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By numerically solving the relativistic equations of motion of a single electron in laser fields modeled
by those of a Gaussian beam, we demonstrate electron capture by, reflection from, and transmission
through the beam. In modeling the fields, terms of order up to �5, where � is the diffraction angle, are
retained. All cases of capture are accompanied by energy gain that may reach a few GeV, from fields of
present-day intensities. Reflection and transmission, on the other hand, result sometimes in no gain or
even in a loss of energy. It is shown that a laboratory static magnetic field may be used to eject a
captured electron, a process that sometimes results in even more energy gain. For example, a 2.5 T
uniform magnetic field suffices to eject a 3.633 MeV electron injected at 6� to the axis of a linearly
polarized beam of a 10 PW power output and aimed at a point near the focus. Such an electron gains
1128 MeV from the laser field alone. However, it emerges with a 1230 MeV net energy gain under the
additional action of the small magnetic field.
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ing the intensity parameter in terms of the laser power
output in the important calculations of the present paper.

In Sec. II the electron dynamics in a plane wave is
briefly reviewed. This is followed in Sec. III by a short
I. INTRODUCTION

Recent advances in the technology of intense laser
fields [1–4] continue to motivate research efforts into
the issue of electron acceleration [5–14], aiming at the
realization of a high energy gain over a short distance of
interaction [15,16]. Wang and co-workers [7,10] have re-
cently demonstrated the phenomenon of electron capture,
accompanied by energy gain, in numerical simulations
modeling the laser fields by those of a lowest-order
Gaussian beam. They have also investigated variation
of the maximum energy gain with the various beam
parameters and initial conditions on the electron injec-
tion. Issues of similar nature have also been the subject of
a recent Letter [17].

A few questions arise in this context. We would like to
know in what ways the electron energy gain may be
altered if terms of higher order in the diffraction angle
are included when the fields of the beam are modeled, and
whether an electron that has been captured can be easily
extracted from the beam. It is also of interest to know
whether such an electron would lose part or all of its
energy gain from interaction with such fields, once it is
extracted. Furthermore, it would be quite interesting to
know if aiming the electron right at the focus, where the
fields are believed to be the strongest, will always result in
the highest possible energy gain.

These issues have been addressed by two of us in a
recent Letter [18] in which the tightly focused laser beam
has been accurately modeled. In that model, however, the
maximal laser intensity was kept the same for all laser
spot sizes w0 employed. Obviously, high w0 values re-
quire high laser powers prior to focusing and, hence,
some of the relevant results may be considered of little
practical utility. We remove this shortcoming by express-
1098-4402=02=5(10)=101301(14)$20.00 
In addition, we give a detailed study of the model used
including an outline of the derivation and a discussion of
the fields. Extraction of the electron from the interaction
region near the beam focus, using a suitably applied
uniform magnetic field, has been shown in this Letter
to be accompanied by the loss of part of the energy
gained. Here, we give an explicit example in which the
converse is true, as well, depending upon the size of the
region over which the dc magnetic field is applied.

This paper presents results of numerical investigations
of the dynamics, mainly trajectory and energy gain, of a
single electron injected at a finite angle to the direction of
propagation of a Gaussian laser beam and aimed at points
on the beam axis within a few Rayleigh lengths on either
side of the stationary beam focus. The paper tackles
several issues of interest in this field, including the dem-
onstration of reflection, transmission, and, more impor-
tantly, capture and violent acceleration to GeVenergy, all
when corrections to the fields include terms of the order of
5 in the diffraction angle. Many examples are presented
in this paper which constitute ample evidence that elec-
tron acceleration, from a few MeV to several GeV, is
possible using present-day laser field intensities. Energy
gain is found to result, with varying magnitudes, in
situations corresponding to reflection, transmission, and
capture. While capture always results in gain, reflection
and transmission accompanied by gain are less common.
It will be demonstrated that a small static magnetic field,
applied in the direction of the main laser magnetic field
component, is sufficient to give the electron a little nudge
and eject it out of the more intense regions of the beam.
The gain drops or increases somewhat, as expected, at the
end of this process due to Compton collisions suffered by
the electron.
2002 The American Physical Society 101301-1
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FIG. 1. (Color) (a) Geometry of the Gaussian beam. (b) A
schematic diagram of the electron motion.
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discussion of the fields of a Gaussian beam including
higher-order corrections. Details of the analytic calcula-
tion leading to the fields will be relegated to the
Appendix. We start Sec. IV by explaining our approach
in the investigations to follow. The issue of injection into
points on the beam axis on both sides of the focus will be
taken up next, and inclusion of higher-order terms in
modeling the fields is finally shown to estimate the energy
gain more reliably. In Sec. V we show, via an example,
how an appropriately applied uniform magnetic field may
be used to extract a captured electron while increasing its
energy gain by about 9%. In Sec. VI the energy gain
dependence upon the laser frequency variations is dis-
cussed. Finally our conclusions will be given in Sec. VII.

II. THE PLANE-WAVE TREATMENT

Our terminology will be introduced in this section,
together with the electron-field configuration and a brief
review of the electron interaction with the fields of a plane
wave [19–22]. Let m and �e be the mass and charge of
the electron, respectively. We will consider electron in-
jection at an angle �i relative to the propagation direction
k of the linearly polarized laser beam. The direction of
polarization will be taken along x in the system of coor-
dinates shown in Fig. 1.Without any loss of generality, the
initial direction of the electron motion will be taken in
the xz plane, henceforth to be referred to as the (k;E)
plane. In other words, the initial velocity vector will be

�0 � �0�îi sin�i � k̂k cos�i�; (1)

where�0 is the initial speed normalized by c, the speed of
light in vacuum. We use îi, ĵj, and k̂k to denote unit vectors
in the positive x, y, and z directions, respectively. In this
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section, the electron will be initially aimed at the origin
of coordinates from the initial position denoted by r0
relative to the same coordinate origin.

In general, the electron relativistic dynamics will be
discussed in terms of an energy-momentum 4-vector
�E=c; p�, where the energy is E � �mc2 and the momen-
tum is p � �mc�, with the Lorentz factor given by � �
�1� �2��1=2, and � is the velocity scaled by c.
Describing the laser beam fields in terms of a transverse
vector potential A���, the electron trajectory will be
given, as a function of the plane-wave phase � � !t�
kz, by the position vector [21,22]
r��� � r0 �
�
2�

8<
:
Z �

�0

"
�0mc�0 �

e
cA��0�

�0mc�1� k̂k � �0�
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�0

2
412 �eA��0�
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where � is the radiation field wavelength. Furthermore,

the particle’s energy may be given by

E��� � �0mc
2

�
1�

1
2 �
eA���
�0mc2

�2 � �eA���
�0mc2

� � �0

�1� k̂k � �0�

�
: (3)

In Eqs. (2) and (3), and throughout this work, a zero
subscript will mean an initial value at t � 0 of the sub-
scripted quantity.

Consider a plane-wave representation of the field in
terms of the linearly polarized vector potential

A��� � îiA0 cos�: (4)

Throughout this work, the laser field peak intensity, I0,
will be given in terms of the dimensionless parameter
q � eA0=�mc2�, where I0�2 � 1:375	 1018q2, when I0 is
expressed in Wcm�2 and � in �m. An example electron
trajectory, calculated using Eq. (2), is shown in Fig. 2(a).
The electron-field interaction commences at t � 0 at the
point r0 � �z0 tan�i; 0; z0� and motion is followed for five
field cycles. Here, one field cycle is defined as a change of
2� in �. In Fig. 2(b) the energy gain, defined as

energy gain � E��� � �0mc2 � ��� �0�mc2 (5)

is shown for the same example. Note, for now, that
according to this simple picture the electron moves con-
tinuously inside the laser beam; i.e., it is captured.
Extraction of the electron out of the beam is not theoreti-
cally well defined. In addition to that the electron
is shown to exchange a tremendous amount of energy
with the field. Any energy gain, however, is temporary
[21–23].
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FIG. 2. (a) Electron trajectory in a plane wave field, calculated on the basis of Eq. (2). (b) Electron energy gain during interaction
with the same field, calculated using Eqs. (3) and (5). The beam parameters are � � 1:056 �m and q � 100. The electron
parameters are �0 � 20, �i � 10�, and z0 � �3 mm. Duration of interaction corresponds to five field cycles, or �� � 10�.
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We conclude this section by observing that, while it is
analytically tractable, and hence, it allows one to build a
clear intuitive picture, the plane-wave treatment is only
approximate. Among its virtues also is the fact that it
helps one to design suitable numerical codes that need
ultimately be used in precise calculations that model the
fields more realistically.

III. THE FIELDS NEAR A GAUSSIAN BEAM
FOCUS

Since we intend to investigate the electron dynamics in
the relativistic regime of laser intensities, and because the
required high intensity-laser fields can only be realized
101301-3
by focusing over small dimensions, a detailed knowledge
of the laser electric and magnetic fields near the focus of
the Gaussian beam is essential [24–28].

In what follows, the beam axis is taken along z, with its
propagation direction along �z and stationary focus at
z � 0. The beam cross section at focus is circular and
has a radius w0; a cross section at an arbitrary z is
also circular with radius w�z� � w0

������������������������
1� �z=zr�

2
p

.
Furthermore, zr � kw20=2 is the Rayleigh length, and � �
w0=zr is the diffraction angle. Now, letting � � x=w0,
� � y=w0, and  � z=zr, the electric components of the
laser field associated with such a beam, to order �5, are
[24,25,27] (see also the Appendix)
Ex � E
�
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�
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4
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4
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Similarly, the magnetic field components are given by

Bx � 0; (9)
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In Eqs. (6)–(11), we have taken
E � E0
w0
w
g��� exp

�
�
r2

w2

�
; (12)

Sn �
�
w0
w

�
n
sin� � n G�; (13)
Cn �
�
w0
w

�
n
cos� � n G�: (14)

Furthermore, k � !=c, kA0 � E0, r2 � x2 � y2, and " �
r=w0. For a continuous beam with a stationary focus we
101301-3



FIG. 3. Contour maps of the electric components of the laser
field of a Gaussian beam over a square 30 �m on a side,
centered at the beam focus and extending in the xy plane.
The beam parameters are w0 � 5 �m and � � 1:056 �m. In
(a)–(c) the fields are given at !t � 0, and in (d)–(f) at !t �
�=2. Note that positive and negative values are distinguished
by the level of shading, dark means negative values and bright
positive.

FIG. 4. Same as Fig. 3, but for the magnetic components. (a)
and (b) give the fields at !t � 0, and (c) and (d) at !t � �=2.
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will take g��� � 1 in this work. Some of the details of the
calculation leading to Eqs. (6)–(11) are collected in the
Appendix. See also Fig. 1(a). These equations were de-
rived from a vector potential polarized along x, with an
amplitude A0, and a frequency!. The remaining symbols
in Eqs. (6)–(11) have the following definitions:

 �  0 �  P �  R �  G; (15)

 P � !t� kz; (16)

 G � tan�1 ; (17)

 R �
kr2

2R
; (18)
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R�z� � z�
z2r
z
: (19)

Note that  0 is a constant,  P � � is the plane-wave
phase,  G is the Guoy phase associated with the fact that
a Gaussian beam undergoes a total phase change of � as z
changes from �1 to �1,  R is the phase associated with
the curvature of the wave fronts, and that R�z� is the
radius of a curvature of a wave front intersecting the
beam axis at the coordinate z. The fields given above
satisfy Maxwell’s equations r �E � 0 � r �B, plus
terms of order �6 [23].

Retention of terms of order �2 and higher in the field
equations brings about the small, but nonzero, component
Ey, besides corrections of the same order of magnitude to
the terms already present to order �. It will be shown that
these terms and corrections play an important role in the
electron capture and acceleration to high energy.

In Figs. 3 and 4 we show contour maps of the electric
and magnetic fields in a plane perpendicular to the beam
axis and crossing it at the focus. The maps are snapshots
taken at t � 0 and, later, at t � �=�2!�. Bright spots
correspond to positive values and dark areas represent
negative ones. So an, otherwise free, electron will feel a
force of attraction and, hence, be accelerated in dark
regions and vice versa.

Needless to say that the fields are rapidly changing
functions of the time and so are the field strength and
sign at any one point. Moreover, where the electron will
be at any point in time depends also upon its injection
parameters, namely, the initial position (x0; 0; z0),
the initial injection energy �0, and the initial injection
101301-4



FIG. 5. Contour plots of the Ex and Ez components over part
of the polarization plane. These are snapshots corresponding to
!t � 0 and for field parameters the same as in Fig. 3.
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angle �i. Other parameters that play a role in determining
the ensuing dynamics include w0, q, and  0.

Roughly speaking, since Ex and By are the largest field
components, the ensuing electron motion will most
strongly be influenced by them. For the high field inten-
sities of interest to us in this work, q 1, motion out of
the (k;E) plane turns out to be small. So, only projection
of the electron trajectory onto this plane will be consid-
ered. On the other hand, Ex and Ez will play the biggest
part in producing the energy gain we are after. Figure 5
101301-5
shows a contour plot of these field components in a
portion of the (k;E) plane around the focus. Note that,
if aimed sideways at an angle to the beam axis and
especially towards a point on either side of the focus,
the electron samples parts of the beam lacking symmetry.
This increases its chances of gaining energy.

IV. ELECTRON DYNAMICS IN A GAUSSIAN
LASER BEAM

A. General considerations

Dynamics of the electron, in the fields given above, is
governed by the equations

dp
dt

� �e�E� �	 B�; (20)

dE
dt

� �ec� �E: (21)

Any energy gain or loss takes place at a time rate
governed by Eq. (21), which now consists of three con-
tributions, one from each component of E. On the other
hand, � results from integration of the force Eq. (20)
which, in turn, involves contributions from all three
electric field force components, as well as both compo-
nents of the �	B or ponderomotive force. Relative
magnitude of the contribution to the energy gain, or
acceleration, from each of these five force components
may be estimated with the help of Eqs. (6)–(11).

Complexity of the equations of motion leaves little
room for further analytic manipulation and help in draw-
ing an intuitive picture.We will therefore resort to solving
the equations numerically throughout this work.

We illustrate the general procedure and give prelimi-
nary comments on some of the results, via the examples
shown in Fig. 6. In this figure trajectories, momentum
transfers, and energy gains are shown for three sets of
parameters. In Fig. 6(a) parts of the actual trajectories in
the full fields are given, along with the spatial extension
of the beam boundaries as background. Strictly speaking,
it is not accurate to talk about a boundary for a laser
beam, but for definiteness, we will adopt the curves in the
(k;E) plane of the functions x � �w�z� as giving the loci
of points of intersection of a beam surface with that plane.
On those lines the field intensity falls to e�2 of its
maximum value on the beam axis. Typically, an electron
trajectory starts from the injection point with coordinates
�z0; x0� � ��5;�5 tan�i� mm, heads towards the focus,
interacts with the beam and gets reflected, captured, or
transmitted. Note that, in the immediate neighborhood of
the focus, the electron trajectory has features similar to
those of the plane-wave case displayed in Fig. 2(a). This
should come as no surprise, as the wave fronts in that
region of a Gaussian beam are almost planar. According
to Eq. (19) the radius of curvature R! 1 as z! 0.
101301-5



0.4 0.2 0 0.2 0.4 0.6
z (mm)

50

0

50

100

150

∆p
z

5

0

5

10

∆p
x

0

20

40

60

80
d 

(µ
m

)
γ0 = 15
γ0 = 5
γ0 = 22

20

10

0

10

20

30

x 
(µ

m
)

0.4 0.2 0 0.2 0.4 0.6
z (mm)

20

0

20

40

60
G

ai
n 

(M
eV

)
0.5

0

0.5

1

B
y/E

0

0.02

0.01

0

0.01

0.02

E
z/E

0

0.5

0

0.5

1

E
x/E

0(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

axis

FIG. 6. (Color) Examples illustrating the cases of reflection (green), capture (red), and
transmission (black). Only a small region around the beam focus is shown in each case. (a)
The trajectories. (b) The quantity d defined by Eq. (22). (c) The electron x momentum transfer
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To distinguish between capture, on the one hand, and
reflection and transmission, on the other, we define a
capture parameter, d, by

d � jxj � w�z�: (22)

Obviously, the electron will be captured by the beam
during that part of the motion for which d < 0; otherwise
it will be either reflected or transmitted. What we have
decided to label as the beam boundary are points for
which d � 0 or points at which the field amplitude in
Eq. (12) falls to 1=e of its value on the beam axis.
Figure 6(a) demonstrates all three cases visually,
101301-6
and 6(b) lends more support to the distinctions made
between them on the basis of the simple test just de-
scribed. More on this issue may be found in Sec. IV D
below.

According to the quantum mechanical particle pic-
ture, three Compton processes compete, depending
upon the field intensity range, in accounting for the
electron-field interaction. Those are normal, nonlinear,
and stimulated Compton scattering. In a classical treat-
ment one may distinguish only between elastic and
inelastic processes, by investigating the momentum
transfers. In Figs. 6(c) and 6(d) such transfers are shown
101301-6
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for the electrons whose trajectories are given in 6(a). The
figures show a lot of momentum exchange between the
electron and the field while the former is in the immediate
vicinity, and a little to the right, of the focus. A little more
momentum transfer takes place far away from the focus.
Thus the subsequent electron acceleration is a result of
momentum transferred to the electron from the radiation
field over a short time, i.e., in the nature of a strong
impulse.

Figures 6(e)–6(g) show plots of the field components
Ex, Ez, and By sensed by the electron along its trajectory
for the examples considered above. Note first that Ez is
typically some 2 orders of magnitude smaller than Ex and
that Ex � By, in the Gaussian system of units we are
using. It is not hard to notice the lack of symmetry in
the field oscillations (not to be confused with the field
cycles). Thus interaction of the electron with a negative
portion of, say Ex, results in energy gain. Subsequent
interaction with the following positive portion does
not result in total loss of the gained energy, and so on.
This may be seen by studying 6(e) and 6(h) together.
Furthermore, by studying a typical trajectory portion
given in Fig. 6(a) together with the corresponding fields
in 6(e)–6(g) one can easily understand the correlation
between, say, the turning points on a typical trajectory,
and the points at which, say Ex, ceases to increase (or
decrease), and so on.

Finally, in Fig. 6(h) the electron energy gain, defined
by Eq. (5) and calculated numerically here, is shown. We
stress that the examples shown in Fig. 6 have been care-
fully chosen for illustrative purposes and thus the energy
gains in 6(h) are very modest. More impressive results
will be shown shortly.
values of s, and (c) a magnified portion of (b) around the laser
beam focus. The laser wavelength is � � 1:056 �m. Note that,
in this configuration, x0 � ��s� z0� tan�i. See Fig. 1(a). The
interaction time, in all cases, is such that !t � �	 105 and
terms of the order of 5 in the diffraction angle have been used
to model the fields. In (b) and (c) the dark lines mark the beam
boundaries. The legends in (b) apply to (c) as well.
B. Injection on both sides of the focus

In all cases considered so far, the electron was aimed
directly at the beam focus (0,0,0). This has been done
because the intention was to let the electron sample the
regions of highest field intensity. It turns out that this may
not lead to the best energy gain possible. Because of other
parameters in the configuration, the focus, too, may
present the electron with strong, but symmetric, acceler-
ating fields over small dimensions.Whereas on both sides,
the fields occupy a much larger volume and the electron-
field interactions take place over longer times. Besides, in
that region a full field cycle consists of two asymmetric
half cycles. Thus energy gained during interaction with
one-half of a field cycle does not get completely lost
during interaction with the following half cycle.

Figure 7 shows the variation of the energy gain with the
coordinate z value, denoted by s, of the point on the axis
towards which the electron is initially aimed. In all cases
the injection angle is fixed at �i � 5�, and the z coordi-
nate of the injection point is fixed at z0 � �3 mm, while
101301-7
the x coordinate of that point is calculated from x0 �
��s� z0� tan�i. The highest gain found, for the chosen
parameter set, is about 1.6 GeV. Note that the gain goes
down as one moves the target point farther out and away
from the focus, where the intensity drops markedly in the
downstream regions of the beam. Out of the trajectories,
shown in Figs. 8(a) and 8(b), and selected from among
the cases displayed in 7(a), only one corresponds to a
weakly captured electron, while the others are reflected.
As already noted above, this high gain is attributed to the
fact that, along each trajectory, the electron samples
asymmetric regions of the beam, in addition to encoun-
tering stronger fields there compared to points far away
from the focus. Conversely, when aimed at points like the
ones immediately to the right of the focus in this
101301-7
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FIG. 8. (Color) Energy gain vs the beam waist radius w0 with
the laser output power fixed. Injection is into the beam focus
and  0 � 0. Note that in (b) we zoom in on a small part of (a)
and that the inset in (b) shows yet a smaller portion of the same
data. The legends and parameter values in (a) apply to the other
figures as well.
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example, the electron acquires little or no gain at all. We
have examined the fields sensed by the electron (not
shown here) for a number of such points and have found
that they exhibit high symmetry, in the sense described
above.

A laser system is often characterized by its output
power P. For the fields given by Eqs. (6)–(11) the power
may be calculated by integrating the time-averaged
Poynting vector over a plane through the beam focus
and perpendicular to its axis. Dropping terms in the result
of order �6 and smaller, one gets

P
TW� �
�w20
2

I0

�
1�

�2

4
�
�4

8

�
;

� 0:0216
�
qw0
�

�
2
�
1�

�2

4
�
�4

8

�
; (23)

where I0 � I�0; 0; 0� � cE20=8� is the peak intensity (at
the focus). Equation (23) clearly shows that for a fixed
laser output power, the peak intensity is inversely propor-
tional to the square of the beam waist radius, or equiv-
101301-8
alently q is inversely proportional to w0. The need to
focus the beam over small spatial dimensions raises ques-
tions about the modeling of the tightly focused beam in
ascending powers of the diffraction angle. In particular, it
is desirable to know how adequate a certain representation
is. In Fig. 8 we show the energy gain as a function of the
beam radius at focus for three field representations con-
taining terms that go as �N , where � is the diffraction
angle and N � 1; 3; and 5. For the set of parameters
shown, one can easily distinguish between three regions.
In region R1 for which w0 > 15 �m all three representa-
tions yield little net energy gain, as the fields sensed by
the electron in this regime become highly symmetrical,
just like those of a plane wave. In R2, or for 7<w0 <
15 �m, the gain from the representation in terms of fields
containing �5 contributions differs only slightly from the
gain calculated from a representation that stops at �3. In
the region R3, where w0 < 7 �m, the �3 model shows
substantial deviations from that of the �5 model in
many places [see the inset of Fig. 8(b)].

To sum up, for the given parameter set, Fig. 8 has a
number of messages to present. First, In region R1, it
suffices to represent the fields by retaining terms of order
�. Second, terms of up to �3 are sufficient in region R2.
Third, in R3 one has to use terms of order �5. Fourth, a
representation in terms of fields that go only as � is not
reliable for a beam focused to a radius w0 < 15 �m.
Finally, it appears that further corrections, beyond �5,
are needed when focusing is to go below w0 � 4 �m.
C. Beyond the paraxial approximation

This is a good point to investigate the question of
whether retaining terms in the fields of order �3 and
higher makes any difference at all when the electron is
injected into points on both sides of the beam focus. To
this end we have calculated the gain as a function of the
distance s defined above [see Fig. 7(a)], once using fields
up to order �, i.e., those of a lowest-order Gaussian beam,
once with fields of order �3, and another time when the
corrections of up to order �5 are included. This is shown
in Fig. 9, where the general features of the gain vs s=zr
plots look the same as in Fig. 7(a). Obvious differences
also exist (compare, for example, the regions around the
focus in the two figures). As expected, based on
the discussion of Fig. 8, since the value of w0 � 8 �m,
i.e., the regime in question corresponds to region R2, and
the �5 corrections lead to infinitesimal corrections to
the gain.

The most important conclusion to be drawn from Fig. 9
is that the order � terms alone do not adequately describe
a Gaussian beam focused to 8 �m. To better appreciate
this point, note that � � �=�w0. For Fig. 9, this gives ��
1=8�. Viewed as an expansion parameter, this value of �
is not small enough. In other words, for such a small beam
101301-8
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FIG. 10. (Color) Electron energy gain vs the scaled injection
energy. In this case the electron is aimed at a point on the beam
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radius at focus, one ought to include terms of order �3.
Note that inclusion of the �5 field terms does not lead to
appreciable corrections to the results based on the �3 ones.
axis a distance s � zr=5 to the right of the focus. The laser
wavelength is � � 1 �m and the intensity parameters are q�
26:9 (output power 1 PW) and q� 85 (power 10 PW). The other
parameters are w0 � 8 �m, �i � 6�, z0 � �3 mm, and  0 �
0. Fields to order �5 have been used in the calculation. Note that
in (b) we merely zoom in on a small part of (a) and that the
legends in (b) apply to (a) as well.
D. Role of the injection energy

In any scattering event each of several factors plays an
important role in determining the outcome. In the
remainder of this section, the sensitive role played
by the injection energy is considered. On the one hand,
an initially slow electron will not be able to penetrate
the high intensity regions of the beam and may be
reflected with little or no energy gain. On the other
hand, an initially fast electron may pass through
undeviated and gain or lose a small amount of energy.
To be more specific we have plotted the gain vs the
scaled injection energy in Fig. 10, for two different
laser output powers. The situation corresponding to
the peak of each hump shown is obtained when the
electron senses a maximally asymmetric set of fields.
This leads to maximum gain. The opposite happens at
the minima on either side of a particular hump. Figure 10
has another purpose. Based on information derived from
it one is able to determine approximately the range of
injection energies that would result in a desired range of
energy gains. This will be used, for example, in the next
section.

It is desirable to try and derive a criterion or more,
relating the initial injection energy to the laser field
power or intensity, that would enable us to sharply dis-
tinguish between these events. One such criterion [20]
101301-9
may be arrived at by replacing the spot size at
focus, w0, in the expression for the laser output power
given by Eq. (23), with the maximum amplitude of trans-
verse motion in the plane-wave result (2). A second
criterion has recently been stated based on numerical
investigations [10] according to which capture occurs if
the field intensity exceeds the magnitude corresponding
to q � 100. Elsewhere Wang et al. [17] argue that capture
should occur as long as the electron transverse initial
momentum is much less than qmc=

���
2

p
. Equivalently,

Kibble [29] showed, a long time ago, that an electron
injected sideways into the focus of a laser beam will be
reflected as long as its injection kinetic energyK � ��0 �
1�mc2 is small compared to the ponderomotive energy
Up � �eE0�

2=4m!2. Unfortunately, all these criteria ap-
ply, if at all, to injection into the focus and would be valid
only over the extremely small region over which the fields
may be approximately plane wave in character. They are
also rendered useless by the sensitive dependence of the
motion and energy gain on the local phase variations, as
will be demonstrated shortly. Ultimately each one of them
101301-9
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results in a single approximate inequality whose truth
value loses meaning due to the sensitive dependence
upon the phase variations (or oscillations).

The oscillations exhibited in Fig. 10 are a manifesta-
tion of the rapid phase variations in the fields. One ques-
tion that immediately comes to mind is whether the phase
variations play any role in determining the outcome of
any given event, i.e., whether it is going to be one of
reflection, capture, or transmission. Suppose one deter-
mined that a certain injection energy �0 resulted in the
electron being reflected. The question as to when the next
capture event is going to happen, as one increases the
injection energy beyond �0, cannot be answered easily.
This is the case precisely because of the rapid local phase
variations. To illustrate this point, we show in Fig. 11 the
transverse electron coordinate x�, at the end of the inter-
action time, as a function of the initial scaled injection
energy for cases centered on the reflection event of Fig. 6.
As a background, we also show �w� (see caption) calcu-
lated for every value of �0 used, evaluated also at the end
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FIG. 11. (Color) Transverse electron coordinate x� (black
curve), at the end of the interaction time, vs the scaled injection
energy. Shown in red and green, as a background to help in
classifying the events, are the corresponding values of �w�,
where w� is the radius of the beam cross section at the end of
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The range of injection energies in (b) is centered on �0 � 22
shown in Fig. 6. All parameters are the same as in Fig. 6 and
the legends in (a) apply to (b) as well.
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of the interaction time. We adopt the following classifica-
tion scheme for the events

8<
:
x� <�w�; �reflection�;
�w� < x� <w�; �capture�;
x� > w�; �transmission�:

(24)

In Fig. 11(a) two regions may be clearly identified. Over
one region, where roughly �0 < 4, only reflection is ob-
served. Over the other, roughly �0 > 40, all events are of
the transmission type. In between, the local phase varia-
tions seem to play an important role and subdivide the
range 4<�0 < 40 into little islands where all three phe-
nomena alternate. This is made more evident in Fig. 11(b)
where we zoom in on a small part of the mixed region.
Note the sequence of events in Fig. 11(b): reflection !
capture ! transmission ! capture ! reflection. The
whole sequence results when �0 is varied between 21.2
and 22.8 only. Thus, if one is to increase �0 from 21 to 22
in a single step, all the intervening capture and trans-
mission events will be missed. In the data used to produce
Fig. 11(b), �0 is fine-tuned in steps of size 0.001. Thus
over the range of incident kinetic energies covered by
Fig. 11(b), the ratio K=Up takes values between 0.808 and
0.803. In other words, although the kinetic energy is still
less than the ponderomotive potential energy over the
whole range, we have subranges of reflection as well as
capture and transmission occurring even more than once.
The message here is that approximate criteria, based on
the ponderomotive model, may be arrived at but they
cannot be relied on to sharply distinguish between the
three phenomena of reflection, capture, and transmission.
One still can safely state that reflection clearly occurs
for K � Up and transmission is sure to result for K 
Up, as has been demonstrated in Fig. 11(a). Finally, note
that setting K � Up results in �0 � 1� q2=4 � 26, i.e.,
at about the middle of the mixed region for the case
at hand.

V. EXTRACTING THE ELECTRON FROM THE
BEAM

We have presented ample evidence for the capture and
subsequent acceleration of low energy electrons by a laser
beam. It has been demonstrated that a net gain results
when the electron is injected into points on the beam axis
on both sides of the focal point. In those regions the fields
are rendered asymmetric by the process of focusing and
impart momentum to the injected electron in the form of
a strong impulse. By contrast, close to the focus the fields
are approximately plane wave in character, and as such
they present the electron with conditions obeying the
Lawson-Woodward theorem [30]. Thus motion there
may be oscillatory and a net gain may not be so great
(consider the case corresponding to �0 � 15 in Fig. 6).
101301-10
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A question that immediately comes to mind concerns
getting the electron out of the beam while it still retains
part or all of the energy gained. Our calculations show
that a magnetic field, pointing in the negative y direction
(into the page), may be used to do just that. The field can
be static or pulsed and it may lead to a decrease or
increase in the energy gain. The idea is that the addition
of the externally applied magnetic field breaks the sym-
metry of the laser fields even further and constitutes a
further violation of the conditions of the Lawson-
Woodward theorem. The net result is that the symmetry
of stimulated emission and absorption gets destroyed and
an extra amount of energy gain (see Fig. 12) or loss [18]
becomes possible.

For our, mainly illustrative, purposes in this work, we
have used a field of strength 2.5 T over a region of width
�z � 8 cm in order to produce the trajectories and gains
shown in Fig. 12, guided by the hindsight gained from
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FIG. 12. (Color) Ejection of a captured electron from the laser
beam. (a) The trajectories, and (b) the energy gain, of an
electron injected with �0 � 8:11 and �i � 6� towards a point
zr=5 to the right of the beam focus from a point with z0 �
�3 mm. The beam parameters are output power P � 10 PW
(q� 86), w0 � 8 �m, � � 1 �m, and  0 � 0. In this example,
a uniform magnetic field of strength Bs � 2:5 T and pointing in
the �y direction (see Fig. 1) is used to eject the electron out of
the beam. The total time of interaction is such that !t � 4�	
105 and Bs is on only in the region 1:7< z < 9:7 cm covered
during the interval 0:1Ti <�t < 0:5Ti, where Ti is the total
interaction time. In (a) the dark black lines mark the beam
boundaries as defined in Sec. IV. The legends in (b) apply to (a)
as well.
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Fig. 10. This static magnetic field is enough to bend the
electron trajectory and get it out, in the sense described
above, nearly 13 cm to the right of the beam focus. As is
evident from Fig. 12(b) the final energy gain is increased
from 1128 to 1230 MeV, or by about 9%, during this
process. This sudden change of direction, facilitated by
the uniform magnetic field, puts the electron abruptly on
a collision course with the many photons that would
otherwise stream by and leave it cruising in the same
direction, apart perhaps from a relatively small number of
stimulated Compton events. A sudden increase in the
electron’s momentum is a result of the many inelastic
Compton scattering events it undergoes as it changes
course and escapes.

We note here that the point of extraction has been
decided, in all of our calculations, simply by letting the
electron interact with the fields for a time long enough for
the net energy gain to cease to change and yet short
enough for the calculation not to take so long to complete.
Recall also that extraction is practically easier far away
from the focal point, where the intensity drops markedly
and concern about damage of the optical elements be-
comes less severe. It is also desirable to keep the distance
over which the magnetic field is applied as small as
possible.

Extraction using a static magnetic field need not be
the only mechanism. In a realistic accelerator design,
a beam of electrons would normally be injected for
acceleration, and the accelerating laser beam can then
be deflected away from the electron beam path by
means of a judiciously placed parabolic mirror [31].
The accelerated electrons may be made to exit through
a hole in the mirror. Needless to say that that calls for
the use of a mirror with a damage threshold high enough
to withstand the high laser intensities we are talking
about.
VI. EFFECT OF A LASER BANDWIDTH

Inherent in our model is the assumption of the fields
being monochromatic. This is, admittedly, an idealiza-
tion, for a tightly focused laser beam tends to develop a
bandwidth. The resulting frequency variations cause sen-
sitive local phase variations which, in turn, affect the
energy gains quite sensitively. To demonstrate this point
we have calculated the gain under conditions the same
as those of Fig. 12 and for a band of frequencies of
width �3 � 1:1996	 1012 Hz centered on 3 � c=� �
3	 1014 Hz. The gain vs frequency is shown in Fig. 13
for the two laser power outputs we have been using all
along. Note that high energy gains occur over bands of
frequencies separated by other bands (gaps) that corre-
spond to little or no gains at all. Furthermore, the gain
bands (gaps) are narrower (wider) the higher the laser
power output, and vice versa.
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VII. SUMMARY AND CONCLUSIONS

Most treatments of laser-electron acceleration that
model the radiation field in terms of plane waves help to
demonstrate acceleration only in principle. Lowest-order
Gaussian beams model the intense fields, that may lead
to sizable electron acceleration, much better, but also
ignore corrections that may otherwise alter the electron
dynamics quite appreciably. We have presented an inves-
tigation based on a representation of the fields of a
Gaussian beam in which up to and including fifth-order
corrections to the various electric and magnetic laser
fields have been retained. The complexity of such fields,
however, renders an analytic solution to the electron’s
equations of motion almost impossible.

We have solved the equations numerically, employing
corrections to the fields of up to the order of 5 in the
diffraction angle. Using our solutions, we have investi-
gated a number of issues concerning the injection, accel-
eration, and extraction of a single electron in the fields of
the linearly polarized Gaussian beam. Our conclusions
may be summarized as follows. It is relatively easy for an
energetic electron to pierce through the small beam focus.
When an electron is injected at an angle to the beam axis,
it mainly passes through with little deviation from the
initial direction of motion and with very little gain or loss
of energy. In some cases, especially when the injection
energy is not great enough, the electron may be captured
or reflected, again with some energy gain. However, if
aimed at a point slightly to the right of the focus, the
electron is captured and accelerated to high energy almost
always. It is much less probable for such an electron to be
reflected or transmitted. Captured electrons may be ex-
tracted from the accelerating beam by application of a
laboratory uniform magnetic field. The added uniform
101301-12
magnetic field may cause the electron to lose or gain
additional energy.
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APPENDIX: FIELDS NEAR THE FOCUS OF A
PULSED GAUSSIAN BEAM

We briefly outline here the derivation of the electric and
magnetic fields near the focus of a pulsed Gaussian beam
following the procedure given by McDonald [27], which
in turn proceeds along lines similar to those of Davis [24]
and Barton and Alexander [25]. The beam axis will be
taken along z and its focus at z � 0.

The fields will be assumed to have harmonic time
dependence that goes like ei!t. On the other hand, we
follow McDonald in employing a pulse-shape function
g���, where � � !t� kz, subject to a restriction to be
encountered below. The fields will be derived from the
linearly polarized vector potential

A � x̂xA0g�����r�ei�; (A1)

where A0 is a constant amplitude. The vector potential
satisfies the following wave equation:

r2A�
1

c2
@2A
@t2

� 0; (A2)

provided the Lorentz gauge condition,

1

c
@5
@t

� r �A � 0; (A3)

is simultaneously satisfied. Direct substitution, followed
by some algebra, leads to

r2�� 2ik
@�
@z

�
1� i

g0

g

�
� 0; (A4)

where g0 stands for a single differentiation with respect to
�. As suggested by McDonald [23], we will look for a
pulse-shape function that satisfies the condition

g0 � g: (A5)

This condition will be used repeatedly in the derivations
to be carried out below. Next, we introduce a rescaling of
the coordinates by letting

� �
x
w0
; � �

y
w0
;  �

z
zr
; zr �

kw20
2
;

(A6)
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where w0 is the radius of the beam waist at focus and zr is
the Rayleigh length. With these transformations Eq. (A4)
becomes

r2?�� 4i
@�
@ 

� �2
@2�

@ 2
� 0; (A7)

where

r2? �
@2

@�2
�

@2

@�2
; � �

w0
zr

�
�
�w0

: (A8)

� is the diffraction angle. Note that �2 is small and may
thus be used as an expansion parameter for a form of
���; �;  �. Hence, we try

� � �0 � �2�2 � �4�4 � � � � : (A9)

With this substitution, Eq. (A7) splits into

r2?�0 � 4i
@�0
@ 

� 0; (A10)

r2?�2 � 4i
@�2
@ 

�
@2�0
@ 2

� 0; (A11)

r2?�4 � 4i
@�4
@ 

�
@2�2
@ 2

� 0; (A12)

..

.

These equations have exact solutions. It can be shown, by
direct substitution, that

�0 � fe�f"
2
; (A13)

�2 �

�
f
2
�
f3"4

4

�
�0; (A14)
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�4 �

�
3f2

8
�
3f4"4

16
�
f5"6

8
�
f6"8

32

�
�0; (A15)

where

f �
i

 � i
�

ei tan
�1 ��������������

1�  2
p ; "2 � �2 � �2: (A16)

�0 leads to the lowest-order Gaussian beam solution of
the fields, �2 is the correction to order �2, and so on.
Assuming that the scalar potential has the same general
structure as that of the vector potential, i.e.,

5� g��� �r�ei�; (A17)

then the Lorentz gauge (A3) yields

@5
@t

� i!5
�
1� i

g0

g

�
� i!5: (A18)

Hence,

5 �
i
k
r �A: (A19)

Finally, the fields may be derived from

E � �ikA�
i
k
r�r �A�; (A20)

B � r	A: (A21)

Dropping all terms of order �6 and higher from Eq. (A9),
we now write
A � x̂xA
�
1� �2

�
f
2
�
f3"4

4

�
��4

�
3f2

8
�
3f4"4

16
�
f5"6

8
�
f6"8

32

��
; (A22)

A � A0g����0e
i�: (A23)

This permits us to write the complex electric field components as

Ex � �ikA
�
1� �2

�
f2�2 �

f3"4

4

�
��4

�
f2

8
�
f3"2

4
�
f4

16
�"4 � 16�2"2� �

f5

8
�"6 � 2�2"4� �

f6"8

32

�
�� � �

�
; (A24)

Ey � �ikA
�
�2
f2���� �4

�
f4"2 �

f5"4

4

�
��� � � �

�
; (A25)

Ez � kA
�
�
f��� �3

�
�
f2

2
� f3"2 �

f4"4

4

�
�� �5

�
�
3f3

8
�
3f4"2

8
�
17f5"4

16
�
3f6"6

8
�
f7"8

32

�
�� � � �

�
: (A26)

On the other hand, the complex magnetic field components are

Bx � 0; (A27)
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By � �ikA
�
1� �2

�
f2"2

2
�
f3"4

4

�
��4

�
�
f2

8
�
f3"2

4
�
5f4"4

16
�
f5"6

4
�
f6"8

32

�
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�
; (A28)

Bz � kA
�
�
f��� �3

�
f2

2
�
f3"2

2
�
f4"4

4

�
�� �5

�
3f3

8
�
3f4"2

8
�
3f5"4

16
�
f6"6

4
�
f7"8

32

�
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�
: (A29)
The real parts of these expressions give rise to the physi-
cal fields, Eqs. (6)–(11), that enter into the calculations.
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