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Recently a novel approach has been proposed for performing multiturn extraction from a circular
machine. Such a technique consists of splitting the beam by means of stable islands created in
transverse phase space by magnetic elements creating nonlinear fields, such as sextupoles and octupoles.
Provided a slow time variation of the linear tune is applied, adiabatic with respect to the betatron
motion, the islands can be moved in phase space and eventually charged particles may be trapped inside
the stable structures. This generates a certain number of well-separated beamlets. Originally, this
principle was successfully tested using a fourth-order resonance. In this paper the approach is
generalized by considering other types of resonances as well as the possibility of performing multiple
multiturn extractions. The results of numerical simulations are presented and described in detail. Of
course, by time reversal, the proposed approach could be used also for multiturn injection.
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changing the tune to increase their separation and to
produce regions emptied of particles in between the

dinal dynamics, which might generate emittance blowup
of the beamlets.
I. INTRODUCTION

A special technique is normally used to fill the CERN
Super Proton Synchrotron (SPS) with a high-intensity
proton beam delivered by the proton synchrotron (PS),
the so-called continuous transfer (CT) [1]. The beam is
sliced using an electrostatic septum: by properly defining
a closed orbit perturbation and by setting the horizontal
tune equal to QH � 6:25 the beam is extracted from the
PS over five consecutive turns. A continuous ribbon four-
turn long is extracted first, while the remaining central
core is extracted last thus generating a proton spill five-
turn long (see Refs. [1,2] for more details). Such a multi-
turn extraction might not be the best choice for the
planned CERN Neutrino to Gran Sasso proton beam
[3], especially in case of an intensity upgrade [4], due
to the intrinsic losses, of the order of 15%–20% of the
overall proton intensity onto the electrostatic septum as
well as the poor betatron matching of the resulting slices.
Detailed analytical computations of the expected beta-
tron mismatch and potential emittance blowup at injec-
tion into the SPS have been reported in Ref. [2].

An alternative method was proposed [5,6]. The beam is
split in the transverse horizontal phase space by trapping
particles inside stable islands created by sextupole and
octupole magnets. The tune has to be varied in order to
create the appropriate phase space topology [5]. The prin-
ciple consists of sweeping through the chosen resonance
to change the phase space topology from a situation where
no islands are present, to a final stage where stable islands
are created. During the resonance crossing stage, small
islands appear around the origin of phase space occupied
by the beam. Therefore, particles can get trapped inside
the stable structures, thus generating a number of beam-
lets proportional to the resonance order. Such beamlets
are eventually transported towards higher amplitudes by
1098-4402=04=7(2)=024001(14)$20.00 
beamlets [5]. At this stage, it is possible to induce a
distortion of the beam closed orbit to jump a septum,
whose blade will be located in the empty space between
the beamlets. Therefore, the beam is extracted over many
turns without the need of any intercepting device to split
it, thus reducing the losses. In addition, as shown in
Ref. [2], the betatron mismatch is greatly improved with
respect to, e.g., the present CT extraction. It is important
to stress that this approach is not affected by particle
detrapping, typical of modulational diffusion (see Ref. [7]
for a general overview of the problem) as the tune varia-
tion is not periodic.

For the specific CERN application the fourth-order
resonance was studied [5]. However, following the en-
couraging results, numerical simulations were performed
also for the third-order resonance [6] showing the validity
of the method in that case.

Preliminary experimental results obtained during the
2002 run of the PS machine allowed observing the trap-
ping process into stable islands of phase space in real
machines [8]. In this paper the latest results of numerical
simulations are presented, showing how to perform mul-
titurn extraction over a small number of turns, from two
to six, using adiabatic trapping inside a properly chosen
resonance. Other possibilities are also explored, such as
the option of performing multiple multiturn extractions.

The longitudinal structure of a beam extracted over a
few turns deserves a few comments. In the present CT, the
beam is debunched, to cancel the 10 MHz structure, and
then partially recaptured using 200 MHz cavities just
prior to the slicing process. Therefore, the extracted rib-
bon features a longitudinal modulation on top of the
continuous structure. As far as the novel approach is
concerned, both bunched and unbunched beams can be
split by means of trapping inside stable islands, the only
issue being the tune modulation induced by the longitu-
2004 The American Physical Society 024001-1
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The plan of this paper is the following: in Sec. II the
model used in the numerical simulations is presented and
discussed, while in Sec. III the results of the numerical
simulations for various resonances, ranging from second
order (Sec. III A) to fifth order (Sec. III D), are presented,
with particular emphasis for the fourth-order resonance
(Sec. III C) in view of its potential applications to the
CERN PS machine. In Sec. IV results concerning multiple
multiturn extraction are presented and some conclusions
are drawn in Sec. V. Finally, two appendices report in
detail the way the one-turn transfer map is computed
(Appendix A) and some results concerning fixed points
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of symplectic maps (Appendix B) relevant for the model
used for the two-turn extraction.

II. NUMERICAL MODEL

The computation of the one-turn transfer map depends
on the assumption made for the structure of the circular
machine under study. By assuming that the magnets gen-
erating the nonlinear magnetic fields are located at the
same place in the ring, and that the effect on the beam
dynamics is represented using the single-kick approxi-
mation [9], then the one-turn transfer map is a Hénon-like
[10] 4D polynomial map, which can be expressed as
X̂Xn�1 � Mn�X̂Xn�:
0

BB@
X̂X
X̂X0

ŶY
ŶY0

1
CCA
n�1

� R�!x;!y�
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BBBB@

X̂X
X̂X0 � X̂X2 � ŶY2 � ��X̂X3 � 3X̂XŶY2�

ŶY
ŶY0 � �2X̂X ŶY���2ŶY3 � 3X̂X2ŶY�

1
CCCCA
n

: (1)

^ ^ 0 ^ ^ 0
The components of the vector �XX;XX ; YY; YY � are dimen-
sionless coordinates allowing us to set the coefficient of
the quadratic term of the map (1) to one. More details on
the relations between physical, Courant-Snyder [11], and
coordinates used here can be found in Appendix A.

The manipulations required to capture the beam inside
stable islands are performed in the horizontal plane only.
This means that, provided the vertical tune is chosen
carefully as to avoid low-order resonances, the vertical
degree of freedom can be safely neglected in the numeri-
cal simulations and the map (1) can be replaced by the 2D
one-turn map given by�

X̂X
X̂X0

�
n�1

� R�!x�

�
X̂X

X̂X0 � X̂X2 � �X̂X3

�
n
: (2)

This approach is used for most of the multiturn extraction
schemes presented in this paper, unless for the special
case of the five-turn extraction, where 4D simulations
have been performed and they confirm that the neglected
vertical degree of freedom does not alter the result ob-
tained with the 2D map (2).

The case of two-turn extraction deserves special con-
sideration. In fact, 2D one-turn transfer maps of the form
(2) do not have any fixed point of the order of 2. This is a
consequence of the symmetry induced by locating the
sextupole and octupole in the same section of the ma-
chine (the reason for this is discussed in detail in
Appendix B). If this condition is broken, one can find a
class of maps with fixed points, and stable islands, of
period two. This is the case of the following maps:�
X̂X
X̂X0

�
n�1

� R�!x� �Ksextupole � R� �!!� �Koctupole�X̂X; X̂X
0�n:

(3)

The polynomial maps Ksextupole;Koctupole represent
sextupolar and octupolar kicks, respectively, of the form
Ksextupole�X̂X; X̂X
0� �

�
X̂X

X̂X0 � X̂X2

�
;

Koctupole�X̂X; X̂X
0� �

�
X̂X

X̂X0 � �X̂X3

�
: (4)

In the numerical simulations presented in this paper �!! �
�=2 and !x is chosen so that !x � �!! has the correct
value, i.e., near the half-integer resonance.

The other key ingredient for the novel extraction, in
combination with the stable islands, is the tune variation.
In the model used for the numerical simulations the
horizontal tune is changed in the following way:

!x�n� �

8><
>:
!x;a � �!x;b �!x;a��

n�1
n1�1�

p if n � n1;
!x;b if n1 < n � n2;
!x;b � �!x;c �!x;b��

n�n2
n3�n2

� if n2 < n � n3;

(5)

where !x;a, !x;b, and !x;c are the initial, intermediate,
and final tune values, respectively; n1, n2, and n3 represent
the turn number of transition between the stage of reso-
nance crossing and constant tune, constant tune and
linear ramp to separate islands before extraction, and
the time when extraction is ready to occur, respectively.
Finally, p is a parameter used to change the functional
dependence of the tune variation on n during the reso-
nance crossing: it allows changing from a linear sweep to
a power law, thus changing the speed of resonance cross-
ing. All these parameters have not yet been fully opti-
mized, and this point is the subject of further studies. The
vertical tune is always kept constant in 4D simulations.

III. RESULTS OF NUMERICAL SIMULATIONS

The polynomial map (1) or the two-dimensional ver-
sions (2) and (3) have been used to study the trapping
024001-2
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FIG. 1. (Color) Evolution of the tune used for the simulation of
a two-turn extraction (p � 3). The four points labeled with
letters correspond to the tune values at which the beam dis-
tribution is shown in Fig. 2.
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FIG. 2. (Color) Beam distribution during the trapping process
distribution is a Gaussian centered on zero, with a standard devia
origin of phase space.
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process, with particular emphasis on losses during such a
manipulation as these are the only losses possible for the
proposed extraction scheme. In fact, having removed any
particle from the region in between the stable islands, the
extraction septum cannot intercept any beam particle.

A. Two-turn extraction

Starting from the lowest-order resonance, it is possible
to use the half-integer resonance as the base for a two-
turn extraction. In Fig. 1 the tune as a function of turn
number is shown. The four points labeled with letters
refer to the tune values at which the beam distribution
is shown in Fig. 2. The computations are performed using
the map (3).
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with two islands (8:1	 105 initial conditions). The initial
tion � � 0:11, � � �1. Only a few particles are left near the
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FIG. 3. (Color) Evolution of the tune used for the simulation of
a three-turn extraction (p � 7). The four points labeled with
letters correspond to the tune values at which the beam dis-
tribution is shown in Fig. 4.
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The adiabatic capture inside the two stable islands is
clearly visible. As the stable phase space region around
the origin shrinks when approaching the resonance, par-
ticles are repelled from the origin during the trapping
FIG. 4. (Color) Beam distribution during the trapping process
distribution is a Gaussian centered on zero, with standard deviatio
left in the central part of phase space.
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stage. Therefore, only a small fraction of particles re-
mains near the origin, while the majority of them mi-
grates to the islands as the tune is swept through the
half-integer resonance. Once the two beamlets are cre-
ated, it is possible to move the islands towards higher
amplitudes, hence increasing the beamlets separation to
prepare for extraction.
B. Three-turn extraction

In this case the model (2) is used in the numerical
simulations. The time evolution of the linear tune is
presented in Fig. 3, while the evolution of the beam
distribution is shown in Fig. 4.

Also in this case the resonance is unstable, i.e., the
stable region around the origin shrinks when approaching
the resonance, thus making it possible to deplete almost
perfectly the region near the origin of phase space. Three
beamlets represent the final result of the capture process.
with three islands (8:1	 105 initial conditions). The initial
n � � 0:04, � � �5. Even in this case very few particles are
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FIG. 5. (Color) Evolution of the tune used for the simulation of
a five-turn extraction (p � 5). The four points labeled with
letters correspond to the tune values at which the beam dis-
tribution is shown in Fig. 6.
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FIG. 6. (Color) Beam distribution during the trapping process
distribution is a Gaussian centered on zero, with standard deviatio
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C. Five-turn extraction

The fourth-order resonance is the one used in the
original proposal [5] for a novel multiturn extraction to
replace the present CT extraction mode. As the fourth-
order resonance is stable for the system (2), the beam will
be split into five beamlets. The evolution of the tune is
shown in Fig. 5.

The evolution of the beam distribution is plotted in
Fig. 6. The four outermost beamlets are created by adia-
batic trapping inside the stable islands, while the fifth one
is generated by those particles left unperturbed near the
origin of phase space. This fact has deep implications on
the properties of the beamlets. In fact, for the previous
multiturn extraction processes (two and three turn) the
various beamlets had exactly the same number of par-
ticles trapped inside as they represent a unique ribbon of
length 2 or 3 times the machine circumference. On the
0

0

       Beam distribution after  4000 turns

-0.7

-0.42

-0.14

0.14

0.42

0.7

-0.7 -0.42 -0.14 0.14 0.42 0.7
 X

X
’

(b)
^

^

0

0

       Beam distribution after 20000 turns

-0.7

-0.42

-0.14

0.14

0.42

0.7

-0.7 -0.42 -0.14 0.14 0.42 0.7
 X

X
’

(d)

^

^

with four islands (8:1	 105 initial conditions). The initial
n � � 0:073, � � �1:5.
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other hand, whenever the central part of phase space
remains filled at the end of the capture process, it is not
necessarily equally populated as the other beamlets,
unless a dedicated optimization of the free parameters
is performed. Such an optimization concerns mainly
the sigma of the initial beam distribution, the non-
linear elements strength, and the properties of the tune
variation.

For this specific case, 4D simulations have been per-
formed using the map (1). The results are shown in Fig. 7,
where two projections of the 4D phase space, namely, the
physical phase space �X̂X; ŶY� (left panel) and the vertical
phase space �ŶY; ŶY0� (right panel) are shown.

In the physical phase space three spots are clearly
shown, as a result of projecting the two beamlets centered
on X̂X0 � 0 onto the central one. The separation of the three
spots can be adjusted by acting on the value of the final
tune !x;c. In the vertical phase space almost no sign of
coupling with the horizontal one, due to the nonlinear
terms in the map (1), is visible. This confirms that the
assumption of neglecting this degree of freedom is well
justified.

Another test performed for this special case was the
sensitivity of the capture process on the presence of tune
modulation. This is an almost unavoidable effect in real
machines. It is potentially harmful for the proposed
multiturn extraction because islands are shaken due to
the periodic tune variation, thus inducing beam filamen-
tation and emittance growth. Numerical simulations have
been carried out including a tune ripple of the form

!̂! x�n� � !x�n�
1� a cos�2�frippleTrevn��; (6)

where !x�n� is the function (5). The parameters a, fripple,
the ripple amplitude and frequency in Hertz, respectively,
have realistic values for the CERN PS machine, i.e., a
about 10�3 and fripple in the range 50–600 Hz. Trev is the
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FIG. 7. (Color) Phase space projections: physical space �X̂X; ŶY� (le
capture process with four islands as computed using the 4D map
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revolution time, which is about 2:2 �s for the PS machine
at 14 GeV=c. The results are shown in Fig. 8.

They confirm that the ripple is potentially harmful for
the proposed extraction based on adiabatic capture. In
fact, in all the cases shown in Fig. 8 the central beamlet
is almost unaffected, while the four outermost beamlets
show signs of degradation (emittance growth), visible in
the form of an extended halo of particles surrounding the
beamlets core. Of course, before concluding on the quan-
titative effect of the tune ripple on the extracted beam
parameters, a more realistic model of the accelerator for
which the extraction is designed has to be used in the
numerical simulations.

D. Six-turn extraction

It is possible to further increase the length of the
extracted spill by using even higher-order resonances.
Here, the case of a resonance of order 5 is shown in
Figs. 9 and 10. However, it is clear that there are intrinsic
limitations on the resonance order. In fact, the higher the
order, the smaller the islands’ size, thus enhancing the
difference between the first turns and the last one, repre-
sented by the particles left around the origin in phase
space at the end of the capture process. Furthermore, it
will be more and more difficult to create enough free
space between the beamlets to accommodate the blade of
an extraction septum.

IV. DIGRESSION: MULTIPLE MULTITURN
EXTRACTION

From the results presented in the previous sections, it is
clear that the number of extracted turns depends on the
resonance order r and also on its stability. In fact, if the
resonance is stable then the number of turns is equal to
r� 1, otherwise it is simply r. As far as the extraction is
0
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(1) with � � �1:5 and  � 0:5. The vertical tune �y is 0.29.
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FIG. 8. (Color) Dependence on the tune ripple of beam distribution at the end of the capture process, i.e., after 2	 104 turns
(8:1	 105 initial conditions) for different values of the ripple frequency. The initial distribution is a Gaussian centered on zero, with
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concerned, it would be somewhat more difficult for the
case of stable resonances, as the amplitude of the orbit
distortion needed to extract the various beamlets would
be different, i.e., the same for the first r turns, but larger
for the last turn. This point could be difficult to solve.
Therefore, in this section alternative solutions are pro-
posed, based on the idea that the adiabatic capture can be
repeated by splitting the central beamlet remaining from
the previous extraction.

As an example, a possible scenario is presented in
Fig. 11. The key parameters, such as the number of par-
ticles, the value of the parameter �, and the horizontal
tune, are plotted as a function of the turn number n.
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FIG. 9. (Color) Evolution of the tune used for the simulation of
a six-turn extraction (p � 3). The four points labeled with
letters correspond to the tune values at which the beam dis-
tribution is shown in Fig. 10.
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The tune is periodically swept through the chosen
resonance, in this case the fourth order, to periodically
capture particles from the central beamlet. However, a
problem appears, as the emittance of the beam core
shrinks after each capture, due to the transfer and extrac-
tion of particles. To overcome this difficulty, two tech-
niques can be used, namely, (i) change the parameter � or
(ii) increase artificially the beam emittance of the re-
maining beam core.

The first approach is shown in Fig. 11, where � is
increased. This is necessary as the islands’ size is propor-
tional to � and it increases with the value of the tune. Just
after crossing the resonant value, tiny islands are created
near the origin: their size increases, as well as their
separation, by moving the tune far apart from the reso-
nance. As the central beamlet shrinks in size after suc-
cessive multiturn extractions, particles will experience
the influence of smaller and smaller islands. Therefore,
to capture enough beam it is necessary to increase the
islands’ size by acting on the value of �. The results of
numerical simulations based on this principle are shown
in Fig. 12. The letters refer to the corresponding tune
value in Fig. 11.

The different stages are clearly visible as well as the
effect of size reduction of the central beamlet. The ap-
proach seems to work well, no particle is lost in the
simulations, and the various beamlets are always well
separated without particles in between. Of course, a pos-
sible drawback could be the increasing strength of the
sextupole and octupole, i.e., �, required to capture the
beam in the successive multiturn extractions.

The second approach, however, avoids increasing �, as
an appropriate emittance blowup is applied to the central
024001-7
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FIG. 10. (Color) Beam distribution during the trapping process with five islands (8:1	 105 initial conditions). The initial
distribution is a Gaussian centered on zero, with standard deviation � � 0:08, � � �2.
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beamlet to keep its size almost constant, even after suc-
cessive multiturn extractions. This is achieved by repeat-
edly kicking the beamlet when the tune is constant and
back to its initial value, i.e., between stage (d) and (e) in
Fig. 11. The results of numerical simulations are shown in
Fig. 13.

Even this approach seems to work well, without beam
losses during the capture process. The effect of the kicks
used to blow up the beam is clearly visible. The main
advantage with respect to the previous solution is that in
this case the nonlinear effects are not enhanced after each
extraction.

Finally, we would like to add that other approaches
could be applied to extract the central beamlet left as a
result of an adiabatic capture performed with a stable
resonance. Those previously described would allow a
024001-8
periodic sequence of multiturn extractions. However,
one could think of combining a particle trapping using
a stable resonance, followed by an adiabatic capture
performed using an unstable resonance. In this way,
the whole beam would be extracted by means of only
two steps.
V. CONCLUSIONS

In this paper various schemes for multiturn extraction
based on adiabatic capture of charged particles in stable
islands of phase space were presented. By choosing the
appropriate resonance, two-, three-, five-, and six-turn
extractions have been computed. In all the cases shown
here, particles can be trapped inside islands without any
loss. Furthermore, it is possible to move the beamlets by
024001-8
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FIG. 11. (Color) Evolution of the main parameters during the
multiple multiturn extraction: number of particles (top panel),
� (center panel), and horizontal tune (bottom panel). The
points labeled with letters correspond to the tune values at
which the beam distribution is shown in the subsequent Figs. 12
and 13. In this case p � 5.

1In a completely different context, the analysis of particle
trapping through nonlinear resonance was discussed in
Ref. [16].
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acting on the tune to increase their separation, which is
the necessary condition to allow the actual beam extrac-
tion to take place. For the case of the five-turn extraction,
detailed analysis including 4D simulations and the study
of the influence of tune ripple on the beam parameters at
the end of the capture process were performed. 4D simu-
lations confirm that the neglected degree of freedom does
not affect the final result much, provided the vertical tune
is chosen far away from low-order resonances. Tune ripple
is known to be potentially harmful as it tends to move
islands and, during the capture process, this might lead to
emittance growth of the beamlets. However, at least for
the case of the ripple parameters used in this study, which
represent reasonable values for the CERN PS machine,
the net effect is acceptable. In the case of stable reso-
nances, multiple multiturn extractions are possible to
repeatedly split the beam core left over previous extrac-
tions. Two approaches have been presented, combining
the necessary tune variation to sweep periodically
through the chosen resonance, together with either an
increase of � (to compensate for the shrinking of the
beam core) or repeated kicks used to blow up the beam
core. Both techniques seem to work well.
024001-9
Last but not least, it is important to stress that the novel
approach presented here, and applied to various types of
multiturn extractions, can be used also in the case of
multiturn injection by simply exploiting the symmetry
under time reversal of the models used in the numerical
simulations presented in this paper.

Further studies are in progress to quantify a number of
issues such as the condition for the capture process to be
adiabatic, the optimization of the tune variation, and the
dependence of the extracted beam parameters on the
strength of sextupole and octupole magnets.1

APPENDIX A: ONE-TURN TRANSFER MAPS

The 4D one-turn transfer map of a circular machine
including localized sources of nonlinearities can be writ-
ten as 0

BB@
x
x0

y
y0

1
CCA
n�1

� M

0
BB@

x
x0 � fx�x; y�

y
y0 � fy�x; y�

1
CCA
n

; (A1)

where �x; x0; y; y0� is a vector in the 4D phase space rep-
resenting the particle’s coordinates at the entrance of the
magnetic elements generating nonlinear fields. M is a 4	
4 matrix in block diagonal form, namely,

M �

�
Mx 0
0 My

�
; (A2)

with Mx;y being 2	 2 matrices. This form is certainly
valid in case no sources of linear coupling, such as skew
quadrupoles or solenoids, are present in the machine.
Otherwise, it is always possible to decouple the linear
matrix by using the formalism presented in Ref. [12].

The functions fx, fy are related to the nonlinearities in
the machine. By using the single-kick approximation, it is
possible to show that [9]

fx�x; y� � <
Xm
n�2

Kn � iJn
n!

�x� iy�n;

fy�x; y� � =
Xm
n�2

Kn � iJn
n!

�x� iy�n;
(A3)

where the coefficientsKn, Jn, respectively, the normal and
skew normalized integrated multipole strengths, are de-
fined by

Kn �
1

B0!

@nBy
@xn

‘; Jn �
1

B0!
@nBx
@xn

‘; (A4)

with m is the order of the highest multipole considered.
In Eq. (A4), B0! stands for the magnetic rigidity of the

reference particle, Bx, By are the transverse components
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FIG. 12. (Color) Beam distribution during the multiple multiturn extraction for the fourth-order resonance (8:1	 105 initial
conditions). The initial distribution is a Gaussian centered on zero, with standard deviation � � 0:07. The value of � is changed
according to the curve shown in Fig. 11.

PRST-AB 7 MULTITURN EXTRACTION AND INJECTION BY MEANS . . . 024001 (2004)

024001-10 024001-10



       Beam distribution after     0 turns

-0.7

-0.42

-0.14

0.14

0.42

0.7

-0.7 -0.42 -0.14 0.14 0.42 0.7
0

200

400

600

800

1000

1200

1400

 X

X
’

(a)

^

^

       Beam distribution after 20000 turns

-0.7

-0.42

-0.14

0.14

0.42

0.7

-0.7 -0.42 -0.14 0.14 0.42 0.7
 X

X
’

(b)

^

^

       Beam distribution after 20004 turns

-0.7

-0.42

-0.14

0.14

0.42

0.7

-0.7 -0.42 -0.14 0.14 0.42 0.7
0

200

400

600

800

1000

1200

1400

 X

X
’

(c)

^

^

       Beam distribution after 21000 turns

-0.7

-0.42

-0.14

0.14

0.42

0.7

-0.7 -0.42 -0.14 0.14 0.42 0.7
 X

X
’

(d)

^

^

       Beam distribution after 22000 turns

-0.7

-0.42

-0.14

0.14

0.42

0.7

-0.7 -0.42 -0.14 0.14 0.42 0.7
0

200

400

600

800

1000

1200

1400

 X

X
’

(e)

^

^

       Beam distribution after 42000 turns

-0.7

-0.42

-0.14

0.14

0.42

0.7

-0.7 -0.42 -0.14 0.14 0.42 0.7
 X

X
’

(f)

^

^

       Beam distribution after 42004 turns

-0.7

-0.42

-0.14

0.14

0.42

0.7

-0.7 -0.42 -0.14 0.14 0.42 0.7
0

200

400

600

800

1000

1200

1400

2003/03/01   01.32 X

X
’

(g)

^

^

       Beam distribution after 43000 turns

-0.7

-0.42

-0.14

0.14

0.42

0.7

-0.7 -0.42 -0.14 0.14 0.42 0.7
2003/03/01   01.33 X

X
’

(h)

^

^

FIG. 13. (Color) Beam distribution during the multiple multiturn extraction for the fourth-order resonance (8:1	 105 initial
conditions). The initial distribution is a Gaussian centered on zero, with standard deviation � � 0:07. � � �1:5, but the beam size
is increased by repeated kicks after each extraction.
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of the magnetic field, and ‘ is the physical length of the
magnetic element. In the following it will be assumed that
Jn � 0 for n � 2.

It is customary to change coordinates from physical to
Courant-Snyder ones [11]. This is obtained by means of
the linear, symplectic transformation:�

ẑz
ẑz0

�
� T�1

z

�
z
z0

�
; Tz �

� ������
%z

p
0

�
&z����
%z

p 1����
%z

p

�
; (A5)

where z stands for x or y and the quantities &z, %z are the
Twiss parameters [11] at the location of the nonlinear
elements. The general 4D normalization matrix T is in
block diagonal form,

T �

�
Tx 0
0 Ty

�
: (A6)

By taking into account that

R�!x;!y� � T�1MT;

R�!x;!y� �

�
R�!x� 0

0 R�!y�

�
;

(A7)

with R�!z� a 2	 2 rotation matrix,

R�!z� �

�
cos!z sin!z

� sin!z cos!z

�
; !z � 2��z; (A8)

the mapping (A1) reads in the new coordinates0
BB@
x̂x
x̂x0

ŷy
ŷy0

1
CCA
n�1

� R�!x;!y�

0
BB@

x̂x
x̂x0 �

������
%x

p
fx�

������
%x

p
x̂x;

������
%y

p
ŷy�

ŷy
ŷy0 �

������
%y

p
fy�

������
%x

p
x̂x;

������
%y

p
ŷy�

1
CCA
n

:

(A9)

The general expression for the nonlinear kicks in the new
coordinates can be obtained by using expression (A3). In
the computations presented in this paper only the first two
terms, corresponding to the sextupolar and octupolar
components, are taken into account:

n � m � 2

� ������
%x

p
fx�

������
%x

p
x̂x;

������
%y

p
ŷy� � K2

2 %
3=2
x �x̂x2 � ŷy2�;������

%y
p

fy�
������
%x

p
x̂x;

������
%y

p
ŷy� � �K2%

3=2
x x̂x ŷy;

(A10)

n � m � 3

�
fx�

������
%x

p
x̂x;

������
%y

p
ŷy� � K3

6 %
2
x�x̂x3 � 3x̂xŷy2�;

fy�
������
%x

p
x̂x;

������
%y

p
ŷy� � � K3

6 %
2
x�2ŷy3 � 3x̂x2ŷy�;

(A11)

where  is a dimensionless parameter given by  �
%y=%x.

The next step consists of rescaling the Courant-Snyder
coordinates to set the coefficient of the quadratic term in
(A9) equal to 1. By means of a nonsymplectic trans-
formation it is possible to define new dimensionless
coordinates �X̂X; X̂X0; ŶY; ŶY0� � '�x̂x; x̂x0; ŷy; ŷy0� such that the
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one-turn map can be recast in the following form:

0
BB@
X̂X
X̂X0

ŶY
ŶY0

1
CCA
n�1

�R�!x;!y�

0
BBB@

X̂X
X̂X0 �'

������
%x

p
fx�

������
%x

p X̂X
' ;

������
%y

p ŶY
'�

ŶY
ŶY0 �'

������
%y

p
fy�

������
%x

p X̂X
' ;

������
%y

p ŶY
'�:

1
CCCA
n

;

(A12)

With the choice ' � 1=2K2 %
3=2
x one obtains the follow-

ing expression for the nonlinear kicks in Eq. (A12):

n � m � 2

(
'

������
%x

p
fx�

������
%x

p X̂X
' ;

������
%y

p ŶY
'� � X̂X2 � ŶY2;

'
������
%y

p
fy�

������
%x

p X̂X
' ;

������
%y

p ŶY
'� � �2X̂X ŶY;

(A13)

n � m

� 3

(
'

������
%x

p
fx�

������
%x

p X̂X
' ;

������
%y

p ŶY
'� � ��X̂X3 � 3X̂XŶY2�;

'
������
%y

p
fy�

������
%x

p X̂X
' ;

������
%y

p ŶY
'� � ���2ŶY3 � 3X̂X2ŶY�;

(A14)

with

� �
2

3

K3

K2
2

1

%x
: (A15)

The expression of higher-order multipoles in the final
coordinates can be obtained easily by means of the fol-
lowing substitution:

Kn � iJn
n!

!
2n�1

Kn�1
2 %3�n�1�=2

x

Kn � iJn
n!

: (A16)

APPENDIX B: FIXED POINTS

In this section some theorems concerning fixed points
of a special class of 2D symplectic maps derived in
Ref. [13] will be reported. They are based on results
discussed in Refs. [14,15].

A symplectic map F of R2n is called reversible if it is
the product of two involutions, namely,

F � I1 � I2 with I2
1 � I2

2 � I; (B1)

where I is the identity matrix in R2n. Such a factorization
imposes constraints on the existence and location of the
fixed points and can be used to simplify the problem of
their computation. A point x is called a fixed point of F if
it satisfies the equation

F �x� � x: (B2)

Similarly, fixed points of order m, or m cycles, can be
defined as the fixed points of the mth iterate of the map
024001-12
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F �m�x� � x; where F�m�x� � F�F�F�� � �F|��������{z��������}
m times

�x� � � ����:

(B3)

One can prove that [13].
Theorem 1.—Given a symplectic map F of R2n such

that F � I1 � I2 with I1; I2 two involutions, if x is a
point of R2n satisfying

�
I1�x� � x;

I2�F�m�x�� � F�m�x�;
(B4)

then F�2m�1�x� � x.
Similarly, if x is a solution of one of the two systems

�
I1�x� � x;

I1�F�m�x�� � F�m�x�;

�
I2�x� � x;

I2�F�m�x�� � F�m�x�;
(B5)

then F�2m�x� � x.
In the case of 2D one-turn maps of the form described

in Appendix A, it is easy to show that they can be
decomposed into two involutions, with I1 and I2 being
a linear and a nonlinear transformation, respectively,

I1 �

�
cos!x � sin!x

� sin!x � cos!x

�
;

I2�x; x
0� �

�
x

�x0 � Pr�x�

�
; (B6)

where Pr�x� is a polynomial of order r representing the
effect of the kicks due to the nonlinear elements. It is
easily seen that I1 represents a reflection about the line
x0 � �x tan!x=2, the locus of fixed points of I1.
Similarly, the locus of fixed points of I2 is given by curve
x0 � �1=2Pr�x�.

Under these hypotheses it is possible to prove that the
following stronger results hold [13].

Theorem 2.—Let F be a planar symplectic map factor-
ized into involutions I1; I2 of the form given in Eq. (B6).
Then x is a fixed point of F iff it satisfies�

I1�x� � x;
I2�x� � x:

(B7)

The geometrical interpretation of this theorem is that the
fixed points of period one are exactly the intersections of
the loci of the fixed points of the two transformations
I1; I2 into which the map F is decomposed.

A similar result holds for the fixed points of F�2.
Theorem 3.—Let F be a planar symplectic map factor-

ized into involutions I1; I2 of the form given in Eq. (B6).
Then x is a fixed point of F�2 iff it fulfils the following
condition:
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�
I2�x� � x;

I2�F�x�� � F�x�:
(B8)

Condition (B8) means that if both the initial point x and
its image under F belong to the locus of the fixed points of
I2, then x is a fixed point of F�2. However, the action of F
on a fixed point of I2 is simply a reflection about the fixed
line of I1. Therefore, provided trivial solutions, i.e., fixed
points of F are disregarded, for a fixed point of period two
to exist the locus of fixed points of I2 must contain at
least one point together with its reflection about the fixed
line of I1. It is easily seen that this can never be the case
for maps of the form (2).

To overcome this difficulty the initial map has to be
modified to break the symmetry and the factorization
into the two involutions I1 and I2. This can be obtained
by separating the two sources of nonlinearities, i.e., sex-
tupole and octupole magnets, hence inserting a linear
matrix between the two nonlinear kicks, as it is the case
with the new map (3).
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