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Beam instability and microbunching due to coherent synchrotron radiation
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A relativistic electron beam moving in a circular orbit in free space can radiate coherently if the wave-
length of the synchrotron radiation exceeds the length of the bunch. In accelerators coherent synchrotron
radiation of the bunch is usually suppressed by the shielding effect of the conducting walls of the vac-
uum chamber. However an initial density fluctuation with a characteristic length much shorter than the
bunch length can radiate coherently. If the radiation reaction force results in the growth of the initial
fluctuation, one can expect an instability which leads to microbunching of the beam and an increased
coherent radiation at short wavelengths. Such an instability is studied theoretically in this paper.
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A relativistic electron beam moving in a circular orbit
in free space can radiate coherently if the wavelength of
the synchrotron radiation exceeds the length of the bunch.
In accelerators coherent radiation of the bunch is usually
suppressed by the screening effect of the conducting walls
of the vacuum chamber [1–3]. The screening effect is
much less effective for short wavelengths, but if the wave-
length is shorter than the length of the bunch (assuming a
smooth beam profile), the coherent radiation becomes ex-
ponentially small. However, an initial density fluctuation
with a characteristic length much shorter than the screen-
ing threshold would radiate coherently. If the radiation
reaction force is directed so that it results in the growth
of the initial fluctuation one can expect an instability that
leads to microbunching of the beam and an increased
coherent radiation at short wavelengths. Experimentally
self-excited coherent microwave radiation has been ob-
served in the National Synchrotron Light Source (NSLS)
VUV ring at Brookhaven National Laboratory [4], at the
Synchrotron Ultraviolet Radiation Facility at the National
Institute of Standards and Technology [5], and at the Ad-
vanced Light Source (ALS) at the Lawrence Berkelely
Laboratory [6]. Microbunching in numerical simulations
of a bunch compressor was reported in Ref. [7] and, more
recently, was found in the simulations of the Linac Coher-
ent Light Source bunch compressor [8].

A beam microwave instability induced by the coherent
radiation of the density fluctuations is studied theoretically
in this paper. Throughout this paper we assume that the
characteristic wavelength of the instability is small com-
pared to the bunch length. In this case, the development of
the instability is governed by the local value of the beam
current and one can simplify consideration neglecting vari-
ation of the beam density within the bunch.

Consider a coasting beam of energy E0 moving in a cir-
cular orbit of radius R in free space. Let us use �d, z�
variables, where d is the relative energy offset of a par-
ticle, d � �E 2 E0��E, z is the longitudinal coordinate
measured relative to the reference particle with the nomi-
nal energy, and s � ct.
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The beam is described by the longitudinal distri-
bution function r�d, z, s� normalized so that dN �
dz

R
r�d, z, s� dd gives the number of particles at point z

within an infinitesimal interval dz. For an instability that
is slow compared to the frequency of the betatron oscil-
lations vb , jvj ø vb , one can use a one-dimensional
Vlasov equation for the distribution function r [9]:
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dz0 dd0 W�z 2 z0�r�d0, z0, s� � 0 , (1)

where h is the slip factor, r0 is the classical electron radius,
and the wake function per unit length of the path W�z 2

z0� describes the interaction with the coherent synchrotron
radiation (CSR). In this equation we omitted the effects
of the incoherent synchrotron radiation damping. Such an
approximation is valid if the growth rate of the instability is
much faster than the inverse synchrotron radiation damp-
ing time.

Neglecting the screening effect of conducting walls we
will use the wake function corresponding to the steady-
state radiation of an ultrarelativistic particle (g ¿ 1) in a
long magnet [10,11],

W�z� �
2

�3R2�1�3

≠

≠z
z21�3 for z . 0 , (2)

and W�z� � 0 for z # 0. Note that unlike the traditional
wake the radiation wakefield is localized in front of the
moving charge. Equation (2) neglects transient effects oc-
curring at the entrance to and exit from the magnet.

We represent the distribution function r as a sum of the
equilibrium distribution function r0 and a perturbation r1,

r � r0�d� 1 r1�d, z, s� , (3)

with r1 ø r0. Note that the equilibrium beam density
(number of particles per unit length) nb is equal to nb �R

r0�d� dd, and the density perturbation n1 is given by
n1�z, s� �

R
r1�d, z, s� dd. Linearizing Eq. (1) and as-

suming that
© 2002 The American Physical Society 054402-1



PRST-AB 5 G. STUPAKOV AND S. HEIFETS 054402 (2002)
r1 � r̂1e2ivs�c1ikz , (4)

where k is the wave number of the perturbation, we find

�v 1 ckhd�r̂1 � i
r0c
g

≠r0

≠d
Z�k�

Z
dd r̂1�d� , (5)

where
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Z `

0
dz W�z �e2ikz
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The complex factor A is

A � 321�3G

µ
2
3

∂
�
p

3 i 2 1� � 1.63i 2 0.94 , (7)

where G is the complete gamma function.
The nontrivial solution of Eq. (5)

r̂1 �
icr0Z�k�

g�v 1 ckhd�
dr0

dd
n̂1 (8)

exists if v satisfies the dispersion relation

1 �
ir0cZ�k�

g

Z dd �dr0�dd�
v 1 ckhd

, (9)

where n̂1 in Eq. (8) is the amplitude of the density per-
turbation, n̂1 �

R
dd r̂1. For the Gaussian distribution

function, r0 � nb�2p�21�2 exp�2d2�2d
2
0�, where d0 is

the rms relative energy spread, we can write Eq. (9) in
the following form:
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where

L �
nbr0

jhjgd
2
0

, (11)

V � v�ckjhjd0, and the upper (lower) sign in Eq. (10)
refers to the case of positive (negative) h. As always
in stability theory, the integral on the right-hand side of
Eq. (9) defines the dispersion function in the upper half
plane of the complex variable v; the values of this function
for Imv , 0 are obtained by analytic continuation of the
integral into the lower half plane.

The plot of the normalized frequency v as a function of
the wave number k obtained by the numerical solution of
Eq. (10) for the positive value of h is shown in Fig. 1.

The imaginary part of the frequency is positive, and the
beam is unstable, for

kR , 2.0L3�2. (12)

The maximum growth rate is reached at k � 0.68L3�2�R
and is equal to �Imv�max � 0.43L3�2cjhjd0�R. Note that
the condition for the instability is easier to satisfy for a
beam with a small energy spread, since L ~ 1�d

2
0 . This

condition does not take into account the finite bunch length,
054402-2
FIG. 1. (Color) The imaginary (Im) and real (Re) parts of the
frequency v as functions of kR�L3�2, for a positive value of h.
For negative values of k, the frequency can be found from the
relation v�2k� � 2v��k� which follows from Eq. (9).

the screening effect of the vacuum chamber walls, and the
beam emittance (see below).

The numerical solution for a negative value of h gives a
higher threshold for the instability kR , 0.92L3�2 with the
maximum growth rate �Imv�max � 0.16L3�2cjhjd0�R at
k � 0.31L3�2�R.

From the dispersion relation Eq. (9) it is easy to obtain
an explicit expression for the frequency of the instability
in the limit of a cold beam, when k ø L3�2�R,

v � c

µ
Ar0k4�3nbh

gR2�3

∂1�2

. (13)

For a bunched beam of length sz with N particles in the
bunch, our results obtained in the coasting-beam approxi-
mation can be applied if the reduced wavelength of the
modulation 1�k is much smaller than the bunch length,
ksz ¿ 1. In this case the instability is controlled by
the local value of the linear particle density nb , with the
maximum value of nb , for a Gaussian bunch, equal to
N�

p
2p sz . Since k is limited from above by the require-

ment (12), the microbunching instability can develop if the
bunch length is large enough

sz * 0.5RL23�2. (14)

Another limitation to the theory is introduced by a finite
aperture b of the beam pipe. Assuming a pipe with a per-
fect conductivity, the CSR is suppressed due to the shield-
ing effect at low harmonics with wave numbers k such
that kR & �pR�2b�3�2 [12]. Hence the instability can
only develop for such values of k that 2.0L3�2 . kR *

�pR�2b�3�2. The requirement that the lower limit for the
parameter kR is smaller than the upper one gives another
necessary condition for the instability:

R
b

& L . (15)

If this inequality is not satisfied, finite energy spread in
the beam suppresses the small-scale instability where the
effect of the screening is not essential. Note that for
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L � R�b the condition (14) is just opposite to the con-
dition of a bunch radiating as a whole.

Although we neglected the transverse emittance of the
beam in our consideration, its effect can be easily estimated
[13]. A betatron oscillation with an amplitude Dx inside
a bending magnet, through the equation dz�ds � x�R,
couples to the longitudinal motion with the amplitude
Dz � cDx�vbR. If this amplitude becomes comparable
to the reduced wavelength of the instability k21, interac-
tion of the particle with the wake weakens. Hence our
results are valid for kcsx�vbR ø 1 where sx is the rms
beam size in the horizontal plane. A more detailed treat-
ment of the effect of the horizontal emittance of the beam
on the instability can be found in Ref. [14].

The above equations were derived for a circular orbit
of the beam when R � const. If this is not the case, one
has to average the wakefield over the beam orbit which
results in an additional factor R��R� in Eq. (2), where R
is the bending radius of the magnets, and �R� � C�2p is
the average radius of the beam orbit of circumference C.
With this modification, instead of Eq. (11), one should use
the following expression for the parameter L:

L �
nbr0R

jhjgd
2
0�R�

, (16)

in conditions Eqs. (14) and (15).
The CSR wake, Eq. (2), is derived assuming that all

particles in the beam move along the same circular orbit of
radius R with the speed of light. During instability, due to
the energy perturbation caused by the wake, the projected
velocity is y � c�1 2 hd� [15]. To find the condition
when the correction to the wake due to this effect can
be neglected, we will require the wake formation time be
much smaller than the oscillation period of the instability:

tform �
R
c

1
�kR�1�3 ø

1
v

. (17)

Using for the characteristic wave number and frequency of
the instability kR � L3�2 and v � L3�2cjhjd0�R yields
the condition of applicability of the theory

n0r0

d0g
ø 1 . (18)

Finally, one has to take into account the effect of the
incoherent synchrotron damping in the ring, which was
neglected in Eq. (1). As a crude estimate of this effect, we
can assume that the beam is unstable if the imaginary part
of the frequency calculated above exceeds the synchrotron
damping time gd . The effective growth rate of the instabil-
ity in this case will be given by the difference Imv 2 gd

(for a detailed treatment of this issue, see Ref. [16]).
We estimated conditions for the instability in the Low

Energy Ring (LER) of the PEP-II accelerator at SLAC, the
ALS at the Berkeley National Laboratory, and the VUV
ring at the National Synchrotron Light Source at BNL. For
the ALS, we use beam parameters for the regime in which
bursts of infrared radiation were observed [6].
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The machine parameters and the calculated values of
L, R�2L3�2, and the ratio R�b are presented in Table I.
For LER the parameter L is smaller than the ratio R�b
so that the condition (15) is not satisfied. For ALS and
the VUV ring the condition (15) is satisfied. The parame-
ter R�2L3�2, which should be compared with the bunch
length [see Eq. (14)], is larger than sz for ALS and VUV
rings. Hence, according to the theory, the CSR instability
is possible in these machines, which may explain obser-
vations of bursts of coherent radiation in the experiment
[4,6].

The above results are valid for the initial linear regime
of the instability, when the amplitude of the perturbation
is small. In the unstable situation, the growth of an initial
perturbation will eventually evolve into a nonlinear regime
where the linear model breaks down. One can expect a
saturation of the instability at some level in the nonlinear
regime. We will estimate here the amplitude of the in-
stability at the saturation using simple order of magnitude
arguments; a more detailed study of the nonlinear regime
is published elsewhere [17].

Let us assume that the perturbation of the beam density
can be written as n̂1e2ivs�c1ikz . The wake that is generated
by this perturbation is

w1 �
Z `

2`
dz0 W�z 2 z0�n1�z0, s�

� iAn̂1
k1�3

R2�3 e2ivs�c1ikz . (19)

The particles in the beam move under the influence of
this wake according to the equation of motion dd�ds �
2r0�gw1. Integrating this equation, one finds

d �
An̂1r0ck1�3

gR2�3v
e2ivs�c1ikz . (20)

When the amplitude of the oscillations becomes compar-
able to the width of the distribution function, d � d0, the
linear theory breaks down, and one can expect a saturation
of the instability. This gives an order of magnitude esti-
mate for the maximum density perturbation

TABLE I. Beam and instability parameters for LER, ALS, and
VUV rings.

Accelerator LER PEP-II ALS VUV NSLS

E (GeV) 3.1 1.5 0.81
h 1.31 3 1023 1.41 3 1023 2.35 3 1022

d0 8.1 3 1024 7.1 3 1024 5.0 3 1024

�R� (m) 350 31.3 8.11
R (m) 13.7 4 1.91
b (cm) 2 1 2.1
Ib (mA) 2 30 400
sz (cm) 1 0.7 4.7

L 7 1.2 3 103 250
R�b 550 400 90

R�2L3�2 (cm) 1.0 4.7 3 1025 0.025
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n̂1

nb
�

gd
2
0h�kR�2�3

r0nb
�

�kR�2�3

L
, (21)

where we have used the relation v � ckhd0. Of course,
this formula is valid if the density perturbation is smaller
than the equilibrium beam density, n̂1 & nb , which is sat-
isfied above the threshold due to Eq. (12).

Note that for very small values of d0 (and hence large
L) the relative density perturbation below which the linear
theory is applicable becomes very small, n̂1�nb ø 1.

It is important to emphasize here that the wake Eq. (2)
used in this paper is not applicable for very short wave-
lengths. Indeed, this wake was derived for a bunch that
is infinitely thin in the transverse direction and assumes
that all particles in the cross section of the bunch radi-
ate coherently. However, the transverse coherence length
l� � k22�3R1�3 decreases with the wavelength and for
very large values of k becomes smaller than the transverse
dimension of the beam. For such a wavelength, one has to
use a wake that takes into account the transverse dimen-
sion of the beam.

In summary, we showed that the coherent synchrotron
radiation can produce a bunch modulation provided that
the linear bunch density is above the threshold given by
the criterion Eq. (12). The instability occurs in a range
of wave numbers k. Modes with small wavelengths are
stabilized by the energy spread in the beam, and the large
wavelengths can be stabilized either by the screening effect
of the vacuum chamber or by the finite length of the bunch.
It is worthwhile to emphasize that the threshold depends on
the rms energy spread d0 and that cooling of a bunch with
054402-4
given bunch population makes the bunch more susceptible
to the instability.
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