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Method for enlarging the dynamic aperture of accelerator lattices
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A method for finding four-dimensional symplectic maps with an enlarged nearly integrable region is
described. The method relies on solving for parameter values at which the linear stability factors of
the fixed points (periodic orbits) of the map have the values corresponding to integer island tunes. This
method is applied to accelerator lattices in order to increase dynamic aperture. The result shows a sig-
nificant increase of the dynamic aperture after correction.
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I. INTRODUCTION

Much progress has been made in the problem of deter-
mining whether a dynamical system is chaotic or stable in
a finite phase space region. Poincaré [1] showed that, for
a general perturbation of an integrable multidimensional
oscillator, there is no invariant analytic in the perturbation
parameter. The problem of small denominators in normal
form theory [2] prevents one from finding a convergent
invariant in the neighborhood of a linearly stable fixed
point. The understanding of what happens when an inte-
grable system is perturbed was greatly increased by the
Kol’mogorov-Arnold-Moser (KAM) theorem [3–6] which
showed that some invariant surfaces remain (provided
that the linear frequencies in normal form theory are not
linearly related with integers smaller than 4). Compli-
mentarily, Melnikov [7] and subsequent work [8] on the
intersection of stable and unstable manifold showed that
chaotic motion is very easy to find. These advances helped
greatly to determine the stability of a given Hamiltonian
system, such as the motion of the asteroids or the stability
of the solar system.

In contrast, there is another class of problems in which
one has freedom in choosing the Hamiltonian, and, for
various reasons, one would like to have a system that is
either completely chaotic or uniformly integrable. For ex-
ample, one might desire a chaotic fluid flow so that chemi-
cals are mixed uniformly in a short time. An example of
needing integrability occurs in the design of systems that
must confine particles, such as fusion confinement devices
or particle accelerators. The goal of this paper is to out-
line in detail a method which allows one to find symplectic
maps with increased stable region and present an accelera-
tor lattice which shows a significant increase in dynamic
aperture after the method is applied. Although the method
is general, it is presented mostly in the context of its appli-
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cation in circular particle accelerators. Following the tra-
dition of the accelerator community, we define “dynamic
aperture” as the equivalent radius of the area in the x-y
plane such that all particles (with initial px and py zero)
inside the circle defined by it are stable after a given num-
ber of turns. Generally, the dynamic aperture so defined
scales as the fourth root of the well-confined phase space
volume.

The restrictions that arise in real systems make this prob-
lem nontrivial. Without restrictions, one can write down
any number of integrable Hamiltonians. The freedom of
an accelerator designer, on the other hand, is limited by
the fact that transverse confinement of particles in a cir-
cular accelerator is provided by various kinds of magnets,
namely, dipoles, quadrupoles, sextupoles, and other multi-
poles. As a result, it has been difficult to increase dynamic
aperture significantly, and there is sustained interest in the
subject [9–44].

The sextupoles necessary in most accelerators, the large
divergence of the beam in certain colliders [45] and the
fringe field of large aperture accelerators with large physi-
cal aperture [46], make virtually every accelerator, in prac-
tice, intrinsically nonlinear. Magnet imperfections are an
additional source of nonlinearity. Because additional ef-
fects, such as power supply ripple, scattering from residual
gas molecules, and intrabeam scattering, generally reduce
the dynamic aperture, it is desirable to have the nonlinear-
ity determined dynamic aperture be as large as possible.

Previous approaches to increasing dynamic aperture
were based on perturbation theory. (Ruggiero [47], for
example, discusses the application of perturbation theory
to the analysis of the beam-beam interaction.) Perturba-
tion theoretic approaches work well when only a few low-
order resonances dominate and the modifications to the
lattice needed to increase the dynamic aperture are small.
Our method, which is not based on perturbation theory,
circumvents these limitations. Instead of focusing on
the normal form representation of the resonance driving
terms, our method utilizes the connection between island
tunes and resonance strength, which remains valid even
at large nonlinearity provided one is close to integrability
© 2001 The American Physical Society 084001-1
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(as is the case in the transition region near the dynamic
aperture).

The basic idea of this new method [48] has been applied
in the context of finding a three-dimensional toroidal mag-
netic field with lines lying on nested toroidal surfaces [49],
which is a one and a half degrees of freedom Hamiltonian
problem [50]. A series of designs found by using these
ideas was published [51]. Subsequently, we successfully
applied these ideas to the similar problem of the dynam-
ics in the uncoupled horizontal dynamics of an accelerator
lattice [52].

However, the dynamic aperture of the four-dimensional
systems was found to have decreased. These results meant
that to be able to increase dynamic aperture in Hamilton-
ian systems of two and a half degrees of freedom, one
would have to consider the full dynamics. A method [53]
was developed to do just that, and a brief presentation was
published [54]. In this paper, we show in detail how this
could be done. We begin, in the following section, by in-
troducing the method from the analytic point of view. This
is followed by an example demonstrating the application
of the method to an accelerator lattice which shows a sig-
nificant increase of the dynamic aperture. Implications of
this method are discussed in the last section.

II. ANALYTICAL BACKGROUND AND
DESCRIPTION OF THE METHOD

Our method for reducing chaotic motion and, therefore,
increasing the dynamic aperture relies on the connection
between the presence of resonances and the existence of
chaotic motion. Thus, as we know from, e.g., Chirikov’s
analyses [55,56], the overlap of resonances leads to chaotic
regions and, hence, a reduction of the dynamic aperture.
Of course, one can have large resonances in nonlinear sys-
tems without chaotic motion, as in the Toda lattice [57].
Nevertheless, it remains true that the path to chaotic dy-
namics is through the growth of resonances. This leads
us to propose a methodology: reduce the strengths of the
resonances, as this will lead to a reduction of the chaotic
region and a concomittant increase in the dynamic aper-
ture. This is borne out by experience, which has shown
that resonance correction and/or avoidance typically lead
to increases in dynamic aperture.

There remains, then, the development of a convenient
measurement of resonance strength. As typically intro-
duced, resonances are found in perturbation theory —
through the analysis of the motion near rational surfaces
of an integrable Hamiltonian in the presence of a perturba-
tion. However, perturbation results are not easily applied
to chaotic regions, as there is no unique way to find the
underlying integrable Hamiltonian and from that carry out
the perturbation analysis. Indeed, in the strongly chaotic
limit, resonancelike motion may not be observable. How-
ever, the fixed points associated with a resonance exist
significantly after the resonance region is largely chaotic.
084001-2
Furthermore, one can relate the matrix invariants of the
symplectic matrix describing linearized motion near the
fixed point to the strength of the associated nonlinear
resonance. Thus, one can use these matrix invariants as
a proxy for the resonance strengths. Per the comments
of the previous paragraph, these matrix invariants can
be found for fixed points in systems arbitrarily far from
integrable.

The purpose of this section is to provide the basis of this
understanding. We briefly discuss resonances and fixed
points for perturbed four-dimensional maps. We show how
the resonance strength is related to two parameters, A and
B, which are invariants of the symplectic map associated
with linearized motion near a fixed point. Next, we note
that A and B have particular values (4 and 6) when there is
no resonance. This leads us to propose increasing dynamic
aperture by solving for values of parameters such that
A � 4 and B � 6.

A. Resonances

Resonances arise in the perturbation of the Hamiltonian.
To study them quantitatively, we Fourier expand the per-
turbing Hamiltonian in the angle variables and the periodic
time.

H � H0�J� 1
X
l,m

H1lm�J� cos�l ? u 2 mVs 1 flm�J�� .

(1)

Resonance occurs at the places where the phase is station-
ary when evolved according to the unperturbed Hamilton-
ian,µ

d
ds

∂
0
�l1u1 1 l2u2 2 mVs 1 fl1l2m�

� l1v1�J� 1 l2v2�J� 2 mV � 0 . (2)

Thus, resonances correspond to curves in the action space,
as sketched in Fig. 1. In terms of the tunes, this relation is

l1n1�J� 1 l2n2�J� 2 m � 0 , (3)

which means that resonance can certainly occur if the tunes
are rational, but it can also occur if the tunes are irrational
but the ratio is rational.

To put it loosely, the KAM theorem states that invariant
tori of a given frequency pair may survive provided that
the relations of the form (3) are difficult to satisfy. In
essence, this means that the value of the left-hand side of
Eq. (3) does not decrease too rapidly as larger integers are
used. Unfortunately, the existence of invariant tori does
not guarantee the absence of phase-space transport (i.e.,
emittance blowup in accelerators). Invariant tori are points
in the action plane (see Fig. 1). Hence, in principle, a
trajectory could access large values of the actions and, thus,
the vacuum pipe in an accelerator by wandering around
the KAM tori. The rate of loss always increases when
stochastic effects are taken into account.
084001-2
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FIG. 1. Resonances of varying width in action space. The
asterisk indicates where a KAM surface might be.

B. Fixed points for perturbed four-dimensional maps

The fixed points can be described in terms of either the
Hamiltonian or the map. Indeed, both approaches are used
here. Since only maps are used in numerical studies, the
map approach is given more weight. Because this map is
symplectic, it can be described in terms of a mixed-variable
generating function, ´F�ū, J�, which is a function of the
initial actions J and the final angles ū. The map has the
form

ūi � ui 1 2pni�J� 1 ´
≠F
≠Ji

�ū, J� (4)

and

J̄i � Ji 1 ´
≠F
≠ūi

�ū, J� . (5)

This map can be calculated from the Hamiltonian via per-
turbation theory.

A fixed point of order L is a point that maps onto itself
after L iterations of the map. To lowest order, Eq. (4)
implies that the unperturbed tunes at the fixed point must
satisfy

ni � Mi�L , (6)

where Mi is an integer between 1 and L. In fact, this is true
for the exact map also, at least in the sense of the averaged
tunes, because the phase space point comes back to the
starting point after L turns. Thus, the tunes are rational at
a fixed point, and so they satisfy at least two relations of
the form

li
1n1�J� 1 li

2n2�J� 2 mi � 0 �i � 1, 2� , (7)

which are linearly independent. Equations (7) can be
solved for the tune since
084001-3
l � l1
1 l2

2 2 l1
2 l2

1 (8)

does not vanish. The results are

n1 � �l2
2m1 2 l1

2m2��l (9)

and

n2 � �l1
1m2 2 l2

1m1��l . (10)

In general, one does not have L � l. Because a fixed
point of order L is also a fixed point of order 2L, 3L, etc.,
L is taken to be the smallest possible period for the fixed
point. This implies that l2

2m1 2 l1
2m2, l1

1m2 2 l2
1m1, and

L have no common divisor other than unity. Similarly,
for any resonance, the common divisors are removed; i.e.,
it is assumed that neither of the triplets (li

1, li
2, mi) has a

common divisor. Nevertheless, it is possible that the forms
(9) and (10) are not reduced, and so L fi l. An example
is that of the two triplets �9, 12, 2� and �3, 6, 1� for which
Eq. (8) gives l � 18, yet n1 � 0 and n2 � 1�6.

The relations (8)–(10) give the rational values of the
tunes for the fixed points corresponding to the crossing
of two resonances. It is not possible to derive an inverse
relation as, for any two rational values of the tunes, it
is possible to have many different corresponding pairs of
resonance: through any one point there may pass more
than two lines in tune space corresponding to a relation of
the form (3).

The conditions derived thus far specify only the actions
(and these only to lowest order), not the angles of fixed
points. To obtain the fixed-point angles through lowest
order, we assume that the solutions for the fixed points are
analytic in the perturbation parameter and can be written
as the series

JL
i � J

L,0
i 1 ´J

L,1
i 1 · · · (11)

and

uL
i � u

L,0
i 1 ´u

L,1
i 1 · · · . (12)

Inserting these series into Eq. (5) then gives the equations

≠W
≠ui

�uL,0� � 0 , (13)

where

W�u� �
LX

k�1

F�ui 1 2pkMi�L, JL,0� , (14)

for the fixed-point angle to lowest order.
There are at least four solutions to Eqs. (13). The func-

tion W , being periodic in u1, has a maximum and a mini-
mum for each value of u2. This defines two curves along
which ≠W�≠u1 vanishes. Along each of these curves there
is a maximum and a minimum. Hence, along each of these
curves there are two points at which ≠W�≠u2 vanishes.
For N degrees of freedom, this generalizes to there being
at least 2N solutions to Eqs. (13). Thus, a nearly inte-
grable Hamiltonian has at least 2N fixed points at each
084001-3
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rational surface. (This was shown without the use of per-
turbation theory for reversible maps in Ref. [58].) Further-
more, through a couple of canonical transformation, it can
be shown that a Hamiltonian with only two crossing reso-
nances present has exactly 4l fixed points of order L.

Inserting these lowest-order results for the angle of the
fixed point into Eq. (4) and expanding the tune through
first order in the action difference while keeping the action
at its unperturbed value in F determines the corrections
to the fixed-point action. We will pursue this calculation
further, as we have obtained our goal —showing that the
fixed points exist to lowest order. Provided the perturbation
is sufficiently small, one can then show that the series for
the fixed point converges. Hence, fixed points arise at the
intersections of resonances, which correspond to rational
tunes.

C. Motion near fixed points

The linear stability of fixed points of four-dimensional
symplectic maps has been studied extensively by Howard
and MacKay [59]. Let M �z� denote the transfer map of
one period of the Hamiltonian, which corresponds to one
turn in a circular accelerator. An Lth order fixed point of
this map satisfies the equation

z � ML�z� � M �M ���M �· · ·M �z� · · ·����� . (15)

The linearized motion near an Lth order fixed point is
governed by the tangent map TL, defined as

dz � TL ? dz . (16)

It is the derivative of the L-times composed map, which
can be obtained from

TL
i,j �

≠M
L
i

≠zj

�
≠Mi

≠zkL21

���ML21�z����
≠MkL21

≠zkL22

���ML22�z����

3 · · ·
≠Mk1

≠zj
�z� . (17)

Because of the symplecticity of the original map, by defini-
tion the tangent map TL is a symplectic matrix. The linear
stability is determined by the eigenvalues of this matrix.
For symplectic matrices, if l is an eigenvalue, so are 1�l,
l�, and 1�l�. Thus, eigenvalues come in complex con-
jugate pairs on the unit circle �l � 1�l��, inverse pairs
on the real line �l � l�, or complex quadruplets in other
parts of the complex plane (see Fig. 2).

The eigenvalues can be found first defining the stability
index [60],

r � l 1 1�l (18)

for each inverse pair. Given the stability indices, which can
be complex, one can solve for the inverse pair of eigenval-
ues. From the characteristic equation for the polynomial,
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FIG. 2. Linear stability diagram for 4D symplectic maps.

it follows that, the stability indices are the roots of a poly-
nomial,

Q�r� � r2 2 Ar 1 B 2 2 � 0 , (19)

where

A � Tr�T � (20)

and

B � ��Tr�T ��2 2 Tr�T2���2 . (21)

It is straightforward to show [61] that, in case of two-
dimensional maps, the island width goes to zero, i.e., the
resonance vanishes, when the fractional tune of the fixed
points vanish, i.e., the eigenvalues of the tangent matrix
T are unity. For 4D maps, the picture is qualitatively
more complicated, since there are, in principle, an infinite
number of resonances intersecting at any given fixed point.
It is clear from Eq. (19) that the values of A and B for the
eigenvalues of the tangent matrix T to be unity are

A � 4 (22)

and

B � 6 . (23)

Around a fixed point where two and only two resonances
cross (i.e., only two resonance amplitudes are possibly
nonzero), we can show that the conditions (22) and (23)
guarantee that the amplitudes of those resonances are, in
fact, zero. The Hamiltonian near the fixed point is

H � H0�J1, J2� 1 ´1 cos�l1
1u1 1 l1

2u2 2 m1Vs�
1 ´2 cos�l2

1u1 1 l2
2u2 2 m2Vs� , (24)

where

l1
1 l2

2 2 l1
2 l2

1 fi 0 (25)

and

H0 	 n1J1 1 n2J2 1
1
2a0J2

1 1 b0J1J2 1
1
2g0J2

2 .
(26)
084001-4
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After the canonical transformation,

w1 � l1
1u1 1 l1

2u2 2 m1Vs , (27)

w2 � l2
1u1 1 l2

2u2 2 m2Vs , (28)

J1 � l1
1K1 1 l2

1K2 , (29)

J2 � l1
2K1 1 l2

2K2 , (30)

the Hamiltonian is transformed to

H �
1
2aK2

1 1 bK1K2 1
1
2gK2

2 1 ´1 cos�w1�

1 ´2 cos�w2� . (31)

Linearizing the equations of motion generated from (31)
near a stable fixed point, we obtain

ẅ1 1 a´1w1 1 b´2w2 � 0 , (32)

ẅ2 1 b´1w1 1 g´2w2 � 0 , (33)

from which island tunes can be solved for. The results are

v2
1 1 v2

2 � a´1 1 g´2 , (34)

v2
1v2

2 � �ag 2 b2�´1´2 , (35)

which imply that v1 � v2 � 0 when ´1 � ´2 � 0.
Since v1 � v2 � 0 means that the eigenvalues of T are
unity, we conclude that the resonance driving terms vanish
when A � 4 and B � 6.

The statement above can be generalized one step further.
Since a fixed point of order L is also that of order nL,
where n is a positive integer, it is also the intersection of
resonances �nl1

1 , nl1
2 , nm1� and �nl2

1 , nl2
2 , nm2�. When all

these resonances are included, the Hamiltonian near the
fixed point can be written as

H � H0�J1, J2� 1 g1�J1, J2, l1
1u1 1 l1

2u2 2 m1Vs�
1 g2�J1, J2, l2

1u1 1 l2
2u2 2 m2Vs� . (36)

After the same transformation, the new Hamiltonian takes
the form

H � 1
2aK2

1 1 bK1K2 1
1
2gK2

2 1 G1�K1, K2, w1�

1 G2�K1, K2, w2� , (37)

which can be linearized and becomes

H �
1
2

aK2
1 1 bK1K2 1

1
2

gK2
2

1
≠2G1

≠w
2
1

w2
1 1

≠2G2

≠w
2
2

w2
2 . (38)

Note that the first derivatives ≠G1,2�≠w1,2 vanish at the
fixed point. The equations of motion are the same as those
above when ´1,2 are replaced with ≠2G1,2�≠w

2
1,2. Again,

we conclude that the resonance driving terms vanish when
A � 4 and B � 6, provided that the second angular deriva-
tives of the perturbation do not vanish at resonance. We
expect that the imposition of this condition leads to an ac-
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FIG. 3. Action plane showing resonance widths after obtaining
A � 4 and B � 6 at the intersection of the resonance lines so
that the resonance widths vanish there.

tion plane as shown in Fig. 3, where the resonance widths
are squeezed at the resonance crossings.

When three or more linearly independent resonances
intersect at a fixed point, the above argument breaks down.
However, if there are three or more comparably sized reso-
nances, it is likely that there are more independent fixed
points, and so one has more conditions to impose. For
present purposes, further development along this line is
not needed, as we will ultimately show through computa-
tion that imposition of the conditions, A � 4 and B � 6,
leads to improvement of the dynamic aperture.

D. Resonance correction through adjusting island
tunes

Our analysis leads us to a method for enlarging the
nearly integrable region of phase space. The fixed points
corresponding to the relevant resonance pairs are found.
The parameters of the Hamiltonian are varied so as to solve
for the values at which the fixed-point parameters satisfy
Eqs. (22) and (23). We now turn to a discussion of how
this can be carried out to enlarge the nearly integrable re-
gion of a given accelerator lattice.

As discussed in Sec. I, perturbations of all kinds make
accelerators nonintegrable. Experience in numerical
tracking shows that the nearly integrable region is always
bounded by a small number of dominant resonances. In
case of two-dimensional maps, there is generally only one
such resonance [52,62]. Hence, it is necessary to correct
them first and try to deal with other weaker resonances
later. Until now, however, it has been sufficient to
enlarge the nearly integrable region of both two- [52] and
four-dimensional (Sec. III) maps by correcting only the
dominant resonances. A possible explanation may be that
the higher-order resonances are primarily due to nonlinear
084001-5
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beats of the lower-order dominant resonances and, as a
result, the higher-order fixed point residues decrease with
those of the low-order fixed points.

Specifically, magnetic multipoles are used and their
strengths and, in principle, locations are varied to solve
for parameter values for which Eqs. (22) and (23) are
satisfied for the design energy; i.e.,

Aj�d � DE�E0 � 0� 2 4 � 0 (39)

and

Bj�d � DE�E0 � 0� 2 6 � 0 (40)

are satisfied for fixed-point j related to the dominant reso-
nance(s). In this case we say that our parameters are
the multipole strengths and, in principle, locations, while
the residuals, the quantities we want to vanish, are the
left-hand sides of Eqs. (39) and (40).

Our procedure for chaos reduction will need to be aug-
mented to provide for a stable range of energies, because
the above procedure may lead to lattices for which slightly
off-energy particles see large islands and chaotic regions.
To prevent this, one could add to the list of the residuals
the quantities

RAjn � Aj�dn� 2 4 (41)

and

RBjn � Bj�dn� 2 6 , (42)

where the offsets dn are chosen in the range of desired
stable energies. Alternatively, if only a small stable energy
interval is needed, one could, in the spirit of conventional
lattice design, require the vanishing of the A chromaticity,

xAjn �
dAj

dd
, (43)

and the B chromaticity,

xBjn �
dBj

dd
. (44)

(These chromaticities are not the usual chromaticities, but
they can be related to them.)

In the works of both Ref. [52] and the present article,
it was found that one additional residual has to be added
to the list, that of the location of the fixed points. Without
such a restriction, the variation of parameters can result in
the movement of the fixed point toward the origin, where
nonlinearity is small (the nonlinear tune shift increases).
This can actually result in a decrease in dynamic aperture,
as the more distant fixed points, which move inward and
determine the dynamic aperture, have not been optimized.

In the implementation of this method it is necessary to
be able to find high-order fixed points of four-dimensional
maps. This can be difficult because it is much harder to
make a good guess of the fixed points comparing to the
two-dimensional maps. The difficulty is reduced when
one is analyzing maps having inversion symmetry [58],
084001-6
so that one knows that the odd-order fixed points must lie
on a plane. Nonetheless, currently one has to rely heavily
on sophisticated numerical optimization software even for
maps with inversion symmetry. In the present work, the
optimization software package LMDIF [63] is used for
both finding fixed points and minimizing the residuals. In
general, an optimization package can be used to find the
roots of a function f�x� by using it to minimize �f�x��2.

In fact, there are always many resonances crossing at a
given intersection. While higher-order resonances are gen-
erally much weaker and can be ignored, resonances of the
same order have to be dealt with altogether. To our knowl-
edge, not much is known about the relation between the A
and B coefficients and the resonance driving terms when
greater than two resonances of the same order cross. But,
as demonstrated by the example below, for nearly inte-
grable systems, the difficulty can be overcome by correct-
ing some of the resonances through their crossings with
other resonances. By doing so, an implicit assumption is
made that, if a resonance is corrected at any point, its width
remains small over a sufficiently large interval of the reso-
nance line.

III. THE ADVANCED LIGHT SOURCE (ALS):
AN EXAMPLE

An example of numerical study is presented to demon-
strate how this method is implemented. Before going into
the details specific to the example, a few issues related to
the generics of the implementation are discussed.

The general procedure to apply this method is to, first,
find the tunes at the edge of the dynamic aperture in order
to determine the dominant resonances. Second, the stable
fixed points of the intersections of the resonances are se-
lected, found, and the linear transfer matrices around them
calculated. Third, the strengths of the correction multi-
poles are chosen such that Eqs. (39), (40), (43), and (44)
are satisfied. Furthermore, in order to keep amplitude de-
pendent tune shift (detuning) constant or to reduce it, the
locations of some of the fixed points have to be fixed ( fixed
point pinning). In reality, the second and third steps are
repeated and a solution is found iteratively. Finally, the
dynamic aperture of the modified lattice is found through
tracking study and comparison is made against that of the
original lattice.

As in the work of Ref. [52], the method is applied to the
Advanced Light Source (ALS) [64]. The obvious reason is
the ease of comparison with the previous work. The more
compelling motivation is that increasing dynamic aperture
is of practical importance to the performance of the Ad-
vanced Light Source. It will increase injection efficiency
and beam lifetime [65,66]. The ALS ring has 12 iden-
tical superperiods, each of which contains three bending
magnets, six quadrupoles for focusing, and four sextupoles
for chromaticity correction. The superperiod is symmetric
about its center. Octupoles are added and their strengths
084001-6
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are used as parameters to reduce chaos and increase dy-
namic aperture. Because of the fact that the purpose of
the work is to assess, in principle, the validity of the new
method, the locations of the octupoles were chosen without
regard to the physical constraint of the real machine. To
make the optimization simple, the A and B chromaticities
[Eqs. (43) and (44)] are dropped from the residual list. As
shown below, for this example, the A and B chromaticities
are not important (see Tables III and IV). But this may
not be true for other cases.

Two computer code packages are used in the study. An
accelerator tracking code MAPA [67] is used to do the track-
ing needed. The built-in graphical user interface and the
object-oriented nature make it easy to use and modify.
COSY INFINITY [68] is chosen to carry out the optimization
due to the flexibility of its fitting procedure and the opti-
mization package LMDIF [63] contained in it, which we
used to locate fixed points.

Before optimization starts, the dominant resonances
must be found. This was done through tracking of the orig-
inal ALS lattice. Tracking was done element by element,
where drifts, dipoles, and quadrupole are represented by
a linear matrix and the sextupoles by a kick. Because
of the 12-fold symmetry, only one superperiod is used
throughout the study. Hence the tunes refer to those of a
superperiod. Results show that the tunes at the edge of the
dynamic aperture are mx � 7�6 and my � 2�3, both of
which decrease from the central tunes (mx � 1.189, my �
0.682). The values of the tunes imply that four resonances
of orders of 6 or lower can be excited, which are

6nx � 7 ,

3ny � 2 ,

2nx 1 ny � 4 ,

2nx 1 4ny � 5 .

The crossing of four resonances at one point of the tune
(action) plane presents the type of difficulty discussed
above. Since there are only two independent variables de-
termining the eigenvalues of the tangent matrix, fitting one
set of them to the values of local integrability does not
guarantee that all four driving terms vanish. As a result,
more independent fixed points have to be used to minimize
all the resonances. Besides the four-dimensional sixth-
order fixed points at (7�6, 2�3) on the tune plane, a two-
dimensional (y � py � 0) sixth-order fixed point at (7�6,
0.682) and a four-dimensional third-order fixed point at
(7�6, 1) are added to the residual list (see Fig. 4). The
additional fixed points are responsible for correcting reso-
nances 6nx � 7 and 3ny � 2. Experience showed that
one more fixed point from each of the points (7�6, 2�3)
and (7�6, 1) is needed to obtain a solution. It seems that
the two fixed points behave independently when the mo-
tion is far from local integrability but are highly correlated
when the motion is close to local integrability.
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FIG. 4. (Color) Resonance lines in tune space.

Now there are nine members on the residual list. In or-
der to leave room for fixing the location of fixed points
(fixed point pinning), 12 instead of nine octupoles are
added to the first half of the original superperiod. There-
fore, there are 24 octupoles placed in a superperiod so that
the mirror symmetry is preserved. The location of the oc-
tupoles is shown in Fig. 5.

Similar to tracking, the linear matrix T around a fixed
point is obtained through multiplying the matrix of every
element. Note that, for drifts, dipoles and quadrupoles,
the matrices are the same as the those around the refer-
ence orbit because these elements are linear in the model.
For sextupoles and octupoles, on the other hand, the matri-
ces depend on the position of the orbit, due to feed-down
effect.

0 8 16

FIG. 5. Layout of a superperiod of the ALS with the additional
octupoles. The horizontal axis denotes the length of the refer-
ence particle in meters. The rectangles straddling the horizontal
axis denote the bends, those above or below the axis are the fo-
cussing quads, and the vertical lines denote the sextupoles. The
solid dots denote the added octupoles.
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TABLE I. Fixed points used and results of their residues: first solution.

Old A Old B New A New B

2D sixth order 4.116 · · · · · · · · ·
4D sixth order 3.915 5.806 4.000 08 5.999 96
4D sixth order 3.775 5.580 4.000 08 5.999 96
4D third order 0.028 22.08 3.999 999 997 5.999 999 998
4D third order 20.098 22.05 3.999 999 97 6.000 000 01
At the beginning of the optimization, one fixed point is
always pinned to prevent other fixed points from moving
towards the origin. To achieve this, the pinned fixed point
has to be the one that causes the others to move outward,
which is found empirically. With the pinned fixed point se-
lected, optimization proceeds with trying different starting
octupole strengths. A solution was found with moderate
increase in dynamic aperture (20%). The pole tip field
strengths of all octupoles are below 7 kG assuming that
their length is 10 cm and the half gap is 5 cm. The A and
B values of the fixed points are shown in Table I.

The two-dimensional sixth-order fixed point simply dis-
appeared in the new system due to the fact that nx�J� now
increases from the central tune. Instead of decreasing to
7�6 from 1.189, nx in the new system increases to 6�5 at
the edge of the stable region. Since nx does not cross 7�6
anymore, these sixth-order fixed points cease to exist. As
a result, the optimizer finds the origin, because the opti-
mization was done in a way that the fixed points and the
residues are fitted together.

Our tracking simulations consisted of following an
ensemble of particles through the lattice and keeping
track of which particles were lost (went to large values of
transverse coordinate) within a specified number of turns.
(For this intermediate solution, we chose to integrate only
64 turns. We did lengthier runs on the final solution.)
To determine the volume of the stable part of the four-
dimensional phase space, we choose the ensemble to have
initial values evenly spaced in the 4D �x, y, px , py� phase
space. Counting the particles that do not stray far from the

TABLE II. Volume of stable four-dimensional phase space af-
ter 64 turns: first solution.

Old New
d [1028 �m rad�2] [1028 �m rad�2] Change

20.005 1.5 3.7 1147%
0.000 1.6 3.1 194%
0.005 1.8 3.1 176%

TABLE III. Dynamic aperture after 12 921 turns: first solution.

d Old (cm) New (cm) Change

20.005 1.61 6 0.47 2.17 6 0.67 135%
0.000 1.64 6 0.46 1.80 6 0.45 19.8%
0.005 1.64 6 0.47 1.97 6 0.34 120%
initial conditions gives a Monte Carlo evaluation of the
integral of the 4D volume of well-confined trajectories.
Table II shows the results for the first solution. This table
shows that the volume of stable four-dimensional phase
space roughly doubles over a wide range of energy after
this first correction.

To determine the dynamic aperture, we choose the en-
semble to have initial conditions evenly spaced in the x-y
plane and to have vanishing initial values of the momenta.
Thus, we obtain a Monte Carlo evaluation of the integral
of the region of the x-y plane of well-confined trajecto-
ries. The equivalent radius, �A�p�1�2, of this area is the
usual dynamic aperture. Table III shows that, for this first
solution, the dynamic aperture is increased by 18% over
a wide range of energy. This solution did not minimize
the A and B chromaticities, thus indicating that at least in
some cases the minimization of the A and B chromaticities
is not necessary.

The reason for the relatively small amount of increase in
dynamic aperture of the solution above is that the dynamic
aperture of the horizontal motion decreases from 2.21 to
1.66 cm. Therefore, the solution is to find a way to increase
the dynamic aperture of motion in both planes simultane-
ously. This was done by moving the fixed points farther
away from the origin. Roughly speaking, it consisted of
different stages during each of which a different fixed point
was moved outwards and then pinned. This was necessary
because moving and pinning any given fixed point can push

TABLE IV. Fixed points used and results of their residues:
final solution.

Old A Old B New A New B

2D sixth order 4.116 · · · · · · · · ·
4D sixth order 3.915 5.806 4.087 6.174
4D sixth order 3.775 5.580 4.027 5.986
4D third order 0.028 22.08 3.999 6.000
4D third order 20.098 22.05 3.988 6.002

TABLE V. Volume of stable four-dimensional phase space af-
ter 64 turns: final solution.

Old New
d [1028 �m rad�2] [1028 �m rad�2] Change

20.005 1.5 6.4 1327%
0.000 1.6 5.9 1269%
0.005 1.8 5.8 1222%
084001-8
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TABLE VI. Dynamic aperture after 12 921 turns: final solu-
tion.

d Old (cm) New (cm) Change

20.005 1.61 6 0.47 2.45 6 0.52 152%
0.000 1.64 6 0.46 2.49 6 0.49 152%
0.005 1.64 6 0.47 2.41 6 0.44 147%

TABLE VII. The strengths of the octupoles of the final solu-
tion. The octupoles are labeled from the starting point of the
superperiod to the center (see Fig. 5). The strength is defined as
1
6

d3B
dr3 s, where s is the length.

Octupole Strength �1�m3� Octupole Strength �1�m3�

1 20.8705 7 11.16
2 29.749 8 223.93
3 218.24 9 54.51
4 249.99 10 262.03
5 1.388 11 97.07
6 57.67 12 3.602

the others out only to a certain extent. Here the location of
the fixed points becomes a convenient measure of detuning.
This method was proven to be successful. A final solution
was found with a quadrupled volume of stable phase space
and a 50% increase of the dynamic aperture over the same
range of energy (Tables IV–VI). Similar to the first solu-
tion, the octupole strengths are all below 3.5 kG.

The strengths of the octupoles are shown in Table VII.
This table shows that most of the octupoles have strengths
of the order of tens of 1�m3. However, there are three
octupoles with strengths less than 5 m23. It is possible
that these could be eliminated. However, we are leaving
sensitivity studies to future work.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

A method for finding four-dimensional symplectic maps
with enlarged nearly integrable region is presented and its
implementation and validity demonstrated by an example.
This method allows one to increase the dynamic aperture to
capture (at injection) more particles or to provide a greater
volume of stable orbits so that scattering is less likely to
cause particle loss. As a result, large dynamic apertures
may be achievable in strongly nonlinear machines such as
synchrotron light sources, allowing them to produce light
beams of greater brightness (see Ref. [69] for a different
approach).

Future work includes research oriented towards reducing
the number of required magnets. One direction is to carry
out sensitivity studies; another is to experiment with dif-
ferent types of multipoles. Octupoles were chosen because
they affect the nonlinear tune in first order without modi-
fying the linear tune or the chromaticity. However, they
cause large fixed point movements because of their modi-
fications of the nonlinear tune. Future work could include
084001-9
trying multiple sextupoles, chosen so that their integrated
effect on chromaticity vanishes or put in dispersion free
regions. Additionally, decupoles might be used as they
have the greatest effect at the larger deviations from the de-
sign orbit, at the dynamic aperture limit, while at the same
time having no affect on the nonlinear tune in first order.
Finally, we note that the position as well as the strength of
the multipoles could be used. This doubles the number of
fitting parameters available per multipole.
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