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Intrabeam scattering formulas for fast numerical evaluation
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Small-angle multiple intrabeam scattering (IBS) emittance growth rates are normally expressed through
integrals, which require a numeric evaluation at various locations of the accelerator lattice. In this paper, I
demonstrate that the IBS growth rates can be presented in closed-form expressions with the help of the so-
called symmetric elliptic integral. This integral can be evaluated numerically by a very efficient recursive
method by employing the duplication theorem. Several examples of IBS rates for a smooth-lattice
approximation, equal transverse temperatures and plasma temperature relaxation are given.
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I. INTRODUCTION

This paper presents the results, previously obtained by
Bjorken and Mtingwa [1], as closed-form analytic expres-
sions. In fact, all of the rates, presented here, are strictly
identical to the ones in Ref. [1]. Also, the notations are
essentially the same as in Ref. [1]. Suppose that the
bunched-beam distribution function, f, is described by
the following expression:

f � exp��S�; (1)
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x� ( � x; y, or s) is the particle coordinate, p� is its
momentum and p � �
Mc. It is normalized to a total 6-
dimensional rms invariant phase-space volume, �, as

� �
Z

fd3xd3p: (3)

There have been attempts in the past [1,2] to express the
intrabeam scattering (IBS) rates through Legendre’s in-
complete elliptic integrals. Let me now introduce a sym-
metric elliptic integral of the second kind, RD�x; y; z�,
following Carlson’s definition [3]

RD�x; y; z� �
3

2

Z 1

0

dt��������������������������������������������
�t� x��t� y��t� z�3
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The following are some useful properties of this integral:

RD�x; x; x� � x�3=2; (5)

RD�x; y; z� � RD�y; z; x� � RD�z; x; y� �
3��������
xyz

p ; (6)

and

RD�hx; hy; hz� � h�3=2RD�x; y; z� �for h > 0�: (7)

There exists the so-called duplication theorem [4] for this
integral, which allows for a very efficient numerical evalu-
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ation using a recursive method [5]. Only rational opera-
tions and square roots are required. Such a numerical
method gives, in my opinion, the main advantage for
expressing the IBS rates through this integral.

The IBS formulas, I am proposing in this paper, require
evaluating the symmetric elliptic integral, with its variables
cycled, 3 times at each point of the accelerator lattice.
Actually, Eq. (6) allows us to reduce the number of inte-
grals to two.

Some of the IBS rates for special cases are expressed by
the following combination of elliptic integrals:

	�x; y; z� � �2xRD�y; z; x� � yRD�z; x; y� � zRD�x; y; z�:

(8)

For example, Eq. (3.6) in B-M [1] paper can be written as
follows:
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where �1, �2, and �3 are the eigenvalues of the matrix A in
Eq. (2), N is the number of particles per bunch, LC is the
Coulomb log, ln�bmax=bmin� with bmax and bmin being the
maximum and minimum impact parameters as defined in
Ref. [1], c is the speed of light, M is the particle mass, rp is
the classical particle radius, and L is the ring
circumference.
II. IBS RATES FOR UNCOUPLED BETATRON
OSCILLATIONS

Uncoupled betatron oscillations can be described by the
following expressions:

x �
�������������
2Jx�x

p
cos�’x� �Dx"; (10)
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where
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are the action variables, ’x; ’y are the betatron phase
variables of unperturbed oscillations, and " is the relative
laboratory frame momentum spread. The function � is
expressed as follows:

� � D0
x �

�0
xDx

2�x
: (15)

Similarly, the synchrotron action variable for a parabolic
potential well is described by
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ks
2
"2: (16)

Suppose now that the distribution function, f, in Eq. (1)
can be written as

f � exp
�
�

Jx
"x
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�
; (17)

where "x"y are the rms non-normalized transverse emit-
tances, and "s � %p%s with %s and %p being the rms
bunch length and the rms relative lab-frame momentum
spread.

Before presenting the IBS rate formulas, I will first
define several parameters. Let
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The three eigenvalues of the matrix A [Eq. (2)] can be now
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expressed as follows:
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The three integrals are calculated at each location of the
ring lattice as follows:
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Here, Eq. (7) can be used to avoid extreme values in the
arguments of RD�x; y; z� and Eq. (6) to reduce the number
of integrals to two.

The total 6-dimensional emittance growth rate in Eq. (9)
can be written as
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where

� � 8�3�3
3M3c3"x"y%s%p: (29)

The partial emittance growth rates can be now written as
follows:
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where functions Sp, Sx, and Sxp are expressed through the
functions defined in Eqs. (25)–(27) as
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Thus, by computing the three integrals R1, R2, and R3 one
fully defines the IBS rates at a given lattice location.
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FIG. 1. The exact [F�z�, solid line] and the approximate [G�z�,
dashed line] IBS functions for a round beam.
III. SMOOTH APPROXIMATION

In a smooth-lattice approximation case I will assume
� � 0, thus

�1 � ay; (36)

�2 � ax; (37)
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2as: (38)

The functions Sp, Sx, and Sxp can be written as
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Sxp � 0: (41)

These formulas can be simplified even further if one ne-
glects the dispersion function, Dx. With this assumption,
one obtains the following partial growth rates:
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IV. ROUND-BEAM APPROXIMATION

Further useful approximation can be obtained by assum-
ing equal transverse beam sizes (%x � %y � %) and tem-
peratures ('x2 � 'y2 � '2). One can then introduce a
single variable, z, such that

z �
%p

2


2'2
(45)

is the ratio of the longitudinal to transverse temperatures in
the beam rest frame. The partial IBS growth rates are
expressed as follows:
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where
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2

3�
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The function F�z� can be expressed analytically through
hyperbolic functions, instead I propose an approximate
function, G�z�, which deviates from function F�z� by no
more than 20% in the range of z values from 0 to 10.

2

3�
	�z; 1; 1� 
 G�z� � �1� z1=4�

ln�z� 1�

z
: (49)

Both of these functions are shown in Fig. 1.
The round-beam approximation, presented here, is iden-

tical to that, obtained from the theory of Ichimaru and
Rosenbluth [6] for a nonrelativistic plasma with initially
unequal longitudinal and transverse temperatures. This
theory has been recently confirmed by experiments [7]
with a non-neutral electron plasma.
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In a general case of unequal temperatures, if Tx, Ty, and
Tz are the plasma electron temperatures, the plasma tem-
perature relaxation rates can be written as

dTx

dt
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q
	�Tx; Ty; Tz�; (50)

where n is the plasma density, ions have been treated as a
stationary background and the external fields have been
neglected. Rates for Ty and Tz are obtained by cycling the
variables in Eq. (50).

V. COASTING BEAM IBS RATES

The total 6-dimensional emittance growth rate for a
coasting beam can be written as
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The partial emittance growth rates can be now written as
follows:
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where functions Sp, Sx, and Sxp are defined in Eqs. (33)–
(35).
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VI. CONCLUSIONS

Starting from results reported in Ref. [1], I have ex-
pressed the IBS rates in a convenient form containing
symmetric elliptic integrals. These elliptic integrals can
be evaluated numerically by an efficient recursive proce-
dure, described in Ref. [5]. The values of three elliptic
integrals are required for each lattice location; however,
Eq. (6) allows to reduce the number of integrals to two. The
use of elliptic integrals in itself does not speed up the
calculation process, while the recursive computation pro-
cedure does. There is some evidence that the calculation
speed with the software package MATHEMATICA, using the
recursive method, is a factor of 20–25 higher than a direct
use of integrals from Ref. [1].
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