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Intrabeam scattering formulas for fast numerical evaluation
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Small-angle multiple intrabeam scattering (IBS) emittance growth rates are normally expressed through
integrals, which require a numeric evaluation at various locations of the accelerator lattice. In this paper, I
demonstrate that the IBS growth rates can be presented in closed-form expressions with the help of the so-
called symmetric elliptic integral. This integral can be evaluated numerically by a very efficient recursive
method by employing the duplication theorem. Several examples of IBS rates for a smooth-lattice
approximation, equal transverse temperatures and plasma temperature relaxation are given.
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I. INTRODUCTION

This paper presents the results, previously obtained by
Bjorken and Mtingwa [1], as closed-form analytic expres-
sions. In fact, all of the rates, presented here, are strictly
identical to the ones in Ref. [1]. Also, the notations are
essentially the same as in Ref. [1]. Suppose that the
bunched-beam distribution function, f, is described by
the following expression:

f = exp(=9), ()
where
_l, papp 1 pg 1
S—EAQIB77+EBQBXQ7+§CQB)C&XIB, (2)

X, (=2x,y, or s) is the particle coordinate, p, is its
momentum and p = ByMec. It is normalized to a total 6-
dimensional rms invariant phase-space volume, I', as

r= f fd3xd3p. 3)

There have been attempts in the past [1,2] to express the
intrabeam scattering (IBS) rates through Legendre’s in-
complete elliptic integrals. Let me now introduce a sym-
metric elliptic integral of the second kind, Rj(x,y, z),
following Carlson’s definition [3]

3 / o0 dt
2Jo i+ + G+
The following are some useful properties of this integral:

Rp(x, x,x) = x73/2, ®))

Rp(x,y,2) = 4

3
Sz

RD(X’ Y, Z) + RD(y) 2, x) + RD(Z: X, y) =

(6)

and
Rp(hx, hy, hz) = h™32Rp(x, y, z) (for h >0). (7)

There exists the so-called duplication theorem [4] for this
integral, which allows for a very efficient numerical evalu-
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ation using a recursive method [5]. Only rational opera-
tions and square roots are required. Such a numerical
method gives, in my opinion, the main advantage for
expressing the IBS rates through this integral.

The IBS formulas, I am proposing in this paper, require
evaluating the symmetric elliptic integral, with its variables
cycled, 3 times at each point of the accelerator lattice.
Actually, Eq. (6) allows us to reduce the number of inte-
grals to two.

Some of the IBS rates for special cases are expressed by
the following combination of elliptic integrals:

W(x, y,2) = =2xRp(y, 2, X) + YRp(z, X, ) + z2Rp(xX, Y, 2).
®)

For example, Eq. (3.6) in B-M [1] paper can be written as

follows:

1 _ 1 dar

r T dt

_ 2772Ncrp2M3LC L ds A I 1 1
39T ﬁ TN YVY S [ : (Al A A3>

+ two cyclic permutations } C))

where A, A,, and A5 are the eigenvalues of the matrix A in
Eq. (2), N is the number of particles per bunch, L. is the
Coulomb log, In(byax/bmin) With by, and by, being the
maximum and minimum impact parameters as defined in
Ref. [1], c is the speed of light, M is the particle mass, r), is

> Ip
the classical particle radius, and L is the ring
circumference.

II. IBS RATES FOR UNCOUPLED BETATRON
OSCILLATIONS

Uncoupled betatron oscillations can be described by the
following expressions:

x = /2J, B, cos(¢,) + D,6, (10)

© 2005 The American Physical Society



SERGEI NAGAITSEV

Phys. Rev. ST Accel. Beams 8, 064403 (2005)

p 28,
y = /21,8y cos(gy),

Py B P (12
PR 2ﬁyy \/ism(so))

Px_ =D'5+ B (x—DXS)—\/ZBT"sin(%), (11)

where
1 _ 2 Bx !/ B/lr _ 2
J, Zﬁx(x D.6) +7(x 2Bxx @6) (13)
and
_ BBV
=35+ 5 ~ap) (1

are the action variables, ¢,, ¢, are the betatron phase
variables of unperturbed oscillations, and & is the relative
laboratory frame momentum spread. The function @ is
expressed as follows:

_ B,
2B,
Similarly, the synchrotron action variable for a parabolic
potential well is described by
sk

=2 4L 1
I 2k, 2 (16)

d =D, 15)

Suppose now that the distribution function, f, in Eq. (1)
can be written as

f=exp[—£—£——s} %))
e, €

where e,¢&, are the rms non-normalized transverse emit-
tances, and &, = 0,0, with o, and o, being the rms
bunch length and the rms relative lab-frame momentum
spread.

Before presenting the IBS rate formulas, I will first

define several parameters. Let

_B_ 1 y

=—=—, =_—= , 18
Toe, 6, % €, 0y2 (18)
o, = DXQO'PQ + .8, Ty = /8,0y (19)
D 2
a, = a,(—=5 + ®* |+ —, (20)
:Bx (2
and
1 1 5
ay = E(ax + Y a\)’ ay = E(ax - as)- (21)

The three eigenvalues of the matrix A [Eq. (2)] can be now

expressed as follows:

AL =a,, (22)
Ay = a; +4Ja,? + y2a 202, (23)
A3 = a; —yJa,? + y2a 2D (24)

The three integrals are calculated at each location of the
ring lattice as follows:

1 1 1 1
Ri=—Rp|l—,—,—} (25)
PRV ROY
1 1 1 1
R, =—Rp|l—,—,—| 26
27 D<A3 Py A2> (20)
1 1 1 1
Ry— Lg (L L 1Y @7)
PR UV VN

Here, Eq. (7) can be used to avoid extreme values in the
arguments of Rp(x, v, z) and Eq. (6) to reduce the number
of integrals to two.

The total 6-dimensional emittance growth rate in Eq. (9)
can be written as

1 d8x+ 1 deV

r Ddt e, dt e

1 d(rpz

dt 2 dt

P
<)\1 A /\3>

y

_ NrpchC L
12#[337503[ Lo,o, [

+ two cyclic permutations} (28)
where
I =8mBv*M3 e, £,0,0,. (29)
The partial emittance growth rates can be now written as
follows:
2 Nr,?cL L d
dO'p _ [73 5C / S Sp’ (30)
dt 127B°v o, Jo Lcrxzry
Nr,2cL L B,ds 1 1 1
dey, _ Nrycbe [t By W<7,7,7>, 31)
dt 127Tﬂ*’y g, Jo LO'XO'y )\l )\2 )\3

de,  Nr,*cLc
dt  12aB*y’o,

L B.ds D,?
z S.+ (=5 +P*)S, +S,, | (32
0 La—xa—y|: ! (:sz > b xp:| G2

where functions S, S, and S, are expressed through the
functions defined in Egs. (25)—(27) as
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2 3
Sp == 77|:2R1 - R2<1 - a2 )
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[azz + ,)/Zaxzq)z

3y2d2q,
Sy = —7 [Ry — R, (35)
022 + ,yZax2q)2

- R3<1 +

Thus, by computing the three integrals Ry, R,, and R; one
fully defines the IBS rates at a given lattice location.

III. SMOOTH APPROXIMATION

In a smooth-lattice approximation case I will assume
& = 0, thus

M=, (36)

A = ay, (37)

A = y2a,. (38)

The functions S, S,, and §,, can be written as

1 1 1

S,=¥—,—,—) 39

Sl Febvibe) <
1 1 1

S, =Y—,—,—| 40

=) @)

Syp = 0. “4n

These formulas can be simplified even further if one ne-
glects the dispersion function, D,. With this assumption,
one obtains the following partial growth rates:

do,? _ Nr,>cL¢ (L ds v 0'7,,2 02 92
dt 127B*y¥o; Jo Loyo, y:OU TR

(42)

@ _ NrpchC
dt 127B3y3a, Jo Lo.o,

L B.d 2
Pyds \If(eyz, 0,2 ”—’;) 43)

2

2
doy _ My cle [t Buds v(027502) @
Y

dr 22783y o, Jo Lo,o,

IV. ROUND-BEAM APPROXIMATION

Further useful approximation can be obtained by assum-
ing equal transverse beam sizes (o, = o, = o) and tem-
peratures (6, = 6,> = 6?). One can then introduce a
single variable, z, such that

0.2

= 72”02 (45)

is the ratio of the longitudinal to transverse temperatures in
the beam rest frame. The partial IBS growth rates are
expressed as follows:

2 Nr,%cL
doy” — _"Ip Sy, (46)
dt 8B’y o070
de. Nr,2cL
Goxy — _ %F(Z), (47)
dt 1687y 0,0
where
2
F(z) ==—W(z 1,1). (48)
3

The function F(z) can be expressed analytically through
hyperbolic functions, instead I propose an approximate
function, G(z), which deviates from function F(z) by no
more than 20% in the range of z values from O to 10.

2 g1, 1) ~ 6l0) = (1 - o EHD.
37 .

(49)
Both of these functions are shown in Fig. 1.

The round-beam approximation, presented here, is iden-
tical to that, obtained from the theory of Ichimaru and
Rosenbluth [6] for a nonrelativistic plasma with initially
unequal longitudinal and transverse temperatures. This
theory has been recently confirmed by experiments [7]
with a non-neutral electron plasma.
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FIG. 1. The exact [F(z), solid line] and the approximate [G(z),

dashed line] IBS functions for a round beam.
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In a general case of unequal temperatures, if T\, 7, and
T, are the plasma electron temperatures, the plasma tem-
perature relaxation rates can be written as

dT, 47L¢

dt 3
where n is the plasma density, ions have been treated as a
stationary background and the external fields have been
neglected. Rates for T, and T, are obtained by cycling the
variables in Eq. (50).

nr,cyl(mc?)>w(T,, T,,T,), (50)

V. COASTING BEAM IBS RATES

The total 6-dimensional emittance growth rate for a
coasting beam can be written as

L _1dl'_ 1ds,  1de I do,?
r Tdt e dt s, dt 20,2 dt
. NrpchC L ds T 1 1 1
6ﬁﬁ3v5Lﬁ Lo—xay[ 1 (AI’AZ’AJ
+ two cyclic permutations}. (&2))]

The partial emittance growth rates can be now written as
follows:

2 Nr,%cL L d
O e [ s, 6D
dt 3JaBy oy Jo Looy
Nr,?cL L B,d 11 1
O e [ () o
dt  6JmBy o, Jo Lowo, \A A A5

de,  Nr,*cLc
dt  6ymByio,

L B.d D2
B.ds [SX + ( - <1>2>s,, + Sxp} (54)
0 La’xa'y B

X

where functions S o S, and Sx,, are defined in Egs. (33)—
(35).

VI. CONCLUSIONS

Starting from results reported in Ref. [1], I have ex-
pressed the IBS rates in a convenient form containing
symmetric elliptic integrals. These elliptic integrals can
be evaluated numerically by an efficient recursive proce-
dure, described in Ref. [5]. The values of three elliptic
integrals are required for each lattice location; however,
Eq. (6) allows to reduce the number of integrals to two. The
use of elliptic integrals in itself does not speed up the
calculation process, while the recursive computation pro-
cedure does. There is some evidence that the calculation
speed with the software package MATHEMATICA, using the
recursive method, is a factor of 20—25 higher than a direct
use of integrals from Ref. [1].
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