not describe a description
of the difference between a student’s score and the student’s
underlying knowledge. Instead, it describes the random dif-
ference between a student’s actual score in year tþ 1 and an
attempt to predict the score based upon past performance.

Our main finding at a qualitative level is that streamlines
regress to the mean [32] more quickly than trajectories. The
rate at which this happens depends on how strongly score
changes depend upon history. To demonstrate this result, we
adopt a Langevin equation framework (Ref. [33], Chap. 15).
This means that we take the score of each student to be a
deterministic function of past scores plus a random compo-
nent. In particular, we suppose that the score of a student �
in year tþ 1 is related to that student’s score in year t by

s�tþ1 � s�t ¼ Vðs�t ; s�t�1; tÞ þ �t: (B3)

Here, Vðs�t ; s�t�1; tÞ is a deterministic function that predicts
score changes based upon two prior scores and �t is a
normally distributed random variable with the following
properties:

h�ti ¼ 0; h�t�t0 i ¼ �tt0D; (B4)

where D is the variance of the distribution. It is the depen-
dence on two previous times rather than one in V that will
lead streamlines and trajectories to diverge.

In the limit where the noise amplitude D vanishes,

the problem is completely deterministic. We use Ss0;t0
t to

denote the score in year t along a trajectory that has initial
score s0 in the year t0. Suppressing superscripts that
describe a common initial condition, these deterministic
trajectories obey

S tþ1 � St ¼ VðSt;St�1; tÞ: (B5)

There are families of trajectories, and individual trajecto-
ries are selected by specifying the value s0 in some
particular year t0. If the probability distribution of �t is
normal, then the deterministic trajectories obeying
Eq. (B5) are the most likely paths for students to take in
the presence of noise.
In particular, the difference between a velocity vt;g;k

computed for a student getting score st in year t and the

trajectory Vðst;Sst;t
t�1Þ passing through st is the product of

two terms. The first term describes the degree to which the
deterministic trajectory Vðst; st�1Þ depends upon the score
in year t� 1. The second term is a quantitative measure of
how much scores are regressing to the mean.
The probability of having a value of the noise �t variable

in Eq. (B3) is given by the normal distribution

Nð�tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

2�D

s
expf��2

t =2Dg: (B6)

Using Eqs. (B3) and (B6) we can derive the joint proba-
bility distribution P for obtaining a sequence of scores
�0; �1; . . . ; �T . We are using variables � rather than s
because we need to compute expectation values, and we
will adopt a convention in which we integrate over score
variables�. That is, the expectation value of some quantity
hQi is given by multiplying Q by the probability
Pð�0; . . . ; �NÞ and integrating over �0; . . . ; �T .
Assume that Vð�0; ��1; 0Þ ¼ Vð�0; 0Þ does not depend

upon s�1. That is, score changes depend upon two prior
years, except for the lowest grades in which students take
tests. Let P0 be some probability distribution for scores in
the lowest grade where they are recorded. Using Eq. (B3),
we can derive

Pð�0 . . .�TÞ ¼
Z

d�T�1½Nð�T�1Þ
��ð�T ��T�1 �Vð�T�1;�T�2Þ � �T�1Þ
�Pð�0; . . . ;�T�1Þ�: (B7)

That is, the probability of getting �T given �0; . . . ; �T�1 is
given by the probability of having the value of �T�1 needed
according to Eq. (B3). Performing the integral, Eq. (B7)
becomes

Pð�0 . . .�TÞ ¼ N½�T � �T�1 � Vð�T�1; �T�2Þ�
� Pð�0; . . . ; �T�1Þ

¼ exp

��ð�T � �T�1 � Vð�T�1; �T�2Þ
2D

�
� Pð�0; . . . ; �T�1Þ: (B8)
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Applying Eq. (B8) recursively makes it possible to write
the probability distribution explicitly as

Pð�0; . . . ; �TÞ

¼
� ffiffiffiffiffiffiffiffiffiffiffi

1

2�D

s �
T
P0ð�0Þ

� exp

�XT�1

t0¼0

�½�t0þ1 � �t0 � Vð�t0 ; �t0�1; t
0Þ�2

2D

�
: (B9)

In order to find the difference between trajectories and
streamlines, we need to find the average score change from
year t to year tþ 1 when nothing is specified about the
score in year t� 1. We will compare with results that come
by following the deterministic trajectory S of Eq. (B5).
These deterministic trajectories cause the argument of the
exponential in Eq. (B9) to vanish, and maximize the
probability distribution.

More specifically, to carry out the comparison, we want
to find the expectation value of ð�tþ1 � �tÞ�ðst � �tÞ=
PðstÞ. Here, PðstÞ ¼ h�ðst � �tÞi is the probability that
the score at time t has value st and we need it
in the denominator to keep the expectation value properly
normalized. We sketch the ensuing computation. All
the integrals of Pð�0; . . . ; �TÞ over variables �t0 , where
t0 > tþ 1, can be performed immediately and give
unity, reducing Pð�0; . . . ; �TÞ to Pð�0; . . . ; �tþ1Þ. The
integral of ð�tþ1 � �tÞPð�0; . . . ; �tþ1Þ over �tþ1 gives
Vð�t; �t�1; tÞPð�0; . . . ; �tÞ after using Eq. (B3).
Integrating Pð�0; . . . ; �tÞ with respect to all �t0 with 0 �
t0 < t� 1 produces by definition Pð�t�1; �tÞ. Let score st
be in bin k for student in grade g and in year t. Then we can
write the score velocity vt;g;k in this framework as

vt;g;k ¼
�
ð�tþ1 ��tÞ�ð�t � stÞ

PðstÞ
�

¼
Z

d�t�1d�t

�
Pð�t�1; stÞ

PðstÞ Vð�t;�t�1; tÞ�ð�t � stÞ
	

¼
Z

d�t�1

Pð�t�1; stÞ
PðstÞ Vðst;�t�1; tÞ:

The probability functions can be interpreted as the condi-
tional probability of score �t�1 given score st.

We are finally ready to compute the difference between
trajectories and cohort streamlines. Suppressing the final
argument t of the function V, it is given by

vt;g;k �Vðst;Ss;t
t�1Þ ¼

Z
d�t�1

Pð�t�1; stÞ
PðstÞ

� ½Vðst;�t�1Þ�Vðst;Ss;t
t�1Þ�: (B10)

Expanding V in Eq. (B10) to first order in �t�1 � Ss;t
t�1 for

the second argument gives

vt;g;k � Vðs;Ss;t
t�1Þ �

@

@s0
Vðs; s0; tÞ









Ss;t
t�1

½�st�1ðstÞ � Ss;t
t�1�

(B11)

and

�s t�1ðstÞ �
Z

d�t�1

Pð�t�1; stÞ
PðstÞ �t�1:

The interpretation of �st�1ðstÞ is this as follows: find stu-
dents who got score s in year t, then find their mean score
the year before. Now suppose that st is above the mean
score. The students who got this score are a mixture of
those who reproducibly get this score year after year and
those who benefited from a positive random fluctuation.
Therefore, by the logic of regression to the mean, the score
of this group the previous year is lower than one would
expect from deterministic reasoning. That is, for st above
the mean, �st�1ðstÞ is less than Ss;t

t�1 and the term in square
brackets is negative. Similarly, for st below the mean,
the term in square brackets is positive. The first multi-
plicative factor on the right-hand side of Eq. (B11) should
be positive. The reason is that, of two students with the
same score this year, one should expect on average that the
one with better scores the prior year will do better in future
score changes. The bottom line is that when student scores
next year depend in fact on the last two years, but one
throws away information on the year before last (as in
cohort flow plots), the result is that students regress to
the mean more rapidly than they would be seen to do if
one kept more information about them over time. This is
why the streamlines in Fig. 6 do not correspond well to the
accurate trajectories in Fig. 7.
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