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Adiabaticity of the ramping process of an ac dipole
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ac dipoles in accelerators are used to excite coherent betatron oscillations at a drive frequency close to
the tune. If the excitation amplitude is slowly increased to the desired value and slowly decreased back to
zero there is no significant emittance growth. The aim of this article is to study the adiabaticity of the
ramping process of an ac dipole as a function of the different parameters involved.
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FIG. 1. Excitation amplitude of the ac dipole versus turn
number.
I. INTRODUCTION

ac dipoles were introduced in accelerators to overcome
depolarization due to intrinsic spin resonances [1,2] and as
a powerful tool for machine diagnostics. More recently, ac
dipoles were proposed to be used for measuring the non-
linear content of an accelerator [3,4], and presently differ-
ent experiments are being performed to test this technique
[5–10]. There is experimental evidence of the need of
slowly ramping the ac dipole excitation amplitude in order
to ensure the adiabaticity of the process. The lack of
adiabaticity implies a transfer of energy to the natural
betatron motion of the beam, which results in an increase
of the transverse beam sizes. It is crucial to know what the
parameters are that affect the adiabaticity of the ramping
process of the ac dipole to obtain its best possible perform-
ance. This article derives analytical expressions of the
particle motion during the ramping process and studies
its adiabaticity. Transverse nonlinearities and chromaticity
are taken into account separately. Collective effects such as
space charge are neglected.

To analytically assess the adiabaticity of a ramping
process the following scenario is considered. The beam
initially is centered in the transverse phase space and does
not perform any oscillations. After the ramp takes place the
forced oscillation is ideally removed (or ideally ramped
down). The remaining free beam oscillation plus the emit-
tance blowup represent the total transfer of energy.
Therefore the parameter that accounts for the nonadiaba-
ticity has to be the emittance blowup plus the square of the
centroid oscillation, i.e.,

�xf � �x0 � hxfi2 � hx2fi � �x0;

where �xf and �x0 are the final and initial emittances
defined as �x � hx2i � hxi2. The brackets h i mean the
average over the particle distribution and the turn number
T. The term hx2fi is computed considering only the betatron
oscillation of tune Qx, then xf has the form xf�T� �
jzj cos�2�QxT �	�, and therefore

hx2fi � hjzj2cos2�2�QxT �	�i �
1

2
hjzj2i: (1)
05=8(2)=024401(7) 02440
The nonadiabaticity of a ramp is then characterized by the
following expression,

1

2
hjzj2i � �x0; (2)

where jzj is the amplitude of the natural beam oscillations
after the ac dipole ramp.
II. THE LINEAR CASE

Consider that the excitation amplitude of an ac dipole is
not ramped linearly but is increased by a certain quantity
after every N turns, as depicted in Fig. 1. The regions
where the excitation remains constant are labeled by an
integer which, in general, will be represented by the letter
n. The analytical expression describing the turn-by-turn
motion in the region n is expressed as [3]

x̂�T� � ip̂x�T� � z�n�ei2�QxT � ��n�� ei2�QDT

� ��n�� e
�i2�QDT; (3)

where x̂ and p̂x are the linearly normalized coordinates, T
is the turn number, z�n� is a complex quantity containing the
amplitude and phase of the oscillation with the natural
frequency in the region n, and ��n�

� and ��n�� are given by
1-1  2005 The American Physical Society
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��n�	 �
�������
�D

p BL�n�

�B0��
e	i��Q	� 0�

4 sin��Q	�
; (4)

where �D is the betatron function at the ac dipole, BL�n� is
the integrated magnetic field of the ac dipole at the nth
step, B0� is the magnetic rigidity,  0 is the initial phase of
the ac dipole, andQ	 � QD 	Qx. Notice that close to the
02440
resonance QD � Qx the quantity ��n�� is much larger than
��n�� . The amplitude of z�n� serves as an estimate for the
nonadiabaticity of the ramp up to the nth step. In order to
compute z�n� the continuity of the particle position is
imposed between the regions of constant excitation ampli-
tude. Defining �	 � ��n�1�

	 � ��n�	 , the continuity condi-
tion between the regions n and n� 1 is expressed as
z�n�ei2�QxN�n�1� � ��n�� ei2�QDN�n�1� � ��n�� e
�i2�QDN�n�1� � z�n�1�ei2�QxN�n�1� � ���n�� � ���ei2�QDN�n�1� � ���n�

�

� ���e�i2�QDN�n�1�: (5)
Simplifying this expression the following relation is ob-
tained:

z�n�1� � z�n� � ��e
i2�Q�N�n�1� � ��e

�i2�Q�N�n�1�: (6)

By expressing z�n� as a function of z�n�1� and doing this
successively, the previous equation takes the form

z�n�1� � z�0� �
Xn
j�0

��e
i2�Q�N�j�1� �

Xn
j�0

��e
�i2�Q�N�j�1�:

(7)

By computing the summations over j, z�n� is given by

z�n� � z�0� � ��

sin��Q�Nn�
sin��Q�N�

ei�Q�N�n�1�

� ��

sin��Q�Nn�
sin��Q�N�

e�i�Q�N�n�1�: (8)

This expression is valid for any width of the steps N and
provides the amplitude and phase of the natural motion in
the region n. From this equation it is easy to show that, for
given top excitation amplitude and number of turns of
operation, the minimum jz�n�j is given by taking N � 1
[z�0� � 0 is assumed]. This is the linear ramp. In order to
give a simple expression for the nonadiabaticity, Eq. (2), of
a linear ramp, the term with �� is assumed to be the most
relevant in Eq. (8). The amplitude of the oscillation with
the natural frequency is given by

jz�n�j � ��n��

sin��Q�n�
n sin��Q��

; (9)

where �� has been expressed as ��n�� =n since a linear ramp
has been assumed. Note that the evaluation of Eq. (2) from
Eq. (9) is trivial since we are in the linear case and z�n� does
not depend on any phase space variable. From Eq. (9) the
lengths of the ramp n that transfer no energy to the natural
oscillation are those fulfilling nQ� � p, p being any in-
teger. For example, having Q� � 0:02, a 50 turns ramp is
enough to ensure adiabaticity in a linear machine. This is
illustrated by the curve with the label ‘‘zero detuning’’ of
Fig. 3, where jz�n�j=j��n�

� j at the last step has been plotted
versus the number of steps for a given excitation amplitude
at the flattop, i.e., for constant j��n�

� j.
III. THE NONLINEAR CASE

In this section the beam motion during the ramp of the ac
dipole in the presence of nonlinearities is derived in a
similar way as in the previous section. The general solution
of the turn-by-turn motion in the presence of a constant ac
excitation and nonlinearities is given by [4]

x̂�ip̂x��
�
x �2i

X
jklm

j
hjklm

1�e�i2�QxRx;yR 
��

�j�1�

x ��
k

x ��
l

y �
�m

y ;

(10)

where hjklm are the Hamiltonian terms, Rx;y is the linear
one turn map acting on the betatron phases  x;y, R is the
one turn map acting on the timelike variable  of the
excitation, and

�	x �
�������
2Ix

p
e
i� x� x0� � j�x�je


i�2�QD �"x��

� j�x�je
	i�2�QD �"x��;

�	y �
�������
2Iy

q
e
i� y� y0�;

(11)

where Ix is the nonlinear invariant and, for simplicity, the
equations hold only at the location of the ac dipole. The
time evolution of these expressions is due to  x;y and  ,

 x;y�T� � 2�Qx;y�Ix; Iy; j��j; j��j�T; (12)

 �T� � T; (13)

where it has been explicitly stated that the machine tunes
are functions of the amplitudes of all the oscillations. The
same ramp as in the previous section is assumed. By virtue
of Eq. (10) the continuity of x̂� ip̂x between consecutive
steps implies the continuity of �	x , expressed as��������������
2I�n�1�
x

q
ei�2�Q

�n�1�
x T� �n�1�

x0 � �

����������
2I�n�x

q
ei�2�Q

�n�
x T� 

�n�
x0 �

� ��e
i2�QDT � ��e

�i2�QDT:

(14)

The only difference between this equation and Eq. (5) is
that the tunes of different steps are different since the
oscillation amplitudes are different. This effect makes it
very difficult to obtain analytical expressions describing
1-2
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FIG. 2. (Color) Amplitude detunings used in the simulations.
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FIG. 4. (Color) Square root of twice the emittance blowup
normalized to the amplitude of the driven oscillation with
frequency QD; A0 versus the turns of the ramp for negative,
positive, and zero amplitude detuning.
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FIG. 3. (Color) Amplitude of the natural oscillation of the par-
ticle normalized to the amplitude of the forced oscillation in the
flattop versus the number of turns used to ramp the excitation for
negative, positive, and zero amplitude detuning.
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the adiabaticity of the ramping process and numerical
studies are more suitable. To illustrate the effect of ampli-
tude detuning, single particle and multiparticle simulations
have been performed using a lattice of the CERN Super
Proton Synchrotron (SPS) containing positive, negative,
and zero amplitude detuning. One of the octupole families
devoted to the Landau damping has been used to introduce
an absolute amplitude detuning 4 times larger than that
usually measured in the SPS [11]. The actual amplitude
detuning used in the simulations is shown in Fig. 2. The
natural tune of the lattice is 26:58 and the tune of the forced
oscillation is 26:60. In the case with positive amplitude
detuning Q� decreases as the excitation amplitude in-
creases. The excitation amplitudes are chosen to obtain a
variation of Q� of approximately 	10% in the cases of
negative and positive amplitude detuning, respectively.
The tracking code SIXTRACK [12] was used to simulate a
single particle under the influence of an ac dipole for
different ramp lengths and a constant excitation amplitude
during the flattop. In Fig. 3 the amplitude of the natural
tune oscillation normalized to the amplitude of the forced
oscillation in the flattop is plotted versus the number of
turns of the ramp for the mentioned three cases. The case
with zero amplitude detuning is in complete accordance
with Eq. (9). The cases with detuning have a similar
behavior than the previous one with slightly different Q�

and without ever dropping to zero.
The adiabaticity of the ramp for a particle distribution is

addressed in the following. Ideally this particle distribution
should be a two dimensional Gaussian over the horizontal
phase space; however, due to CPU time limitations the
study had to be restricted to one dimension (particles
with the same amplitude). The single particle case pre-
sented above can be regarded as describing the adiabaticity
of particles close to the core of the beam. Now particles
having an amplitude equal to a typical beam size are
considered. To this aim 20 particles with an oscillation
amplitude of 3 mm at a �x � 100 m (this corresponds to a
02440
typical SPS beam size) and evenly distributed in phase
have been tracked for different ramp lengths. Given the
regularity of the phase space 20 particles were found
sufficient to provide a good average. In order to be able
to compare to the single particle case, the nonadiabaticity

is represented by the quantity
��������������������������������������
2�hx�T�2i � �x�0��

p
=A0,

where A0 is the amplitude of the driven oscillation, since
this quantity applied to a single particle gives the same
results as in Fig. 3. This nonadiabaticity is plotted versus
the length of the ramp in Fig. 4. A similar behavior to the
single particle case is observed. The major difference is the
irregularity of the curve for the case with positive detuning
that appears at the shorter ramps. This is due to the larger
tune changes during the ramp since in these shorter ramps
the step in the excitation amplitude is larger. Another
1-3
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interesting feature is that an almost total adiabaticity is
observed for two ramp lengths of the negative detuning
curve. We conclude that the preferred nonlinear machine
configurations, from the point of view of the adiabaticity,
are (1) compensated amplitude detuning, and (2) an am-
plitude detuning that increases Q�.

IV. THE LINEAR CASE WITH CHROMATICITY

In the presence of chromaticity Q0
x, a particle with

momentum deviation " experiences a tune shift that de-
pends on the turn number T in the following way [13],

�Qx�T� �
Q0
x"

2�QsT
�sin�2�QsT �	0� � sin�	0�; (15)

where Qs is the synchrotron tune and  0 is the synchrotron
phase at T � 0. The turn-by-turn free motion of a particle
is then expressed as

x̂�T� � ip̂x�T� � zei2��Qx��Qx�T��T

� ze�i& sin	0

X1
q��1

Jq�&�e
i2��Qx�qQs�T�q	0 ;

(16)

where z contains the amplitude and phase of the transverse
oscillation, & is defined as & � Q0

x"=Qs, and the exponen-
tial of the sine has been expanded as a series of Bessel
functions. Each term of the series represents one synchro-
tron sideband. The same steps as in Sec. II will be given in
order to describe the adiabaticity of the ramping process of
an ac dipole with chromaticity. Therefore the first step is to
02440
derive an analytical solution of the particle motion with a
constant ac dipole excitation in the presence of chromatic-
ity. The coordinates at the exit of the ac dipole, x̂f and p̂xf,
are related to the coordinates at the entrance, x̂i and p̂xi, at
turn n by the following expression,

x̂ f�n�� ip̂xf�n�� x̂i�n�� ip̂xi�n�� ikcos�2�QDn� 0�;

(17)

where k is the ac dipole excitation strength,�������
�D

p
BL=�B0��. If the ac dipole is connected at n � 0,

the particle coordinates at turn T will be given by adding
up all the ac kicks from the turns between 0 and T � 1,
propagated to the turn T. This propagation is realized by
multiplying the ac kick by the exponential of the phase
advance between turns n and T of the free chromatic
oscillation. This phase advance is given by

2��Qx ��Qx�T��T � 2��Qx ��Qx�n��n: (18)

Therefore the particle coordinates at turn T are given by

x̂�T� � ip̂x�T� � zei2��Qx��Qx�T��T � ik
XT�1

n�0

cos�2�QDn

�  0�e
i2���Qx��Qx�T��T��Qx��Qx�n��n:

(19)

To perform the summation over n the cosine is ex-
pressed as the sum of two exponentials and the quantity
exp�� i2��Qx�n�n� is expanded in a series of Bessel
functions, obtaining
x̂�T� � ip̂x�T� � zei2��Qx��Qx�T��T �
ik
2
ei& sin	0

XT�1;1

n�0;q��1

Jq�&�e
i�2�Qq�n� 0�q	0�ei2��Qx��Qx�T��T

�
ik
2
ei& sin	0

XT�1;1

n�0;q��1

Jq�&�ei��2�Qq�n� 0�q	0�ei2��Qx��Qx�T��T; (20)

where Qq	 � QD 	 �Qx � qQs�. Performing the summation over n gives

x̂�T� � ip̂x�T� � zei2��Qx��Qx�T��T � ei& sin	0

X1
q��1

�q�ei�2�Qq�T�q	0�ei2��Qx��Qx�T��T

� ei& sin	0

X1
q��1

�q�e
i��2�Qq�T�q	0�ei2��Qx��Qx�T��T; (21)

where

�q	 � kJq�&�
e	i��Qq	� 0�

4 sin��Qq	�
: (22)

These expressions already describe the motion, but it is interesting to study the Fourier spectrum by performing the
expansion of the remaining exponential of a sinus in terms of the Bessel functions,
1-4
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x̂�T� � ip̂x�T� � zei2��Qx��Qx�T��T �
X1

q;p��1

�q�Jp�&�ei�2��QD��p�q�Qs�T��p�q�	0

�
X1

q;p��1

�q�Jp�&�e
i�2���QD��p�q�Qs�T��p�q�	0: (23)

The first term on the right-hand side of this equation represents the chromatic free oscillations. The second term contains an
oscillation with the frequency of the ac dipole surrounded by an infinite set of sidebands with frequencies QD �mQs,
where m is any integer number. The third term is similar to the second but with the central frequency being the opposite of
the ac dipole frequency. But this equation holds only for a particle with certain relative momentum deviation " and initial
synchrotron phase 	0. The beam particles are distributed over the longitudinal plane, and in order to obtain the transverse
motion it is mandatory to average over the longitudinal coordinates. The resulting transverse motion strongly depends on
the initial longitudinal distribution. In particular, for a Gaussian beam centered and matched to the bucket no synchrotron
sidebands are observed around the ac dipole frequencies. This is obtained by computing the following integral,

Z 1

0
d"

Z 2�

0
d	0�x̂�T� � ip̂x�T��

"

2�)2
"
e�"

2=�2)2
"� � e�&

2
X1

q��1

Iq�&
2�

�
zei2��Qx�qQs�T �

ke�i��Qq�� 0�

4 sin��Qq��
ei2�QDT

�
kei��Qq�� 0�

4 sin��Qq��
e�i2�QDT

�
; (24)

where & � Q0
x)"=Qs. This equation describes the turn-by-turn motion of the bunch centroid in the presence of an ac dipole

and chromaticity. Note that there are no sidebands around the frequencies 	QD as opposed to the single particle case in
Eq. (24).

To describe the adiabaticity of the ramping process of an ac dipole with chromaticity the same procedure as in Sec. II is
undertaken. Equation (21) is used to describe the single particle motion on the flattops of the steps of the excitation
amplitude. The continuity equation of the transverse coordinates between the regions n and n� 1 is expressed as

z�n�1� � z�n� � ei& sin	0

X1
q��1

�q�ei�2�Qq�N�n�1��q	0� � ei& sin	0

X1
q��1

�q�ei��2�Qq�N�n�1��q	0�:

This equation is the analog to Eq. (6) and is solved in the same way. Taking N � 1, the linear ramp, the amplitude and
phase of the natural oscillation z�n�, is given by

z�n� � z�0� � ei& sin	0

X1
q��1

�q�
sin��Qq�n�

sin��Qq��
ei��Qq��n�1��q	0� � ei& sin	0

X1
q��1

�q�
sin��Qq�n�

sin��Qq��
ei���Qq��n�1��q	0�: (25)

To eliminate the dependence on the longitudinal coordinates the average over the longitudinal distribution has to be
performed:

Z 1

0
d"

Z 2�

0
d	0�z

�n�ei2��Q��Q�T��T�
"e�"

2=�2)2
"�

2�)2
"

� e�&
2

X1
q��1

Iq�&
2�ei2��Qx�qQs�T

�
z�0� �

k�n�

n

sin��Qq�n�

4sin2��Qq��
ei��Qq�n� 0�

�
k�n�

n

sin��Qq�n�

4sin2��Qq��
ei���Qq�n� 0�

�
; (26)
where k�n� �
�������
�D

p
BL�n�=�B0��. This expression provides

the amplitude and phase of the natural tune and the syn-
chrotron sidebands of the motion of the centroid in the
flattop after a linear ramp of n turns. From this expression it
can be already concluded that a total adiabaticity cannot be
achieved, even assuming z�0� � 0 and neglecting the Qq�
term, since that would need a ramp of P turns fulfilling

PQq� � j; j 2 N and 8 q:

The nonadiabaticity is given by Eq. (2), where jzj is given
by the z�n� in Eq. (25). For the sake of simplicity, z�0� and
02440
the terms containing Qq� are neglected. The usual
Gaussian bunch is assumed to perform the integral over
the density distribution. The integral over the phase in-
volves the computation of

1

2�

Z 2�

0
d	0z�n�z�n�

�
�

X1
q��1

j�q�j2
sin2��Qq�n�

sin2��Qq��
: (27)

The remaining integral over the energy is a tabulated one,
finally giving
1-5
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hx�T�2i � �x�0� �
k�n�

2

2n2
X1

q��1

e�&
2
Iq�&

2�
sin2��Qq�n�

16sin4��Qq��
:

(28)

This equation gives the total nonadiabaticity of a linear
ramp as a function of the number of turns and the chroma-
ticity. Note that in the absence of chromaticity, & � 0, this
expression is in accordance with the results of Sec. II,
mainly Eq. (9).

To illustrate the effect of chromaticity on the adiabatic-
ity, Eq. (28) has been evaluated for different chromaticities.
The CERN SPS parameters have been chosen, Qs �
0:006, )" � 0:001, Q0� � 0:02. In order to compare to

Figs. 3 and 4 the quantity
��������������������������������������
2�hx�T�2i � �x�0��

p
=A0, where

A0 is the amplitude of the driven oscillation with frequency
QD as given by Eq. (26), is shown in Fig. 5 for three
different values of the chromaticity, Q0

x � 0:0; 1:8; 3:6, or
equivalently, & � 0:0; 0:3; 0:6. Comparing the previous fig-
ures it is concluded that chromaticity dominates the dete-
rioration of the adiabaticity of the ramp in machines like
the CERN SPS. The same conclusion was achieved from
experiments performed at the CERN SPS [10].
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FIG. 6. (Color) Fourier spectrum of the simulated turn-by-turn
particle position during the ramping process of an ac dipole. The
natural and the ac dipole tunes are labeled with Qx and QD,
respectively.
V. MEASURING THE TUNE DURING THE RAMP

This section aims to illustrate a way to measure the
natural tune by computing the Fourier transform of the
turn-by-turn centroid position during the ramp. A linear
machine without chromaticity is considered in the follow-
ing. From Eqs. (3) and (8) it is observed that the tune
spectral line is excited during the ramp, although it may
vanish completely at the flattop. From these equations it is
possible to extract the Fourier component with the natural
frequency Qx by expressing sin��Q�Nn� as a sum of
exponentials and taking N � 1 (the linear ramp). This
02440
yields, for the Fourier component of frequency, Qx,

z�0� �
��e�i�Q�

2i sin��Q��
: (29)

Assuming z�0� � 0, the amplitude of the natural tune spec-
tral line from the data of a ramp of n turns is given by

�������� ��

2 sin��Q��

���������
�������� ��n��

2n sin��Q��

��������
�
BL�n�

�B0��

�������
�D

p

8nsin2��Q��
: (30)

To perform the measurement in a real machine this ampli-
tude needs to be larger than the noise of the turn-by-turn
orbit measurement. Another important constraint is that the
frequency resolution of the Fourier transform must be
smaller than Q� in order to resolve the two peaks with
frequencies Qx and QD. The use of more accurate algo-
rithms than the fast Fourier transform to obtain the Fourier
spectrum seems to be needed when tight constraints are
imposed [14,15]. Therefore a compromise among the
quantities n, ��n�, and Q� should be achieved in order to
obtain the required accuracy in the tune measurement.

To illustrate this kind of measurement a simulation has
been performed using the same model as above. The
following ac dipole parameters have been chosen: n �

1100, ��n� � 9:6 mm, and Q� � 0:02. From Eq. (30)
this configuration yields a natural tune amplitude of
70 ,m during the ramp. The Fourier transform of the
simulated turn-by-turn position during the ramping process
is shown in Fig. 6. The natural tune amplitude shown in the
plot is in perfect agreement with the prediction from
Eq. (30).
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VI. CONCLUSION

Analytical expressions quantifying the adiabaticity of an
ac dipole ramp have been achieved for a linear machine
and for a machine with chromaticity modeled by a phase
space rotation. It has been demonstrated that a nonlinear
machine with compensated amplitude detuning is equiva-
lent to a linear machine from the point of view of the
adiabaticity of the ramping process. From the simulations
and the analytical expressions it is concluded that, for
machines like the CERN SPS, chromaticity dominates
the deterioration of the ramping process of an ac dipole,
in accordance with experimental observations [10]. Lastly,
a nondestructive way to measure the natural tune by com-
puting the Fourier spectrum of the turn-by-turn data ac-
quired during the ramp is described.
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