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Evaluating an electricity and magnetism assessment tool: Brief electricity
and magnetism assessment
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The Brief Electricity and Magnetism Assessment (BEMA), developed by Chabay and Sherwood, was de-
signed to assess student understanding of basic electricity and magnetism concepts covered in college-level
calculus-based introductory physics courses. To evaluate the reliability and discriminatory power of this as-
sessment tool, we performed statistical tests focusing both on item analyses (item difficulty index, item
discrimination index, and item point biserial coefficient) and on the entire test (test reliability and Ferguson’s
delta). The results indicate that BEMA is a reliable assessment tool.
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I. INTRODUCTION

Standardized, multiple-choice tests can be a useful tool in
assessing what students learn in physics courses. A number
of such tests have been developed; these tests, covering dif-
ferent physics domains including kinematics,' force,’
motion,? dc circuits,*> electricity and magnetism,® and other
topics, have increasingly been used by a wide range of phys-
ics instructors to measure some aspects of what students
learn in both traditional and reform physics courses. BEMA
(Brief Electricity and Magnetism Assessment)’ was devel-
oped in 1997 by Chabay and Sherwood, aided by Fred Reif,
to measure students’ qualitative understanding and retention
of basic concepts in electricity and magnetism. We report
elsewhere on the use of BEMA to compare student perfor-
mance at the end of both traditional and reform introductory
electricity and magnetism (E&M) courses and to compare
retention of these concepts over a period of up to five semes-
ters after the end of the courses.® The test itself is not in-
cluded here because the utility of a standardized test de-
creases if its contents are widely known and the questions
become very familiar to the population who will be tested.
Any instructor may obtain a copy of the test at http://
www.compadre.org.

In this paper we report on the reliability of BEMA, as
measured by statistical tests focusing both on individual
items and on the test as a whole. Test reliability has two
aspects: consistency and discriminatory power. A test is reli-
able if it is consistent within itself and consistent across time.
If a test is shown to be reliable, one can have confidence that
the same students would get the same score if they took the
test more than once. In addition, on a reliable test, a large
fraction of the variance in scores is caused by systematic
variation in the population of test takers; students whose lev-
els of understanding or mastery are different will achieve
different scores on the test. Both of these aspects of test
reliability can be assessed statistically. If a test is to be used
in comparing the performance of different groups, the reli-
ability of the assessment instrument is particularly important.

To be useful, a test must also be “valid.” A test is valid if
the skills or knowledge it measures are directly relevant to
the stated domain of the test. Validity cannot be assessed
statistically and is usually determined by a consensus of ex-
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pert opinions. Though the issue of validity—the question of
whether BEMA in fact assesses knowledge of E&M —is not
one of the main topics of this paper, it is involved in the
overall evaluation of BEMA. We will briefly address the va-
lidity of BEMA in Sec. II.

Aubrecht and Aubrecht’ were among the first to describe
the use of statistical methods to evaluate objective physics
tests. The measures they employed included the item diffi-
culty index, the item discrimination index, and test reliabil-
ity. Subsequently others introduced additional statistical
tests, including item point biserial coefficient and Ferguson’s
delta. Although all of these statistical measures are available
for some published assessment tools such as the TUG-K
(Ref. 1) and DIRECT (Refs. 4 and 5), many authors have
limited their focus to individual item analyses, such as the
item difficulty index and test reliability. In Sec. III we will
report on the results of applying all these statistical tests to
BEMA and will explain briefly the nature and significance of
each test.

II. BACKGROUND AND VALIDITY OF BEMA

BEMA is a 30-item multiple-choice test which covers the
main topics discussed in both the traditional calculus-based
E&M physics curriculum and the matter and interactions cur-
riculum (Matter & Interactions II: Electric and Magnetic
Interactions'®). It was originally designed for a retention
study measuring students’ knowledge of E&M at times rang-
ing from three months to five semesters after completing an
introductory E&M course. Test items are mostly qualitative
questions with a few semiquantitative questions, which re-
quire only simple calculations. All test items are intended to
assess students’ understanding of basic concepts in calculus-
based introductory E&M courses. An example of a question
from BEMA is shown in Fig. 1.

A. An example of a BEMA question

The test was designed to incorporate broad coverage of
elementary E&M, rather than to probe any particular concept
in great detail. Since the population of interest included stu-
dents who had taken both traditional and reform introductory
physics courses, only questions on topics common to both
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FIG. 1. Post-test results (30 items).

courses were included in the test. To establish the validity of
the test, initial drafts of the test were critiqued by all eight
faculty members at Carnegie Mellon University (CMU) who
had taught undergraduate E&M at any level (introductory or
intermediate E&M) within the past five years. If an instructor
reported that a proposed question dealt with a topic not cov-
ered in the version of the introductory course he or she had
taught, the question was eliminated; the final set of questions
was approved by all professors consulted, who agreed that
the test did deal with important aspects of E&M .

Soliciting expert opinions is a standard method of assess-
ing the validity of a test. The term “validity,” which is not a
statistical construct, refers to the extent to which a test actu-
ally measures what it purports to measure. Validity can have
several aspects.!! “Face validity” can be determined by a
surface level, common sense reading of an instrument; a test
would lack face validity if it tested concepts not related to
the subject matter. “Content validity” reflects the coverage of
the subject matter—does a test cover enough aspects of a
specific topic? Both of these aspects of validity are typically
assessed by expert consensus, as was done with BEMA.
(Other aspects of validity, not relevant here, are “construct
validity”—the extent to which the test is demonstrated to
measure a theoretical construct or trait such as creativity,
honesty, or intelligence—and “criterion-related validity”—
evidence that performance on one assessment instrument can
be used to make inferences about performance in a different
domain.)

Pilot testing was done with a small group of volunteers
including senior physics majors who had recently completed
the junior-level intermediate E&M course. The initial version
of the test contained both multiple choice questions, whose
alternatives were based on common errors made by students
on written tests, and a small number of short-answer semi-
quantitative questions, which were later converted to
multiple-choice questions by including common incorrect re-
sponses as alternative answers. (We thank Tom Foster for
converting the short-answer questions to multiple-choice
questions.)
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TABLE 1. Post-test results.

Number of Average Standard Standard
Sample students (percentage) deviation error
CMU 189 13.6 (45%) 5.9 0.43
NCSU 245 11.6 (39%) 6.0 0.38
Overall 434 12.5 (42%) 6.0 0.29

III. STATISTICAL EVALUATION OF BEMA

BEMA was first administered to 189 paid volunteers at
CMU in the spring of 1997.7 All of these students had com-
pleted either the traditional calculus-based introductory
E&M course or the matter and interactions (M&I) version of
(E&M) at some time before they took the test; most were
science, computer science, or engineering majors. This was
not an end-of-course assessment; the elapsed time between
completion of the E&M course and the BEMA assessment
varied from three months up to five semesters. Since this was
a longitudinal study, BEMA was also administered to a con-
trol group of students who had just completed the first-
semester physics course (classical mechanics and thermal
physics) and were ready to take the second-semester E&M
course. In the fall 2003 semester, BEMA was administered as
both a pre- and post-test to a large number of students at
North Carolina State University (NCSU) via WebAssign, a
computer-based homework system. (WebAssign is an online
homework system. It is a centrally hosted subscription ser-
vice with users from many different institutions. For more
information see http://www.webassign.net) All students were
taking either a traditional calculus-based E&M course or an
M&I course in that semester. Two hundred and forty-five
students took the post-test, and 191 students took both pre-
and post-tests. Students were asked to take the tests seriously
with no penalty for wrong answers.

Pretest performance on BEMA does not vary much
among different populations, and pretest scores average
around 23%. In this paper we use only post-instructional data
for test statistics, since we are focusing on evaluation of
BEMA, and not on a comparison of student pre- and post-
instructional performance. Post-instruction averages, stan-
dard deviations, and standard error for students at CMU,
NCSU, and the combined groups from both CMU and
NCSU are given in Table I. For comparison, the average
score of senior physics majors at CMU was 80%.

Using the data from this combined sample, we performed
five statistical tests: three measures focusing on individual
test items (item difficulty index, item discrimination index,
item point biserial coefficient) and two measures focusing on
the test as a whole (test reliability and test Ferguson’s ). In
the following sections, each test is briefly explained and the
results discussed. Sections III A-IIT C discuss statistical
measures focusing on individual test items, while Secs. III D
and III E discuss statistical measures focusing on the test as a
whole.

A. Item difficulty index

The item difficulty index (P) is a measure of the difficulty
of a single test question. It is calculated by taking the ratio of
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FIG. 2. (Color) BEMA item difficulty indices for each question,
based on a combined sample of 434 students.

the number N, of correct responses on the question to the
total number N of students who attempted the question:
p=1
N
This difficulty index P might more meaningfully have been
called the “easiness index,” since it is simply the proportion
of correct responses on a particular question. The greater the
P value is, the higher the percentage of respondents giving
the correct answer and the easier this item is for this popu-
lation. The range for the difficulty index P value is [0, 1] If
the P value is 0, then no one can answer the question cor-
rectly; on the other hand, if the P value is 1, then every one
can correctly answer this question. Under most circum-
stances, such extremes should be avoided in a test.

A noteworthy aspect of the difficulty index is that the P
value depends on the particular population taking the test. As
an example, consider the first question in BEMA. Of 189
CMU students, 168 students answered correctly, so the dif-
ficulty index for the first question is 0.89. Among 245 NCSU
students who took the post-test, 194 students chose the cor-
rect answer, so the difficulty index for the first question is
only 0.79 for this population of students.

There are a number of different possible criteria for ac-
ceptable values of the difficulty index for a test.'> In evalu-
ating BEMA, we choose a widely adopted criterion that re-
quires the difficulty index value to be between 0.3 and 0.9,"
a range which includes the optimum value of 0.5. A difficulty
level of 0.5 on each question would lead to the highest val-
ues of the statistics discussed in the following sections. How-
ever, it is difficult to control every item in one test, especially
when the number of items (K) in one test becomes large. An

averaged difficulty index value (P) of all the items (P;) in a
test is often used as an indication of the test difficulty:

K
> P;.
i=1

P=

==

We can compare the P value with the criterion chosen to
check if it meets a certain standard.

Figure 2 plots the difficulty index P values of each item in
BEMA from the combined sample of 434 students. BEMA
item difficulty index values range from slightly below 0.2 to
slightly above 0.8, with most items being around 0.4-0.5,

within the desired range. The averaged difficulty index P is
0.42, which also falls into the criterion range [0.3, 0.9].
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B. Item discrimination index

The item discrimination index (D) is a measure of the
discriminatory power of each item in a test. In other words, it
measures the extent to which a single test item distinguishes
students who know the material well from those who do not.
On a test item with a high discrimination index, students
with more robust knowledge will usually answer correctly,
while students whose understanding is weaker will usually
get the item wrong. (In contrast, a flawed test question might
lead more thoughtful students to give answers that are judged
wrong, while students who think less deeply give a correct
answer.) If a test contains many items with high discrimina-
tion indices, the test itself can be useful in separating strong
students from weak students in a specific test domain.

In order to calculate the item discrimination index (D), we
divide the whole sample of students into two different groups
of equal size, a high group (H) and a low group (L), based on
whether an individual total score is higher or lower than the
median total score of the entire sample. For a specific test
item, one counts the number of correct responses in both H
and L groups: namely, Ny and N;. If the total number of
students who take the test is &V, then the discrimination index
D of this item can be calculated as

poNu=No
N/I2

In educational and psychological studies, there are several
different calculations of discrimination index often employed
by researchers. The calculation described above (50%—-50%)
is the one which we adopted to calculate discrimination in-
dices for BEMA items. Other researchers may use the top
25% as the high group and the bottom 25% as the low group
(25%-25%), in which case the discrimination index D can be
expressed as

D Ny(top 25 % ) — N, (bottom 25 % )
- N/4

The 50%-50% calculation can underestimate the discrimina-
tory power of test items, since it takes all the students, espe-
cially the relatively unstable middle 50%, into account. The
25%-25% calculation uses only the most consistent indi-
viduals, reducing the probability of underestimating the dis-
crimination index due to unstable performance, but necessar-
ily discarding half of the available data.

The possible range for the item discrimination index D is
[-1,+1], where +1 is the best value and —1 is the worst
value. In the extreme ideal case all students in the high group
get the item correct and all students in the low group get it
wrong, giving a discrimination index D of +1. In the worst
case the situation is reversed: everyone in the low group
answers correctly, and everyone in the high group gets it
wrong. In this case the discrimination index D will be —1.
These extreme cases are unlikely, but it is important to elimi-
nate any items with negative discrimination indices. An item
is typically considered to provide good discrimination if D
=(.3." Items with a discrimination index lower than 0.3
(but greater than 0) are not necessarily bad, but a majority of
the items in a test should have relatively high discrimination
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FIG. 3. (Color) BEMA item discrimination index from a com-
bined sample of 434 students. The average discrimination index is
0.33 (50% method).

index values to ensure that the test is capable of distinguish-
ing between strong and weak mastery of the material.
Figure 3 shows the discrimination index for each BEMA
item. As one can see, most of the discrimination index D
values for BEMA items vary from 0.2 to 0.6, with a majority
number of items (18 items) around 0.3-0.4. This shows that
most BEMA items have quite satisfactory discriminatory
power. We also calculated the averaged discrimination index

D for all K items (D;) in BEMA, which can be expressed as

D=

K
> D
i=1

> | —

We found the average discrimination index D for BEMA to

be 0.33. This satisfies the criterion that D=0.3. In order to
illustrate the underestimation of the 50%—-50% calculation,
we also computed BEMA item discrimination indices using
25%-25% method. The index values for all 30 items were

increased, and the averaged discrimination index D for
BEMA using 25%-25% calculation is 0.52.

Question 9 has the lowest D value and clearly stands out
as different from all the other questions. This question asks
students to select an algebraic expression for the conven-
tional current in a pipe containing ionized salt water, given
the drift speeds of sodium ions and chloride ions, the cross-
sectional area of the pipe, and the number density of the ions.
Almost no students get this question correct, probably be-
cause systems with more than one kind of mobile charge are
not emphasized in introductory E&M courses.

C. Point biserial coefficient

The point biserial coefficient (sometimes referred to as the
reliability index for each item) is a measure of consistency of
a single test item with the whole test. It reflects the correla-
tion between students’ scores on an individual item and their
scores on the entire test, and is basically a form of the cor-
relation coefficient. The point biserial coefficient has a pos-
sible range of [—1,+1]. If an item is highly positively cor-
related with the whole test, then students with high total
scores are more likely to answer the item correctly than are
students with low total scores. A negative value indicates that
students with low overall scores were the most likely to get a
particular item correct and is an indication that the particular
test item is probably defective.

PHYS. REV. ST PHYS. EDUC. RES. 2, 010105 (2006)

To calculate the point biserial coefficient for an item, one
needs to calculate the correlation coefficient between the
item scores and total scores. A student’s score on one item is
a dichotomous variable which can have only two values: 1
(correct) or O (wrong). Scores for the whole test usually can
be viewed as continuous (if the test has a relatively large
number of items—say, =20). The correlation coefficient be-
tween a set of dichotomous variables (score for an item) and
a set of continuous variables (total scores for the whole
test)!d

Here X, is the average total score for those students who

score 1 for the test item (correctly answer this item), X is the
average total score for a whole sample, oy is the standard
deviation of the total score for the whole sample, and P is the
difficulty index for this item.

As an example, consider item 1 in BEMA. Among the
combined sample of 434 students from CMU and NCSU,
362 students answered the question correctly, so P=0.83. For

those 362 students, the average total score (X;) is 13.52. For
all 434 students in the combined sample, the average total

score (X) is 12.50. Together with the standard deviation
(0x=6.04) of the total score for the whole combined sample,
we can calculate the point biserial coefficient for BEMA item
1 to be around 0.37.

Ideally all items in a test should be highly correlated with
the total score, but that is somewhat unrealistic for a test with
a large number of items. The criterion widely adopted'® for
measuring the “consistency” or “reliability” of a test item is
rps=0.2. Items with point biserial coefficient lower than 0.2
can still remain in a test, but there should be few such items.
One way to check whether there are a majority number of
items satisfying r,,,=0.2 is to calculate the average point
biserial coefficient (7,,,,) of all items (K) in a test:

1 K
prs = EE (rpbs)i’

where K is the number of items and (r,,,); is the point bise-
rial coefficient for the ith item. The average point biserial
coefficient for BEMA is 0.43, which is greater than the cri-
terion value 0.2, so BEMA items overall have fairly high
correlations with the whole test.

Figure 4 provides the point biserial coefficient values for
each BEMA item. As one can see, almost all items have
satisfactory r,,, values, indicating that almost all BEMA
items are reliable and consistent. We again see that item 9 on
the current in salt water is problematic.

Note that Fig. 4, plotting the point biserial coefficient, and
Fig. 3, plotting the discrimination index, are quite similar. It
is worth asking whether or not these two statistics actually
measure the same property of an item. The answer is no;
theoretically, these two statistics are different measures of an
item and could in principle give different results. The item
discrimination index is a measure of how powerful an item is
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FIG. 4. (Color) BEMA item point biserial coefficient from a
combined sample of 434 students.

in separating strong and weak students, while the point bis-
erial coefficient is a measure of whether an item is consistent
with the whole test. An item could have a fairly high dis-
crimination index value, but could also show little consis-
tency with the test as a whole. If this were the case, the item
might actually be testing some topic that is different from the
main subject matter of the rest of the test. On the other hand,
an item could be consistent with the test as a whole (high
point bi-serial correlation coefficient) but could offer little
discriminatory information.

For example, suppose half of the students in a sample
answer a question correctly, giving it an item difficulty index
(P) of 0.5. If half of those who answer correctly (25%) have
total scores in the top 25% (quartile) and the other half of
them (25%) have total scores in the lower mid-25% (quar-
tile), this item would have a fairly high point biserial coeffi-
cient (7)), but zero discrimination index (D) according to
the 50%—-50% method. This zero discrimination index could
be avoided by switching to the 25%—-25% discrimination cal-
culation, but this method has its own extreme cases. Suppose
only the top 8% of test takers get a particular item correct.
Then the point bi-serial coefficient (7,,,,) will still be fairly
high, but the discrimination index (D) will be lower than 0.3.
There are many other possible situations in which the two
statistics may be different.

D. Kuder-Richardson reliability index

In contrast to the point biserial coefficient, which is a
measure of single-item consistency or reliability, the Kuder-
Richardson reliability index is a measure of the self-
consistency of a whole test. If a test is administered twice (at
different times) to the same sample of students, then we
would expect a highly significant correlation between the
two test scores, assuming that the students’ performance is
stable and that the test environmental conditions are the same
on each occasion. The correlation coefficient between the
two sets of scores is defined as the reliability index of the
test. However, this approach does not actually provide a
practical way of determining the reliability index of a test,
since students may remember the test questions and study for
the test, test conditions at different times may not be identi-
cal, etc. Another method of measuring the reliability index of
a certain test is to calculate the correlation coefficient of
students’ scores on two parallel tests that have the same con-
tent, structure, number of items, etc., but with different ques-
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tion contexts. As we know, designing two truly parallel tests
is very difficult, so this does not seem to be a feasible way of
measuring the reliability index.

The question is whether there is any method one can em-
ploy to calculate the reliability index without administering
one test twice or designing two tests, by using the informa-
tion from just one test administered just once. For tests that
are designed specifically for a certain knowledge domain
with all items being parallel measures, the Spearman-Brown
formula can be invoked to calculate the reliability index.
This equation connects the reliability index with the correla-
tion between any two parallel composites of a test. The par-
allel composites are subsets of the test containing the same
number of components (test items). For an example, a 100-
item test can have two 50-item composites, or four 25-item
composites, or five 20-item composites, and so on. Based on
the stipulation that the means, variance, and standard devia-
tion of parallel measures be the same, the Spearman-Brown
formula can be expressed'’

Kr

XX

Tiest = ma

where K is now the number of parallel composites and r,, is
the correlation between any two parallel composites.

Kuder and Richardson further developed this idea and
proposed to divide a test into its smallest components—
items. Simply put, each item is regarded as a single parallel
test and is assumed to have the same means, variance, and
standard deviation. Two theoretical perspectives, “true and
error theory” and “domain theory,” can be used indepen-
dently to derive the Kuder-Richardson formula from the
Spearman-Brown formula. Though the two theories focus on
different features of a test (“true and error theory” deals with
the performance of students and “domain theory” deals with
sample tests formed from a test pool), they yield the same
final expression (KR-20) for calculating the reliability index

of a test!8-20;
K > o

X

K is once again the number of the test items, o,; is the stan-
dard deviation of the ith item score, and o, is the standard
deviation of the total score.

This calculation takes into account the different variances
of the different items, relaxing the strict assumption that all
items have the same means, variance, and standard devia-
tions. One does not have to have perfectly parallel items in a
test to be able to use this formula.

For a multiple-choice test where each item is only scored
as “correct” or “wrong,” the above formula can be written as

19-21
K
Tiest = K—1 1

P is the difficulty index of an item. This is the so-called
Kuder-Richardson reliability formula KR-21. The two for-
mulas are referred to as KR-20 and KR-21 because they

EP(l—P))
=22,

X
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TABLE II. Summary of statistical test results.

BEMA value BEMA value
for CMU for NCSU

Test statistic Possible values Desired values (N=189) (N=245)
Item difficulty [0, 1] = 0.3 Average 0.47 Average 0.37
index P
Item [-1, 1] = 0.3 Average 0.34 Average 0.32
discrimination
index D
Point biserial [-1, 1] = 0.2 Average 0.45 Average 0.42
coefficient r,,,
KR-21 test [0, 1] =0.7 or =0.8 0.85 0.85
reliability index
Ttest
Ferguson’s [0, 1] 0.9 0.98 0.98
delta

appeared for the first time in Kuder and Richardson’s paper
as the 20th and 21st formulas.

Possible values for the KR-21 reliability index fall into
the range [0,1]. Different tests for various purposes have dif-
ferent criteria. A widely accepted criterion?? is that tests with
reliability index higher than 0.7 are reliable for group mea-
surement and tests with reliability index higher than 0.8 are
reliable for individual measurement. Under most circum-
stances in physics education, evaluation instruments are de-
signed to be used to measure a large group of students, so if
a certain physics test has a reliability index greater than 0.7,
one can safely claim it is a reliable test.

In the BEMA analysis, we adopted Kuder-Richardson for-
mula KR-21 to calculate the reliability index. We find the
reliability index for BEMA to be 0.85, which is satisfactorily
high for both group measurement and individual measure-
ment.

E. Ferguson’s delta

Ferguson’s delta is another whole-test statistic. It mea-
sures the discriminatory power of an entire test by investi-
gating how broadly the total scores of a sample are distrib-
uted over the possible range. If a test is designed and
employed to discriminate among students, one would like to
see a broad distribution of total scores.

The calculation of Ferguson’s delta is based on the rela-
tionship between total scores of any two subjects (students).
These scores may either be different or equal. If a sample has
N subjects, then the total number of pairs is N(N-1)/2, and
the total number of pairs of equal scores is

(fi-1) 2fi-2fi

Here f; represents the frequency (number of occurrences) of
each score. The total number of pairs of different scores is

[(Efi)z—Ef,-z]/ 2. The number of unequal pairs will be great-
est if f;=N/(K+1), where K is the number of items. Using
this frequency to replace f; in the above expressions, the
number of unequal pairs becomes [N?>~N?/(K+1)]/2, which
is the maximum number of unequal pairs a test can provide.
The ratio between the number of unequal pairs of scores
produced by a test and the maximum number such a test can
yield is defined as Ferguson’s delta. Accordingly, the expres-
sion of Ferguson’s delta can be written as

5 N - f
TN -NY(K+1)

where N is the number of students in a sample, K is the
number of test items, and f; is the frequency (number of
occurrence) of cases at each score.

The possible range of Ferguson’s delta values is [0,1]. If a
test has Ferguson’s delta greater than 0.9, the test is consid-
ered to offer good discrimination.”> Ferguson’s delta for
BEMA is 0.98, which is greater than 0.9.

IV. SUMMARY

The reliability and discriminatory power of the Brief
Electricity & Magnetism Assessment test was evaluated by
five statistical tests, three of which focus on individual items
and two of which focus on the test as a whole. The results,
which are summarized in Table II, indicate that BEMA is a
reliable test with adequate discriminatory power.
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