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Kinetic description of electron-proton instability in high-intensity proton linacs
and storage rings based on the Vlasov-Maxwell equations
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The present analysis makes use of the Vlasov-Maxwell equations to develop a fully kinetic descrip
of the electrostatic, electron-ion two-stream instability driven by the directed axial motion of a hig
intensity ion beam propagating in thez direction with average axial momentumgbmbbbc through
a stationary population of background electrons. The ion beam has characteristic radiusrb and is
treated as continuous in thez direction, and the applied transverse focusing force on the beam ions
modeled byFb

foc ­ 2gbmbv
02

bbx' in the smooth-focusing approximation. Here,v
0
bb ­ const is the

effective betatron frequency associated with the applied focusing field,x' is the transverse displacement
from the beam axis,sgb 2 1dmbc2 is the ion kinetic energy, andVb ­ bbc is the average axial
velocity, wheregb ­ s1 2 b

2
bd21y2. Furthermore, the ion motion in the beam frame is assumed to b

nonrelativistic, and the electron motion in the laboratory frame is assumed to be nonrelativistic. T
ion charge and number density are denoted by1Zbe and nb , and the electron charge and number
density by2e and ne. For Zbnb . ne, the electrons are electrostatically confined in the transvers
direction by the space-charge potentialf produced by the excess ion charge. The equilibrium and
stability analysis retains the effects of finite radial geometry transverse to the beam propaga
direction, including the presence of a perfectly conducting cylindrical wall located at radiusr ­ rw.
In addition, the analysis assumes perturbations with long axial wavelength,k2

z r2
b ø 1, and sufficiently

high frequency thatjvykz j ¿ yTez andjvykz 2 Vb j ¿ yTbz , whereyTez andyTbz are the characteristic
axial thermal speeds of the background electrons and beam ions. In this regime, Landau dampin
axial velocity spaceyz) by resonant ions and electrons is negligibly small. We introduce the ion plasm
frequency squared defined bŷv

2
pb ­ 4pn̂bZ2

be2ygbmb, and the fractional charge neutralization defined
by f ­ n̂eyZbn̂b , wheren̂b and n̂e are the characteristic ion and electron densities. The equilibrium
and stability analysis is carried out forarbitrary normalized beam intensitŷv2

pbyv
02

bb, and arbitrary
fractional charge neutralizationf, consistent with radial confinement of the beam particles. For th
moderately high beam intensities envisioned in the proton linacs and storage rings for the Acceler
for Production of Tritium and the Spallation Neutron Source, the normalized beam intensity is typica
v̂

2
pbyv

02

bb & 0.1. For heavy ion fusion applications, however, the transverse beam emittance is v
small, and the space-charge-dominated beam intensity is much larger, withv̂

2
pbyv

02

bb & 2g
2
b. The

stability analysis shows that the instability growth rate Imv increases with increasing normalized beam
intensity v̂

2
pbyv

02

bb and increasing fractional charge neutralizationf. In addition, the instability is
strongest (largest growth rate) for perturbations with azimuthal mode number, ­ 1, corresponding to a
simple (dipole) transverse displacement of the beam ions and the background electrons. For the ca
overlapping step-function density profiles for the beam ions and background electrons, correspondin
monoenergetic ions and electrons, a key result is that there is no threshold in beam intensityv̂

2
pbyv

02

bb

or fractional charge neutralizationf for the onset of instability. Finally, for the case of continuously
varying density profiles with parabolic profile shape, a semiquantitative estimate is made of the effect
the corresponding spread in (depressed) betatron frequency on stability behavior, including an esti
of the instability threshold for the case of weak density nonuniformity. [S1098-4402(99)00035-X]

PACS numbers: 29.27.Bd, 41.75.-i, 41.85.-p
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I. INTRODUCTION

Periodic focusing accelerators and transport syst
[1–4] have a wide range of applications ranging fr

*Present address: Sandia National Laboratories, Albuque
New Mexico 87185.
1098-4402y99y2(5)y054401(27)$15.00
s

e,

basic scientific research to applications such as trit
production, spallation neutron sources, and heavy ion
sion [5–7]. At the high beam currents and charge d
sities of practical interest, it is increasingly important
develop an improved theoretical understanding of the
fluence of the intense self-fields produced by the be
space charge and current on detailed equilibrium,
bility, and transport properties. For aone-componen
© 1999 The American Physical Society 054401-1
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high-intensity beam, considerable progress has been m
in describing the self-consistent evolution of the beam d
tribution functionfbsx, p, td and the self-generated ele
tric and magnetic fieldsEssx, td and Bssx, td in kinetic
analyses [8–24] based on the nonlinear Vlasov-Maxw
equations. For example, in a recent calculation [23,2
a three-dimensional, kinetic stability theorem based
the Vlasov-Maxwell equations has been developed fo
high-intensity ion beam (or charge bunch) in the smoo
focusing approximation. It is found that a beam eq
librium f0

bsx0, p0d that is a monotonically decreasin
function of total particle energyH 0

b in the beam frame
is nonlinearly stable to perturbations with arbitrary amp
tude and polarization. The analysis [23,24] is valid f
arbitrary beam intensity consistent with transverse c
finement of the beam particles by the focusing field a
includes the effects of a perfectly conducting cylindric
wall located at radiusr ­ rw .

In many practical accelerator applications, however,
(unwanted) second charge component is present. Fo
ample, a background population of electrons can re
locally when anH2 beam is injected through a strip
per foil into a proton storage ring or when energe
ions strike the chamber wall. When a second cha
component is present, it has been recognized for m
years, both in theoretical studies and in experimental
servations [25–42], that the relative streaming motion
the high-intensity beam particles through the backgrou
charge species provides the free energy to drive the cla
cal two-streaminstability [43–45], appropriately modified
to include the effects of dc space charge, relativistic ki
matics, presence of a conducting wall, etc. For electr
interacting with a proton beam, as in the Proton Stora
Ring (PSR), this instability is usually referred to as t
electron-protonse-pd instability [31–35], although a simi-
lar instability also exists for other ion species, includi
(for example) electron-ion interactions in electron stora
rings [36–41]. Moreover, a related instability (known
the “ion-resonance” instability), driven by the relative a
erage motion of ion and electron components, also ex
in electron-rich non-neutral plasmas [26,29,30] and in c
lective acceleration schemes such as the electron ring
celerator [42].

Theoretical treatments of thee-p instability are tradi-
tionally based on models [46] that analyze the center
mass motion of the ion and electron charge compone
Such models, while treating accurately several bulk f
tures of the instability, are limited in scope and difficu
to generalize to include the dependence of stability beh
ior on the detailed phase-space properties of the ion
electron distribution functions. Therefore, in the pres
analysis, we develop and apply a theoretical formali
based on the Vlasov-Maxwell equations [1,47] that d
scribe the self-consistent interaction of the ion and el
tron distribution functions,fbsx, p, td andfesx, p, td, with
the applied field and the self-generated electric and m
054401-2
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netic fields. Furthermore, in integrating the lineariz
Vlasov-Maxwell equations, we make use of the meth
of characteristics [44,47] to integrate along the parti
trajectories in the equilibrium field configuration. Suc
an approach has proven to be a powerful technique
describing the stability properties of spatially nonunifor
non-neutral plasmas and intense beam systems [1,47
well as spatially nonuniform, electrically neutral plasm
[44,48]. As noted below, the present analysisdoes in-
clude the (stabilizing) influence of a perfectly condu
ing cylindrical wall located at radiusr ­ rw ­ const.
However, as a consequence, the analysis doesnot include
other important instabilities, such as the resistive-wall
stability [49] or the beam breakup instability [50], th
can result from finite wall resistivity or the presence
structures attached to the chamber wall.

To briefly summarize, the present analysis makes us
the Vlasov-Maxwell equations to develop a fully kinet
description of the electrostatic, electron-ion two-stre
instability driven by the directed axial motion of a high
intensity ion beam propagating in thez direction with
average axial momentumgbmbbbc through a stationary
population of background electrons. The ion beam
characteristic radiusrb and is treated as continuous in th
z direction, and the applied transverse focusing force
the beam ions is modeled byFb

foc ­ 2gbmbv
02

bbx' in
the smooth-focusing approximation. Here,v

0
bb ­ const

is the effective betatron frequency associated with the
plied focusing field,x' is the transverse displaceme
from the beam axis,sgb 2 1dmbc2 is the ion kinetic en-
ergy, andVb ­ bbc is the average axial velocity, wher
gb ­ s1 2 b

2
bd21y2. Furthermore, the ion motion in th

beam frame is assumed to be nonrelativistic, and the e
tron motion in the laboratory frame is assumed to
nonrelativistic. The analysis generally allows for an a
plied transverse focusing force on the electrons mode
by Fe

foc ­ 2mev
02

bex', wherev
0
be ­ const. We denote

the ion charge and number density by1Zbe andnb, and
the electron charge and number density by2e and ne.
For Zbnb . ne, the electrons can be electrostatically co
fined in the transverse direction by the space-charge
tential f produced by the excess ion charge, even w
v

0
be ­ 0. The present equilibrium and stability anal

sis retains the effects of finite radial geometry transve
to the beam propagation direction, including the prese
of a perfectly conducting cylindrical wall located at r
dius r ­ rw . In the stability analysis, thez and t de-
pendences of perturbed quantities are assumed to b
the form expsikzz 2 ivtd, where kz is the axial wave
number andv is the complex oscillation frequency, wit
Imv . 0 corresponding to instability (temporal growth
The present analysis assumes perturbations with l
axial wavelength,k2

z r2
b ø 1, and sufficiently high fre-

quency thatjvykz j ¿ yTez and jvykz 2 Vbj ¿ yTbz ,
whereyTez and yTbz are the characteristic axial therm
speeds of the background electrons and beam ions
054401-2
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this regime, Landau damping (in axial velocity spaceyz)
by resonant ions and electrons is negligibly small.

For step-function density profiles, we intro
duce the ion plasma frequency-squared defined
v̂

2
pb ­ 4pn̂bZ2

be2ygbmb , and the fractional charg
neutralization defined byf ­ n̂eyZbn̂b, wheren̂b andn̂e

are the ion and electron densities. The present ana
based on the Vlasov-Maxwell equations is carried
for arbitrarily normalized beam intensitŷv2

pbyv
02

bb , and
arbitrary fractional charge neutralizationf, consistent
with radial confinement of the beam particles. For
moderately high beam intensities envisioned in the pro
linacs and storage rings for the spallation neutron sou
and tritium production, the normalized beam intens
is typically v̂

2
pbyv

02

bb & 0.1 [51]. For heavy ion fu-
sion applications [6,7], however, the transverse be
emittance is very small, and the space-charge-domin
beam intensity is much larger, witĥv2

pbyv
02

bb & 2g
2
b .

The present stability analysis shows that the instab
growth rate Imv increases with increasing normalize
beam intensity v̂

2
pbyv

02

bb , and increasing fractiona
charge neutralizationf. In addition, the instability is
strongest (largest growth rate) for perturbations w
azimuthal mode number, ­ 1, corresponding to a simpl
(dipole) transverse displacement of the beam ions and
background electrons.

The organization of this paper is the following.
Sec. II, we summarize the basic assumptions (Sec. I
and describe the theoretical model based on
Vlasov-Maxwell equations (Sec. II B). Examples
self-consistent equilibrium solutionss≠y≠t ­ 0d to the
Vlasov-Maxwell equations are then presented for the c
of an intense, continuous ion beam propagating throug
stationary background population of electrons (Sec. II
In Sec. III, we formally integrate the linearized Vlaso
Maxwell equations using the method of characteris
(Sec. III A) and discuss properties of the ion and elect
orbits in the applied field plus equilibrium self-fie
configuration. The orbit equations are analyzed both
the case of step-function ion and electron density profi
(Sec. III B), corresponding to monoenergetic beam i
and monoenergetic electrons, and for the case where
equilibrium density profiles have a continuous variat
with radius r, corresponding to a spread in (depress
betatron frequencies (Sec. III C). In Sec. IV, the n
essary orbit integrals are evaluated in closed analy
form for the case of step-function ion and electron den
profiles, leading to a kinetic dispersion relation which
valid for arbitrary normalized beam intensitŷv2

pbyv
02

bb ,
fractional charge neutralizationf, and azimuthal mode
number, (Sec. IV A). The resulting dispersion relatio
is analyzed in detail for the case of mode number, ­ 1,
corresponding to a simple transverse displacement of
beam ions and electrons (Sec. IV B), and a brief disc
sion of stability behavior for quadrupole perturbatio
with mode number, ­ 2 is presented (Sec. IV C). Fo
054401-3
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monoenergetic ions and electrons and the correspon
step-function density profiles considered in Sec. IV,
key result is that there is no threshold in beam intens
v̂

2
pbyv

02

bb or fractional charge neutralizationf for the
onset of instability. Finally, for the case of continuous
varying density profiles with parabolic profile shape, w
make a semiquantitative estimate in Sec. V of the effe
of the corresponding spread in (depressed) beta
frequency on stability behavior, including an estima
of the instability threshold for the case of weak dens
nonuniformity.

II. THEORETICAL MODEL AND ASSUMPTIONS

In this section, we summarize the basic assumpti
(Sec. II A) made in the present analysis and describe
theoretical model based on the Vlasov-Maxwell equatio
(Sec. II B). Finally, examples of self-consistent equili
rium solutionss≠y≠t ­ 0d of the Vlasov-Maxwell equa-
tions are presented (Sec. II C) for the case of an inte
ion beam propagating through a background popula
of electrons.

A. Basic assumptions

We consider a thin, high-intensity ion beam wi
distribution functionfbsx, p, td, characteristic radiusrb ,
and axial momentumgbmbbbc propagating in thez
direction through a background population of electro
with distribution functionfesx, p, td. While the ions have
high directed axial velocityVb ­ bbc in the z direction,
the background electrons are assumed to be nonrelativ
and stationary with

R
d3p pzfe . 0 in the laboratory

frame. In the context of the smooth-beam approximati
the ion beam is assumed to be continuous in thez
direction, and theapplied transverse focusing force on
beam ion is modeled by

Fb
foc ­ 2gbmbv02

bbx' , (1)

where x' ­ xêx 1 yêy is the transverse displaceme
from the beam axis,sgb 2 1dmbc2 is the characteristic
ion kinetic energy,mb is the ion rest mass,c is the
speed of lightin vacuo, andv

0
bb ­ const is the effective

betatron frequency for transverse ion motion in the
plied focusing field. The focusing force in Eq. (1) wou
correspond to the transverse electric force produced
a uniformly distributed, fixed charge background w
charge density rfoc ­ 2gbmbv

02

bby2pZbe ­ const,
where1Zbe is the charge of a beam ion. Such a mod
is often used to describe theaveragefocusing properties
of an alternating-gradient lattice of magnetic or elect
quadrupoles. For the background electrons, to the
tent that the beam ion density exceeds the backgro
electron density, the space-charge force on an elect
Fs

e ­ e=f, provides transverse confinement of the ba
ground electrons by the electrostatic potentialfsx, td.
054401-3
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However, for completeness, the present analysis
incorporates the effects of anapplied transverse focusing
force on the electrons modeled byFe

foc ­ 2mev
02

bex',
where me is the electron rest mass andv

0
be ­ const is

the effective betatron frequency for transverse elect
motion in the applied focusing field.

It is further assumed that the ion motion in th
beam frame is nonrelativistic and that the transve
momentum components of a beam ion,px andpy, and the
characteristic spread in axial momentum,dpz ­ pz 2

gbmbbc, are small compared with the directed ax
momentum; i.e.,

jpxj, jpyj, jdpzj ø gbmbbbc . (2)

While the space-charge intensity in the present analys
allowed to be arbitrarily large, subject only to transver
confinement of the beam ions by the focusing force
Eq. (1), it is assumed that

nB ;
Z2

be2Nb

mbc2
ø gb , (3)

wherenB is Budker’s parameter,Nb ;
R

dx dy nb is the
number of beam ions per unit axial length, andnbsx, td ­R

d3p fbsx, p, td is the number density of the beam ion
Equation (3) assures that the space-charge potentia
sufficiently weak thatjZbefygbmbc2j ø 1; however,
the electrostatic potential energy of a beam ion,Zbef, is
allowed to be comparable to or larger than the transve
kinetic energysp2

x 1 p2
y dy2gbmb of a beam ion.

In addition, the present analysis is carried out
the electrostatic approximation, where the self-genera
electric field produced by space-charge effects is

Essx, td ­ 2=fsx, td , (4)

and the electrostatic potentialfsx, y, z, td is determined
self-consistently from Poisson’s equation

=2f ­ 24pesZbnb 2 ned . (5)

Here,nesx, td ­
R

d3p fesx, p, td is the electron numbe
density. Furthermore, to determine the self-genera
magnetic field

Bssx, td ­ =Azsx, td 3 êz (6)

produced by the axial ion current, it is assumed that
axial velocity profile Vzbsx, td . bbc is approximately
uniform over the beam cross section. In this case, in
magnetostatic approximation, thez component of vector
potentialAzsx, y, z, td is determined self-consistently from

=2Az ­ 24pZbebbnb , (7)

where use has been made of the assumption that
electrons carry zero axial current in the laboratory fram
i.e., neVze ­

R
d3pspzymedfe . 0.

Finally, underequilibrium conditionss≠y≠t ­ 0d, the
present analysis assumes that ion and electron prope
are spatially uniform in thez direction with ≠y≠z ­ 0.
However, in the stability analysis (Secs. III and IV
054401-4
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we assumesmall-amplitudeperturbations withz and t
variations proportional to expsikzz 2 ivtd, wherekz ­
2pnyL is the axial wave number andv is the (complex)
oscillation frequency, with Imv . 0 corresponding to in-
stability. Here,n is an integer,L is the fundamental ax
ial periodicity length of perturbed quantities in straig
(e.g., linac) geometry, andL ­ 2pR for the case of a
storage ring with (large) radiusR ¿ rb . As noted ear-
lier, the electron motion is assumed to be nonrelativis
and the axial momentum spread of the ions is assume
be small [see Eq. (2)]. For our purposes here, the pre
stability analysis assumes electrostatic perturbations w
sufficiently long axial wavelengthlz ­ 2pykz and suffi-
ciently high frequencyv that

k2
z r2

b ø 1 ,

É
v

kz
2 bbc

É
¿ yTbz ,É

v

kz

É
¿ yTez .

(8)

Here, yTbz ­ s2Tbzygbmbd1y2 and yTez ­ s2Tezymed1y2

are the characteristic axial thermal speeds of the be
ions and the background electrons, respectively. The
equalities in Eq. (8) lead to several simplifications in t
Vlasov-Maxwell equations (Sec. II B). For example, b
causek2

z r2
b ø 1, the three-dimensional Laplacian=2 ­

≠2y≠x2 1 ≠2y≠y2 1 ≠2y≠z2 occurring in Eqs. (5) and
(7) for fsx, td and Azsx, td can be approximated by th
perpendicular Laplacian=2

' ­ ≠2y≠x2 1 ≠2y≠y2. Fur-
thermore, because of the inequalities in Eq. (8), the p
turbed axial forces on the electrons and ions [e.g.,dFe ­
es≠y≠zddfêz anddFb ­ 2Zbes≠y≠zddfêz ] are treated
as negligibly small. The subsequent analysis therefore
glects the effects of Landau damping (by resonant p
ticles) due to the axial momentum spread [44] of the be
ions and background electrons.

B. Model based on nonlinear Vlasov-Maxwell
equations

We now make use of the assumptions delineated
Sec. II A to simplify the theoretical model of ion bea
interaction with the background electrons based on
Vlasov-Maxwell equations [1,47]. First, for narrow ax
ial momentum spread, we introduce the reduced dis
bution functionsFbsx, p', td ­ Fbsx, y, z, px , py, td and
Fesx, p', td ­ Fesx, y, z, px, py, td defined by

Fbsx, p', td ­
Z

dpz fbsx, p, td ,

Fesx, p', td ­
Z

dpz fesx, p, td ,
(9)

where integrations are over axial momentumpz. BecauseR
dpz pzfe . 0 for the electrons, and axial forces a

treated as negligibly small, the nonlinear Vlasov equat
054401-4
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f the

Vlasov
for the reduced electron distribution functionFesx, p', td is given (nonrelativistically) by"
≠

≠t
1

p'

me
?

≠

≠x'

2 smev02

bex' 2 e='fd ?
≠

≠p'

#
Fesx, p', td ­ 0 . (10)

Here,2e is the electron charge,=' ; êx≠y≠x 1 êy≠y≠y is the perpendicular gradient, and use has been made o
assumptions enumerated in Sec. II A.

The ions, however, have large directed axial velocityVb . bbc. We therefore approximatev ? ≠y≠x .
sp'ygbmbd ? ≠y≠x' 1 Vb≠y≠z, in the Vlasov equation for the reduced ion distribution functionFbsx, p', td, and
the perpendicular self-field force on an ion is approximated byFb' ­ Zbef2='f 1 bb êz 3 s='Az 3 êzdg, wheref

andAz are determined self-consistently from Eqs. (5) and (7). Consistent with the assumptions in Sec. II A, the
equation for the reduced ion distribution functionFbsx, p', td therefore becomes"

≠

≠t
1 Vb

≠

≠z
1

p'

gbmb
?

≠

≠x'

2 sgbmbv02
bbx' 1 Zbe='cd ?

≠

≠p'

#
Fbsx, p', td ­ 0 . (11)
e

er
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ants
Here,1Zbe is the ion charge andcsx, td is thecombined
potential defined by

csx, td ; fsx, td 2 bbAzsx, td , (12)

where the electrostatic potentialfsx, td and the combined
potentialcsx, td solve√

≠2

≠x2
1

≠2

≠y2

!
f

­ 24pe

√
Zb

Z
d2p Fb 2

Z
d2p Fe

∂
, (13)

and√
≠2

≠x2
1

≠2

≠y2

!
c

­ 24pe

√
Zb

g
2
b

Z
d2p Fb 2

Z
d2p Fe

!
. (14)

In obtaining Eqs. (13) and (14), use has been mad
Eqs. (6), (7), and (12);

R
d2p · · · denotes

R
dpx dpy · · · ;

nbsx, td ­
R

d2p Fbsx, p', td and nesx, td ­R
d2p Fesx, p', zd are the ion and electron numb

densities, respectively; and we have approxima
=2 . =

2
' ­ ≠2y≠x2 1 ≠2y≠y2 by virtue of the thin-

beam approximation and the inequalityk2
z r2

b ø 1
assumed in Eq. (8).

Equations (10), (11), (13), and (14) constitute a co
plete nonlinear description of the collective interact
of the beam ions with the background electrons ba
on the nonlinear Vlasov-Maxwell equations, consist
with assumptions enumerated in Sec. II A. In the s
sequent analysis, we further assume that the ion b
propagates axially through a perfectly conducting cy
drical pipe with radiusr ­ rw, wherer ­ sx2 1 y2d1y2

is the radial distance from the beam axis. Enforc
fEs

ugr­rw ­ fEs
z gr­rw ­ fBs

r gr­rw ­ 0 at the conducting
054401-5
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wall readily gives the boundary conditions

fsr ­ rw , u, z, td ­ 0, csr ­ rw , u, z, td ­ 0 .

(15)

Here, we have introduced cylindrical polar coordina
x ­ r cosu and y ­ r sinu, and the constant values o
the potentialsf and c at r ­ rw have been taken equ
to zero without loss of generality.

C. Equilibrium profiles

Under quasisteady equilibrium conditions with≠y≠t ­
0, we assume axisymmetric beam propagations≠y≠u ­ 0d
and negligible variation with axial coordinates≠y≠z ­ 0d.
Substituting

≠

≠t
­

≠

≠u
­

≠

≠z
­ 0 (16)

in Eqs. (10), (11), (13), and (14), we readily conclude t
equilibrium distribution functionss≠y≠t ­ 0d for the beam
ions and background electrons (denoted byF0

b andF0
e ) of

the general form [47]

F0
b ­ F0

bsH'bd, F0
e ­ F0

e sH'ed , (17)

exactly solve the nonlinear Vlasov-Maxwell equation
whereH'b andH'e are the single-particle Hamiltonian
defined by

H'b ­
1

2gbmb
p2

'

1
1
2

gbmbv02

bbr2 1 Zbefc0srd 2 ĉ0g , (18)

H'e ­
1

2me
p2

' 1
1
2

mev02

ber2 2 eff0srd 2 f̂0g .

Here, for ≠y≠u ­ 0 ­ ≠y≠z, H'b and H'e are exact
single-particle constants of the motion, and the const
ĉ0 ; c0sr ­ 0d and f̂0 ; f0sr ­ 0d are the on-axis
sr ­ 0d values ofc0srd andf0srd.
054401-5
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9),
There is clearly very wide latitude in specifying th
functional forms of the equilibrium distribution function
F0

bsH'bd andF0
e sH'ed. OnceF0

bsH'bd andF0
e sH'ed are

specified, however, the equilibrium self-field potenti
c0srd andf0srd can be calculated self-consistently fro
Eqs. (13) and (14) with≠y≠u ­ 0 ­ ≠y≠z, i.e.,

1
r

≠

≠r
r

≠

≠r
f0srd ­ 24pefZbn0

bsrd 2 n0
esrdg ,

1
r

≠

≠r
r

≠

≠r
c0srd ­ 24pe

"
Zb

g
2
b

n0
bsrd 2 n0

esrd

#
.

(19)

Here, the equilibrium ion and electron density profil
n0

bsrd andn0
esrd, are defined by

n0
bsrd ­

Z
d2p F0

bsH'bd ,

n0
esrd ­

Z
d2p F0

e sH'ed .
(20)

A simple class of equilibrium distribution function
F0

bsH'bd and F0
e sH'ed [8,9], which correspond to over

lapping step-functiondensity profiles for the beam ion
and background electrons, is given by [30,47]
s

on
ra

054401-6
,

F0
bsH'bd ­

n̂b

2pgbmb
dsH'b 2 T̂'bd ,

F0
e sH'ed ­

n̂e

2pme
dsH'e 2 T̂'ed .

(21)

Here, n̂b and n̂e ; fZbn̂b are positive constants corr
sponding to the ion and electron densities,f ­ const is
the fractional charge neutralization, andT̂'b and T̂'e are
constants corresponding to the on-axissr ­ 0d values of
the transverse ion and electron temperatures, respect
Without presenting details, some algebraic manipula
that makes use of Eqs. (19)–(21) gives the step-func
density profiles [30,47]

n0
bsrd ­

Ω
n̂b ­ const, 0 # r , rb ,
0, rb , r # rw , (22)

and

n0
esrd ­

Ω
n̂e ; fZbn̂b ­ const, 0 # r , rb ,
0, rb , r # rw . (23)

For overlapping density profiles withre ­ rb (Fig. 1), the
equilibrium potential profiles calculated from Eqs. (1
(22), and (23) are given by
eff0srd 2 f̂0g ­

8>>><>>>:
2s1 2 fdNbZbe2 r2

r2
b

, 0 # r , rb ,

2s1 2 fdNbZbe2

µ
1 1 2,n

r
rb

∂
, rb , r # rw ,

(24)

Zbefc0srd 2 ĉ0g ­

8>>>><>>>>:
2

√
1

g
2
b

2 f

!
NbZ2

be2 r2

r2
b

, 0 # r , rb ,

2

√
1

g
2
b

2 f

!
NbZ2

be2

√
1 1 2,n

r
rb

!
, rb , r # rw .

(25)
by

cy-

t

ns

w

Here,f ; n̂eyZbn̂b ­ const,Nb ; n̂bpr2
b is the number

of beam ions per unit axial length, and the beam radiurb

FIG. 1. Equilibrium step-function density profilesn0
bsrd and

n0
esrd [Eqs. (22) and (23)] for the choice of ion and electr

distribution functions in Eq. (21). For the purpose of illust
tion, we have takenZb ­ 1 andf ­ 0.5 in the figure.
-

is related toT̂'b andT̂'e and other system parameters
the equilibrium constraint conditions"

v02

bb 2
1
2

√
1

g
2
b

2 f

!
v̂2

pb

#
r2

b ­
2T̂'b

gbmb
,"

v02

be 1
1
2

gbmb

Zbme
s1 2 fdv̂2

pb

#
r2

b ­
2T̂'e

me
.

(26)

In Eq. (26), we have introduced the ion plasma frequen
squared defined by

v̂2
pb ;

4pn̂bZ2
be2

gbmb
­

4NbZ2
be2

gbmbr2
b

, (27)

whereNb ­ n̂bpr2
b . Note from Eqs. (24) and (25) tha

the constantŝf0 ; f0sr ­ 0d and ĉ0 ; c0sr ­ 0d are
readily determined by enforcing the boundary conditio
in Eq. (15) at the conducting wall radiusr ­ rw. This
gives f̂0 ­ s1 2 fdNbZbef1 1 2,nsrwyrbdg and ĉ0 ­
s1yg

2
b 2 fdNbZbef1 1 2,nsrwyrbdg.

Consistent with positive values ofT̂'b . 0 andT̂'e .

0, the equilibrium constraints in Eq. (26) clearly allo
054401-6
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a wide range of equilibrium system parameters. T
is illustrated in Fig. 2 for the case wherev0

be ­ 0,
corresponding to zero applied focusing force on
electrons. In this case, the electrons are radially confi
by the electrostatic potential of the beam ions. Shown
Fig. 2 is the allowed region insf, v̂

2
pbyv

02

bbd parameter
space corresponding to radial confinement of the i
and electrons consistent with Eq. (26). Here, the so
bounding curves in Fig. 2 correspond tof ­ 1, and
v̂

2
pbyv

02

bb ­ 2ys1yg
2
b 2 fd for 0 # f # 1yg

2
b. These

curves are obtained from Eq. (26) in the limits whe
2T̂'bygbmb ø r2

bv
02

bb and2T̂'eygbmb ø r2
bv̂

2
pb .

The specific choices of distribution functions
Eq. (21) lead to the particularly simple forms for th
equilibrium density and potential profiles in Eqs. (22
(25). Most notably, the particle trajectories in th
equilibrium field configuration consistent with Eqs. (22
(25) can be calculated in closed analytical form, allowi
ote
en
t
n

s

,

he
ng
te

054401-7
s

e
d

n

s
d

detailed stability properties to be determined from
linearized Vlasov-Maxwell equations (Secs. III and IV)

There are clearly many possible choices for the e
librium distribution functions F0

bsH'bd and F0
e sH'ed.

Another example would correspond to the thermal eq
librium distributions [47]

F0
bsH'bd ­

n̂b

s2pgbmbT'bd
exp

√
2

H'b

T'b

!
,

F0
bsH'ed ­

n̂e

s2pmeT'ed
exp

√
2

H'e

T'e

!
.

(28)

Here, H'b and H'e are defined in Eq. (18),T'b and
T'e are positive constants corresponding to ion and e
tron temperatures (energy units), andn̂b ­ n0

bsr ­ 0d and
n̂e ­ n0

esr ­ 0d are the on-axis ion and electron densiti
Substituting Eq. (28) into Eq. (20) gives for the equil
rium density profiles
n0
bsrd ­ n̂b exp

(
2

1
T'b

√
1
2

gbmbv02

bbr2 1 Zbefc0srd 2 ĉ0g

!)
,

n0
esrd ­ n̂e exp

(
2

1
T'e

√
1
2

mev02

ber2 2 eff0srd 2 f̂0g

!)
.

(29)
file

rces
ing
9)

l

m

When Eq. (29) is substituted into Eq. (19), we n
that the resulting coupled equations for the pot
tials f0srd and f0srd are highly nonlinear and mus
generally be solved numerically. Requiring radial co
finement of the ions and electrons withn0

bsr ! `d ­ 0
and n0

esr ! `d ­ 0 generally imposes restriction
on the allowed range of system parametersv

02

bb ,
v̂

2
pb ­ 4p n̂bZ2

be2ygbmb , n̂eyZbn̂b, etc. For example
in the absence of electronssn̂e ­ 0d, careful examination

FIG. 2. The area to the right of the solid curve is t
allowed region ofsf, v̂

2
pbyv

02

bbd parameter space correspondi
to radial confinement of the ions and electrons consis
with Eq. (26) andv

0
be ­ 0, T̂'e $ 0, and T̂'b $ 0. For the

purpose of illustration,gb ­
p

2 ­ 1.414 is assumed in the
figure.
-

-

nt

of Eqs. (19) and (29) shows that the ion density pro
n0

bsrd is bell shaped [20], assuming a maximum valuen̂b

at r ­ 0, and decreasing monotonically with increasingr,
provided the inequalitŷv2

pby2g
2
b , v

02

bb is satisfied. This
is simply a statement that (repulsive) space-charge fo
must be weaker than the (applied) transverse focus
force. Typical numerical solutions to Eqs. (19) and (2
are illustrated in Fig. 3, wheren0

bsrd andn0
esrd are plotted

versus radiusr for the choice of system parametersv
0
be ­

0, gb ­ 1.85, v̂
2
pbyv

02

bb ­ 0.1, and on axis fractiona
charge neutralizationf ­ n̂eyZbn̂b ­ 0.2.

FIG. 3. Plots versus radiusr of (a) the ion density profile
n0

bsrdyn̂b and (b) the electron density profilen0
esrdyn̂e obtained

numerically from Eqs. (19) and (29) for the choice of syste
parametersv

0
be ­ 0, gb ­ 1.85, v̂

2
pbyv

02

bb ­ 0.1, Zb ­ 1,
mbyme ­ 1836, andf ­ n̂eyn̂b ­ 0.2.
054401-7
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III. LINEARIZED VLASOV-MAXWELL
EQUATIONS

In preparation for the stability analysis in Sec. I
we formally integrate the linearized Vlasov-Maxwe
equations using the method of characteristics (Sec. II
and discuss properties of the ion and electron orbits
the applied field plus equilibrium self-field configuratio
(Secs. III B and III C). The orbit equations are analyz
both for the case of the step-function density profi
and corresponding potential profiles in Eqs. (22)–(
(Sec. III B) and for the case where the equilibriu
density profiles have a continuous variation with rad
ad
to

,

1)
er

.

r-
ns

en

ed
ic
th
at

054401-8
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r corresponding to a spread in (depressed) beta
frequencies.

A. Kinetic eigenvalue equation

We now express each quantity in the nonline
Vlasov-Maxwell equations (10), (11), (13), and (1
as an equilibrium value plus a perturbation; e.
Fbsx, p', td ­ F0

bsH'bd 1 dFbsx, p', td, csx, td ­
c0srd 1 dcsx, td, etc. Linearizing Eqs. (10) and (11
for small-amplitude perturbations about the general e
librium F0

bsH'bd, F0
e sH'ed, c0srd, and f0srd consistent

with Eqs. (17)–(20) then gives for the evolution of t
perturbed ion distribution functiondFbsx, p', td
(

≠

≠t
1 Vb

≠

≠z
1

p'

gbmb
?

≠

≠x'

2

"
gbmbv02

bb 1
Zbe

r
≠

≠r
c0srd

#
x' ?

≠

≠p'

)
dFbsx, p', td

­
Zbe

gbmb
p' ? ='dcsx, td

≠

≠H'b
F0

bsH'bd , (30)

and for the evolution of the perturbed electron distribution functiondFesx, p', td(
≠

≠t
1

p'

me
?

≠

≠x'

2

"
mev02

be 2
e
r

≠

≠r
f0srd

#
x' ?

≠

≠p'

)
dFesx, p', td ­ 2

e
me

p' ? ='dfsx, td
≠

≠H'e
F0

e sH'ed .

(31)
of
1)

e

r
s,

bly

ion

se-
In obtaining Eqs. (30) and (31), use has been m
of Eq. (18) and the chain rule for differentiation
express s≠y≠p'dF0

bsH'bd ­ sp'ygbmbd≠F0
by≠H'b,

s≠y≠x'dc0srd ­ r21x'≠c0y≠r, etc. Furthermore
the perturbed potentials,dcsx, td and dfsx, td, occur-
ring in the linearized Vlasov equations (30) and (3
are determined self-consistently in terms of the p
turbed densities,dnbsx, td ­

R
d2p dFbsx, p', td and

dnesx, td ­
R

d2p dFesx, p', td, from Eqs. (13) and (14)
This gives√

≠2

≠x2
1

≠2

≠y2

!
dc

­ 24pe

√
Zb

g
2
b

Z
d2p dFb 2

Z
d2p dFe

!
, (32)√

≠2

≠x2 1
≠2

≠y2

!
df

­ 24pe

√
Zb

Z
d2p dFb 2

Z
d2p dFe

!
. (33)

Equations (30)–(33), valid for small-amplitude pertu
bations about general equilibrium distribution functio
F0

bsH'bd and F0
e sH'ed, constitute the final form of the

linearized Vlasov-Maxwell equations used in the pres
analysis.

Equations (30) and (31) are particularly well suit
to formal solution using the method of characterist
[44,47] to integrate along the particle trajectories in
equilibrium field configuration. Specifically, we note th
the coefficients of≠y≠x' and≠y≠p' on the left-hand side
e

,
-

t

s
e

of Eqs. (30) and (31) are the single-particle equations
motion in the equilibrium fields. For example, in Eq. (3
for dFesx, p', td, the coefficient of≠y≠x' is dx'ydt ­
p'yme and the coefficient of≠y≠p' is dp'ydt ­
2fmev

02

be 2 seyrd≠f0y≠rgx'. Therefore, the derivative
operationh· · ·j on the left-hand side of Eq. (31) can b
viewed as the total time derivative,dydt0, following the
particle motion in the equilibrium fields, and similarly fo
Eq. (30). With this in mind, for amplifying perturbation
Eqs. (30) and (31) can be integrated fromt0 ­ 2`,
where “initial” perturbations are assumed to be negligi
small, to the present timet0 ­ t. BecauseH'b and
H'e are exact single-particle constants of the mot
sdH 0

'bydt0 ­ 0 ­ dH 0
'eydt0d in the equilibrium fields,

this gives

dFbsx, p', td ­ Zbe
≠

≠H'b
F0

psH'bd

3
Z t

2`

dt0 p0
'

gbmb
? =0

'dcsx0, t0d , (34)

and

dFesx, p', td ­ 2e
≠

≠H'e
F0

e sH'ed

3
Z t

2`
dt0 p0

'

me
? =0

'dfsx0, t0d . (35)

In Eqs. (34) and (35),x0st0d and p0
'st0d are the particle

orbits in the equilibrium fields that pass through the pha
space pointsx, p'd at timet0 ­ t; i.e.,

x0st0 ­ td ­ x, p0
'st0 ­ td ­ p' . (36)
054401-8
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For example, from the characteristics in Eq. (30),
“primed” orbits for the beam ions solvez0st0d ­ z 1

Vbst0 2 td, and

d
dt0

x0
'st0d ­

1
gbmb

p0
'st0d ,

d
dt0

p0
'st0d ­ 2gbmbv02

bbx0
'st0d 2

Zbe
r 0

≠c0sr 0d
≠r 0

x0
'st0d ,

(37)

where r 0st0d ­ fx0 2st0d 1 y02st0dg1y2, and x0
'st0 ­ td ­

x' andp0
'st0 ­ td ­ p'. Similarly, from the character

istics in Eq. (31), the primed orbits for the backgrou

as

o

-

o
tu

l
0

054401-9
electrons solvez0st0d ­ z, and

d
dt0

x0
'st0d ­

1
me

p0
'st0d ,

d
dt0

p0
'st0d ­ 2mev02

bex0
'st0d 1

e
r 0

≠f0sr0d
≠r 0

x0
'st0d ,

(38)

wherex0
'st0 ­ td ­ x' andp0

'st0 ­ td ­ p'.
For self-consistency of the field perturbations, t

perturbed distribution functions in Eqs. (34) and (35) m
be substituted into the Maxwell equations (32) and (3
In this regard, it is convenient to adopt a normal-mo
approach in which perturbed quantities are expressed
dFbsx, p', td ­
X̀

,­2`

X̀
kz­2`

dF̂,
bsr , p', kz , vd expfis,u 1 kzz 2 vtdg ,

dcsx, td ­
X̀

,­2`

X̀
kz­2`

dĉ,sr, kz , vd expfis,u 1 kzz 2 vtdg ,
(39)
ier
use
and similarly for dFesx, p', td and dfsx, td. Here,
sx, yd ­ sr cosu, r sinud, the integer, is the azimuthal
mode number,kz is the axial wave number, andv
is the complex oscillation frequency. For the case
a large-aspect-ratio storage ring,kz ­ 2pnyL, where
n is an integer andL ­ 2pR is the ring circumfer-
ence. When carrying out thet0 integration in Eqs. (34)
and (35), Imv . 0 is assumed, corresponding to in
f

stability (temporal growth). We substitute the Four
representations into Eqs. (34) and (35) and make
of sdydt0ddcsx0, t0d ­ f≠y≠t0 1 sp0

'ygbmbd ? ≠y≠x0
' 1

Vb≠y≠z0gdcsx0, t0d to integrate by parts with respect tot0

in Eq. (34), andsdydt0ddfsx0, t0d ­ f≠y≠t0 1 sp0
'ymed ?

≠y≠x0
'gdfsx0, td to integrate by parts with respect tot0

in Eq. (35) [30,47]. Suppressing theskz , vd arguments in
the Fourier amplitudes gives
) for
(32) and
dF̂,
b sr , p'd ­ Zbe

≠

≠H'b
F0

bsH'bd

(
dĉ,srd 1 isv 2 kzVbd

Z 0

2`

dt dĉ,sr 0d expfi,su0 2 ud 2 isv 2 kzVbdtg

)
(40)

for the beam ions, and

dF̂,
e sr , p'd ­ 2e

≠

≠H'e
F0

e sH'ed

(
df̂,srd 1 iv

Z 0

2`
dt df̂,sr0d expfi,su0 2 ud 2 ivtg

)
(41)

for the background electrons. In Eqs. (40) and (41),t denotes the displaced time variablet ­ t0 2 t, Imv . 0 is
assumed, and the radial and azimuthal orbits,r 0st0d andu0st0d, satisfyr 0st0 ­ td ­ r andu0st0 ­ td ­ u. Here,r 0st0d
andu0st0d are related to the Cartesian orbits,x0st0d andy0st0d by x0 ­ r 0 cosu0, andy0 ­ r 0 sinu0. Moreover, the orbits
in the equilibrium fields,sr 0, u0d or equivalentlysx0, y0d, are determined from Eq. (37) for the beam ions and Eq. (38
the background electrons. Finally, for self-consistency of the perturbed fields, we substitute Eq. (39) into Eqs.
(33), which gives√

1
r

≠

≠r
r

≠

≠r
2

,2

r2

!
dĉ,srd ­ 24pe

"
Zb

g
2
b

Z
d2p dF̂,

b sr , p'd 2
Z

d2p dF̂,
e sr , p'd

#
, (42)

√
1
r

≠

≠r
r

≠

≠r
2

,2

r2

!
df̂,srd ­ 24pe

"
Zb

Z
d2p dF̂,

bsr , p'd 2
Z

d2p dF̂,
e sr , p'd

#
. (43)
sed

em

g
ui-

m

Here, dF̂,
bsr , p'd and dF̂,

e sr , p'd are related to the
perturbed potential amplitudesdĉ,srd and df̂,srd by
Eqs. (40) and (41).

Equations (40)–(43) represent the final system
eigenvalue equations derived for small-amplitude per
bations aboutgeneral equilibrium distribution functions
F0

bsH'bd andF0
e sH'ed, consistent with the kinetic mode

and assumptions summarized in Sec. II. Equations (4
f
r-

)–

(43) have a wide range of applicability and can be u
to determine the complex oscillation frequencyv and
detailed stability properties for a wide range of syst
parameters and choices of distribution functionsF0

bsH'bd
and F0

e sH'ed. The principal challenge in analyzin
Eqs. (40)–(43) is twofold. First, depending on the eq
librium profiles, the transverse orbitssr 0, u0d or sx0, y0d
are often difficult to calculate in closed analytical for
054401-9
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from Eqs. (37) and (38). Second, once the orbits in
equilibrium fields are determined, the integrations ovet0

in Eqs. (40) and (41) are challenging because ther 0 orbits
occur explicitly in the arguments of the (yet unknow
eigenfunction amplitudesdĉ,sr 0d anddf̂,sr 0d.

For future reference in Secs. III B, III C, and IV, w
express the ion and electron orbit Eqs. (37) and (38
the convenient forms

d2

dt02
x0

'st0d 1 n2
bsr 0dx0

'st0d ­ 0 (44)

and

d2

dt02
x0

'st0d 1 n2
esr 0dx0

'st0d ­ 0 . (45)

Here, n
2
bsrd and n2

e srd are the (depressed) betatr
frequencies-squared including applied-fieldplus self-field
t
ns
d
n
ro

d-
ro
h

3)
io

a

i

054401-10
e

)

in

effects, defined by

n2
bsrd ­ v02

bb 1
Zbe

gbmb

1
r

≠

≠r
c0srd (46)

for the ions, and

n2
e srd ­ v02

be 2
e

me

1
r

≠

≠r
f0srd (47)

for the electrons. For specified equilibrium distributi
functionsF0

bsH'bd andF0
e sH'ed, and corresponding equ

librium density profilesn0
bsrd and n0

esrd, the equilibrium
self-field contributions in Eqs. (46) and (47) can be e
pressed as
Zbe
gbmb

1
r

≠

≠r
c0srd ­ 2

4pZbe2

gbmb

1
r2

"
Zb

g
2
b

Z r

0
dr rn0

bsrd 2
Z r

0
dr rn0

esrd

#
, (48)

and

2
e

me

1
r

≠

≠r
f0srd ­

4pe2

me

1
r2

"
Zb

Z r

0
dr rn0

bsrd 2
Z r

0
dr rn0

esrd

#
. (49)
am

pre-
u-
in a
Here, use has been made of Eq. (19). Whenever
ion charge density exceeds the electron charge de
with Zbn0

bsrd . n0
esrd, we note from Eqs. (45), (47), an

(49) that the equilibrium self-field force on the electro
is always focusing, even when the applied betat
frequencyv

0
be ­ 0.

B. Particle orbits for step-function density profiles

The orbit equations (44) and (45) simplify consi
erably for the case of the step-function density p
files in Eqs. (22) and (23), which correspond to t
choice of equilibrium distribution functionsF0

bsH'bd and
F0

e sH'ed in Eq. (21). Substituting Eqs. (22) and (2
into Eqs. (46)–(49) readily gives in the beam inter
s0 # r , rbd

n2
bsrd ­ n̂2

b ; v02

bb 2
1
2

v̂2
pb

√
1

g
2
b

2 f

!
,

n2
esrd ­ n̂2

e ; v02

be 1
1
2

gbmb

Zbme
v̂2

pbs1 2 fd ,
(50)

where n̂
2
b and n̂2

e are constants (independent of r
dius r). Here, f ; n̂eyZbn̂b is the fractional charge
neutralization andv̂

2
pb ­ 4pn̂bZ2

be2ygbmb is the ion
plasma frequency squared. Becausen̂b and n̂e are
constants, Eqs. (44) and (45) are readily integrated w
respect tot0. Enforcing the boundary conditionsx0st0 ­
td ­ x, sdx0ydt0dt0­t ­ pxygbmb , etc. readily gives
he
ity

s
n

-
e

r

-

th

x0st0d ­ x cossn̂btd 1
1

gbmbn̂b
px sinsn̂btd ,

y0st0d ­ y cossn̂btd 1
1

gbmbn̂b
py sinsn̂btd ,

(51)

for the ions, and

x0st0d ­ x cossn̂etd 1
1

men̂e
px sinsn̂etd ,

y0st0d ­ y cossn̂etd 1
1

men̂e
py sinsn̂etd ,

(52)

for the electrons. Here,t ­ t0 2 t, n̂b andn̂e are defined
in Eq. (50), and Eqs. (51) and (52) are valid in the be
interior where0 # r 0 ­ sx0 2 1 y02d1y2 , rb .

Equations (51) and (52) constitute a Cartesian re
sentation of the orbits in the equilibrium field config
ration. The transverse orbits can also be expressed
cylindrical coordinate representationsr 0, u0d, wherex0 ­
r 0 cosu0 and y0 ­ r 0 sinu0. Introducing px ­ p' cosw
andpy ­ p' sinw, wherew is the azimuthal momentum
phase, it is readily shown from Eq. (51) thatr 02st0d ­
x02st0d 1 y02st0d can be expressed as

r 02st0d ­
1
2

r2f1 1 coss2n̂btdg

1
p2

'

2g
2
bm2

bn̂
2
b

f1 2 coss2n̂btdg

1
rp'

gbmbn̂b
cossw 2 ud sins2n̂btd , (53)
054401-10
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where sx, yd ­ sr cosu, r sinud. Moreover, from
Eq. (51), the azimuthal orbit determined fro
tanu0 ­ y0yx0 is given by

tanu0st0d

­
r sinu cossn̂btd 1 sp'ygbmbn̂bd sinw sinsn̂btd
r cosu cossn̂btd 1 sp'ygbmbn̂bd cosw sinsn̂btd

.

(54)

Note from Eq. (53) that the motion ofr 02st0d corresponds
to that of a displaced simple harmonic oscillator, oscill
ing at constant frequency2n̂b . Also note from Eqs. (53
and (54) thatsr 0, u0d ­ sr , ud at t ­ t0 2 t ­ 0, as re-
quired. Finally, from Eq. (52), the transverse orbitsr 0st0d
and u0st0d for the electrons are identical in form t
Eqs. (53) and (54) provided we make the replaceme
n̂b ! n̂e andgbmb ! me.

The simple form of the transverse orbits in Eqs. (51
(54) will permit an exact evaluation in Sec. IV of th
orbit integrals in Eqs. (40) and (41) for the choice
equilibrium distribution functions in Eqs. (21) and th
corresponding step-function density profiles in Eqs. (
and (23).

C. Particle orbits for continuously varying
equilibrium profiles

We now examine the ion and electron orbit equatio
(44) and (45) for the case of continuously varyi
equilibrium density profilesn0

bsrd and n0
esrd. In this

case, from Eqs. (48) and (49), the (depressed) beta
frequenciesn

2
bsrd and n2

e srd defined in Eqs. (46) and
(47) generally vary with radial coordinater. Because
the equilibrium is axisymmetrics≠y≠u ­ 0d, an exact
consequence of Eqs. (44) and (45) is the conservatio
io

3

th
s

l

or

054401-11
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angular momentum; i.e.,

P0
ust0d ­ x0p0

y 2 y0p0
x

­ Pu ­ constsindependent of t0d (55)

for both the electrons and the ions. He
Pu ­ xpy 2 ypx ­ rp' sinsw 2 ud is the angular
momentum expressed in phase-space variables,
use has been made ofsx, yd ­ sr cosu, r sinud and
spx , pyd ­ sp' cosw, p' sinwd. Another exact con
sequence of Eqs. (44) and (45) is the conservation
particle energy, i.e.,H 0

'bst0d ­ H'b ­ const for the ions
and H 0

'est0d ­ H'e ­ const for the electrons, whe
H'bsr , p'd andH'esr , p'd are defined in Eq. (18). Fo
example, conservation of energy for the electrons
cylindrical coordinates can be expressed as

1
2

me

√
dr 0

dt0

!2

1
P2

u

2mer 02 1
1
2

mev02

ber 02 2

eff0sr 0d 2 f̂0g ­ H'e ,

(56)

wherePu ­ const is the angular momentum. In obtaini
Eq. (56), use has been made ofmer 02st0ddu0st0dydt0 ­ Pu

to express s1y2dmer 02sdu0ydt0d2 ­ P2
uy2mer 0 2, and

the electrostatic potentialf0sr 0d is determined self
consistently from Eq. (19).

For the ions, the equation of motion forr 0st0d is iden-
tical in form to Eq. (56) provided we make the replac
mentsme ! gbmb , v

02

be ! v
02

bb , 2e ! Zbe, f0sr 0d !

c0sr 0d, and H'e ! H'b in Eq. (56). For present pur
poses, we therefore focus on an examination of Eq. (5

It is convenient to rewrite Eq. (56) as an equation
r 02st0d; i.e.,
1
2

√
d

dt0
r 02

!2

1 r 02

(
2v02

ber 02 2
4e
me

ff0sr 0d 2 f̂0g 2
4H'e

me

)
­ 2

2P2
u

m2
e

. (57)

For specified potential profilef0srd, Eq. (57) is a convenient form for direct integration and determination ofr 02st0d.
Alternatively, taking the derivative of Eq. (57) with respect tot0 gives

d2

dt02
r 02 1

(
s2v0

bed2 2
4e
me

1
r 02

≠

≠r 02
r 02ff0sr 0d 2 f̂0g

)
r02 ­

4H'e

me
. (58)
-

les

e to
er
Equations (57) and (58) are very useful representat
of the radial orbit equation forr 0 2st0d. For example, for
the step-function density profiles in Eqs. (22) and (2
it follows from Eq. (24) thateff0sr0d 2 f̂0g ­ 2s1 2

fdpn̂bZbe2r 02 for 0 # r 0 , rb , and the coefficient ofr 02

in Eq. (58) ish· · ·j ­ s2n̂ed2 ­ const, wherêne is defined
in Eq. (50). Therefore, as expected from Eq. (58),
motion ofr 02st0d corresponds to a displaced oscillator, o
cillating at frequency2n̂e ­ const. Finally, for genera
equilibrium profiles, once the radial orbitr 02st0d has been
determined from Eq. (57) or Eq. (58), the azimuthal
bit u0st0d can be determined frommer 02st0ddu0st0dydt0 ­
ns

),

e
-

-

Pu ­ const, wherePu is the angular momentum. Inte
grating with respect tot0 and enforcingust0 ­ td ­ u

gives

u0st0d ­ u 1
Pu

me

Z t0

t

dt0

r 02st0d
. (59)

In circumstances where the equilibrium density profi
n0

bsrd andn0
esrd vary continuously withr, the coefficient

h· · ·j of r 02 in Eq. (58) will depend onr 02, corresponding
to a spread in the (depressed) betatron-frequency du
self-field effects. To illustrate this effect, we consid
a simple example wheren0

bsrd is assumedto have the
054401-11
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in
parabolic form (Fig. 4)

n0
bsrd ­

8><>: n̂b

√
1 2 e

r2

r2
b

!
, 0 # r , rb ,

0, rb , r # rw .
(60)

Here,e is a positive constant in the range0 # e # 1. For
e ­ 0, Eq. (60) has the step-function form in Eq. (22
whereas fore ­ 1, n0

bsrd decreases monotonically t
zero at the beam radiusr ­ rb . For simplicity, we
further assume that the electron density profilen0

esrd has
an identical shape to Eq. (60) withn0

esrd ­ fZbn0
bsrd,

where f ­ const is the fractional charge neutralizatio
Substituting into the equilibrium Poisson equation (19)
f0srd then gives

2
4e
me

ff0srd 2 f̂0g ­
gbmb

Zbme
v̂2

pbs1 2 fdr2

3

√
1 2

e

4
r2

r2
b

!
(61)

in the beam interior s0 # r , rbd. Here,
v̂

2
pb ­ 4p n̂bZ2

be2ygbmb is the on-axis sr ­ 0d ion
plasma frequency-squared. We substitute Eq. (61)
Eq. (57) or Eq. (58) to determine ther 02 motion. For
example, Eq. (58) becomes

d2

dt02
r 02 1 s2n̂ed2

√
1 2

1
2

he
r 02

r2
b

!
r 02 ­

4H'e

me
, (62)

where n̂2
e is defined in Eq. (50) and the dimensionle

coefficienthe is defined by

he ;
s3y4d sgbmby2Zbmedv̂2

pbs1 2 fd

v
02

be 1 sgbmby2Zbmedv̂2
pbs1 2 fd

e . (63)

For v
0
be ­ 0, we note that Eq. (63) reduces tohe ­

s3y4de. Note also that the nonuniform density variati
she fi 0d leads to a nonlinear frequency shift in Eq. (6

FIG. 4. Plots versus normalized radiusryrb of the equilib-
rium ion density profilen0

bsrd defined in Eq. (60) and the
electron density profilen0

esrd ­ Zbfn0
bsrd. For the purpose o

illustration, we have takene ­ 0.5, f ­ 0.5, and Zb ­ 1 in
the figure.
054401-12
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Substituting Eq. (61) into Eq. (57), or, alternatively, int
grating Eq. (62) once with respect tot0 gives√

d
dt0

r 02

!2

­ s2n̂ed2

3

(√
2H'e

men̂2
e

!
r 02 2 sr 02d2

"
1 2

1
3

he
r 02

r2
b

#

2

√
Pu

men̂e

!2)
, (64)

wherePu ­ const is the angular momentum. The rad
equation of motion for the ions in the equilibrium po
tential c0srd calculated from Eqs. (19), (59), and (60
is identical in form to Eq. (64) provided we make th
replacementŝne ! n̂b , H'e ! H'b , me ! gbmb , and
he ! hb in Eq. (64), wherehb is defined by

hb ;
s3y4d sv̂2

pby2d s1yg
2
b 2 fd

v
02

bb 2 sv̂2
pby2d s1yg

2
b 2 fd

e . (65)

For step-function density profiles withe ­ 0, and there-
fore he ­ 0 ­ hb, the electron and ion orbits forr 02st0d
are identical to those calculated in Sec. III B, with oscill
tory components at the constant frequencies2n̂e and2n̂b .
For e fi 0 and hj fi 0, however, the spatial nonunifor
mity in the equilibrium density profiles produces a spre
in (depressed) betatron frequencies for the particle orb
For example, for specified values ofH'e andPu, electrons
that are confined within the beamsr 02 , r2

bd still exhibit
periodic motion as a function oft ­ t0 2 t, but the period
tesH'e, Pud for the r 0 2st0d motion depends on the energ
H'e and the angular momentumPu and is no longer equa
to the constant valuet0

e ­ 2py2n̂e obtained fore ­ 0
(see the Appendix).

It is also important to recognize that spatial nonunifo
mity in the equilibrium density profilesn0

bsrd and n0
esrd

can have a larger influence on the electron motion th
the ion motion in many applications of practical intere
To illustrate this point, we consider the interesting ca
wherev

0
be ­ 0 andv

0
bb fi 0, and Eq. (63) reduces to

he ­
3
4

e . (66)

Even for the high-intensity proton beams envisioned
the next-generation linacs and storage rings for spalla
neutron sources and tritium production, the beam inten
is such thatv̂2

pbyv
02

bb & 0.1. Therefore, from Eqs. (65)
and (66),hb ø e for the protons, whereashe ­ 3ey4
for the electrons, and the nonlinear effects and freque
spread are correspondingly larger for the electron orbit

We now return to the electron orbit equation forr 02st0d
in Eq. (64), keeping in mind that the ion equation
motion is similar in form. As shown in the Appendix
for arbitrary inhomogeneity strength0 # e # 1, Eq. (64)
can be solvedexactly in terms of elliptic integrals of the
first kind. For present purposes, and future reference
Sec. V, we note here that the approximate orbit forr 02st0d
054401-12
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for the case of weak spatial nonuniformity withe ø 1
and he ø 1 is given by Eq. (A33) in the Appendix
As discussed in the Appendix, Eq. (A33) is identical
overall form to the electron analog of Eq. (53) (deriv
for e ­ 0 ­ he) provided we make the appropria
generalizations of the innersr2

1 d and outersr2
2 d turning

points and replace the (constant) betatron frequencyn̂e by
nesH'ed, defined by

nesH'ed ­

√
1 2

1
4

he
2H'e

men̂2
er2

b

!
n̂e (67)

correct to orderhe. For e ­ 0 ­ he, we note that
Eq. (A33) reduces exactly to the electron analog
Eq. (53), as expected. On the other hand, for smallhe fi

0, the nonuniformity in the equilibrium density profile
introduces a frequency spread in ther 02st0d motion that
depends on the energyH'e according to Eq. (67).

In Sec. V, we will make use of a simple mod
to obtain semiquantitative estimates of the influence
a nonuniformity-induced frequency spread on stabi
behavior.

IV. KINETIC STABILITY PROPERTIES FOR
STEP-FUNCTION DENSITY PROFILES

We now return to the linearized Vlasov-Maxwe
equations (40)–(43), specializing to the case where
equilibrium ion and electron density profiles have t
simple step-function forms in Eqs. (22), (23), and Fig.
and the corresponding monoenergetic equilibrium d
it
)
e

054401-13
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e
e
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tributions for F0
bsH'bd and F0

e sH'ed are specified by
Eq. (21). In this case, the particle motion in the be
interior s0 # r 0 # rbd is that described in Sec. III B. In
this section, the necessary orbit integrals for the ions
electrons are evaluated in closed analytical form, lead
to a kinetic dispersion relation which is valid for arbitra
beam intensityv̂

2
pb , fractional charge neutralizationf,

and azimuthal mode number, (Sec. IV A). The resulting
dispersion relation is then analyzed in detail for the c
of azimuthal mode number, ­ 1, corresponding to a
simple transverse displacement of the beam ions
background electrons (Sec. IV B). Finally, a brief d
cussion of stability behavior for quadrupole perturbatio
s, ­ 2d is presented (Sec. IV C).

A. Kinetic dispersion relation

In Eqs. (42) and (43) for the potential am
plitudes dĉ,srd and df̂,srd, the integrations
over transverse momentum are expressedR`

2` dpx

R`

2` dpy · · · ­
R`

0 dp' p'

R2p

0 dw · · ·, where
spx , pyd ­ sp' cosw, p' sinwd, p' ­ sp2

x 1 p2
yd1y2,

andw is the azimuthal phase ofp' in the transverse plane
Because the single-particle Hamiltonians,H'bsr , p'd and
H'esr , p'd, are independent of phasew [see Eq. (18)] it
follows that ≠F0

bsH'bdy≠H'b and ≠F0
e sH'edy≠H'e are

also independent ofw. Therefore, when calculating th
perturbed ion and electron charge densities from Eqs.
and (41), what is required are thephase-averagedorbit
integrals,I,

bsr , p'd andI,
e sr , p'd, defined by
I,
bsr , p'd ­ isv 2 kzVbd

Z 2p

0

dw

2p

Z 0

2`

dt dĉ,sr 0d exphi,su0 2 ud 2 isv 2 kzVbdtj ,

I,
e sr , p'd ­ iv

Z 2p

0

dw

2p

Z 0

2`
dt df̂,sr0d exphi,su0 2 ud 2 ivtj .

(68)
h

d

tron

an

]

Here,t ­ t0 2 t, andu0st0d and r 0st0d are the transverse
particle orbits in the equilibrium fields that pass throughu

andr at timet0 ­ t.
For the step-function density profiles consistent w

Eqs. (21)–(23), we will subsequently find that Eqs. (40
(43) permit a class of solutions in which the perturb
potentials,dĉ,srd anddf̂,srd, have the exact form

dĉ,srd ­ ĉ,r,, df̂,srd ­ f̂,r, (69)
–

in the beam interiors0 # r , rbd. Here, ĉ, and f̂,

are constant amplitudes. Because the ion and elec
orbits for x0st0d and y0st0d have similar functional forms
[compare Eqs. (51) and (52)], we focus here on
evaluation of the ion orbit integralI,

bsr , p'd defined in
Eq. (68).

We make use ofx0 1 iy0 ­ r 0scosu0 1 i sinu0d to ex-
pressr 0 , expsi,u0d ­ sx0 1 iy0d,. Substituting Eq. (69)
into Eq. (68) then gives for the ion orbit integral [30,47
I,
bsr , p'd ­ isv 2 kzVbdĉ, exps2i,ud

Z 0

2`

dt exph2isv 2 kzVbdtj
Z 2p

0

dw

2p
fx0st0d 1 iy0st0dg,. (70)

We substitutex0st0d 1 iy0st0d from Eq. (51) into Eq. (70) and representsx, yd ­ sr cosu, r sinud and spx , pyd ­
sp' cosw, p' sinwd. Carrying out thew integration in Eq. (70) then gives (for0 # r , rb)

I,
bsr , p'd ­

1
2,

isv 2 kzVbddĉ,srd
Z 0

2`

dt exph2isv 2 kzVbdtj fexpsin̂btd 1 exps2in̂btdg,, (71)

wheredĉ,srd ­ ĉ,r,. Thet integration in Eq. (71) can be carried out for Imv . 0 to give (exactly)
054401-13
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lance
I,
bsr , p'd ­ 2

1
2,

,X
m­0

,!sv 2 kzVbd
m!s, 2 md!fv 2 kzVb 2 s, 2 2mdn̂bg

dĉ,srd (72)

for the beam ions. A similar analysis that makes use of Eqs. (52), (68), and (69) gives for the background elect
integral

I,
e sr , p'd ­ 2

1
2,

,X
m­0

,!
m!s, 2 md!

v

fv 2 s, 2 2mdn̂eg
df̂,srd . (73)

Here, df̂,srd ­ f̂,r, for 0 # r , rb , and the (depressed) betatron frequenciesn̂e and n̂b are defined in Eq. (50
for the step-function equilibrium density profiles assumed in this section. Note from Eqs. (72) and (73) that th
integralsI,

b andI,
e do not depend on the perpendicular momentum variablep'.

From Eqs. (40), (41), (68), (72), and (73), we therefore obtainZ 2p

0
dw dF̂,

bsr , p'd ­ 2pZbeG,
bsv 2 kzVbddĉ,srd

≠

≠H'b
F0

bsH'bd ,

Z 2p

0
dw dF̂,

e sr , p'd ­ 22peG,
esvddf̂,srd

≠

≠H'e
F0

e sH'ed ,
(74)

where dĉ,srd and df̂,srd are defined in Eq. (69) for0 # r , rb. Here, the ion and electronsusceptibilities,
G

,
bsv 2 kzVbd andG,

e svd, are defined by

G,
bsv 2 kzVbd ­ 2

1
2,

,X
m­0

,!
m!s, 2 md!

s, 2 2mdn̂b

fsv 2 kzVbd 2 s, 2 2mdn̂bg
,

G,
esvd ­ 2

1
2,

,X
m­0

,!
m!s, 2 md!

s, 2 2mdn̂e

fv 2 s, 2 2mdn̂eg
,

(75)

for general azimuthal harmonic number,.
It is now straightforward to evaluate the perturbed ion and electron densities,dn̂,

bsrd ­
R

d2p dF̂,
bsr , p'd and

dn̂,
esrd ­

R
d2p dF̂,

e sr , p'd, making use of
R

d2p · · · ­
R2p

0 dw
R`

0 dp'p' · · · and Eq. (74). For the choice o
equilibrium distribution functions in Eq. (21), it can be shown that [30,47]

2p
Z `

0
dp' p'

≠

≠H'b
F0

bsH'bd ­ 2
n̂b

gbmbn̂
2
brb

dsr 2 rbd ,

2p
Z `

0
dp' p'

≠

≠H'e
F0

e sH'ed ­ 2
n̂e

men̂2
erb

dsr 2 rbd .
(76)

Here, n̂
2
b and n̂2

e are defined in Eq. (50),̂ne ­ fZbn̂b is the electron density, wheref is the fractional charge
neutralization, and the beam radiusrb is related self-consistently to other equilibrium parameters by the force-ba
constraints in Eq. (26).

We make use of Eqs. (74)–(76) to evaluate the perturbed charge densities,Zbe
R

d2p dF̂,
b sr , p'd and

2e
R

d2p dF̂,
e sr , p'd, required in Eqs. (42) and (43) for the potential amplitudesdĉ,srd and df̂,srd. This readily

gives

4pZbe
Z

d2p dF̂,
bsr , p'd ­ 2

v̂
2
pb

n̂
2
b

G,
bsv 2 kzVbddĉ,srd

1
rb

dsr 2 rbd ,

24pe
Z

d2p dF̂,
e sr , p'd ­ 2

v̂2
pe

n̂2
e

G,
e svddf̂,srd

1
rb

dsr 2 rbd .
(77)

Substituting Eq. (77) into Eqs. (42) and (43) then gives the coupled eigenvalue equations fordĉ,srd anddf̂,srd,√
1
r

≠

≠r
r

≠

≠r
2

,2

r2

!
dĉ,srd ­

"
v̂

2
pb

g
2
bn̂

2
b

G,
bsv 2 kzVbddĉ,srd 1

v̂2
pe

n̂2
e

G,
e svddf̂,srd

#
1
rb

dsr 2 rbd , (78)

and √
1
r

≠

≠r
r

≠

≠r
2

,2

r2

!
df̂,srd ­

"
v̂

2
pb

n̂
2
b

G,
bsv 2 kzVbddĉ,srd 1

v̂2
pe

n̂2
e

G,
e svddf̂,srd

#
1
rb

dsr 2 rbd . (79)
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spond to
to

(78)

field,

we

e

We note that the perturbed charge and current densities on the right-hand side of Eqs. (78) and (79) corre
surface-charge perturbations localized to the beam surface atr ­ rb (see Fig. 1). Therefore, the exact solutions
Eqs. (78) and (79) can be expressed as

dĉ,srd ­

8><>:
dĉ

,
I srd ­ ĉ,r,, 0 # r , rb ,

dĉ
,
II srd ­ ĉ,r,

b
fsryrwd, 2 srwyrd,g

fsrbyrwd, 2 srwyrbd,g
, rb , r # rw ,

(80)

and

df̂,srd ­

8><>:
df̂

,
I srd ­ f̂,r,, 0 # r , rb ,

df̂
,
II srd ­ f̂,r,

b
fsryrwd, 2 srwyrd,g

fsrbyrwd, 2 srwyrbd,g
, rb , r # rw .

(81)

In Eqs. (80) and (81),̂c, and f̂, are constant amplitudes and we have enforced the boundary conditions,dĉ,sr ­
rwd ­ 0 ­ df̂,sr ­ rwd at the perfectly conducting wall atr ­ rw. We have also enforced continuity ofdf̂,srd and
dĉ,srd at the surface of the beamsr ­ rbd. The remaining boundary conditions are obtained by integrating Eqs.
and (79) fromrbs1 2 ed to rbs1 1 ed across the surface of the beam atr ­ rb and taking the limite ! 01. Operating
on Eqs. (78) and (79) with

Rrbs11ed
rb s12eddr r · · · readily gives"

r
≠

≠r
dĉ,

II srd

#
rbs11ed

2

"
r

≠

≠r
dĉ,

I srd

#
rb s12ed

­
v̂

2
pb

g
2
b n̂

2
b

G,
bsv 2 kzVbdĉ, 1

v̂2
pe

n̂2
e

G,
esvdf̂, , (82)

and "
r

≠

≠r
df̂,

IIsrd

#
rbs11ed

2

"
r

≠

≠r
df̂,

I srd

#
rbs12ed

­
v̂

2
pb

n̂
2
b

G,
bsv 2 kzVbdĉ, 1

v̂2
pe

n̂2
e

G,
e svdf̂, , (83)

where e ! 01. Note that Eqs. (82) and (83) relate the discontinuities in the perturbed radial electric
2s≠y≠rddf̂,srd, and the perturbed azimuthal magnetic field,2s≠y≠rddÂ,

zsrd [where dĉ, ­ df̂, 2 bbdÂ,
z ], to the

perturbed surface charge and current densities atr ­ rb. Substituting Eqs. (80) and (81) into Eqs. (82) and (83),
obtain two coupled equations relating the potential amplitudesĉ, andf̂,; i.e.,"

2
1 2 srbyrwd2,

1
v̂

2
pb

,g
2
bn̂

2
b

G,
bsv 2 kzVbd

#
ĉ, 1

v̂2
pe

,n̂2
e

G,
esvdf̂, ­ 0 ,

v̂
2
pb

,n̂
2
b

G,
bsv 2 kzVbdĉ, 1

"
2

1 2 srbyrwd2,
1

v̂2
pe

,n̂2
e

G,
e svd

#
f̂, ­ 0 .

(84)

The condition for a nontrivial solution to Eq. (84) with nonzeroĉ, andf̂, is that the two-by-two determinant of th
coefficients ofĉ, andf̂, vanish. This gives"

2
1 2 srbyrwd2,

1
v̂

2
pb

,g
2
bn̂

2
b

G,
bsv 2 kzVbd

# "
2

1 2 srbyrwd2,
1

v̂2
pe

,n̂2
e

G,
esvd

#

­
v̂2

pe

,n̂2
e

v̂
2
pb

,n̂
2
b

G,
e svdG,

bsv 2 kzVbd . (85)
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ar-
Here, the ion and electron susceptibilities,G
,
bsv 2 kzVbd

and G,
e svd, are defined in Eq. (75) and the (depress

betatron frequencies,̂nb and n̂e, are defined in Eq. (50)
Equation (85) is the final form of the fully kineti
dispersion relation, derived from the linearized Vlas
Maxwell equations for small-amplitude perturbatio
about the equilibrium distribution functions,F0

bsH'bd
and F0

e sH'ed, in Eq. (21), and the corresponding ste
function density profiles in Eqs. (22) and (23). As su
Eq. (85) can be used to determine the complex oscilla
frequencyv over a wide range of system paramete
including beam intensitysv̂2

pbd, fractional charge neu
054401-15
)

-

-
,
n
,

tralizationsf ­ n̂eyZbn̂bd, focusing field strengthsv02

bbd,
azimuthal mode numbers,d, axial wave numberskzd, etc.,
subject only to the simplifying assumptions summariz
in Sec. II.

In the absence of electronssn̂e ­ 0 ­ v̂2
ped, the disper-

sion relation (85) reduces to the simple result

2
1 2 srbyrwd2,

1
v̂

2
pb

,g
2
bn̂

2
b

G,
bsv 2 kzVbd ­ 0 . (86)

Equation (86) supports purely stablesImv ­ 0d collec-
tive oscillations of the ion beam and reveals a rich h
monic content at frequenciesv ­ 6n̂b, 62n̂b , . . . , 6,n̂b .
054401-15



PRST-AB 2 RONALD C. DAVIDSON et al. 054401 (1999)

5
t
o

ea
o
it

in

, re-
,
to
When background electrons are presentsn̂e fi 0d, how-
ever, Eq. (85) supports unstable solutionssImv . 0d with
instability resulting from the axial streamingsVb fi 0d of
the beam ions through the background electrons.

B. Electron-ion instability for azimuthal mode
number ,,, 5 1

We defer an analysis of the dispersion relation (8
for general azimuthal mode number, to a subsequen
investigation and focus the present analysis on dip
perturbations with azimuthal mode number, ­ 1, corre-
sponding to a simple transverse displacement of the b
ions and background electrons. A brief discussion
the dispersion relation for quadrupole perturbations w
mode number, ­ 2 is given in Sec. IV C.
o

a
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a
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)
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For azimuthal mode number, ­ 1, it follows from
the definitions of the electron and ion susceptibilities
Eq. (75) that

v̂
2
pb

n̂
2
b

G1
bsv 2 kzVbd ­ 2

v̂
2
pb

sv 2 kzVbd2 2 n̂
2
b

,

v̂2
pe

n̂2
e

G1
e svd ­ 2

v̂2
pe

v2 2 n̂2
e

.

(87)

Here, v̂
2
pb ­ 4pn̂bZ2

be2ygbmb and v̂2
pe ­ 4pn̂ee2yme

are the ion and electron plasma frequency-squared
spectively, and the (depressed) betatron frequenciesn̂b

andn̂e, are defined in Eq. (50). Substituting Eq. (87) in
the dispersion relation (85) gives
"

2

1 2 r2
byr2

w

2
v̂

2
pbyg

2
b

sv 2 kzVbd2 2 n̂
2
b

# "
2

1 2 r2
byr2

w

2
v̂2

pe

v2 2 n̂2
e

#
­

v̂2
pe

fv2 2 n̂2
e g

v̂
2
pb

fsv 2 kzVbd2 2 n̂
2
bg

(88)

for , ­ 1. We define the electron and ion collective oscillation frequencies,ve andvb , by

v2
e ; n̂2

e 1
1
2

v̂2
pe

√
1 2

r2
b

r2
w

!
­ v02

be 1
1
2

gbmb

Zbme
v̂2

pb

√
1 2 f

r2
b

r2
w

!
, (89)

and

v2
b ; n̂2

b 1
v̂

2
pb

2g
2
b

√
1 2

r2
b

r2
w

!
­ v02

bb 1
1
2

v̂2
pb

√
f 2

1

g
2
b

r2
b

r2
w

!
, (90)
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where v̂2
pe has been expressed aŝv2

pe ­ sgbmby
Zbmedfv̂

2
pb. Substituting Eqs. (89) and (90) int

Eq. (88) and rearranging terms, the, ­ 1 dispersion
relation (88) can be expressed in the equivalent (comp
form

fsv 2 kzVbd2 2 v2
bg fv2 2 v2

e g ­ v4
f , (91)

wherevf is defined by

v4
f ;

1
4

f

√
1 2

r2
b

r2
w

!2
gbmb

Zbme
v̂4

pb . (92)

In the absence of background electrons (f ­ 0 andvf ­
0), Eq. (91) gives stable collective oscillations of t
ion beam with frequencyv 2 kzVb ­ 6vb , wherevb

is defined in Eq. (90). Forf fi 0, however, the ion
and electron terms on the left-hand side of Eq. (91)
coupled by thev

4
f term on the right-hand side, leadin

to one unstable solution with Imv . 0. The instability
is two-stream in nature and results from the directed
motion with axial velocityVb through the (stationary
background electrons. Equation (91) is a fourth-or
algebraic equation for the complex oscillation frequen
v. Some straightforward analysis shows that there
two stable solutions to Eq. (91) with purely realv and
two complex solutions that are complex conjugates (
is growing with Imv . 0 and the other is damped wit
Imv , 0) for certain ranges of axial wave numberkz .
ct)

re

n

r
y
re

e

Equation (91) can of course be solved numerically forv

over a wide range of system parameters, including fr
tional chargesfd, normalized beam intensitysv̂2

pbyv
02

bbd,
proximity of the conducting wallsrbyrwd, etc.

In the interesting application to proton linacs a
storage rings, the natural oscillation frequencies,ve and
vb , occurring in Eq. (91) tend to be large in com
parison withvf , even for fractional charge neutralizatio
f ­ 1 and moderately large normalized beam intens
v̂

2
pbyv

02

bb & 0.5. In this case, it is found that the unstab
branch in Eq. (91) has real frequency and axial wa
numbersv, kzd very closely tuned to the valuessv0, kz0d
defined by

v0 ; ve, v0 2 kz0Vb ; 2vb . (93)

Here, we consider the electron branch withpositive
frequency,v . 1ve, and the down-shifted ion branc
(in the beam frame) withv 2 kzVb . 2vb , which
are (unstably) coupled by thev4

f term in Eq. (91).
Expressing v ­ v0 1 dv and kz ­ kz0 1 dkz, and
assumingjdvj ø 2ve and jdv 2 dkzVbj ø 2vb , it is
straightforward to show that Eq. (91) can be approxima
by the quadratic dispersion relation

dvsdv 2 dkzVbd ­ 2
v

4
f

4vevb
; 2G2

0 . (94)
054401-16



PRST-AB 2 KINETIC DESCRIPTION OF ELECTRON-PROTON … 054401 (1999)

e

Equation (94) supports an unstable solution with Imdv . 0 for dkz in the interval22G0 , dkzVb , 12G0. In this
range ofdkz, the unstable solution to Eq. (94) is given by

Redv ­
1
2

dkzVb , Imdv ­ G0f1 2 sdkzVby2G0d2g1y2. (95)

As evident from Eq. (95) and illustrated in Fig. 5, the growth rate Imdv is a symmetric function ofdkz, achieving a
maximum value ofG0 for dkz ­ 0 and decreasing to zero fordkzVb ­ 62G0. From Eqs. (89), (90), and (92), th
maximum growth rate,sImdvdmax ­ G0, is given explicitly by

sImdvdmax ­
v

2
f

2svevbd1y2
­

1
4 f1y2s1 2

r2
b

r2
w

d s gb mb

Zbme
d1y2

v̂
2
pb

fv02

be 1
1
2 s gbmb

Zb me
dv̂2

pbs1 2 f
r2

b

r2
w

dg1y4fv02

bb 1
1
2 v̂

2
pbsf 2

1
g

2
b

r2
b

r2
w

dg1y4
. (96)
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Equation (96) can be applied over a wide range of sys
parameters subject to the assumptionsjdvj ø 2vb , 2ve,
or, equivalently,

1
16

v4
f ø v3

bve, vbv3
e . (97)

Several points are noteworthy from Eq. (96). First,
growth rate increases with increasing fractional cha
neutralizationsfd and increasing normalized ion beam
tensity sv̂2

pbyv
02

bbd. Second, the growth rate decreas
when the conducting wall is in close proximity to th
beam (larger values ofrbyrw). Third, there is no thresh
old value off for the onset of instability, which is likely
a consequence of the fact that there is no spread in
pressed) betatron frequencies for the step-function
sity profiles in Eqs. (22) and (23) and the correspond
monoenergetic ion and electron distributions in Eq. (
considered in this section. Finally, the linearized Vlas
equations (30) and (31), and therefore the resulting dis
sion relation (88), neglect the effects of Landau damp
[44] associated with an axial velocity spread in the be
ions or background electron population. The expr
sion for sImdvdmax in Eq. (96) simplifies further for the
case of negligible applied focusing force on the electr
sv0

be ­ 0d and large conducting wall radiussrw ¿ rbd.

FIG. 5. Plot of normalized growth ratesImdvdyG0 versus
normalized axial wave numberdkzVby2G0 calculated from
Eq. (95).
054401-17
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Settingv
0
be ­ 0 andrbyrw ! 0 in Eq. (96) gives

sImdvdmax

v
0
bb

­
1

27y4

f1y2sgbmbyZbmed1y4sv̂2
pbyv

02

bbd3y4

f1 1 sfy2dv̂2
pbyv

02

bbg1y4
.

(98)

For example, for a proton beamsZb ­ 1, mbyme ­
1836d with relativistic mass factorgb ­ 1.85, a moderate
value of normalized beam intensitŷv2

pbyv
02

bb ­ 0.1, and
fractional charge neutralizationf ­ 0.1, Eq. (98) gives
sImdvdmax ­ 0.127v

0
bb , corresponding to a particularl

virulent growth rate for the e-p instability. For this choi
of system parameters, the central oscillation freque
and wave number calculated from Eq. (93) arev0 ­
13.03v

0
bb andkz0Vb ­ 14.03v

0
bb .

For completeness, shown in Fig. 6 is a plot of n
malized growth ratesImdvdmaxyv

0
bb versus normalized

beam intensityv̂
2
pbyv

02

bb calculated from Eq. (96) fo
the choice of system parametersv

0
be ­ 0, gb ­ 1.85,

mbyme ­ 1836, rbyrw ­ 0.5, and several values of frac
tional charge neutralization corresponding tof ­ 0.1,
0.3, 0.6, and 0.9. Note that sImdvdmax increases with
increasing beam intensity and increasing charge neu
ization, as expected.

FIG. 6. Plot of sImdvdmaxyv
0
bb versusv̂

2
pbyv

02

bb calculated
from Eq. (96) for v

0
be ­ 0, gb ­ 1.85, Zb ­ 1, mbyme ­

1836, rbyrw ­ 0.5, and several values of fractional char
neutralization corresponding tof ­ 0.1, 0.3, 0.6, and0.9.
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While the beam distribution function in the PS
experiment [31–35] has a (small) energy spread, an
not modeled well by the monoenergetic distribution
Eq. (21), it is nonetheless instructive to apply the stabi
results obtained in Eqs. (94) and (96) to characteri
parameters in PSR. An instability, believed to be cau
by trapped electrons in the proton beam, has b
observed in PSR [31–35] for coasting beams at curr
exceedingIb ­ 2.23 A. If we take illustrative parameter
for PSR to beIb ­ pn̂br2

bebbc ­ 2.23 A, gb ­ 1.85,
bb ­ 0.84, f ­ 0.02, rb ­ 2 cm, rw ­ 5 cm, v

0
be ­ 0,

and v
0
bb ­ 4.05 3 107 s21, then n̂b ­ 4.4 3 107 cm23

and v̂
2
pbyv

02
bb ­ 0.025. Substituting into Eq. (96) give

a predicted maximum growth ratesImdvdmax ­ 6.9 3

105 s21 for step-function density profiles. On the oth
hand, the observed growth rate in PSR at a beam cu
of Ib ­ 2.23 A is in the range of3 3 104 s21. The
discrepancy between theory and experiment is likely
to the reduction in growth rate caused by a spr
in depressed betatron frequencies [see, e.g., Ref.
and Sec. V], an effect which isnot incorporated in the
monoenergetic distributions in Eq. (21).

The quadratic approximation to the dispersion relat
given in Eq. (94) is valid for the moderately high bea
intensitiessv̂2

pbyv
02

bbd envisioned in the proton linacs an
storage rings for tritium production and spallation ne
tron sources [51]. For heavy ion fusion applications [6,
however, the beam emittance, which is proportional
T̂'b in Eq. (26), is very low and the normalized bea
intensity is such that̂v2

pby2g
2
bv

02

bb can approach unity in
the absence of background electronssf ­ 0d. This is evi-
dent from the equilibrium force constraint for the ions
Eq. (26), where, forf ­ 0 and2T̂'bygbmbr2

bv
02

bb ø 1,

it follows that v̂
2
pby2g

2
bv

02

bb ! 1. At such high beam
intensities, it follows that it is necessary to solve the f
quartic dispersion relation (91) for the complex oscillati
frequencyv. Typical numerical results obtained fro
Eq. (91) are illustrated in Fig. 7. Here,sImvdyv

0
bb and

sRev 2 vedyv
0
bb are plotted versusskz 2 kz0dVbyv

0
bb

for several values of̂v2
pbyv

02

bb ranging from 0.1 to 2.0
Other system parameters in Fig. 7 correspond toZb ­
1, mass numberA ­ mbymp ­ 200, sgb 2 1dmbc2 ­
10 GeV, rbyrw ­ 0.5, f ­ 0.1, andv

0
be ­ 0. For suf-

ficiently small values ofv̂2
pbyv

02

bb, the numerical results
obtained in Fig. 7 from the full quartic dispersion rel
tion (91) are in excellent agreement with the appro
mate quadratic dispersion relation in Eq. (94). On
other hand, at very high beam intensity withv̂

2
pbyv

02

bb ­
2, say, it is evident from Fig. 7 that the growth ra
Imvyv

0
bb has very large bandwidth and becomes sign

cantly skewed aboutkz ­ kz0 [in contrast with the sym-
metric results obtained from the quadratic approximat
in Eq. (95)]. It is also striking from Fig. 7 that the in
stability growth rate can be large for the very high be
054401-18
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FIG. 7. Plots of (a) normalized growth rate Imvyv
0
bb and

(b) normalized real frequencysRev 2 vedyv
0
bb versus shifted

axial wave numberskz 2 kz0dVbyv
0
bb obtained numerically

from the full dispersion relation (91) for the unstable bran
with positive real frequency. System parameters correspon
Zb ­ 1, mbymp ­ 200, sgb 2 1dmbc2 ­ 10 GeV, rbyrw ­
0.5, f ­ 0.1, and v

0
be ­ 0. Curves are shown for severa

values of normalized beam intensitŷv2
pbyv

02

bb ranging from
0.1 to 2.0.

intensities of interest for heavy ion fusion. For examp
sImvdmax ­ 2.15v

0
bb for v̂

2
pbyv

02

bb ­ 2 in Fig. 7.
In concluding Sec. IV B, it is important to recogniz

that the dispersion relation (85) has been derived unde
assumptions [Eq. (8)] of long-wavelength, high-frequen
perturbations satisfyingk2

z r2
b ø 1, jvykz 2 Vbj ¿ yTbz ,

and jvykzj ¿ yTez
, which allowed us to neglect kineti

effects (such as Landau damping) in thez direction [44].
Here, yTbz ­ s2Tbzygbmbd1y2 and yTez ­ s2Tezymed1y2

are the characteristic axial thermal speeds of the be
ions and background electrons, respectively. F
mode number, ­ 1, we estimatev . v0 ­ ve and
kz . kz0 ­ V 21

b sve 1 vbd [see Eq. (93)] and make us
of Eqs. (26) and (50) to expressr2

b ­ 2T'bygbmbn̂
2
b ­

y
2
Tb'

yn̂
2
b. The inequalities in Eq. (8) can then b
054401-18



PRST-AB 2 KINETIC DESCRIPTION OF ELECTRON-PROTON … 054401 (1999)

),
te
al

fy

on

or
rties

n

expressed as

y2
Tb'

ø V 2
b

n̂
2
b

sve 1 vbd2 , y2
Tbz

ø V 2
b

v
2
b

sve 1 vbd2 ,

y2
Tez

ø V 2
b

v2
e

sve 1 vbd2
,

(99)

where n̂b , vb, and ve are defined in Eqs. (50), (89
and (90). Equation (99) clearly requires that the direc
axial velocityVb be large in comparison with the therm
speedsyTb'

, yTbz
, and yTez

. Moreover, the first two
he
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inequalities in Eq. (99) are the most difficult to satis
becauseve is typically larger thanvb andn̂b.

C. Dispersion relation for azimuthal mode number
,,, 5 2

Detailed analysis of the kinetic dispersion relati
(85) for perturbations with azimuthal mode numbers, $

2 will be the subject of a future investigation. F
present purposes, we briefly summarize here prope
of the dispersion for quadrupole perturbations with, ­
2. For , ­ 2, Eq. (75) gives for the ion and electro
susceptibilities
101)
G2
bsv 2 kzVbd ­ 2

n̂
2
b

sv 2 kzVbd2 2 s2n̂bd2
, G2

e svd ­ 2
n̂2

e

v2 2 s2n̂ed2
. (100)

Substituting Eq. (100) into Eq. (85), we obtain for, ­ 2"
2

1 2 r4
byr4

w

2
v̂

2
pby2g

2
b

sv 2 kzVbd2 2 s2n̂bd2

# "
2

1 2 r4
byr4

w

2
v̂2

pey2

v2 2 s2n̂ed2

#

­
v̂2

pey2

fv2 2 s2n̂ed2g
v̂

2
pby2

fsv 2 kzVbd2 2 s2n̂bd2g
. (101)

Equation (101) is similar in form to Eq. (88) (for, ­ 1), but the particle resonances in the denominators in Eq. (
(for , ­ 2) occur at thesecondharmonics ofn̂b and n̂e, i.e., at v 2 kzVb ­ 62n̂b and v ­ 62n̂e. Expressing
v̂2

pe ­ sgbmbyZbmedfv̂
2
pb, wheref ­ n̂eyZbn̂b , the, ­ 2 dispersion relation (101) can be rewritten in the form(

sv 2 kzVbd2 2

"
s2n̂bd2 1

v̂
2
pb

4g
2
b

√
1 2

r4
b

r4
w

!#) (
v2 2

"
s2n̂ed2 1

1
4

gbmb

Zbme
fv̂2

pb

√
1 2

r4
b

r4
w

!#)

­
1

16

√
1 2

r4
b

r4
w

!2
gbmb

Zbme
fv̂4

pb . (102)
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Comparing Eq. (102) with Eq. (91), it is clear that t
, ­ 2 dispersion relation (102) is identical in form to th
, ­ 1 dispersion relation (91), with simple redefinitio
of the frequenciesvb , ve, andvf . Therefore, forf fi 0,
Eq. (102) always has one unstable solution with Imv . 0
for certain ranges ofkz , and the analysis developed
Sec. IV B for , ­ 1 can also be applied to Eq. (10
for azimuthal mode number, ­ 2. Without presenting
algebraic details, for specified values off, v̂

2
pbyv

02

bb ,
gb , etc., the, ­ 2 growth rate calculated from Eq. (10
is smaller than the, ­ 1 growth rate calculated from
Eq. (91). For example, the quadratic dispersion rela
estimate,sImdvdmax ­ v

2
fy2svevbd1y2, gives a smalle

growth rate for, ­ 2, using the new definitions forvb,
ve, andvf . In this regard, the, ­ 1 mode is the mos
“dangerous” mode because it has the largest growth r

V. EFFECTS OF A SPREAD IN BETATRON
FREQUENCIES

The general kinetic eigenvalue equations (40)–(
developed in Sec. III can be applied to electrostatic per
n

.

)
r-

bations about a wide range of nonmonoenergetic equ
rium distribution functions,F0

bsH'bd and F0
e sH'ed, and

corresponding self-consistent equilibrium density profil
n0

bsrd andn0
esrd, that vary continuously with radial coord

nater. A detailed, self-consistent stability analysis bas
on Eqs. (40)–(43) for continuously varying equilibriu
profiles is beyond the scope of the present article and
be the subject of a future investigation. For present p
poses, based on the insights gained in Secs. III C and
and the Appendix, we summarize the results of a sim
modelthat illustrates semiquantitatively the stabilizing i
fluence [28] that a (weak) density nonuniformity and t
corresponding spread in betatron frequencies can hav
stability behavior.

The model assumes overlapping ion and electron d
sity profiles with parabolic profile shape specified
Eq. (60) for the ion density profilen0

bsrd, and elec-
tron density profile specified byn0

esrd ­ Zbfn0
bsrd, where

f ­ const is the fractional charge neutralization. T
model further makes theansatzthat the dispersion rela
tion (considered here for azimuthal mode number, ­ 1)
has similar form to Eq. (85), obtained by making the s
ceptibility replacements [see Eq. (87)]
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v̂
2
pb

n̂
2
b

G1
bsv 2 kzVbd ! xbsv 2 kzVbd ; 2

2

r2
b

Z rb

0

dr rv
2
pbsrd

sv 2 kzVbd2 2 n
2
bsrd

,

v̂2
pe

n̂2
e

G1
esvd ! xesvd ; 2

2

r2
b

Z rb

0

dr rv2
pesrd

v2 2 n2
e srd

.
(103)
ni

en

),

-
d

0)

87),

tial
e
ies,

ws
ut
This model implicitly assumes, for weak spatial nonu
formity with e ø 1, that the eigenfunctionsdĉ,srd and
df̂,srd have (approximately) the same radial dep
dence [Eqs. (80) and (81)] as obtained for the case
step-function density profiles in Sec. IV. In Eq. (103
v

2
pjsrd ­ v̂

2
pjs1 2 er2yr2

bd for j ­ b, e, and we make
use of the radial orbit equation (62) to express

n2
bsrd ­ n̂2

b

√
1 2

1
2

hb
r2

r2
b

!
,

n2
e srd ­ n̂2

e

√
1 2

1
2

he
r2

r2
b

!
.

(104)
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-
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In Eq. (104),hb andhe are both proportional to the inho
mogeneity parametere and are defined in Eqs. (65) an
(63), respectively. Moreover,̂nb and n̂e are the (con-
stant) orbital oscillation frequencies defined in Eq. (5
for e ­ 0. It follows trivially for e ­ 0 that Eq. (103) re-
duces exactly to the susceptibility expressions in Eq. (
obtained for step-function density profiles. Fore fi 0,
however, Eq. (103) incorporates the effects of spa
nonuniformity in the equilibrium density profiles and th
corresponding spreads in betatron oscillation frequenc
at least in the context of the present simple model.

Some straightforward algebraic manipulation sho
that the r integrations in Eq. (103) can be carried o
exactly fore in the interval0 # e # 1 to give
xbsv 2 kzVbd ­
2v̂

2
pb

hb n̂
2
b

(
e 2

"
1 1

2e

hbn̂
2
b

fsv 2 kzVbd2 2 n̂2
b

#
ln

√
1 1

1
2

hb
n̂

2
b

sv 2 kzVbd2 2 n̂
2
b

!)
,

xesvd ­
2v̂2

pe

hen̂2
e

(
e 2

"
1 1

2e

hen̂2
e

sv2 2 n̂2
e d

#
ln

√
1 1

1
2

he
n̂2

e

v2 2 n̂2
e

!)
. (105)
),
ed

e

r
is
en-
to
m-
ed

8)
For present purposes, we limit the analysis of Eq. (1
and the corresponding dispersion relation to the cas
weak spatial nonuniformity withe, hb, and he ø 1.
Taylor expanding Eq. (105) gives to first order ine

xbsv 2 kzVbd ­ 2
v̂

2
pb

sv 2 kzVbd2 2 n̂
2
b

3 f1 2 eabsv 2 kzVbdg , (106)

xesvd ­ 2
v̂2

pe

v2 2 n̂2
e

f1 2 eaesvdg ,

whereab andae are defined by

absv 2 kzVbd ­
1
2

1
1
4

hb

e

n̂
2
b

sv 2 kzVbd2 2 n̂
2
b

,

aesvd ­
1
2

1
1
4

he

e

n̂2
e

v2 2 n̂2
e

.
(107)

Here,hbye andheye are defined in terms of̂v2
pb , v

02

bb ,
etc., in Eqs. (65) and (63), respectively. As expect
Eq. (106) reduces exactly to the susceptibility express
in Eq. (87) in the limit of step-function density profile
with e ­ 0.

We substitute Eqs. (103) and (106) into Eq. (85)
azimuthal mode number, ­ 1. Rearranging terms, thi
gives the dispersion relation

fsv 2 kzVbd2 2 v2
b 1 Dv2

bg fv2 2 v2
e 1 Dv2

eg

­ v4
fs1 2 eaed s1 2 eabd , (108)
)
of

d,
ns

r

wherev2
e , v

2
b, andv

4
f are defined exactly as in Eqs. (89

(90), and (92) in Sec. IV, and the inhomogeneity-induc
frequency spreads,Dv

2
b andDv2

e , are defined by

Dv2
b ­

1
2

eab

√
1 2

r2
b

r2
w

!
v̂

2
pb

g
2
b

,

Dv2
e ­

1
2

eae

√
1 2

r2
b

r2
w

!
gbmb

Zbme
fv̂2

pb ,
(109)

Here, v̂
2
pb ­ 4pn̂bZ2

be2ygbmb , and use has been mad
of v̂2

pe ­ sgbmbyZbmedfv̂
2
pb. In Eq. (108), the fre-

quency spreadsDv
2
b and Dv2

e are treated as small fo
e ø 1 and, similar to Sec. IV B, the dispersion relation
analyzed for moderate values of normalized beam int
sity v̂

2
pbyv

02

bb. In this case, a quadratic approximation
Eq. (108) is valid in which the frequency and wave nu
ber sv, kzd of the unstable branch are very closely tun
to the valuesv0 ­ ve andv0 2 kz0Vb ­ 2vb defined
in Eq. (93). Expressingv ­ v0 1 dv andkz ­ kz0 1

dkz, and paralleling the analysis in Sec. IV B, Eq. (10
reduces to the approximate form√

dv 1
Dv02

e

2ve

! √
dv 2 dkzVb 2

Dv
02

b

2vb

!

­ 2
v

4
f

4vevb
s1 2 ea0

e d s1 2 ea0
b d . (110)
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Here,Dv02

e andDv
02

b are defined by

Dv02

b ­
1
2

ea0
b

√
1 2

r2
b

r2
w

!
v̂

2
pb

g
2
b

, Dv02

e ­
1
2

ea0
e

√
1 2

r2
b

r2
w

!
gbmb

Zbme
fv̂2

pb , (111)

where the coefficientsa0
b anda0

e are defined bya0
b ; absv0 2 kz0Vbd anda0

e ; aesv0d, i.e.,

a0
b ­

1
2

1
1
4

hb

e

n̂
2
b

sv0 2 kz0Vbd2 2 n̂
2
b

­
1
2

1
3

16
g

2
bs1yg

2
b 2 fd

s1 2 r2
byr2

wd
,

a0
e ­

1
2

1
1
4

he

e

n̂2
e

v
2
0 2 n̂2

e

­
1
2

1
3

16
s1 2 fd

fs1 2 r2
byr2

wd
.

(112)
63

(9

rse
rm

is
ds
A

lit

3).
that
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ry
e
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te
In obtaining Eq. (112), we have made use of Eqs. (
and (65) to eliminateheye and hbye in terms of v̂

2
pb,

v
02

bb , etc., and also made use of Eqs. (89), (90), and
to expressv2

0 2 n̂2
e ­ sv̂2

pey2d s1 2 r2
byr2

wd and sv0 2

kz0Vbd2 2 n̂
2
b ­ sv̂2

pby2g
2
bd s1 2 r2

byr2
wd.

The quadratic dispersion relation (110) of cou
reduces exactly to Eq. (94) for the case of unifo
step-function density profiles withe ­ 0. In this case,
as discussed in Sec. IV B, there is no threshold inv̂

2
pb

and f for the onset of instability. The situation
different whene fi 0 and the (small) frequency sprea
Dv

02

b and Dv02

e defined in Eq. (111) are nonzero.
straightforward analysis of Eq. (110) fordkz ­ 0 shows
that the necessary and sufficient condition for instabi
(existence of a solution with Imdv . 0) is given by

1
4

v
4
f

vevb
.

√
Dv

02

b

2vb
1

Dv02

e

2ve

!2

. (113)
ith
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on
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Here, we have approximateds1 2 ea0
e d s1 2 ea

0
b d .

1 to good accuracy on the left-hand side of Eq. (11
Whenever the frequency spread is sufficiently large
the inequality in Eq. (113) is violated, the system is sta
with Imdv ­ 0. Making use of the definitions ofv4

f ,
Dv

02

b , and Dv02

e in Eqs. (92) and (111), the necessa
and sufficient condition for instability in Eq. (113) can b
expressed in the equivalent form

1
4

f
gbmb

Zbme
vevb . e2

√
a

0
b

g
2
b

ve 1 a0
e

gbmb

Zbme
fvb

!2

,

(114)

whereve, vb, a0
e , anda

0
b are defined in Eqs. (89), (90

and (112).
Equation (114) leads to a threshold in beam inten

for the onset of the two-stream instability. To illustra
this point, we consider the case wherev

0
be ­ 0 and

rwyrb ! `. Equations (89), (90), and (112) then give
pressed
ve ­
1

p
2

√
gbmb

Zbme

!1y2

v̂pb , vb ­ v0
bb

√
1 1

1
2

f
v̂

2
pb

v
02

bb

!1y2

, a0
b ­

11
16

2
3

16
fg2

b , fa0
e ­

5
16

f 1
3

16
.

(115)

Making use of Eq. (115) in Eq. (114), the necessary and sufficient condition for the onset of instability can be ex
as

1
4

fv̂pbyv
0
bb

s1 1 fv̂
2
pby2v

02

bbd1y2
. e2

√
2gbmb

Zbme

!1y2"
a

0
b

g
2
b

√
Zbme

2gbmb

!1y2
v̂pbyv

0
bb

s1 1 fv̂
2
pby2v

02

bbd1y2
1 fa0

e

#2

. (116)
o-
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-

The ion term proportional toa0
bsmeymbd1y2 on the right-

hand side of Eq. (116) is small in comparison w
the electron termsfa0

e d in the parameter regimes o
practical interest. Therefore, making use offa0

e ­
3y16 1 s5y16df, Eq. (116) reduces to

fv̂pbyv
0
bb

s1 1 fv̂
2
pby2v

02

bbd1y2
. e2

√
2gbmb

Zbme

!1y2√
3
8

1
5
8

f

!2

.

(117)

The derivation of the quadratic dispersion relati
(110) and therefore the instability threshold conditi
in Eq. (117) have assumed weak spatial nonuniform
with e ø 1 and moderate values of beam intensity w
v̂

2
pbyv

02

bb & 0.5, say (see discussion in Sec. IV B).
y

As a simple example, we consider Eq. (117) for inh
mogeneity parametere ­ 0.075 and protons withgb ­
1.85, Zb ­ 1, andmbyme ­ 1836. Equation (117) then
reduces to

fv̂pbyv
0
bb

s1 1 fv̂
2
pby2v

02

bbd1y2
. 0.065

√
1 1

5
3

f

!2

. (118)

If, for example, the fractional charge neutralization by
background electrons isf ­ 0.2, then Eq. (118) gives
v̂

2
pbyv

02

bb . 0.34 as the threshold in beam intensity f
the onset of instability. Iff , 0.2, then the threshold is
larger, and iff . 0.2, the threshold is smaller. For ex
ample, for full charge neutralization withf ­ 1,
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Eq. (118) givesv̂2
pbyv

02

bb . 0.24 as the threshold for th
onset of instability.

To briefly summarize, the present simple model p
vides semiquantitative evidence that a spread in b
tron frequencies (particularly for the electrons) induc
by spatial nonuniformity in the density profiles has a s
bilizing influence on the two-stream instability, leadin
to a threshold for the onset of instability. It should
reiterated, however, that a fully self-consistent treatm
of electrostatic stability properties for nonmonoenerge
distributions with continuously varying equilibrium pro
files should be based on the kinetic eigenvalue equat
(40)–(43) derived in Sec. III.

VI. CONCLUSIONS

The present analysis made use of the Vlasov-Maxw
equations to develop a fully kinetic description of the el
trostatic, electron-ion two-stream instability driven by t
directed axial motion of a high-intensity ion beam prop
gating through a stationary population of backgrou
electrons. The basic assumptions, theoretical mo
and examples of self-consistent equilibrium solutio
for a continuous ion beam-electron plasma system w
discussed in Sec. II. In Sec. III, the linearized Vlaso
Maxwell equations were formally integrated using t
method of characteristics and the properties of the
and electron orbits in the applied field plus equilibriu
self-field configuration were discussed, both for the c
of overlapping step-function ion and electron dens
profiles, corresponding to monoenergetic beam ions
monoenergetic electrons, and for the case where the e
librium density profiles have a continuous variation w
radiusr, corresponding to a spread in (depressed) beta
frequencies. The necessary orbit integrals were evalu
in closed analytical form in Sec. IV for the case of ste
function ion and electron density profiles, leading to
kinetic dispersion relation which is valid for arbitra
normalized beam intensitŷv2

pbyv
02

bb , fractional charge
neutralizationf, and azimuthal mode number,. The
resulting dispersion relation was analyzed in detail
the case of azimuthal mode number, ­ 1, which corre-
sponds to the strongest instability (largest growth ra
As a general remark, the instability growth rate is fou
to increase with increasing beam intensitŷv

2
pbyv

02

bb
and increasing fractional charge neutralizationf, and
decrease with increasing proximity of the conducting w
rbyrw . For monoenergetic ions and electrons and
corresponding step-function density profiles considere
Sec. IV, a key result is that there is no threshold in be
intensity or fractional charge neutralization for the onse
instability. Finally, for the case of continuously varyin
density profiles with parabolic profile shape, in Sec. V
made use of a simple model to obtain a semiquantita
estimate of the effects of the corresponding spread
(depressed) betatron frequency on stability behav
054401-22
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including an estimate of the instability threshold for t
case of weak density nonuniformity. As expected, it
the spread in the electron oscillation frequency that
the largest stabilizing influence.

In conclusion, we reiterate that the kinetic eigenva
equations (40)–(43) can be applied to electrost
perturbations about a wide range of nonmonoenerg
equilibrium distribution functions,F0

bsH'bd andF0
e sH'ed,

and corresponding equilibrium density profiles,n0
bsrd

and n0
esrd, that vary continuously with radial coordina

r. In future investigations, we will make use of th
kinetic eigenvalue equations (40)–(43) to determ
self-consistently the influence of spreads in elect
energyH'e and ion energyH'b on stability behavior for
continuously varying equilibrium profiles.
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APPENDIX: PARTICLE MOTION IN
PARABOLIC DENSITY PROFILES

To analyze the radial orbit equation (64), we introdu
the dimensionless quantitiesR0 2st0d, t0, h, andp2 defined
by

R0 2st0d ; r 02st0dyr2
b , t0 ; 2n̂est0 2 td ,

h ;
2H'e

men̂2
er2

b
, p2 ;

√
Pu

men̂er2
b

!2

,
(A1)

where the particle motion in the equilibrium field config
ration is restricted to the region0 # R0 2 , 1 (the beam
interior). Substituting Eq. (A1) into Eq. (64) gives
dimensionless variables√

d
dt0

R02

!2

­ hR02 2 R04 2 p2 1
1
3

heR0 6. (A2)

Uniform beam densityse ­ 0 ­ hed: For he ­ 0,
Eq. (A2) reduces to√

d
dt0

R0 2

!2

­ sR02

2 2 R02d sR02 2 R02

1 d , (A3)

where

R02

1 ;
h
2

2

"√
h
2

!2

2 p2

#1y2

,

R02

2 ;
h
2

1

"√
h
2

!2

2 p2

#1y2

.

(A4)

Motion is allowed by Eq. (A3) forR02st0d in the interval
R02

1 # R02 # R02

2 . Equation (A3) can be integrated e
actly to give
054401-22
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0

R02st0d ­ s1y2d sR02

1 1 R02

2 d 1 fR2 2 s1y2d sR02

1 1 R02

2 dg cosf2n̂est0 2 tdg 1

√
d

dt0
R02

!
t 0­0

sinf2n̂est0 2 tdg , (A5)
de

-

).
in

o

th

na-

n

)
ity

.
use

e

whereR02st0 ­ td ­ R2 ; r2yr2
b and use has been ma

of t0 ­ 2n̂est0 2 td. Note that fore ­ 0 the oscillations
in R02st0d are exactly at frequency2n̂e ­ const, as ex
pected [compare with Eq. (53)].

Nonuniform density profilese fi 0, he fi 0): For
he fi 0, we rewrite Eq. (A2) in the form√

d
dt0

R02

!2

­
1
3

he

(
R06 2

3
he

R04 1
3h
he

R0 2 2
3p2

he

)

­
1
3

hesR02 2 R2
1 d sR2

2 2 R02d sR2
3 2 R02d .

(A6)

Here,R2
1 , R2

2 , R2
3 is assumed, andhR2

j j are related by

R2
1R2

2R2
3 ­

3p2

he
,

R2
2R2

3 1 R2
1R2

3 1 R2
1R2

2 ­
3h
he

, (A7)

R2
1 1 R2

2 1 R2
3 ­

3
he

.

For e ­ 0 ­ he, note thatsR2
1, R2

2 , R2
3d ! sR02

1 , R02

2 , `d.
Furthermore, becausehe # s3y4de [see Eq. (63)], ande
is in the interval0 # e # 1, it follows from Eq. (A7)
when he fi 0 that R2

3 . 1 (which is outside the beam
Therefore, the region of allowed motion in Eq. (A6) is
the intervalR2

1 # R02 # R2
2 s# 1d.

To solve Eq. (A6) we introduce the scaled variables

Y 0 ­
R02 2 R2

1

R2
2 2 R2

1
, Y ­

R2 2 R2
1

R2
2 2 R2

1
, (A8)

where R0st0 ­ td ­ R and Y 0st0 ­ td ­ Y . We also
define

k2 ­
R2

2 2 R2
1

R2
3 2 R2

1
, (A9)

where k2 , 1. Substituting Eqs. (A8) and (A9) int
Eq. (A6) and integrating with respect tot0 ­ 2n̂est0 2 td
givesZ Y 0

Y

dY 0

fY 0s1 2 Y 0d s1 2 k2Y 0dg1y2

­ 6

r
he

3
sR2

3 2 R2
1 d1y2t0. (A10)

Here, the 1s2d sign corresponds to particles wi
dR02ydt0 . 0 s, 0d. Defining
54401-23
Y 0 ­ sin2f0 ­
R02 2 R2

1

R2
2 2 R2

1
, (A11)

Eq. (A10) gives

Fsf0, kd 2 Fsf, kd ­ 6
1
2

r
he

3
sR2

3 2 R2
1d1y2t0.

(A12)

Here,f0st0 ­ td ­ f, where sin2f ­ Y ­ sR2 2 R2
1 dy

sR2
2 2 R2

1d, and

Fsf0, kd ­
Z f0

0

da

s1 2 k2 sin2ad1y2
(A13)

is the elliptic integral of the first kind.
Equations (A11) and (A12) constitute a closed a

lytical expression for the periodic motion ofR02st0d ­
r 02st0dyr2

b in the intervalR2
1 # R02 # R2

2 . If we denote
by tesH'e, Pud the period for one complete oscillatio
of R02st0d from R2

1 to R2
2 and back toR2

1 again, then
it follows directly from Eq. (A12) thattesH'e, Pud ­
2py2nesH'e, Pud, where

nesH'e, Pud ; n̂e

√
R2

3 2 R2
1

3yhe

!1y2

3

"
2
p

Z py2

0

da

s1 2 k2 sin2ad1y2

#21

.

(A14)

Here, k2 , 1 is defined in Eq. (A9). Equations (A12
and (A14) are valid for the arbitrary value of dens
nonuniformity parametere in the interval 0 # e # 1.
In the limit e ! 0 (and thereforehe ! 0), note from
Eqs. (A7) and (A9) thatk2 ! 0 and R2

3 ! 3yhe ! `,
and Eq. (A14) reduces tonesH'e, Pud ­ n̂e, as expected

Some algebraic manipulation that makes
of Eqs. (A8), (A9), (A11), (A12), and sin2f0 ­
s1y2d s1 2 cos2f0d shows that the orbit forR02st0d can be
expressed in the equivalent form

R02st0d ­
1
2

sR2
1 1 R2

2d

1

"
R2 2

1
2

sR2
1 1 R2

2d

#
cosf2sf0 2 fdg

1
sR0dR0ydt0dt0­t

sdf0ydt0dt0­t
sinf2sf0 2 fdg , (A15)

where f0st0d is determined from Eq. (A12). Here, th
turning pointsR2

1 andR2
2 (# 1) solve Eq. (A7), and
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√
R0 dR0

dt0

!
t0­t

­
1

mer2
b

sxpx 1 ypyd ,√
df0

dt0

!
t0­t

­ 6
2
p

Fspy2, kdnesH'e, Pud

√
R2

3 2 R2

R2
3 2 R2

1

!1y2

­ 6n̂e

√
R2

3 2 R2

3yhe

!1y2

.
(A16)
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e,
In Eq. (A16), sr 0dR0dt0dt0­t has been expressed
terms of the transverse phase space-space
ables sx, y, px, pyd. Furthermore, use has bee
made of Eq. (A12) to express sdf0ydt0dt0­t ­
6s1 2 k2 sin2fd1y2shey3d1y2sR2

3 2 R2
1d1y2n̂e.

Equation (A15), which is similar in overall form t
Eqs. (A5) and (53), is valid for general inhomogene
strengthhe consistent withk2 , 1 and 0 # e # 1 and
the discussion in Sec. III C. Furthermore, Eq. (A15)
t

it
in

e

y
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y

re
,

ri-

s

a particularly useful representation for application
standard Fourier series representations [52] of cosf0st0d
and sinf0st0d obtained from Eq. (A12). For exampl
defining

q ; exp

(
2

pFspy2,
p

1 2 k2 d
Fspy2, kd

)
, (A17)

we obtain from Eq. (A12) [52]
cosf0 ­
2p

kFspy2, kd

X̀
n­1

qn21y2

1 1 q2n21
cos

(
s2n 2 1d

"
pFsf, kd

2Fspy2, kd
6 nesH'e, Pud st0 2 td

#)
,

sinf0 ­
2p

kFspy2, kd

X̀
n­1

qn21y2

1 2 q2n21
sin

(
s2n 2 1d

"
pFsf, kd

2Fspy2, kd
6 nesH'e, Pudst0 2 td

#)
,

(A18)
y

eity

n-
-

wherenesH'e, Pud is defined in Eq. (A14). It is eviden
from Eqs. (A15) and (A18) that the cosf2sf0 2 fdg and
sinf2sf0 2 fdg oscillations in the radial orbitR02st0d ­
r 02st0dyr2

b are at harmonics of2nesH'e, Pud, and that the
period of theR02st0d motion iste ­ 2py2nesH'e, Pud, as
expected.

Radial orbit r 02st0d for zero angular momentumsPu ­
0d: Before considering the case of weak inhomogene
it should be noted that certain simplifications occur
the radial motion whenPu ­ 0. In this special case, th
transverse orbitssx0, y0d pass through the origins0, 0d, and
the solutions to Eq. (A7) are given exactly by

R2
1 ­ 0 ,

R2
2 ­

3
2he

(
1 2

"
1 2

4
3

heh

#1y2)
, (A19)

R2
3 ­

3
2he

(
1 1

"
1 2

4
3

heh

#1y2)
,

for p2 ­ sPuymen̂er2
bd2 ­ 0. From Eq. (63), forv0

be ­
0, we note thathe ­ s3y4de, where the inhomogeneit
parametere is in the interval0 # e # 1 [see Eq. (60)].
For weak inhomogeneity withhe ø 1, Eq. (A19) gives
R2

2 . h # 1 andR2
3 . 3yhe ¿ 1. For general inhomo

geneity parameterhe # s3y4de, where0 # e # 1, it fol-
lows from Eq. (A19) that the conditionR2

2 # 1 gives
the requirementh # 1 2 hey3, and that the inequalit
R2

3 . 1 is automatically satisfied. The expressions fork2

and nesH'e, Pud also simplify in the special case whe
Pu ­ 0 andR2

1 ­ 0. We obtain from Eqs. (A9), (A14)
and (A19)

k2 ­
1 2 s1 2 4hehy3d1y2

1 1 s1 2 4hehy3d1y2
, (A20)
,

and

nesH'e, Pud ­ n̂e
p

2Fspy2, kd
1

21y2

3

(
1 1

"
1 2

4
3

heh

#1y2)1y2

. (A21)

While Eqs. (A19)–(A21) have been derived forPu ­ 0,
these expressions are valid for arbitrary inhomogen
parametere in the interval0 # e # 1.

Radial orbit r 02st0d for weak inhomogeneityse ø 1d:
We now allow for general values of angular mome
tum Pu and energyH'e, assuming weak density inho
mogeneity withe ø 1. In this case,he ø 1, and the
leading-order solutions forhR2

j j obtained from Eq. (A7)
are sR02

1 , R02

2 , R02

3 d, whereR02

3 ­ 3yhe ¿ 1, andR02

1 and
R02

2 are defined in terms ofh ­ 2H'eymen̂2
er2

b andp2 ­
sPuymen̂er2

bd2 by Eq. (A4). We express

R2
1 ­ R02

1 s1 1 D1d, R2
2 ­ R02

2 s1 1 D2d ,

R2
3 ­ R02

3 s1 1 D3d ,
(A22)

and solve Eq. (A7) iteratively forhDjj, treatinghe ø 1.
This gives to leading order

D1 ­ 2
1
3

he
R04

1

R02

2 2 R02

1

, D2 ­
1
3

he
R04

2

R02

2 2 R02

1

,

D3 ­ 2
1
3

hesR02

1 1 R02

2 d ,
(A23)

where R02

1 1 R02

2 ­ h and R02

2 2 R02

1 ­ 2fshy2d2 2

p2g1y2 follow from Eq. (A4).
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We further expand Eq. (A12) fork2 ø 1, wherek2 ­ sR2
2 2 R2

1 dysR2
3 2 R2

1 d. Retaining terms to orderk2, this
gives

sf0 2 fd

√
1 1

1
4

k2 1 · · ·

!
­ 6

√
R2

3 2 R2
1

3yhe

!1y2

n̂est0 2 td 1
1
8

k2hsinf2sf0 2 fd 1 2fg 2 sin2fj 1 · · · .

(A24)

Solving Eq. (A24) forf0 2 f, we obtain

f0 2 f ­ 6nest0 2 td 1
1
8

k2hsinf62nest0 2 td 1 2fg 2 sin2fj 1 · · · , (A25)
s-

n

to

dia

-
ives

the

by

l

where nesH'e, Pud is given by the approximate expre
sion

nesH'e, Pud ­

√
1 2

1
4

k2

! √
R2

3 2 R2
1

3yhe

!1y2

n̂e , (A26)

correct to orderhe ø 1. We make use ofR02

3 ­ 3yhe

and Eqs. (A22) and (A23) to express

1 2
1
4

k2 ­ 1 2
1
4

R2
2 2 R2

1

R2
3 2 R2

1
. 1 2

he

12
sR02

2 2 R02

1 d ,

(A27)
and√

R2
3 2 R2

1

3yhe

!1y2

­

√
1 1 D3 2

he

3
R2

1

!1y2

. 1 2
he

6
s2R02

1 1 R02

2 d . (A28)

Substituting Eqs. (A27) and (A28) into Eq. (A26) the
gives

nesH'e, Pud ­

"
1 2

1
4

hesR02

1 1 R02

2 d

#
n̂e (A29)

correct to orderhe. From Eq. (A4),R02

1 1 R02

2 ­ h ;
2H'eymen̂2

er2
b , so that Eq. (A29) becomes

nesH'ed ­

√
1 2

1
4

he
2H'e

men̂2
er2

b

!
n̂e . (A30)

For weak inhomogeneity withhe ø 1, we note from
Eq. (A30) that the oscillation frequencynesH'ed deviates
from n̂e ­ const by a (small) amount proportional
heH'e, but is independent of angular momentumPu.

We now return to the exact representation of the ra
orbit R02st0d in Eq. (A15). Here, we expressR2

1 1 R2
2 ­
n

ei

lo
ity

054401-25
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R02

1 s1 1 D1d 1 R02

2 s1 1 D2d, whereD1 and D2 are ap-
proximated by Eq. (A23) forhe ø 1. Some straightfor
ward algebra that makes use of Eqs. (A4) and (A23) g

R2
1 1 R2

2 ­ R02

1 1 R02

2 1
1
3

hesR04

1 1 R04

2 1 R02

1 R02

2 d

­ h 1
1
3

hesh2 1 p2d , (A31)

where h ­ 2H'eymen̂2
er2

b and p2 ­ sPuymen̂er2
bd2.

Here, making use of Eqs. (18), (50), (61), and (63),
electron HamiltonianH'e is given (exactly) by

H'e ­
p2

'

2me
1

1
2

men̂2
er2

√
1 2

1
3

he
r2

r2
b

!
(A32)

for 0 # r # rb and arbitrarye in the interval0 # e # 1.
For present purposes, we approximate Eq. (A25)
f0st0d 2 f ­ 6nesH'ed st0 2 td, where nesH'ed
is defined in Eq. (A30) for he ø 1. This gives
sdf0ydt0dt0­t ­ 6nesH'ed, and Eq. (A15) for the radia
orbit r 02st0d ­ R02st0dyr2

b reduces to

r 0 2st0d ­
1
2

sr2
1 1 r2

2 d 1

"
r2 2

1
2

sr2
1 1 r2

2 d

#

3 cosf2nesH'ed st0 2 tdg

1
sxpx 1 ypyd
menesH'ed

sinf2nesH'ed st0 2 tdg . (A33)

Here, making use of Eqs. (A1) and (A31),r2
1 1 r2

2 is
defined by
r2
1 1 r2

2 ­ r2
b

"
h 1

1
3

hesh2 1 p2d

#
­ r2

b

(√
2H'e

men̂2
er2

b

!
1

1
3

he

"√
2H'e

men̂2
er2

b

!2

1

√
Pu

men̂er2
b

!2#)
. (A34)
-
e

is

or-
Note that Eq. (A33) is similar in form to the electro
analog of Eq. (53) (derived fore ­ 0 ­ hed, provided
we make the appropriate generalization ofr2

1 1 r2
2 , and

the replacementn̂e ! nesH'ed. Equation (A33) has
been derived for the case of weak spatial inhomogen
with he ø 1. In the limit where e ­ 0 ­ he, note
that Eq. (A33) reduces exactly to the electron ana
of Eq. (53), derived for uniform, step-function dens
profiles.
ty

g

Cartesian orbitsx0st0d andy0st0d for weak inhomogene
ity se ø 1d: In the previous section of this Appendix, w
showed for weak spatial nonuniformity withe ø 1 and
he ø 1 that the radial orbit forr 02st0d ­ x0 2st0d 1 y02st0d
oscillates at one distinct frequency2nesH'ed, where
nesH'ed is defined in Eq. (A30) [see Eq. (A33)]. Th
is true both for Pu ­ 0 and for Pu fi 0. Whenever
Pu fi 0, however, analysis of the complete Cartesian
bit equation forx0

'st0d ­ x0st0dêx 1 y0st0dêy in the beam
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interior s0 # r 0 , rbd,

d2

dt02
x0

'st0d 1 n̂2
e

√
1 2

2
3

he
r 02st0d

r2
b

!
x0

'st0d ­ 0 , (A35)

shows that theindividual motionsfor x0st0d andy0st0d havetwo distinct frequency components. We define

n1
e sH0

'e, Pud ; n̂e

"
1 2

1
4

he

√
2H0

'e

men̂2
er2

b
1

2
3

Pu

men̂er2
b

!#
,

n2
e sH0

'e, Pud ; n̂e

"
1 2

1
4

he

√
2H0

'e

men̂2
er2

b
2

2
3

Pu

men̂er2
b

!#
,

(A36)
-

a

u

r
i-

sis
on
us

er-

s

s

w

al

Eng.

rs
-

n

ia,
wherePu ; xpy 2 ypx ­ const is the angular momen
tum andH0

'e is the zero-ordershe ­ 0d Hamiltonian for
the electrons defined by

H0
'e ;

p2
'

2me
1

1
2

men̂2
e sx2 1 y2d . (A37)

A careful analysis of Eq. (A35) forhe ø 1 shows that
the transverse orbits forx0st0d and y0st0d are given to
leading order by

x0st0d ­ A1 cosfn1
e st0 2 td 2 c1g

1 A2 cosfn2
e st0 2 td 2 c2g ,

y0st0d ­ 2A1 sinfn1
e st0 2 td 2 c1g

(A38)

1 A2 sinfn2
e st0 2 td 2 c2g ,

Here, the constant amplitudessA2, A1d and phases
sc2, c1d are defined in terms of the phase-space v
ablessx, y, px , pyd by

A1 ;
1

s2men̂2
e d1y2 sH0

'e 2 n̂ePud1y2

­
1

2men̂e
fspx 1 men̂eyd2 1 spy 2 men̂exd2g1y2,

A2 ;
1

s2men̂2
e d1y2

sH0
'e 1 n̂ePud1y2

(A39)

­
1

2men̂e
fspx 2 men̂eyd 1 spy 1 men̂exd2g1y2,

and

tanc1 ;

√
men̂ey 1 px

men̂ex 2 py

!
,

tanc2 ;

√
px 2 men̂ey
py 1 men̂ex

!
.

(A40)

To the level of accuracy of Eq. (A38), a caref
examination of the transverse orbits forx0st0d and y0st0d
shows that the radial orbit forr 0 2st0d ­ x02st0d 1 y02st0d
oscillates at asingledistinct frequency given by

2sn1
e 1 n2

e d ­ 2n̂e

√
1 2

1
4

he
2H0

'e

men̂2
er2

b

!
, (A41)
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which is identical to 2nesH0
'ed defined in Eq. (A30).

WheneverPu fi 0, however, the individualx0st0d and
y0st0d motions have frequency components at thetwo dis-
tinct frequencies,n1

e sH0
'e, Pud andn2

e sH0
'e, Pud, defined

in Eq. (A36), which are separated by an amount

n1
e 2 n2

e ­ 2
1
3

he
Pu

men̂er2
b

, (A42)

Note thatn1
e 2 n2

e is linearly proportional to the angula
momentumsPud and the strength of the density nonun
formity shed.

Finally, it should be pointed out that the orbit analy
in this Appendix can also be applied to the ion moti
in parabolic density profiles by making the obvio
replacements,me ! gbmb , 2e ! Zbe, he ! hb, etc.
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