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Normal form of particle motion under the influence of an ac dipole
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ac dipoles in accelerators are used to excite coherent betatron oscillations at a drive frequenc
to the tune. These beam oscillations may last arbitrarily long and, in principle, there is no signifi
emittance growth if the ac dipole is adiabatically turned on and off. Therefore the ac dipole seems to
adequate tool for nonlinear diagnostics provided the particle motion is well described in the prese
the ac dipole and nonlinearities. Normal forms and Lie algebra are powerful tools to study the non
content of an accelerator lattice. In this article a way to obtain the normal form of the Hamiltonia
an accelerator with an ac dipole is described. The particle motion to first order in the nonlinea
is derived using Lie algebra techniques. The dependence of the Hamiltonian terms on the longit
coordinate is studied showing that they vary differently depending on the ac dipole parameters
relation is given between the lines of the Fourier spectrum of the turn-by-turn motion and the Hamilt
terms.
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I. LINEAR MOTION WITH AN AC DIPOLE

The simplified Hamiltonian that describes the line
motion of a particle in an accelerator with an ac dipole
given by

H0�x, px , s, t� � 1
2p2

x 1
1
2Kx�s�x2 2 d�s, t�x , (1)

wherex andpx are the transverse canonical coordinat
s is the longitudinal coordinate,Kx�s� is the focusing
strength, andd�s, t� is the time-dependent kick of the a
dipole placed at the locationsD given by the expression

d�s, t� �
BL

�B0r�
dDirac�s 2 sD� cos�2pQDt 1 c0� , (2)

whereBL is the integrated field amplitude,�B0r� is the
rigidity, QD and c0 are the tune and initial phase of th
ac dipole, anddDirac�s 2 sD� is the Dirac delta function.
Note that throughout this article the unperturbed line
machine is assumed to be free of transverse couplin
simplify the expressions. A generalization to include line
coupling requires an additional decoupling transformat
throughout the formalism [1]. The exact single-turn m
corresponding to the Hamiltonian of Eq. (1) at the locati
just before the ac kick can be found in [2]. Using th
Courant-Snyder variables�x̂, p̂x� this solution is written as
a function of the turn numberT as

x̂�T � 2 ip̂x�T � �
p

2J ei�2pQxT1fx0�

1 d2ei2pQDT 2 d1e2i2pQDT , (3)

where J and fx0 are the linear invariant and the initia
phase given by the initial conditions andd2 and d1 are
defined as

d6 �
p

bD
BL

�B0r�
e6i�pQ62c0�

4 sin�pQ6�
, (4)
1098-4402�02�5(5)�054001(7)$20.00
r

s,

r
to
r
n
p
n

wherebD is the betatron function at the dipole andQ6 �
QD 6 Qx . Notice that close to the resonanceQD � Qx

the quantityd2 is much larger thand1.
A general solution for the particle motion at any loc

tion of the ring can be computed following the same ste
as in [2]. The equivalent expression of Eq. (3) at the lo
gitudinal locations is given by

x̂�T � 2 ip̂x�T � �
p

2J ei�2pQxT1fx0�

1 e2ifD �d2ei2pQDT 2 d1e2i2pQDT� ,
(5)

wherefD is the phase advance from the starting locati
s to the ac dipole.J andfx0 are again given by the initial
conditions. Notice thatfD has a discontinuity at the ac
dipole since right before the ac dipolefD is zero and right
after it fD is equal to2pQx.

II. THE TIME-INDEPENDENT LINEAR
ONE-TURN MAP

In general, an explicitly time-dependent Hamiltonia
can be transformed to a time-independent Hamiltonian
introducing an extra degree of freedom (this is equiv
lent to extend the phase space [3]). The Hamilton
H�x, px , t� generates the same equations of motion fox
andpx as the new HamiltonianH�x, px , t, pt�, defined by

H�x, px , t, pt� � H�x, px , t� 1 pt , (6)

since the solution of the canonical equations fort is
t�t� � t.

Applying this transformation to the time-depende
Hamiltonian of Eq. (1) a new Hamiltonian independe
of time with 1 extra degree of freedom is obtained. T
one-turn operator acting ont is defined to beRt , and its
action overt is
© 2002 The American Physical Society 054001-1
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Rtt � t 1 1 . (7)

The total linear one-turn map is the direct product of the
one-turn map of the betatron motion with the operator
054001-2
Rt , this is expressed as Rx ≠ Rt , where Rx is defined as
Rxfx � fx 1 2pQx . The turn-by-turn evolution of the
particle at the location of the ac dipole is reexpressed as
follows:
x̂�T � 2 ip̂x�T � � �Rx ≠ Rt�T �
p

2J ei�fx1fx0� 1 d2ei2pQDt 2 d1e2i2pQDt� . (8)
The cross denoting the direct product will be omitted in
the following.

III. THE NONLINEAR ONE-TURN MAP

Since the explicit time dependence of the Hamiltonian
has been removed, the one-turn map including nonlinear
kicks can be constructed as in [4]. All nonlinearities are
assumed to be kicks without loss of generality since any
Lie map can be factorized into nonlinear kicks up to a
desired order [5]. The one-turn map is expressed as

M � e;h̃1:e:h̃2: · · · e:h̃N :Rx,yRt , (9)
where h̃n are the generating functions of the multi-
polar kicks written in terms of the eigencoordinates
(xn, pxn, yn, pyn) at the longitudinal location s � sn.
These eigencoordinates are the quantity inside the square
brackets of Eq. (8) propagated to the location sn and
multiplied by the square root of the beta function at that
location. Since Eq. (8) holds at the location just before the
ac dipole, the propagation to sn is done by applying Rt

and multiplying by an exponential function with the phase
advance at sn. The eigencoordinates have the following
form:
xn 2 ipxn �
p

bxn eifxn�
p

2Jx ei�fx1fx0� 1 dx2ei2pQxDt 2 dx1e2i2pQxDt� ,

yn 2 ipyn �
p

byn eifyn�
p

2Jy ei�fy1fy0� 1 dy2ei2pQyDt 2 dy1e2i2pQyDt� ,
(10)
where bzn and fzn are the beta and phase advance func-
tions at the location of the nth element. The notation has
been generalized to include two independent ac dipoles
in the horizontal and vertical planes. The set of eigen-
coordinates (xn, pxn, yn, pyn) depends on the initial longi-
tudinal position, which in this case is just before the ac
dipole. In Sec. VII a derivation is presented for an arbitrary
initial longitudinal position. Using the Campbell-Baker-
Hausdorf theorem, Eq. (9) can be simplified to

M � e:h:Rx,yRt , (11)

where h can be approximated by

h �
NX

n�1

h̃n 1

NX
n,m,n

�h̃m, h̃n� 1 · · · , (12)

assuming that h̃n are small enough. The aim of this article
is to derive expressions up to first order in the nonlineari-
ties, therefore only the first summation of Eq. (12) will be
kept. In the absence of the ac dipole the standard expan-
sion of h is written as
h �
X
jklm

hjklmz1j

x z2k

x z1l

y z2m

y , (13)

where hjklm are the Hamiltonian terms and z are the lin-
early normalized coordinates defined by

z6
x �

p
2Jx e7i�fx1fx0�,

z6
y �

p
2Jy e7i�fy1fy0�,

(14)

where these oscillations would be obtained by applying a
kick in either plane. The expansion of h in the presence
of the ac dipole is directly computed by replacing the z in
Eq. (13) by the quantities inside the brackets of Eq. (10),
leading to

h �
X
jklm

hjklmj1j

x j2k

x j1l

y j2m

y , (15)

with
j6
x �

p
2Jx e7i�fx1fx0� 1 jdx2je

7i�2pQxDt2hx2� 2 jdx1je
6i�2pQxDt1hx1�,

j6
y �

p
2Jy e7i�fy1fy0� 1 jdy2je

7i�2pQyDt2hy2� 2 jdy1je
6i�2pQyDt1hy1�,

(16)
where, for convenience, the quantities dx,y6 of Eq. (10)
have been separated into an amplitude factor jdx,y6j and
a phase factor exp�ihx,y6�. If the ac dipole is adiabati-
cally turned on the betatron oscillation is not excited; i.e.,
the terms of Eq. (16) containing Jx,y should vanish. Nev-
ertheless, a real ac dipole will always excite the betatron
motion up to some level. Therefore the terms containing
Jx,y are kept until the end of the derivation.
054001-2
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IV. NORMAL FORM PROCEDURE

The normal form technique [6,7] can be applied to the
one-turn map of Eq. (11) containing Eq. (15). Basically,
we look for a new map e:F�J,f�: which by a similarity
transformation brings our one-turn map into a rotation
Rx,yRte:H�I�: that only depends on the new invariants of
the motion denoted by I . The equation to find the func-
tions F and H�I� is written as

e:h:Rx,yRt � e:F:e:H�I�:Rx,yRte2:F:. (17)

This is represented by the following diagram
054001-3
where z represents the normal form coordinates (z 1
x , z 2

x ,
z 1

y , z 2
y ) and j represents (j1

x , j2
x , j1

y , j2
y ). The normal

form coordinates are related to the linear coordinates by
the expression

z � e2:Fr :j , (18)

where
z 6
x �

p
2Ix e7i�cx1cx0� 1 jdx2je

7i�2pQxDt2hx2� 2 jdx1je
6i�2pQxDt1hx1�,

z 6
y �

p
2Iy e7i�cy1cy0� 1 jdy2je

7i�2pQyDt2hy2� 2 jdy1je
6i�2pQyDt1hy1�.

(19)

Ix and Iy are the new action invariants, cx and cy are the new phase variables, and t is the same timelike variable as
above. By construction the one-turn map of the normal form coordinates is an amplitude dependent rotation represented
by

e:H�I�:Rx,yRtz 6
x �

p
2Ix e7i�cx12pQx �I ,d�1cx0�

1 jdx2je
7i�2pQxD�t11�2hx2� 2 jdx1je

6i�2pQxD�t11�1hx1�, (20)
where Qx�I, d� is the betatron tune with its explicit depen-
dence on all the oscillation amplitudes of Eq. (19), Ix,y and
jdx,y6j. The formal solutions from Eq. (17) for the func-
tions Fr and H up to first order are given by [6]

Fr �
1

1 2 Rx,yRt

�h 2 h �, (21)

H � h , (22)

where h represents the average of h over the phase angles,
including the new variable t. In order to obtain a detailed
expansion of Fr the quantity �h 2 h � should be expressed
in terms of the eigenvectors of Rx,yRt . These eigenvectors
are the summands of the right-hand side (rhs) of Eq. (16)
for the initial basis or the summands of the rhs of Eq. (19)
for the normal form basis. Nevertheless, in order to deal
with simpler expressions this expansion is postponed to the
end of the derivation.

V. THE NONLINEAR MOTION

Following the same reasoning as in [8] the motion of the
particle is computed expanding the exponential operator of
Eq. (18) up to first order, resulting in

j � z 1 �Fr , z � , (23)

where the square brackets denote the Poisson bracket. In
order to compute this quantity, the two following properties
are used:

�z 1j

x , z 2
x � � 22ijz 1j21

x , (24)
∑
1

1 2 Rx,yRt

g�z �, z 2
x

∏

�
1

1 2 e2i2pQx Rx,yRt

�g�z �, z 2
x � , (25)

where g�z � is an arbitrary function of the phase space co-
ordinates z , which is infinitely differentiable. Therefore
the relation of the linearly normalized horizontal coordi-
nate with the normal form horizontal coordinate is

j2
x � z 2

x 2 2i
X
jklm

j
hjklm

1 2 e2i2pQx Rx,yRt

3 z 1� j21�

x z 2k

x z 1l

y z 2m

y . (26)

As stated above, the eigenvectors of the linear operator
Rx,yRt are the summands of the rhs of Eq. (19) but not
the z . To obtain the expansion as a power series of the
eigenvectors, the z have to be replaced by the expressions
of Eq. (19) and the products and powers of the trinomials
have to be expanded. The turn-by-turn motion is obtained
by successively applying the one-turn map to Eq. (26) as
done in Eq. (20).

In the general case, the number of spectral lines aris-
ing from Eqs. (26) and (19) in the horizontal motion is
large and many Hamiltonian terms contribute to the same
spectral line. For instance, the Hamiltonian term hjk00 in-
troduces, in the horizontal spectrum, all the lines with the
frequencies expressed as

�k1 2 j1�Qx 1 �k2 2 k3 1 j2 2 j3�QxD , (27)

ki and ji being arbitrary positive integers or zero fulfilling
the following conditions:
054001-3
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k1 1 k2 1 k3 � k ,

j1 1 j2 1 j3 � j 2 1 ,

where k and j are the indexes of the Hamiltonian term
hjk00. Each of the lines given by Eq. (27) has associated
the resonance condition expressed as

�k1 2 j1 2 1�Qx 1 �k2 2 k3 1 j2 2 j3�QxD � p ,

with p [ Z . (28)
054001-4
As an example, using this expression it can be shown
that the lowest multipoles driving the resonances QxD �
p and 2QxD � p, with p [ Z, are the sextupole and the
octupole, respectively. The spectral lines introduced by
the Hamiltonian terms h3000 and h1020 are derived in the
Appendix.

Nevertheless, in the ideal case of an adiabatic excitation
close enough to the resonance (QD � Qx), the terms con-
taining either Ix,y or dx,y1 are negligible. Thus Eq. (26),
for only one horizontal ac dipole, simplifies to
j2
x � jdx2je

i�2pQxDt2hx2� 2
X
jklm

2ijhjk00jdx2j
�j1k21�

1 2 ei2p�2Qx1�k2j11�QxD� ei�k2j11� �2pQxDt2hx2�. (29)
In this simplified case the Hamiltonian coefficient hjk00
only introduces the line with frequency �k 2 j 1 1�QxD ,
and the associated resonance condition is

2Qx 1 �k 2 j 1 1�QxD � p, with p [ Z . (30)

Although the betatron oscillation has been neglected, the
resonance conditions still involve Qx . This is due to the
factor e2i2pQx in the denominator of Eq. (26).

VI. A TRACKING EXAMPLE

In order to check the expressions derived above, single
particle simulations have been done. A ring made of
108 FODO cells has been used, which indeed is a simple
model of the Super Proton Synchrotron at CERN. Sextu-
poles are the only source of nonlinearity. A horizontal
ac dipole has been introduced with a linear ramping time
of 5000 turns and a flattop of 1000 turns. From Eq. (27)
it is concluded that the Hamiltonian terms h3000, h1200,
and h2100 (coming from sextupoles) introduce all lines
�m, n� with jmj 1 jnj # 2 except the line �21, 0�, where
�m, n� corresponds to the frequency mQx 1 nQxD . In
Fig. 1 the Fourier spectrum of the horizontal motion of the
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FIG. 1. Normalized Fourier spectrum of the horizontal motion
of a particle. The label �m, n� attached to each line indicates
that the frequency of that line is mQx 1 nQD . For example, the
line �0, 2� is mainly due to the term h1200.
simulation is shown. In the figure all the predicted lines
are seen plus the �0, 3� and �0, 23� lines which come from
the second order of the sextupolar terms.

The approximate expression in Eq. (29) gives us the
means of unambiguously measuring the Hamiltonian terms
from the fast Fourier transform of turn-by-turn data pro-
vided the approximation is good enough. The parame-
ters of the simulation were chosen to optimize the study
of the third order resonance. The strength of the sextu-
poles and the Twiss functions at their locations are shown
in Table I. In Fig. 2 the prediction of Eq. (29) is com-
pared to the analysis of the simulated tracking by plotting
the normalized amplitude of the line �0, 22� versus the

TABLE I. Strength of the sextupoles and Twiss functions at
their locations used in the simulation.

Element Strength �m22� bx (m) by (m) fx fy

Sext. 1 20.1 42.41 55.96 6.21 6.26
Sext. 2 20.2 19.63 107.64 6.53 6.53
Sext. 3 20.2 19.65 106.69 6.78 6.78
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FIG. 2. (Color) Comparison of the normalized amplitude of the
line 22QD from the horizontal motion of simulated tracking
and the approximated model for the two different excitation
frequencies QD � Qx 6 0.01. The normalized amplitude of
the line 22Qx in the free oscillation case is also shown. These
lines are due to the resonance term h3000.
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oscillation amplitude jd2j with bx � 100 m. The com-
parison is done for two excitation frequencies. The limit
of the normalized amplitude of the line �0, 22� as it ap-
proaches the resonance QD � Qx is also shown in the
picture. In this limit the motion is equivalent to a free
oscillation produced by a single kick. The normalized am-
plitude of the line �0, 22� with QD � Qx equals the nor-
malized amplitude of the line with frequency 22Qx from
the kicked particle motion.
054001-5
VII. CONSIDERING AN ARBITRARY INITIAL
LOCATION

As stated in Sec. III, the eigenvectors of Eq. (10) depend
on the initial location, i.e., the longitudinal coordinate with
zero phase advance. The turn-by-turn motion at an arbi-
trary location has been calculated in Eq. (5), rewriting it
using the one-turn linear operators yields
x̂�T � 2 ip̂x�T � � �Rx ≠ Rt�T �
p

2J ei�fx1fx0� 1 e2ifxD �d2ei2pQDt 2 d1e2i2pQDt�� . (31)

The eigencoordinates (xn, pxn, yn, pyn) at the nth element will be given by different expressions depending on whether it is
located before or after the ac dipole. To compute them the expression inside the square brackets of Eq. (31) is propagated
to sn as done in Sec. III, but now Rt is applied only when fxn . fxD. This is given by the following expressions:

xn 2 ipxn �

Ωp
bxn eifxn�

p
2Jx ei�fx1fx0� 1 e2ifxD �dx2ei2pQxDt 2 dx1e2i2pQxDt��, if fxn , fxD ,p

bxn eifxn�
p

2Jx ei�fx1fx0� 1 e2ifxD �dx2ei2p�QxDt1Q2� 2 dx1e2i2p�QxDt1Q1���, iffxn . fxD .

(32)
Similar expressions hold for the vertical coordinate. Fol-
lowing the steps of Sec. III, the Hamiltonian h is expressed
up to first order in h̃n as

h �
NX

n�1

h̃n�xn, pxn, yn, pyn� . (33)

It was possible [see Eq. (15)] to express the Hamiltonian
with an ac dipole using the Hamiltonian terms hjklm be-
cause all the elements fell into one of the two possible
solutions of Eq. (32). In the general case of an arbitrary
initial location, the contribution of each element to h de-
pends on its relative position with respect to the ac dipole.
To achieve a similar expansion to Eq. (15), the Hamilto-
nian in the absence of ac dipole is separated into two sum-
mations in the following way:
h �
X

fxn,fxD

h̃n 1
X

fxn.fxD

h̃n

�
X
jklm

�h,
jklm 1 h.

jklm�z1j

x z2k

x z1l

y z2m

y , (34)

where h,
jklm contains the contributions of all the elements

before the ac dipole and h.
jklm the elements after. These

new terms can be used in expanding the Hamiltonian con-
taining an ac dipole, leading to the expression

h �
X
jklm

h,
jklmj1j

,xj2k

,xj1l

,yj2m

,y

1
X
jklm

h.
jklmj1j

.xj2k

.xj1l

.yj2m

.y , (35)

with
j6
,x �

p
2Jxe7i�fx1fx0� 1 jdx2je

7i�2pQxDt1h0
x2� 2 jdx1je

6i�2pQxDt1h
0
x1�,

j6
.x �

p
2Jxe7i�fx1fx0� 1 jdx2je

7i�2p�QxDt1Q2�1h0
x2� 2 jdx1je

6i�2p�QxDt1Q1�1h
0
x1�,

(36)

and h0
x6 � 7�hx6 2 fxD�. Similar expressions hold for the vertical coordinates. The turn-by-turn motion can be

computed in the same way as was done in Sec. V obtaining

j2
x � z 2

x 2 2i
X
jklm

j
1

1 2 e2i2pQx Rx,yRt

�h,
jklmz 1� j21�

,x z 2k

,x z 1l

,yz 2m

,y 1 h.
jklmz 1� j21�

.x z 2k

.x z 1l

.yz 2m

.y � , (37)

where the coordinates z are defined as the coordinates j in Eq. (36) but replacing Jx by Ix and fx by cx . Again the
same approximation can be done as in Sec. V, resulting in the following expression for the horizontal motion in presence
of one horizontal ac dipole:

j2
x � jdx2je

i�2pQxDt1h0
x2� 2 2i

X
jklm

j
h0

jk00jdx2j
�j1k21�

1 2 ei2p�2Qx1�k2j11�QxD � ei�k2j11� �2pQxDt1h0
x2�, (38)

with

h0
jk00 � h,

jk00 1 h.
jk00ei�k2j11�2pQ2 . (39)
054001-5
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FIG. 3. Comparison of the amplitude of the Hamiltonian term
h0

3000 computed from tracking and from theory (both with ac
dipole) plotted versus the longitudinal position.

This expression shows the difference between the Hamil-
tonian terms of a lattice with and without an ac dipole. For
those locations where all the sources are seen to be either
before (h,) or after (h.) the ac dipole, the amplitudes of
the two kinds of terms, h0 and h, are equal. Notice that
as Q2 decreases the terms with an ac dipole tend to the
terms without an ac dipole. Also notice that the high order
terms, with larger jk 2 j 1 1j, will exhibit greater dis-
crepancies between the two types of Hamiltonian terms.
At the longitudinal location of a magnetic source the cor-
responding Hamiltonian terms vary abruptly in phase and
amplitude [9]. The amplitude remains constant between
sources. This property will allow the identification of lo-
cations with multipolar kicks in a real machine by using
beam position data from the pickups along the ring.

A tracking simulation has been performed to check the
approximation used in deriving Eq. (38). The same lattice
and method of the previous tracking example in Sec. VI
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FIG. 4. Comparison between the theoretical amplitudes of the
Hamiltonian terms h0

3000 (with ac dipole) and h3000 (free oscilla-
tion) plotted versus the longitudinal position.
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have been used, but 108 sextupoles were introduced.
Turn-by-turn data are obtained at the different longitudinal
locations. The Hamiltonian term h0

3000 is obtained by eval-
uating the amplitude of the �0, 22� spectral line of these
data [according to Eq. (38)]. The results of this analy-
sis together with the theoretical value of h0

3000 obtained
from the lattice parameters are shown in Fig. 3. Small
discrepancies arise at some locations due to contributions
from the terms h1200 and h2100 to the spectral line �0, 22�.
These contributions are proportional to the quantity dx1

and they were neglected to arrive at Eq. (38). To give an
idea of the differences between the Hamiltonian terms
with and without ac dipole their amplitudes are plotted
versus the longitudinal coordinate for the same lattice in
Fig. 4.

VIII. CONCLUSION

A method to derive the normal form of a Hamiltonian
with an ac dipole term is presented. To avoid the explicit
time dependence of the Hamiltonian a new dimension is
introduced. In principle this method works not only for
the case of an ac dipole but for all cases where there is a
solution of the linear plus the time-dependent parts of the
Hamiltonian.

The turn-by-turn motion at any location of the lattice is
derived using Lie algebra techniques. In the general case,
various Hamiltonian terms contribute to the same Fourier
spectral line of the motion. This is not the desired situ-
ation when using the ac dipole for nonlinear beam diag-
nostic. Nevertheless, an approximate expression for the
turn-by-turn motion is derived under the ideal conditions
that the excitation is adiabatic and the ac dipole tune is suf-
ficiently close to the natural tune. It has been shown that
the Hamiltonian terms in the presence of the ac dipole are
different from those without ac dipole. Nevertheless, the
discrepancies should not be large and the local information
contained in both cases is equivalent; i.e., it is possible to
identify longitudinal locations with multipolar kicks. All
these predictions have been compared with tracking simu-
lations in a FODO lattice with sextupoles. In the more aca-
demic example, where one resonance is strongly excited,
the agreement was excellent. In the more general case,
where 108 sextupoles were introduced, some small dis-
crepancies arose due to contributions from different reso-
nance terms to the same spectral line.
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APPENDIX: SPECTRAL LINES INTRODUCED BY
H3000 AND H1020

From Eq. (26) the term h3000 (which at the ac dipole is
equal to the term h0

3000) contributes to the horizontal motion
with the quantity

26ih3000

1 2 e2i2pQx Rx,yRt

z 12

x , (A1)
054001-7
where z 1x is given by

z 1
x �

p
2Ix e2i�cx1cx0� 1 jdx2je

2i�2pQxDt2hx2�

2 jdx1je
1i�2pQxDt1hx1�. (A2)

Expanding the square z 12

x in Eq. (A1) gives
z 12

x � 2Ixe2i2�cx1cx0� 1 jdx2j
2e2i2�2pQxDt2hx2� 1 jdx1j

2e1i2�2pQxDt1hx1� 1 2
p

2Ix jdx2je
2i�cx1cx0�2i�2pQxDt2hx2�

2 2
p

2Ix jdx1je
2i�cx1cx0�1i�2pQxDt1hx1� 2 2jdx2j jdx1j . (A3)
The frequencies of the lines introduced by this expression
are 22Qx , 22QxD , 2QxD , 2Qx 2 QxD , 2Qx 1 QxD ,
and 0.

By virtue of Eq. (A1), the resonance con-
ditions corresponding to the different lines are
23Qx � p, 22QxD 2 Qx � p, 2QxD 2 Qx � p,
22Qx 2 QxD � p, 22Qx 1 QxD � p, and 2Qx � p,
with p [ Z.

The equivalent calculation will be done now for the term
h1020. From Eq. (26) the term h1020 contributes to the
horizontal motion with the quantity
22ih1020

1 2 e2i2pQx Rx,yRt

z 12

y , (A4)

where z 1
y is given by

z 1
x �

p
2Iy e2i�cx1cy0� 1 jdy2je

2i�2pQyDt2hy2�

2 jdy1je
1i�2pQyDt1hy1�. (A5)

Expanding the square z 12

y in Eq. (A4) gives
z 12

y � 2Iye2i2�cy1cy0� 1 jdy2j
2e2i2�2pQyDt2hy2� 1 jdy1j

2e1i2�2pQyDt1hy1� 1 2
p

2Iy jdy2je
2i�cx1cy0�2i�2pQyDt2hy2�

2 2
p

2Iy jdy1je
2i�cy1cy0�1i�2pQyDt1hy1� 2 2jdy2j jdy1j . (A6)
The frequencies of the lines introduced by this expression
are 22Qy , 22QyD , 2QyD , 2Qy 2 QyD , 2Qy 1 QyD ,
and 0.

By virtue of Eq. (A4), the resonance con-
ditions corresponding to the different lines are
22Qy 2 Qx � p, 22QyD 2 Qx � p, 2QyD 2 Qx �
p, 2Qy 2 Qx 2 QxD � p, 2Qy 2 Qx 1 QxD � p,
and 2Qx � p, with p [ Z.
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