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The present analysis makes use of the Vlasov-Maxwell equations to develop a fully kinetic description
of the electrostatic, electron-ion two-stream instability driven by the directed axial motion of a high-
intensity ion beam propagating in the direction with average axial momentum,m;,B,c through
a stationary population of background electrons. The ion beam has characteristic nadind is
treated as continuous in thtegirection, and the applied transverse focusing force on the beam ions is
modeled byFf,. = —vy,m,wp,x, in the smooth-focusing approximation. Hewey, = const is the
effective betatron frequency associated with the applied focusing fields the transverse displacement
from the beam axis(y, — 1)m,c? is the ion kinetic energy, and’, = B,c is the average axial
velocity, wherey, = (1 — B7)~ /2. Furthermore, the ion motion in the beam frame is assumed to be
nonrelativistic, and the electron motion in the laboratory frame is assumed to be nonrelativistic. The
ion charge and number density are denoted+¥,e and n,, and the electron charge and number
density by —e andn.. For Z,n, > n,, the electrons are electrostatically confined in the transverse
direction by the space-charge potentialproduced by the excess ion charge. The equilibrium and
stability analysis retains the effects of finite radial geometry transverse to the beam propagation
direction, including the presence of a perfectly conducting cylindrical wall located at radius,, .

In addition, the analysis assumes perturbations with long axial wavelekfgﬁw,« 1, and sufficiently

high frequency thalw /k.| > vz.. and|w /k. — V;,| > v7y., Wherevr,, andvyy,, are the characteristic

axial thermal speeds of the background electrons and beam ions. In this regime, Landau damping (in
axial velocity space,) by resonant ions and electrons is negligibly small. We introduce the ion plasma
frequency squared defined b)f,,, = 47rﬁbZZe2/ybmb, and the fractional charge neutralization defined

by f = #./Zy1,, wheref, and#, are the characteristic ion and electron densities. The equilibrium
and stability analysis is carried out farbitrary normalized beam intensit;bﬁ,,/w%z,,, and arbitrary
fractional charge neutralizatiofi, consistent with radial confinement of the beam particles. For the
moderately high beam intensities envisioned in the proton linacs and storage rings for the Accelerator
for Production of Tritium and the Spallation Neutron Source, the normalized beam intensity is typically
(Dﬁb/w?;,, =< 0.1. For heavy ion fusion applications, however, the transverse beam emittance is very

small, and the space-charge-dominated beam intensity is much Iarger@\fyj]zmgz,, <2y} The

stability analysis shows that the instability growth ratedrincreases with increasing normalized beam
intensity &;ib/w%'b and increasing fractional charge neutralizatipn In addition, the instability is
strongest (largest growth rate) for perturbations with azimuthal mode nuénset, corresponding to a

simple (dipole) transverse displacement of the beam ions and the background electrons. For the case of
overlapping step-function density profiles for the beam ions and background electrons, corresponding to
monoenergetic ions and electrons, a key result is that there is no threshold in beam mé;;\smgi,

or fractional charge neutralizatioh for the onset of instability. Finally, for the case of continuously
varying density profiles with parabolic profile shape, a semiquantitative estimate is made of the effects of
the corresponding spread in (depressed) betatron frequency on stability behavior, including an estimate
of the instability threshold for the case of weak density nonuniformity. [S1098-4402(99)00035-X]

PACS numbers: 29.27.Bd, 41.75.-i, 41.85.-p

I. INTRODUCTION basic scientific research to applications such as tritium
m%roduction, spallation neutron sources, and heavy ion fu-
Sion [5-7]. At the high beam currents and charge den-
sities of practical interest, it is increasingly important to

develop an improved theoretical understanding of the in-
- fluence of the intense self-fields produced by the beam
*Present address: Sandia National Laboratories, Albuquerquépace charge and current on detailed equilibrium, sta-
New Mexico 87185. bility, and transport properties. For @ne-component

Periodic focusing accelerators and transport syste
[1-4] have a wide range of applications ranging from
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high-intensity beam, considerable progress has been madetic fields. Furthermore, in integrating the linearized
in describing the self-consistent evolution of the beam disVlasov-Maxwell equations, we make use of the method
tribution function 15 (x, p, #) and the self-generated elec- of characteristics [44,47] to integrate along the particle
tric and magnetic fieldE*(x, r) and B*(x,¢) in kinetic  trajectories in the equilibrium field configuration. Such
analyses [8—24] based on the nonlinear Vlasov-Maxwelbn approach has proven to be a powerful technique for
equations. For example, in a recent calculation [23,24]describing the stability properties of spatially nonuniform,
a three-dimensional, kinetic stability theorem based omon-neutral plasmas and intense beam systems [1,47], as
the Vlasov-Maxwell equations has been developed for avell as spatially nonuniform, electrically neutral plasmas
high-intensity ion beam (or charge bunch) in the smooth{44,48]. As noted below, the present analydisesin-
focusing approximation. It is found that a beam equi-clude the (stabilizing) influence of a perfectly conduct-
librium f;(,)(x',p') that is a monotonically decreasing ing cylindrical wall located at radiug = r, = const.
function of total particle energyd, in the beam frame However, as a consequence, the analysis doemclude
is nonlinearly stable to perturbations with arbitrary ampli-other important instabilities, such as the resistive-wall in-
tude and polarization. The analysis [23,24] is valid forstability [49] or the beam breakup instability [50], that
arbitrary beam intensity consistent with transverse conean result from finite wall resistivity or the presence of
finement of the beam particles by the focusing field andstructures attached to the chamber wall.
includes the effects of a perfectly conducting cylindrical To briefly summarize, the present analysis makes use of
wall located at radiug = r,,. the Vlasov-Maxwell equations to develop a fully kinetic
In many practical accelerator applications, however, amlescription of the electrostatic, electron-ion two-stream
(unwanted) second charge component is present. For edastability driven by the directed axial motion of a high-
ample, a background population of electrons can resulntensity ion beam propagating in the direction with
locally when anH~ beam is injected through a strip- average axial momentumy,m, B¢ through a stationary
per foil into a proton storage ring or when energeticpopulation of background electrons. The ion beam has
ions strike the chamber wall. When a second chargeharacteristic radius, and is treated as continuous in the
component is present, it has been recognized for many direction, and the applied transverse focusing force on
years, both in theoretical studies and in experimental obthe beam ions is modeled ti%’oc = —yhmbw%be in
servations [25-42], that the relative streaming motion othe smooth-focusing approximation. Heteg, = const
the high-intensity beam particles through the backgrounds the effective betatron frequency associated with the ap-
charge species provides the free energy to drive the clasgdied focusing field,x, is the transverse displacement
cal two-streaminstability [43—45], appropriately modified from the beam axis(y, — 1)m;c? is the ion kinetic en-
to include the effects of dc space charge, relativistic kineergy, andV,, = B,c is the average axial velocity, where
matics, presence of a conducting wall, etc. For electrony, = (1 — ,8;3)’1/2. Furthermore, the ion motion in the
interacting with a proton beam, as in the Proton Storagéeam frame is assumed to be nonrelativistic, and the elec-
Ring (PSR), this instability is usually referred to as thetron motion in the laboratory frame is assumed to be
electron-protorie-p) instability [31—35], although a simi- nonrelativistic. The analysis generally allows for an ap-
lar instability also exists for other ion species, includingplied transverse focusing force on the electrons modeled
(for example) electron-ion interactions in electron storagdy Ff,. = mew%EXL, Wherewgg = const. We denote
rings [36—41]. Moreover, a related instability (known asthe ion charge and number density #¥,e andn,, and
the “ion-resonance” instability), driven by the relative av-the electron charge and number density by and n,.
erage motion of ion and electron components, also existsor Z,n, > n,, the electrons can be electrostatically con-
in electron-rich non-neutral plasmas [26,29,30] and in colfined in the transverse direction by the space-charge po-
lective acceleration schemes such as the electron ring atﬁntlal ¢ produced by the excess ion charge, even when
celerator [42]. wBe = 0. The present equilibrium and stability analy-
Theoretical treatments of the p instability are tradi- sis retains the effects of finite radial geometry transverse
tionally based on models [46] that analyze the center-ofto the beam propagation direction, including the presence
mass motion of the ion and electron charge component®f a perfectly conducting cylindrical wall located at ra-
Such models, while treating accurately several bulk feadius » = r,,. In the stability analysis, the and ¢ de-
tures of the instability, are limited in scope and difficult pendences of perturbed quantities are assumed to be of
to generalize to include the dependence of stability behavthe form expik.z — iwt), wherek, is the axial wave
ior on the detailed phase-space properties of the ion angumber andw is the complex oscillation frequency, with
electron distribution functions. Therefore, in the presenime > 0 corresponding to instability (temporal growth).
analysis, we develop and apply a theoretical formalisniThe present anaIyS|s assumes perturbations with long
based on the Vlasov-Maxwell equations [1,47] that de-axial wavelength, k2 <« 1, and sufficiently high fre-
scribe the self-consistent interaction of the ion and elecguency that|w /k.| >> vre, and |lw/k, — V| > vpy,,
tron distribution functionsf, (x, p, t) andf.(x, p, ), with  wherewvr,, and vy, are the characteristic axial thermal
the applied field and the self-generated electric and magspeeds of the background electrons and beam ions. In
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this regime, Landau damping (in axial velocity spac¢  monoenergetic ions and electrons and the corresponding
by resonant ions and electrons is negligibly small. step-function density profiles considered in Sec. IV, a
For step-function density profiles, we intro- key resylt is that there is no threshold in beam intensity
duce the ion plasma frequency-squared defined by?,/w%, or fractional charge neutralizatiofi for the
&yp = 4wy Zie?/yymy, and the fractional charge onset of instability. Finally, for the case of continuously
neutralization defined by = 7./Z,,, wherei, andii,  varying density profiles with parabolic profile shape, we
are the ion and electron densities. The present analysifake a semiquantitative estimate in Sec. V of the effects
based on the Vlasov-Maxwell equations is czarried oubf the corresponding spread in (depressed) betatron
for arbitrarily normalized beam intensity>,/w%,, and  frequency on stability behavior, including an estimate
arbitrary fractional charge neutralizatiorf, consistent of the instability threshold for the case of weak density
with radial confinement of the beam particles. For thenonuniformity.
moderately high beam intensities envisioned in the proton
linacs g_nd storage ri_ngs for the spalllation neutron source§ THEORETICAL MODEL AND ASSUMPTIONS
and tritium production, the normalized beam intensity
is typically d)f,b/w%'b =< 0.1 [51]. For heavy ion fu- In this section, we summarize the basic assumptions
sion applications [6,7], however, the transverse beanfSec. IlA) made in the present analysis and describe the
emittance is very small, and the space-charge-dominatgieoretical model based on the Vlasov-Maxwell equations
beam intensity is much larger, Wim,%h/w?;b <292  (Sec.lIB). Finally, examples of self-consistent equilib-
The present stability analysis shows that the instabilityrium solutions(a/dr = 0) of the Vlasov-Maxwell equa-
growth rate Imw increases with increasing normalized tions are presented (Sec. Il C) for the case of an intense
beam intensity @f,b/w%'b, and increasing fractional ion beam propagating through a background population
charge neutralizatiorf. In addition, the instability is of electrons.
strongest (largest growth rate) for perturbations with
azimuthal mode numbér = 1, corresponding to a simple A. Basic assumptions

(dipole) transverse displacement of the beam ions and the ) ) o L i
background electrons. We consider a thin, high-intensity ion beam with

The organization of this paper is the following. In distribut_ion functionf, (x, p, 1), characterigtic rgdium,
Sec. Il, we summarize the basic assumptions (Sec. Il Ajnd axial momentumy,m;B,c propagating in thez
and describe the theoretical model based on thdirection through a background population of electrons
Vlasov-Maxwell equations (Sec. IIB). Examples of With distribution functionf.(x, p, ). While the ions have
self-consistent equilibrium solution&/ar = 0) to the high directed axial velocity, = B¢ in the z direction,
Vlasov-Maxwell equations are then presented for the cas&'® Packground elgctror;s are assumed to be nonrelativistic
of an intense, continuous ion beam propagating through &"d stationary with[d*p p.fo = 0 in the laboratory
stationary background population of electrons (Sec. Il C)frame. In the context of the smooth-beam approximation,
In Sec. Ill, we formally integrate the linearized Vlasov- the ion beam is assumed to be continuous in the
Maxwell equations using the method of characteristicgirection, and theappliedtransverse focusing force on a
(Sec. Il A) and discuss properties of the ion and electror?®aM ion is modeled by
orbits in the applied field plus equilibrium self-field _mebwgszj_, (1)
configuration. The orbit equations are analyzed both for
the case of step-function ion and electron density profilethere x; = xé, + yé, is the transverse displacement
(Sec. 1l B), corresponding to monoenergetic beam iondrom the beam axis(y, — 1)m,c?* is the characteristic
and monoenergetic electrons, and for the case where tfien kinetic energy,m; is the ion rest mass¢ is the
equilibrium density profiles have a continuous variationspeed of lightin vacug andwp, = const is the effective
with radius r, corresponding to a spread in (depressedpetatron frequency for transverse ion motion in the ap-
betatron frequencies (Sec. IlIC). In Sec. IV, the nec-plied focusing field. The focusing force in Eq. (1) would
essary orbit integrals are evaluated in closed analyticagorrespond to the transverse electric force produced by
form for the case of step-function ion and electron densitya uniformly distributed, fixed charge background with
profiles, leading to a kinetic dispersion relation thich ischarge density pgo. = —ybmbw%‘b/zwzbe = const,
valid for arbitrary normalized beam intensity,z,b/w%h, where+Z,e is the charge of a beam ion. Such a model
fractional charge neutralizatiofi, and azimuthal mode is often used to describe tlmeragefocusing properties
number¢ (Sec. IVA). The resulting dispersion relation of an alternating-gradient lattice of magnetic or electric
is analyzed in detail for the case of mode numbet 1, quadrupoles. For the background electrons, to the ex-
corresponding to a simple transverse displacement of thient that the beam ion density exceeds the background
beam ions and electrons (Sec. IVB), and a brief discuselectron density, the space-charge force on an electron,
sion of stability behavior for quadrupole perturbationsF{ = ¢V ¢, provides transverse confinement of the back-
with mode number = 2 is presented (Sec. IVC). For ground electrons by the electrostatic potenti&lx, 7).
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However, for completeness, the present analysis alsewe assumesmall-amplitudeperturbations withz and ¢
incorporates the effects of appliedtransverse focusing variations proportional to eXjk,z — iwt), wherek, =
force on the electrons modeled ®f,. = —mew?;exl, 27arn/L is the axial wave number and is the (complex)
where m, is the electron rest mass anmsfj, = const is ~ 0scillation frequency, with Ima > 0 corresponding to in-
the effective betatron frequency for transverse electrogtability. Here,n is an integer/ is the fundamental ax-
motion in the applied focusing field. ial periodicity length of perturbed quantities in straight
It is further assumed that the ion motion in the (€.g., linac) geometry, and = 27R for the case of a
beam frame is nonrelativistic and that the transversétorage ring with (large) radiug > r,. As noted ear-
momentum components of a beam ipp,andp,, and the lier, the electron motion is assumed to be nonrelativistic

characteristic spread in axial momentusp, = p, —  and the axial momentum spread of the ions is assumed to
yymBpc, are small compared with the directed axialPe small [see Eq. (2)]. For our purposes here, the present
momentum: i.e., stability analysis assumes electrostatic perturbations with
sufficiently long axial wavelength, = 27 /k, and suffi-

|l 1oyl 18 pl < ypmy By . (2)  ciently high frequency» that
While the space-charge intensity in the present analysis is
allowed to be arbitrarily large, subject only to transverse kfr,f <1, L Buc| > v,
confinement of the beam ions by the focusing force in k:

Eq. (1), itis assumed that © (8)
Zz 2N — | > vre; -
vp = 00 oy, 3 k
mpc

Here, vy, = (Zsz/')’bmb)l/2 and vy, = (ZTez/me)l/2
are the characteristic axial thermal speeds of the beam
ions and the background electrons, respectively. The in-
eqgualities in Eg. (8) lead to several simplifications in the
Aasov-Maxwell equations (Sec. IIB). For example, be-
causek?r; < 1, the three-dimensional Laplacidf? =
2 /9,2 2/9,,2 2752 ng i
allowed to be comparable to or larger than the transversaﬁ/ax *+ 6%/dy” + 97/az" occurring in _Eqs. (5) and
o ) 5 . ) for ¢(x,t) andA,(x,t) can be approximated by the
kinetic energy(p: + p:)/2v,m; of a beam ion. . N S . o
o x y e ' ._perpendicular LaplaciaWV{ = 9-/dx* + 9°/dy*. Fur-
In addition, the present analysis is carried out in . o
. o thermore, because of the inequalities in Eq. (8), the per-
the electrostatic approximation, where the self-generate bed axial f he el di =
electric field produced by space-charge effects is urbed axial forces on the electrons and ions [6ig, =
e(0/3z)6pé, andSF, = —Z,e(d/dz)d pé€,] are treated
E'(x,1) = =Vo(x,1), (4)  as negligibly small. The subsequent analysis therefore ne-
and the electrostatic potentia(x,y,z,7) is determined 9lects the effects of Landau damping (by resonant par-
self-consistently from Poisson’s equation ticles) due to the axial momentum spread [44] of the beam
ions and background electrons.

where vy is Budker's parametety, = [ dx dy n, is the
number of beam ions per unit axial length, andx, r) =
[d?p f,(x,p, 1) is the number density of the beam ions.
Equation (3) assures that the space-charge potential
sufficiently weak that|Z,e /y,m,c?| < 1; however,
the electrostatic potential energy of a beam Bpe ¢, is

Vip = —4me(Zpny — n.). (5)
Here,n(x,1) = [d’p fo(x.p.1) is the electron number B. Model based on nonlinear Vlasov-Maxwell
density. Furthermore, to determine the self-generated equations

magnetic field . ) ]
We now make use of the assumptions delineated in

B’(x,1) = VA, (x,1) X & (6)  Sec. I1A to simplify the theoretical model of ion beam
produced by the axial ion current, it is assumed that thénteraction with the background electrons based on the
axial velocity profile V,,(x,t) = B,c is approximately Vlasov-Maxwell equations [1,47]. First, for narrow ax-
uniform over the beam cross section. In this case, in théal momentum spread, we introduce the reduced distri-
magnetostatic approximation, thkecomponent of vector bution functionsF,(x,p..?) = Fy(x,y,z, px, py,t) and
potentialA, (x, y, z, ) is determined self-consistently from F.(x,p.,?) = F.(x,y,z, px, py, t) defined by

VA, = —4mZyeBpny , (7)

where use has been made of the assumption that the

electrons carry zero axial current in the laboratory frame,

ie.,n.V., = [d®p(p./m.)f. = 0. F.(x,p.,1) = f dp, fe(x,p, 1),
Finally, underequilibrium conditions(a/a¢t = 0), the

present analysis assumes that ion and electron propertiedere integrations are over axial momentpm Because

are spatially uniform in the direction with 9/dz = 0. [dp. p.f. = 0 for the electrons, and axial forces are

However, in the stability analysis (Secs. lll and 1V), treated as negligibly small, the nonlinear Vlasov equation

Fyx.p..1) =fdpsz<x,p,r>,
©)

054401-4 054401-4



PRST-AB 2 KINETIC DESCRIPTION OF ELECTRON-PROTON ... 054401 (1999)

for the reduced electron distribution functiehi(x, p 1, ¢) is given (nonrelativistically) by

8 pl 8 02 a
R L —eV.¢) - —— |Fulx,pi,t) = 0. 10
|:at e 9%, (mewg,x, — eVi¢) 9P¢j| (x,p1,1) =0 (10)

Here, —e is the electron chargd], = €,0/0x + &,d/dy is the perpendicular gradient, and use has been made of the
assumptions enumerated in Sec. Il A.

The ions, however, have large directed axial veloclty = B,c. We therefore approximate - 9/9x =
(pL/vpmp) - 9/0x, + V,3/3z, in the Vlasov equation for the reduced ion distribution functiés(x,p.,¢), and
the perpendicular self-field force on an ion is approximatedbpy = Z,e[—V, ¢ + Byé, X (V A, X &,)], where¢
andA, are determined self-consistently from Egs. (5) and (7). Consistent with the assumptions in Sec. Il A, the Vlasov
equation for the reduced ion distribution functifp(x, p . , ) therefore becomes

J J PL 0 02 9
R VA L + ZpeV ) - —— |Fy(x.pr,t) = 0. 11
|:at vae T om ox, (YompwgpX 1 reViy) . p(X,p1,1) (11)

Here,+Z,e is the ion charge and(x, r) is thecombined | wall readily gives the boundary conditions
potential defined by
d(r=r,,0,z,1t) =0, o(r =ry,0,z,1) = 0.

b(x,1) = d(x,1) — BrAL(x,1), (12) (15)
where the electrostatic potenti@lx, ) and the combined Here, we have introduced cylindrical polar coordinates
potentialy(x, ¢) solve x = rco9 andy = rsind, and the constant values of

the potentialsp andy at r = r,, have been taken equal
ki + K P to zero without loss of generality.
ax2  9y?

C. Equilibrium profiles

- 2 _ 2
n 47Te<2bf d°p Fy [ d pFe)’ (13) Under quasisteady equilibrium conditions witfior =
0, we assume axisymmetric beam propagatipfdd = 0)

and and negligible variation with axial coordinate/az = 0).
22 22 Substituting
St oS |Y 9 d 9
0x2  9y?

ar 90 oz

—4773(2—3 ] d’p F, — j d’p Fe)- (14) inEgs. (10), (11), (13), and (14), we readily conclude that
Vb equilibrium distribution function$d /9¢ = 0) for the beam
ions and background electrons (denotedFlSyandFS) of

In obtaining Egs. (13)Jan2d (14), use h?s been made ahe general form [47]

Egs. (6), (7), and (12)) d°p --- denotes| dp, dp, ---;

np(x,1) = [d*p Fy(x,pL,1) and ne(x.1) = Fy=Fy(Hy).  Fo=F(Ho). (17

[d*p F.(x,p.,z) are the ion and electron number exactly solve the nonlinear Vlasov-Maxwell equations,

densities, respectively; and we have approximateavhereH , andH ., are the single-particle Hamiltonians

V2 = V3 = 92/ax% + 9%/9y? by virtue of the thin- defined by

beam approximation and the inequalitgczzr,f <1 1

assumed in Eqg. (8). Hyp = > Pl
Equations (10), (11), (13), and (14) constitute a com- W’lmb

plete nonlinear description of the collective interaction 2 0 2 0\ _ 7.0

of the beam ions with the background electrons based Ty vemwgyr + Zoelytn) = ¢, (18)

on the nonlinear Vlasov-Maxwell equations, consistent 1 1 , .

with assumptions enumerated in Sec. lIA. In the sub- H,, = Pl + 5 mewh,rt — e[¢'(r) — .

sequent analysis, we further assume that the ion beam 2m. 2

propagates axially through a perfectly conducting cylin-Here, for 9/06 = 0 = 9/dz, H,, and H,, are exact

drical pipe with radius- = r,,, wherer = (x2 + y2)/2  single-particle constants of the motion, and the constants

is the radial distance from the beam axis. Enforcing)® = 4°(r = 0) and ¢° = ¢°(r = 0) are the on-axis

[E3l=r, = [ES)=, = [B],=,, = 0 at the conducting (r = 0) values ofy°(r) and ¢°(r).

(16)
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Thgre is clearly very W|q_e !atltud_e in s.peC|fy|ng. the FO(H ) = np SH,, — T1p).
functional forms of the equilibrium distribution functions 2 ypmy
F)(H,,) andF%(H,.). OnceFy(H ,)andF(H,,.) are 5 (21)
specified, however, the equilibrium self-field potentials FS(HM) = ‘- S8H,, — Ti.).
#°(r) and ¢ (r) can be calculated self-consistently from 2mme
Egs. (13) and (14) with /96 = 0 = 9/az, i.e., Here, #i, and 4, = fZ,#;, are positive constants corre-
Lo 9 sponding to the ion and eIe_ctrqn densiti¢gs= const is
— oo ¢°(r) = —4me[Zynd(r) — n(r)], the fractional charge neutralization, aiid, and7,, are

(19) constants corre_sponding to the on-aftis= 0) values of_

1o a Zy o 0 the transverse ion and electron temperatures, respectively.

S aror ¥ (r) = —4me ? ny(r) — ng(r) |. Without presenting details, some algebraic manipulation
o . b i _ that makes use of Egs. (19)—(21) gives the step-function

HOere, the equilibrium ion and electron density proflles,density profiles [30,47]

ny(r) andn?(r), are defined by

0 _|ap=const 0=r<rp,
nd(r) = [ dp FO(H ). my(r) = {o, rh<r=r, @2
(20) and
W) = [ @p ). o [ = 2y =const 0= r<r. o
) =10, ry, <r=r,. (23)

A simple class of equilibrium distribution functions
Fy(H ;) and FO(H,.) [8,9], which correspond to over- For overlapping density profiles with = r, (Fig. 1), the
lapping step-functiondensity profiles for the beam ions equilibrium potential profiles calculated from Egs. (19),

and background electrons, is given by [30,47] | (22), and (23) are given by
2
. —(1 — f)Nbeez -, 0=r<rp,
e[¢°(r) — ¢°1 = ' . (24)
-1 - f)Nbee2<1 + 2¢n —), h<r=r,,
p
2

_<i2 —f)N},dezr_z, O=r<rp,

Zyely®(r) = 31 =1 77 A (25)
—(—2 - f)N;,Z;%ez<1 + 26n L), rp <t =Try,.

Vb b

Here,f = #./Zyi, = const,N, = ﬁbwrﬁ is the number| is related tof', , and7", . and other system parameters by
of beam ions per unit axial length, and the beam radjus the equilibrium constraint conditions

. 11 2T
0 _ . A2 2 — 1b
1.5 |:wﬁb 2 (7;% f>wpb}b Yoy
. (26)
0 1 ypmyp 2 |2 2T
|:wﬂe + 3 Zom. (1 - f)wpbj|rb =
1.0 0 - B . .
@ Mo (1)/ 7 In Eqg. (26), we have introduced the ion plasma frequency-
= squared defined by
e 4mwhpZie® AN, Zie?
o5 : A | ‘,‘\)?;b _ dmnplpe” b b82 , 27)
ne (r)/ny Ybhp Yompri
whereN,, = 7y, wri. Note from Egs. (24) and (25) that
0.0 the constantg)® = ¢%(r = 0) and° = ¢°(r = 0) are
00 0.5 10 15 readily determined by enforcing the boundary conditions

r/ry in Eq. (15) at the conducting wall radius= r,,. This

: 50 (1 — 50 _
FIG. 1. Equilibrium step-function density profiles,(r) and gllve52 ¢ (IZ fl)NbZZZ}f[l + 2n(ry/ry)] and ¢
n%(r) [Egs. (22) and (23)] for the choice of ion and electron( /b ~ FINy 1_75[ "‘_ - ”(”w/"b)]; A
distribution functions in Eq. (21). For the purpose of illustra- Consistent with positive values @f, , > 0 and7',, >
tion, we have take, = 1 andf = 0.5 in the figure. 0, the equilibrium constraints in Eq. (26) clearly allow
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a wide range of equilibrium system parameters. Thigdetailed stability properties to be determined from the
is illustrated in Fig. 2 for the case where%e =0, linearized Vlasov-Maxwell equations (Secs. Il and IV).
corresponding to zero applied focusing force on the There are clearly many possible choices for the equi-
electrons. In this case, the electrons are radially confinelibrium distribution functions F)(H,,) and FO(H .).

by the electrostatic potential of the beam ions. Shown irAnother example would correspond to the thermal equi-
Fig. 2 is the allowed region i/, @2,/w%,) parameter librium distributions [47]

space corresponding to radial confinement of the ions

and electrons consistent with Eqg. (26). Here, the solid F)(H,}) = ﬁ—hexp<_Hib)’
bounding curves in Fig. 2 correspond = 1, and QmypmpT 1p) Tip
2
o2y /0%, =2/(1/y; — f) for 0= f =1/y}. These . A H.. (28)
curves are obtained from Eq. (26) in the limits where Fy(H..) = (277" X Bk
2 T, J_e) le

27 1 p/ypmp < rgw%zb and27 . /yym), < rgé)pb.

The specific choices of distribution functions in Here, H,, and H,, are defined in Eq. (18)T,, and
Eqg. (21) lead to the particularly simple forms for the T, are positive constants corresponding to ion and elec-
equilibrium density and potential profiles in Egs. (22)—tron temperatures (energy units), ahd= np(r = 0) and
(25). Most notably, the particle trajectories in the i, = nd(r = 0) are the on-axis ion and electron densities.
equilibrium field configuration consistent with Egs. (22)— Substituting Eq. (28) into Eq. (20) gives for the equilib-
(25) can be calculated in closed analytical form, allowingrium density profiles

1 1 2 n
ny(r) = fy, eXP{—T_M (E Yompwg,r® + Zye[(r) — lﬁo])],

(29)

1
nd(r) = i, exp{— T

le

(3 meoffrt = etwrr = ).

When Eq. (29) is substituted into Eq. (19), we n(Jteof Egs. (19) and (29) shows that the ion density profile
that the resulting coupled equations for the potensy(r) is bell shaped [20], assuming a maximum vafiye
tials ¢°(r) and ¢°(r) are highly nonlinear and must atr = 0, and decreasing monotonically with increasing
generally be solved numerically. Requiring radial con-provided theinequalitybpb/zyi < w%zb is satisfied. This
finement of the ions and electrons wid}(r — <) = 0 s simply a statement that (repulsive) space-charge forces
and ng(r — =) =0 generally imposes restrictions must be weaker than the (applied) transverse focusing
on the allowed range of system parameten%b, force. Typical numerical solutions to Egs. (19) and (29)
&2, = dwhpZie/yymy, ho/Zphy, etc. For example, are illustrated in Fig. 3, where)(r) andnl(r) are plotted
in the absence of electroiig, = 0), careful examination versus radius for the choice of system parametar%e =
0, v, = 1.85, d)f,b/w?;b = 0.1, and on axis fractional
charge neutralizatiofi = #./Z,i, = 0.2.

50 ;
|
|
40 - ! 4 1.00 0.40
|
! ~
; no(r)/ Py —
L . 0.75F . +0.30
sg 7 21 /4 1) | n2A0/R
Vo T
S~ : o o2
| - ~ ~
‘ = 050, 40.202
| \\\
| \n
| — RSN
! 0.25F '\ 40.10
L/
: 1000~
0.50 0.75 1.00 0.00 > 0.00
f 0.0 0.5 1.0 1.5 2.0 2.5

FIG. 2. The area to the right of the solid curve is the /e

allowed region of f, &2,/ w%,) parameter space corresponding FIG. 3. Plots versus radius of (a) the ion density profile
to radial confinement of the ions and electrons consistent;(r)/#, and (b) the electron density profig(r)/ 4, obtained
with Eq. (26) andwge =0,T,=0, andT,, = 0. For the numerically from Egs. (19) and (29) for the choice of system

purpose of illustration,y, = 2 = 1.414 is assumed in the parameterswp, = 0, y, = 1.85, cb,z,,,/a)%z,, =01, Z, =1,
figure. my/m, = 1836, andf = a,/fA, = 0.2.
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lll. LINEARIZED VLASOV-MAXWELL r corresponding to a spread in (depressed) betatron
EQUATIONS frequencies.

In preparation for the stability analysis in Sec. IV,
we formally integrate the linearized Vlasov-Maxwell
equations using the method of characteristics (Sec. IllA) We now express each quantity in the nonlinear
and discuss properties of the ion and electron orbits iviasov-Maxwell equations (10), (11), (13), and (14)
the applied field plus equilibrium self-field Configuration as an equi|ibrium value plus a perturbation; e.g.,
(Secs. 1lIB and Il C). The orbit equations are analyzedr,(x,p,,¢) = FY(H,,) + SFy(X,p1,1), y(x,1) =
both for the case of the step-function density profilesyO(,) + sy (x,¢), etc. Linearizing Egs. (10) and (11)
and corresponding potential profiles in Egs. (22)—(25¥or small- amplltude perturbations about the general equi-
(Sec. 1IB) and for the case where the equilibriumibrium F)(H ), FO(H_,), 4°(r), and ¢°(r) consistent
density profiles have a continuous variation with radiusyith Eqs. (17)—(20) then gives for the evolution of the
perturbed ion distribution functiod F,(x,p ., t)

A. Kinetic eigenvalue equation

9 o . pL 9 Zpye 9 P
— +V,— + - — = — 1 0Fp(X,pL.t
‘at v T Sum | ox, |:')’bmbw5b p Y (r):|XL ™ p(X,P1,1)
Zye
= =2 Vi8y(x.1) Fb(Hu,) (30)
Ypp

and for the evolution of the perturbed electron distribution funcéén(x,p ., ¢)

('9 pJ_ ('9 02 e (:) 0 (:) e
[ |:mea)ﬂe . ar¢ (r)i|xL P }SFe(x,pL,t) e p. - Vidp(x,1) P

0
FY(H ,).
ot me (")Xl Hle e( Le)

(31)

In obtaining Egs. (30) and (31), use has been madef Egs. (30) and (31) are the single-particle equations of
of Eg. (18) and the chain rule for differentiation to motion in the equilibrium fields. For example, in Eq. (31)
express  (3/0p )Fo(H ) = (p1/ypmp)dFy/dH ,,  for 8F.(x,p.,1), the coefficient ofd/ox, is dx, /dt =
(0/0x )°(r) = r'x,0¢4°/0r, etc. Furthermore, p./m. and the coefficient ofa/ap, is dp./dt =

the perturbed potentials§#(x, ) and §¢(x,t), occur- —[mew?;e — (e/r)a¢°/ar]x, . Therefore, the derivative
ring in the linearized Vlasov equations (30) and (31),operation{---} on the left-hand side of Eq. (31) can be
are determined self-consistently in terms of the perviewed as the total time derivative,/dt’, following the
turbed densities,dn,(x,1) = [d’p §F,(x,p.,¢) and particle motion in the equilibrium fields, and similarly for
dne(x,t) = [d*p 8F.(x,p.,1), from Egs. (13) and (14). Eq. (30). With this in mind, for amplifying perturbations,

This gives Egs. (30) and (31) can be integrated frorfh= —oo,
92 92 where “initial” perturbations are assumed to be negligibly

(@ + 372 )5111 small, to the present time’ = r. BecauseH,, and
H,. are exact single particle constants of the motion

Zy dH' ,/dt' = 0 = dH'./dt') in the equilibrium fields,
- —4we<y [ apsr [ 6Fe), (32 {hia ges e/ !
b

2 2 . d
(6_ L2 )M SFy(x.pL.1) = Zye S ,,(Hu;)

—47Te<Zh]d2p SF, _fdzp 6Fe>- 33) X j_xdt I~ -V sy((x', 1), (34)

Equations (30)—(33), valid for small-amplitude pertur-and

bations about general equilibrium distribution functions sF,(x,p,,7) = F"(HM)

FY(H,,) and F%(H,,), constitute the final form of the Hie

linearized Vlasov Maxwell equations used in the present ! pL

analysis, X ]ﬁ dt’ -V 8p(x',t').  (35)

Equations (30) and (31) are particularly well suited
to formal solution using the method of characteristics
[44,47] to integrate along the particle trajectories in the?
equilibrium field configuration. Specifically, we note that
the coefficients of) /9x, andd/dp, on the left-hand side X'(t' =1) = x, p.t'=1t=p.. (36)

In Egs. (34) and (35)x’(t’) and p’.(¢") are the particle
orbits in the equilibrium fields that pass through the phase-
space pointx,p,) attimet' = ¢;i.e.,
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For example, from the characteristics in Eg. (30), theelectrons solve’(+') = z, and
“primed” orbits for the beam ions solve'(r') =z + d

1

Vy(t' — 1), and EXIL([I) = m—pi(t'),

L) = ——pl() d e sy |
—x,)=——p, 1), DN 02 o1 (41 € F) i (p

dt! 1 Vpmp 1 (37) %pl([) = mewBEXL(t) + - 9 XJ_(Z ),

d ., , o o Zve WO wherex', (t = 1) = x, andp’ (' = 1) =

et N = — Fy — 22727 ), 1L ) 1L PL i P.. )

dt’pl( ) Yomy X (1) rlor! XL () For self-consistency of the field perturbations, the

where /(1) = [x'2(¢) + y'2())]/2, and X', (' = 1) = perturbed distribution functions in Egs. (34) and (35) must
x, andpl (/' =1) =p,. Similarly’ from the character- 0€ substituted into the Maxwell equations (32) and (33).

istics in Eq. (31), the primed orbits for the background'n this reg_ard, .it is convenient to _qdopt a normal-mode
| approach in which perturbed quantities are expressed as

SFy(x,p,0) = > D SFL(rpik,w)exdi(d + k.z — o1)],

{=—0k =—x
o]

Sy(x,1) = > i Yl (r k., 0)exdi(td + k,z — wt)],

{=—0 k::—oo

(39)

and similarly for 6F.(x,p.,t) and d¢(x,t). Here, ! stability (temporal growth). We substitute the Fourier
(x,y) = (rco9, rsing), the integer? is the azimuthal representations into Egs. (34) and (35) and make use
mode numberk, is the axial wave number, and>  of (d/dt')8y(x',t") = [a/at' + (pL/ysmyp) - /0%, +

is the complex oscillation frequency. For the case ofV,d/dz']6¥(x', ') to integrate by parts with respect 10

a large-aspect-ratio storage ring, = 27n/L, where in Eq. (34), andd/dt)6¢(x',t') = [9/ot’ + (p'./m.) -

n is an integer andL = 27 R is the ring circumfer- 9/9x’, 164 (x’,1) to integrate by parts with respect tb
ence. When carrying out the integration in Egs. (34) in Eq. (35) [30,47]. Suppressing tlie,, ) arguments in
and (35), Inmw > 0 is assumed, corresponding to irT- the Fourier amplitudes gives

0
Sﬁf(r,pl) = Zbeﬁaleg(HLb)‘&Ze(r) + i(w — szb)f7 dr 5&€(r/) exdi€¢(0' — 0) — i(w — kZVb)T]]
(40)
for the beam ions, and
0
Sﬁf(r,pl) = —¢ aljl Fg(HLe)[BqAbg(r) +iw f_ dr BqAb‘](r/) exdi€(6' — 6) — iwr]] (42)

for the background electrons. In Egs. (40) and (41fenotes the displaced time variable= ¢/ — ¢, Imw > 0 is
assumed, and the radial and azimuthal orhite/) and 6'(¢’), satisfyr'(+' = t) = r and6’(t’ = t) = 0. Here,r'(t)
and§'(¢') are related to the Cartesian orbit$(z') andy’(+') by x’ = r’co®’, andy’ = r'sinf’. Moreover, the orbits

in the equilibrium fields(r’, 8’) or equivalently(x’, y’), are determined from Egq. (37) for the beam ions and Eq. (38) for

the background electrons. Finally, for self-consistency of the perturbed fields, we substitute Eqg. (39) into Egs. (32) and
(33), which gives

L e W Zo [ o oz 2 opt

———r— — 5 |84°(r) = —4me| 5 | d"pSF,(r,pL) — | d°pSF,(r.pL) |, (42)
r or Or r Vi

Lo 0 €\ INPY INPY

——r— — = |8¢°(r) = —4me| Zy, | d°p 6F,(r,p.) — | d°pS6F,(r,p1) |. (43)
r ar or r2

Here, 8F}(r,p.) and 8F'(r,p.) are related to the| (43) have a wide range of applicability and can be used
perturbed potential amplitude8d‘(r) and 8¢¢(r) by to determine the complex oscillation frequeney and
Egs. (40) and (41). detailed stability properties for a wide range of system
Equations (40)—(43) represent the final system oparameters and choices of distribution functigi{$H , )
eigenvalue equations derived for small-amplitude perturand FO(H,.). The principal challenge in analyzing
bations abougeneral equilibrium distribution functions Eqgs. (40)—(43) is twofold. First, depending on the equi-
FY(H ) andF%(H ), consistent with the kinetic model librium profiles, the transverse orbitg’, §') or (x’,y’)
and assumptions summarized in Sec. Il. Equations (40)are often difficult to calculate in closed analytical form
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from Egs. (37) and (38). Second, once the orbits in theffects, defined by
equilibrium fields are determined, the integrations owver

in Egs. (40) and (41) are challenging becauserthabits 7
X4

oceur expllicitly in 'ghe argAléments of Ir}e (yet unknown) V2(r) = w%zb n 9’/ (r) (46)
eigenfunction amplitude8*(r') and 8¢ (r'). YoMy ¥ oo
For future reference in Secs. llIB, llIC, and IV, we
express the ion and electron orbit Egs. (37) and (38) iRy, the i ions, and
the convenient forms
d? ! I / e 1 9
2z X () + v XL = 0 (44) ve(r) = wf, = —— — — ") (47)
and
42 , S, / for the electrons. For specified equilibrium distribution
) X (1) + v;(r)x' (') = 0. (45)  functionsFy(H ;) andF? (ng) and corresponding equi-

librium density proflleSnb(r) and n%(r), the equilibrium
Here, vi(r) and v2(r) are the (depressed) betatron self-field contributions in Egs. (46) and (47) can be ex-
frequencies-squared including applied-fiplds self-field | pressed as

Zoe L2 oy - _dmle 2[ f dr mf)(r) - f dr rn°<r>} (48)
Yomp 1 Or Yomp T
and
19 de? 1 r r
—i——d)()(r) = 17 —2|:be dr rng(r) —f dr rng(r):|. (49)
me, r or me r 0 0

Here, use has been made of Eg. (19). Whenever [the
ion charge density exceeds the electron charge density  x'(¢') = xcog#,7) +
with Z,ny(r) > n%(r), we note from Egs. (45), (47), and

1 .
— px SIN(PpT),
Vp

(49) that the equilibrium self-field force on the electrons () = y codpyr) + 1 sin(y7) (51)
is always focusing, even when the applied betatron YA = Y ROV T 5, Py SINBT)
frequencywg, = 0. for the ions, and
Ty — ~ A
B. Particle orbits for step-function density profiles x(r') = xcodp.r) + 5, P sin(p,7),
The orbit equations (44) and (45) simplify consid- L R 1 o (52)
erably for the case of the step-function density pro- y'(t") = ycodp,7) + 5, P sin(®,7),

files in Egs. (22) and (23), which correspond to the o, R N .
choice of equilibrium distribution functionsj(H , ;) and _forthe electrons. Here, =1’ — ¢, p, and?, are defined
FO(H.,) in Eq. (21). Substituting Egs. (22) and (23) " E9. (5?1), and<Eq§-_(51)2and (52) are valid in the beam
into Eqs. (46)—(49) readily gives in the beam interior Nt€Nor whered = 7 = (x* + y*) /2 < r,.

O0=r<r) Equations (51) and (52) constitute a Cartesian repre-
sentation of the orbits in the equilibrium field configu-
" 1 2 1 ration. The transverse orbits can also be expressed in a
Vb(r) = Vb = wgp D @\ 2T I cylindrical coordinate representatidr’, 8’), wherex’ =
r'co®’ and y’ = r’sing’. Introducing p, = p, cosp
) o ey Ly (50)  andp, = p, sing, whereg is the azimuthal momentum
velr) = o, = wg, + — Zom o = 1), phase, it is readily shown from Eq. (51) the®(¢/) =

x'2(¢) + y'?(¢') can be expressed as

where »7 and 72 are constants (independent of ra-

dius r). Here, f = #./Z,#A;, is the fractional charge

1
() = > r[1 + cod29,7)]
neutralization and&)f,b = 47rﬁhZ§e2/yhmb is the ion

plasma frequency squared. Becaugg and », are + piiz[l coq29;,7)]
constants, Egs. (44) and (45) are readily integrated with 2ymi 75

respect tar’. Enforcing the boundary conditiong(¢’ = rpL _ oo

t)=x, (dx'/dty—; = p</ypsmy, etc. readily gives + Yorp P code — 0)sin22,7), (53)
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from
from

where (x,y) = (r cod, r sind).
Eq. (51), the azimuthal orbit
tan’ = y’/x' is given by
tang’(¢')
_rsingcog,7) + (py/ypmybp) Sing sin(#,7)
r cod cosP,7) + (p./ypmy ) cOSp SIN(P7)

(54)
Note from Eq. (53) that the motion of?(¢') corresponds
to that of a displaced simple harmonic oscillator, oscillat-
ing at constant frequen@®,. Also note from Egs. (53)
and (54) that(r’,0') = (r,0) atr =+t — t = 0, as re-
quired. Finally, from Eqg. (52), the transverse orhit&’)
and ¢'(+') for the electrons are identical in form to

Moreover,
determined

angular momentum; i.e.,
! N 1. ! ! !
Py(t)) = x'py, — ¥'p,

= P, = const(independent of )  (55)

for both the electrons and the ions. Here,
Py = xpy, — ypx = rp.Sin(¢ — #) is the angular
momentum expressed in phase-space variables, and
use has been made aofx,y) = (rcod,rsind) and
(px,py) = (pLcosp,p, sing). Another exact con-
sequence of Egs. (44) and (45) is the conservation of
particle energy, i.eH' ,(1') = H,, = const for the ions,
and H' .(f) = H,, = const for the electrons, where
H, ,(r,p.) andH, . (r,p.) are defined in Eqg. (18). For
example, conservation of energy for the electrons in

Egs. (53) and (54) provided we make the replacementéy"ndrical coordinates can be expressed as
vy, — D, andybmb — M.

2
The simple form of the transverse orbits in Egs. (51)- 1 dr’ " P; N 1 ® 2
(54) will permit an exact evaluation in Sec. IV of the 2 Me\ "yt 2m,r'? o Me@pel
orbit integrals in Egs. (40) and (41) for the choice of -
e[¢0(r/) - (vb()] = HLe ’

equilibrium distribution functions in Egs. (21) and the
corresponding step-function density profiles in Egs. (22)
and (23).

(56)

wherePy, = const is the angular momentum. In obtaining
Eqg. (56), use has been mademfr'*(1)d6'(t')/dt' = Py
to express (1/2)m.r'?(d6'/dt")* = P}/2m.r'?, and
the electrostatic potentiakp®(r’) is determined self-
We now examine the ion and electron orbit equationsonsistently from Eq. (19).
(44) and (45) for the case of continuously varying For the ions, the equation of motion fef(¢’) is iden-
equilibrium density profilesnj(r) and n%(r). In this tical in form to Eq. (56) provided we make the replace-
case, from Egs. (48) and (49), the (depressed) betatranentsm, — yymy, @}, — gy, —e — Zpe, $°(r') —
frequenciesz(r) and v2(r) defined in Egs. (46) and #°(+/), and H,, — H,, in Eq. (56). For present pur-
(47) generally vary with radial coordinate Because poses, we therefore focus on an examination of Eq. (56).
the equilibrium is axisymmetridd/d06 = 0), an exact It is convenient to rewrite Eqg. (56) as an equation for
consequence of Egs. (44) and (45) is the conservation of2(¢); i.e.,

(

For specified potential profile°(r), Eq. (57) is a convenient form for direct integration and determinatior! @f’).
Alternatively, taking the derivative of Eq. (57) with respecttaives

C. Particle orbits for continuously varying
equilibrium profiles

1

2

d

dt’

2
4 A 4H |,
r/2) + r/z{Zw?;er/z - m_e[CbO(r/) - (bo] - = (57)

e

4eli

_4H,,
me r'2 9r’? N ’

Lo |<zw26)2 P - &01}#2 (58)

e

Equations (57) and (58) are very useful representatibneg = const, whereP, is the angular momentum. Inte-
of the radial orbit equation for’?(t'). For example, for grating with respect ta’ and enforcingd(:’ = t) = 6
the step-function density profiles in Egs. (22) and (23)gives
it follows from Eq. (24) thate[¢°(+') — ¢°]1 = —(1 — df!
fmiyZye?r'? for 0 = v’ < rp,, and the coefficient of’? T
in Eqg. (58) is{-- -} = (2#,)?> = const, wheré, is defined ri2(t')
in Eq. (50). Therefore, as expected from Eq. (58), the In circumstances where the equilibrium density profiles
motion of r'?(¢') corresponds to a displaced oscillator, os-n)(r) and n%(r) vary continuously withr, the coefficient
cillating at frequency2#, = const. Finally, for general {---} of »'2 in Eq. (58) will depend on'2, corresponding
equilibrium profiles, once the radial orbit>(t') has been to a spread in the (depressed) betatron-frequency due to
determined from Eq. (57) or Eq. (58), the azimuthal or-self-field effects. To illustrate this effect, we consider
bit 6/(+') can be determined fromn, r'2(t)d6'(t')/dt' =  a simple example where)(r) is assumedo have the

Py ("
o+ 2
me

0'(t') = (59)
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parabolic form (Fig. 4) Substituting Eq. (61) into Eq. (57), or, alternatively, inte-
2 grating Eq. (62) once with respect tbgives

.
A1 — e— = 2
nh(r) = nb(l ) r§>’ e ( 7 r’z) = (29,

0, rp, < r=r,. E

Here,e is a positive constant in the ranfe= ¢ = 1. For 2H .\ ,» 122 1 r'2
€ = 0, Eqg. (60) has the step-function form in Eq. (22), X\ =7 | = )71 - 3 ey

whereas fore = 1, n2(r) decreases monotonically to 5 b
zero at the beam radius = r,. For simplicity, we _ ( Py ) }

further assume that the electron density profijér) has (64)

. . . _ 0
an identical shape to Eq. (60) with(r) = fZyn(r),  \yhereP, = const is the angular momentum. The radial
where f = const is the fractional charge neutralization. ¢ ation of motion for the ions in the equilibrium po-
Substituting into the equilibrium Poisson equation (19) forig il #°(r) calculated from Egs. (19), (59), and (60)

¢°(r) then gives is identical in form to Eq. (64) provided we make the

mei)e

Cde oo a0r YoMy o o o replacements, — #, H,, — H;, m. — ypm;, and
o L7 = @T) = 27y (L= f)r e — 1 in Eq. (64), wheren, is defined by
2 (3/4) (@5/2) (175 = f)
x(1-=5) (6 = g3 e (65)
4 rp wgy — (@p/2)(1/vs — f)
in the beam interior (0= r <r). Here, For step-function density profiles with= 0, and there-

&2, = 4whyZie*/y,my is the on-axis (r =0) ion fore n. = 0 = n,, the electron and ion orbits for (1)
plasma frequency-squared. We substitute Eq. (61) int@re identical to those calculated in Sec. 11l B, with oscilla-

Eq. (57) or Eq. (58) to determine the? motion. For tory components at the constant frequencigsand2#, .
example, Eq. (58) becomes For e # 0 and n; # 0, however, the spatial nonunifor-
P : 1 e mity in the equilibrium density prqfiles produces'a spregd
L2y (27%)2(1 - = ’"_2>r/2 = —~L¢  (e2) in (depressed) betatron frequencies for the particle orbits.
dr'? 2 7, me For example, for specified valuesBf, . andPy, electrons
that are confined within the beat’2 < r?) still exhibit
periodic motion as a function of = ' — ¢, but the period
7.(H ., Py) for the r'?(') motion depends on the energy
(3/4) (ypmy /2Zpme)dpp(1 = f) H |, and the angular momentufty and is no longer equal
w?;e + (ybmb/2the)6),2,b(1 - f € to the constant \_/alueg = 27 /29, obtained fore = 0

0 (see_the Ap_pendlx). _ _ _
For wg, = 0, we note that Eq. (63) reduces tp, = It is also important to recognize that spatial nonunifor-
(3/4)e. Note also that the nonuniform density variation mity in the equilibrium density prof”egg(r) and n9(r)
(n. # 0) leads to a nonlinear frequency shift in Eq. (62).can have a larger influence on the electron motion than

the ion motion in many applications of practical interest.

where 72 is defined in Eq. (50) and the dimensionless
coefficientn, is defined by

(63)

e =

1.5 To illustrate this point, we consider the interesting case
Wherew%e = 0 and w%b # 0, and Eq. (63) reduces to
3
e = — €. 66
- | Me = 4 € (66)
n° (r)/ A, Even for the high-intensity proton beams envisioned for

the next-generation linacs and storage rings for spallation

neutron sources and tritium production, the beam intensity

7 is such thatzbf,b/wgz,, =< 0.1. Therefore, from Egs. (65)

and (66),n, < e for the protons, whereag, = 3¢/4

for the electrons, and the nonlinear effects and frequency

0.0 ‘ spread are correspondingly larger for the electron orbits.
0.0 05 10 15 We now return to the electron orbit equation fof(¢')

r/r, in Eq. (64), keeping in mind that the ion equation of
motion is similar in form. As shown in the Appendix,
rium ion density profilen)(r) defined in Eq. (60) and the for arbitrary Inhomoggnelty strengﬂ_wS_ G.S 1, Eq. (64)
electron density profile(r) = Z, fa(r). For the purpose of €an b_e solveaxactlyin terms of elliptic integrals of the _
illustration, we have taker = 0.5, f = 0.5, andZ, = 1 in  first kind. For present purposes, and future reference in

the figure. Sec. V, we note here that the approximate orbitf3t+’)

ne (r)/ 7y

FIG. 4. Plots versus normalized radiugr, of the equilib-
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for the case of weak spatial nonuniformity with< 1 tributions for F)(H,,) and FO(H,,) are specified by
and n, < 1 is given by Eqg. (A33) in the Appendix. Eq. (21). In this case, the particle motion in the beam
As discussed in the Appendix, Eq. (A33) is identical ininterior (0 = r' < r;) is that described in Sec. IlIB. In
overall form to the electron analog of Eq. (53) (derivedthis section, the necessary orbit integrals for the ions and
for e = 0= 7,) provided we make the appropriate electrons are evaluated in closed analytical form, leading
generalizations of the inne(rrf) and outer(rzz) turning  to a kinetic dispersion relation which is valid for arbitrary
points and replace the (constant) betatron frequeéndyy  beam intensityd)lz,,,, fractional charge neutralizatiof,

v.(H,.), defined by and azimuthal mode numbér(Sec. IV A). The resulting
1 2H, dispersion relation is then analyzed in detail for the case
ve(H,.) = (1 g M A262>Ae (67) of azimuthal mode numbef = 1, corresponding to a
n, Vel‘b

simple transverse displacement of the beam ions and
correct to ordern.. For e =0 = 7., we note that packground electrons (Sec. IVB). Finally, a brief dis-

Eq. (A33) reduces exactly to the electron analog ofcyssion of stability behavior for quadrupole perturbations
Eqg. (53), as expected. On the other hand, for smalt (¢ — 2) is presented (Sec. IV C).

0, the nonuniformity in the equilibrium density profiles
introduces a frequency spread in thé(') motion that
depends on the energy, . according to Eq. (67).

In Sec.V, we will make use of a simple model In Egs.(42) and (43) for the potential am-
to obtain semiquantitative estimates of the influence oplitudes 8¢f(r) and &8¢%(r), the integrations
a nonuniformity-induced frequency spread on stabilityover transverse momentum are expressed as

A. Kinetic dispersion relation

behavior. [2odp [Zodpy---= [5dp, py [7de---, where
(px.py) = (pLCOSP, pLsSing), p. = (p?+ pHl/2,

IV. KINETIC STABILITY PROPERTIES FOR ande is the azimuthal phase @f, in the transverse plane.
STEP-FUNCTION DENSITY PROFILES Because the single-particle Hamiltonia#s, , (r, p ) and

We now retun to the linearized Vlasov-Maxwell e(r.p1), are independent of phage[see Eq. (18)] it

0 0
equations (40)—(43), specializing to the case where thg)lllovysdthat aé:”(H“’)/aTI;I#” ?nd BF%(H“)/IM{“. areh
equilibrium ion and electron density profiles have the?!SC independent op. Therefore, when calculating the

simple step-function forms in Egs. (22), (23), and Fig. 1,perturbed ion and electron charge densities from Eqgs. (40)

and the corresponding monoenergetic equilibrium o\isf’md (41), what is required are tphase-averagedrbit

integrals,/;(r, p.) andI‘(r, p. ), defined by

2 d 0 .
If(r,pL) = i(w — sz;,)fo %f,de Ste(r') explit(6' — 0) — i(w — k. Vy)7},

27 0 (68)
I“(r,p) = iw]o ;i_:f,de Sde(rexplit(0' — 0) — iwT}.

Here,r =t/ — t, and@’(+') andr'(¢') are the transverse in the beam interior(0 =< r < r,). Here, J, and ¢,

particle orbits in the equilibrium fields that pass throwgh are constant amplitudes. Because the ion and electron

andr at timet = ¢. orbits for x/(¢') and y'(+') have similar functional forms

For the step-function density profiles consistent withjcompare Egs. (51) and (52)], we focus here on an

Egs. (21)—(23), we will subsequently find that Egs. (40)—evaluation of the ion orbit integralf(r, p,) defined in

(43) permit a class of solutions in which the perturbedEq. (68).

potentials, 84 (r) and8¢¢(r), have the exact form We make use of’ + iy’ = r/(cos®d’ + isind’) to ex-

pressr'‘expi€d’) = (x' + iy’)¢. Substituting Eq. (69)

8Ut(r) = der?, 8d(r) = dert (69) | into Eq. (68) then gives for the ion orbit integral [30,47]

0 27
If(r,pL) = i(w — k. V)i exp(—i€h) ]_x drexp—i(ow — sz;,)T}j; Z—:_[x’(t’) + iy’ ()] (70)

We substitutex/(¢') + iy(+') from Eq. (51) into Eq. (70) and represefit,y) = (r cos, rsind) and (py, py) =
(pLcosp, p) sing). Carrying out thep integration in Eq. (70) then gives (for= r < r})

0
I,f(r,pL) = 2—1€i(w — szh)(StZe(r) f,m drexpl—i(w — k,Vy)rt[expip,T) + exp(—ip, 7)), (71)

wheres‘(r) = ¢‘r’. Ther integration in Eq. (71) can be carried out fordm> 0 to give (exactly)
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€ o — k Vb) Y4
ly(r,p1) = 2€ Z m!(€ — m)[w — k,Vy, — (£ — 2m)D, ]Blp ") (72)

for the beam ions. A similar analysis that makes use of Eqgs. (52), (68), and (69) gives for the background electron orbit
integral

¢ d 5
o) =~ Z — € = m), P LI A G (73)

Here, 8¢ (r) = ¢¢r for 0 = r < r},, and the (depressed) betatron frequendigsand 7, are defined in Eq. (50)
for the step-function equilibrium density profiles assumed in this section. Note from Egs. (72) and (73) that the orbit
integralsl,f and/! do notdepend on the perpendicular momentum varighble

From Egs. (40), (41), (68), (72), and (73), we therefore obtain

27
~ ~ 0
] de 8Ff(r,pL) = 27 ZpeTi(w — k. V3)84 (r) F)(H ),
0 BHL;,

2 . . 9 (74)
de 8FL(r,p.) = —2mel(w)8d (r) Y FOH,,),
le

where 8JX(r) and 8¢%(r) are defined in Eq. (69) fob = r < r,. Here, the ion and electrosusceptibilities,
I'H(w — k.V,) andT¢(w), are defined by

€ N
0 _ 1 € — 2m)d,
Folew = ki) = =5 ZO T ] (S T AT
1'*6’( ) _ _i £! (€ - 2m)f/e (75)
PN T0 Zomil — m)! [w — (€ — 2m)p,]”

for general azimuthal harmonic numbér

It is now straightforward to evaluate the perturbed ion and electron densﬁféﬁr) [d*p 5F£(r,pl) and
8al(r) = [d?p 8F'(r,p.), making use of [d?p---= [("de [5dp.p.--- and Eq. (74). For the choice of
equilibrium distribution functions in Eq. (21), it can be shown that [30,47]

> 9 i
277[ dpipi —— F)(H ) = —7'12 &8(r —rp),
0 dH 1) YompVptp
B A (76)
2 d FYH,,) = — 5(r — rp).
R R e )

Here, 77 and p2 are defined in Eq. (50)i. = fZyn, is the electron density, wherg is the fractional charge
neutralization, and the beam radiysis related self-consistently to other equilibrium parameters by the force-balance
constraints in Eq. (26).

We make use of Egs. (74)—(76) to evaluate the perturbed charge densiijes|d’p 5F£(r,pl) and
—e [d?p 8F'(r,p.), required in Egs. (42) and (43) for the potential amplitudgs’ (r) and 6A¢(r). This readily
gives

47TZb€f d? pSFb(r,pL) = ——a:f;b I‘e(a) k. V)8t (r)— S(r — 1),
b
o2 (77)
~ame [ @p 5L D) = — 5 T8 ) 0 = ).
1/ rp

e

Substituting Eq. (77) into Egs. (42) and (43) then gives the coupled eigenvalue equatiége for and 8¢ ¢ (r),
2

1 09 9 0\ oy ¢ 50 pe ¢
T S )ei ) = | ST — k) + ST @800 | 2o = n). (79)

Yo Vh e
and
10 9 Oy ﬁe ¢
(75 ro- - r—)fw ()—[ﬁ—grb(w k V)8 (r) + —5 Ti(w)5 <r>]—6<r—rb> (79)
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We note that the perturbed charge and current densities on the right-hand side of Egs. (78) and (79) correspond to
surface-charge perturbations localized to the beam surface=at, (see Fig. 1). Therefore, the exact solutions to
Egs. (78) and (79) can be expressed as

61:01((;") = J/gr 0=r<ryp,

I(r) = ~ o r/r r, /1)t
TACES BT [(Rb;rwie “Gl s, (80)

and
(2)€r€, 0=r<mn,

8i(r)
¢ [(},/rw)€ - (Vw/’”)€] (81)

6din(r) = derh po e e S = e

In Egs. (80) and (81)¢, and ¢, are constant amplitudes and we have enforced the boundary condﬁmﬁe =
re) =0 = 8¢r = r,) at the perfectly conducting wall at= r,,. We have also enforced continuity 6%¢(r) and
84/(r) at the surface of the beafm = r,). The remaining boundary conditions are obtained by integrating Egs. (78)

and (79) fromr, (1 — €) tor,(1 + €) across the surface of the beanrat r, and taking the limite — 0,. Operating
rp(1+€)

on Egs. (78) and (79) wnlf,[(l e)dr r--- readily gives

S¢'(r) =

A2 &2
0 A ” Ooyp R
[r o éwf}(r)] - [r o Swﬂr)} = STl — ke + =5 Th@)de, (82)
r ry(1+€) r rp(1—¢) Yb Vb e
and
Y Y ‘?’12117 ¢ 5 ‘;’/276 4
r—38¢;(r) — | r—0¢;(r) = -3 [lo = kVp)pe + — T (), (83)
ar ry(1+¢€) ar r,(1—¢€) Vp Ve

where e — 0. Note that Egs. (82) and (83) relate the discontinuities in the perturbed radial electric field,
—(9/ar)84%(r), and the perturbed azimuthal magnetic fietelo/ar)8AL(r) [where 6§¢ = 6$¢ — B,8A], to the
perturbed surface charge and current densities=atr,. Substituting Egs. (80) and (81) into Egs. (82) and (83), we
obtain two coupled equations relating the potential amplitutleand ¢.; i.e.,

2 O g L@,
[1 ~ o/ e "Zv’?)}” "y P =0,
Az A (84)
eAz 3 i — k. Vy)e + [W Fe(w):|¢e =0.

The condition for a nontrivial solution to Eq. (84) with nonzekp and ¢g is that the two-by-two determinant of the
coefficients ofyy and ¢, vanish. This gives

2 2
2 “’pb 2 pe e
+ — 4
|:1 — o/ 92 Fb(a) szb):| |:1 Y 2 Fe(w):|

~2 2

_ Ype Ypb ¢ -
02 052 > I (w )F (w — k. Vp). (85)

Here, the ion and electron susceptlbllltlé‘é(w — k,Vp) ! tralization(f = #a./Z,#,), focusing field strengtl(lwﬁb)

and Ff(w) are defined in Eq. (75) and the (depressed}mmuthal mode numbéfr), axial wave numbetk,), etc.,
betatron frequencies, and ., are defined in Eq. (50). subject only to the simplifying assumptions summarized
Equation (85) is the final form of the fully kinetic in Sec. Il

dispersion relation, derived from the linearized Vlasov- Inthe absence of electrofg, = 0 = w2 .), the disper-
Maxwell equations for small-amplitude perturbationssion relation (85) reduces to the simple result

about the equilibrium distribution functionsg’y (H | ) 2 o>,
and FO(H,,), in Eqg. (21), and the corresponding step- 5 ”
function density profiles in Egs. (22) and (23). As such, 1~ (ro/rv) ey}
Eq. (85) can be used to determine the complex oscillatiofEquation (86) supports purely stablenw = 0) collec-
frequency w over a wide range of system parameterstive oscillations of the ion beam and reveals a rich har-
including beam intensit)(d),z,b), fractional charge neu- monic content at frequencies = =0, X20;,..., 2{P;.

>Th(w — k,Vy) = 0. (86)
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When background electrons are presént # 0), how- For azimuthal mode numbef = 1, it follows from
ever, Eq. (85) supports unstable solutidimw > 0) with  the definitions of the electron and ion susceptibilities in
instability resulting from the axial streamin§, # 0) of  Eq. (75) that

the beam ions through the background electrons.
A2 A2

O Pl — keVy) = — 2t
B. Electron-ion instability for azimuthal mode 22 Lp\@ 2Vb) = _ 2 _ 527
P (@ = kVp)? — D}
number € = 1 s s (87)
w w
We defer an analysis of the dispersion relation (85) LT w) = ——5"— .
for general azimuthal mode numbérto a subsequent Ve W T e

investigation and focus the present analysis on dipole

perturbations with azimuthal mode number= 1, corre-  Here, @7, = 47i,Zse?/y,m;, and @2, = Amh.e*/m,
sponding to a simple transverse displacement of the beaare the ion and electron plasma frequency-squared, re-
ions and background electrons. A brief discussion ofpectively, and the (depressed) betatron frequendigs,
the dispersion relation for quadrupole perturbations witrand?,, are defined in Eq. (50). Substituting Eq. (87) into
mode numbef = 2 is given in Sec. IV C. | the dispersion relation (85) gives

2 3 d)lzzh/'y% 2 o ]229 _ 0 ]219 d)lzzh (88)
L=rp/ry (o =k =23 JL1=rp/r2 o= 97| [0 = #][(0 = kV,)? - 7]

for £ = 1. We define the electron and ion collective oscillation frequeneesand w;, by

1 r? 2 1 m r?
2 _ 22 21 a2 _ Y _ 0 L YeMmp o _
w, =, + > a)pe<1 r%) = wg, T > Zom, wl,h(l f r%,)’ (89)
and
)
) Wpp rh 0 2 1 r
w; =0, + —|1— = |=wz, + 1) — — |, 90
b b 27}% ( V%) Bb 2 ph(f }% V%) ( )

where d)f,e has been expressed a@f,e = (ypmy/ ! Equation (91) can of course be solved numerically dor
Zym,)f&2,. Substituting Egs. (89) and (90) into OVer a wide range of system parameters, including frac-
Eq. (88) and rearranging terms, the— 1 dispersion tional charge(f), normalized beam intensity;,/wp;),
relation (88) can be expressed in the equivalent (compacproximity of the conducting wallr,, /r,,), etc.

form In the interesting application to proton linacs and

5 bt o 5 . storage rings, the natural oscillation frequencies,and
[(@ — k:Vp)” — wpllo” — @] =w;, (91) 4, occurring in Eq. (91) tend to be large in com-

wherew; is defined by parison withw,, even for fractional charge neutralization
S\2 f=1 a}nd moderately large normalized beam intensity
Wt = lf<1 _ Q) Pl o4 (92) @rp/®h, = 0.5. Inthis case, itis found that the unstable
T4 rr ) Zym, P branch in Eq. (91) has real frequency and axial wave
In the absence of background electrofis% 0 andw; = number(w, k.) very closely tuned to the valugs, ko)

0), Eq. (91) gives stable collective oscillations of the defined by

ion beam with frequencyw — k,V, = *w,, wherew,

is defined in Eq. (90). Forf # 0, however, the ion Wo = We, w0 ~ keoVp = —w) . (93)
and electron terTs on the left-hand side of Eq. (91) ar
coupled by thew; term on the right-hand side, leadin , )
to oele ungtable ‘;olution with Img> 0. The instability ) frequency,w = +w., and the down-shifted ion branch
is two-stream in nature and results from the directed ior{In the beam frame) withw — k41V;, = T W, which
motion with axial velocityV, through the (stationary) &ré (unstably) coupled by the; term in Eq. (91).
background electrons. Equation (91) is a fourth-ordefEXPressing @ = wo + éw and k, = k; + k., and
algebraic equation for the complex oscillation frequency2SSUMinddw| < 2w, and|dw — 5k Vy| < 2wy, itis

w. Some straightforward analysis shows that there argtraightforward to show that Eq. (91) can be approximated
two stable solutions to Eq. (91) with purely real and  PY the quadratic dispersion relation

?—|ere, we consider the electron branch witlositive

two complex solutions that are complex conjugates (one wl
is growing with Imw > 0 and the other is damped with Sw(bw — 6k, V) = — f = —-T3.  (94)
Imew < 0) for certain ranges of axial wave numbky. WeWp
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Equation (94) supports an unstable solution withSkn> 0 for 8k, in the interval—2I"g < 6k,V, < +2I'y. In this
range ofék,, the unstable solution to Eq. (94) is given by

1
ReSw = — 8kVp,  Iméw = Tull — (8k:V,/2T0)/)"". (95)

As evident from Eq. (95) and illustrated in Fig. 5, the growth raté dmis a symmetric function obk,, achieving a
maximum value ofl’y for 6§k, = 0 and decreasing to zero f@&k,V, = =2I'y. From Egs. (89), (90), and (92), the
maximum growth rate(lmé w)max = Lo, is given explicitly by

rZ un A
(Iméw) o} lf”z(1 - _)(Z—ml)m“ﬂ (96)
mo w max — 1/2 = 5 m T
Awewn)' " [of, + 3(F2)02,(1 = f D] P [wfy + 3025(f — = ’)]1/4

Equation (96) can be applied over a wide range of sysﬂerﬁ,ettingwge = 0andr,/r, — 0in Eq. (96) gives
parameters subject to the assumptithe | < 2w;, 2w., 2,0
or, equivalently, (Im‘s—(‘)")max _ 1 fl/z(”bmb/zhme)lz/“(wgf/w/gb)S/“
1 gy 274 [1+ (f/2Ddp,/wgp]'/
I a)f < 0, v,0] . (97) (98)

. . For example, for a proton beanZ, = 1,m;,/m, =
Several points are noteworthy from Eq. (96). First, th61836) with relativistic mass factoy, = 185 a moderate
growth rate increases with increasing fractional charge Value of normalized beam intensity’, /w3, — 0.1, and

pb /3b -

neutralization( /) and increasing normalized ion beam in- fractional charge neutrallzatloﬁ —0.1, Eq. (98) gives

A2 02
when'theconiiing wal . Slose. proximity 10 the (M2 = 0.127a, corresponding to a patticularly
beam (larger values%f/ ). Third therpe ' no ¥hresh- virulent growth rate for the e-p instability. For this choice

9 b/ Tw)- ' of system parameters, the central oscillation frequency

old value of f for the onset of instability, which is likely _
a consequence of the fact that there is no spread in (d(‘%] ((1)3gavear:1 dulin b‘f ' Calliu(lgfd from Eq. (93) avg =
Bb 0Vp = Bb-

pressed) betatron frequencies for the step-function den- For completeness, shown ' in Fig. 6 is a plot of nor-

sity profiles in Egs. (22) and (23) and the correspondin ) .
monoenergetic ion and electron distributions in Eq. (21 alized growth rate(lmaw)max/wﬁ,, versus normalized

considered in this section. Finally, the linearized Vlasoyo€am intensityé}, /fy, calculated from Edg. (96) for
equations (30) and (31), and therefore the resulting dispethe choice of system parametesss, = 0, 7, = 1.85,

sion relation (88), neglect the effects of Landau dampingns/m. = 1836, r/r,, = 0.5, and several values of frac-
[44] associated with an axial velocity spread in the beantional charge neutralization corresponding fo= 0.1,

ions or background electron population. The expres9.3, 0.6, and 0.9. Note that(Iméw)max increases with
sion for (IMSw)max in Eq. (96) simplifies further for the increasing beam intensity and increasing charge neutral-
case of negligible applied focusing force on the electrongzation, as expected.

(w%e = 0) and large conducting wall radius,, > rp).

1.00
1.50
1.25F - 0.75F f=0.9 A
of f=0.6
£© 1.00 N
3 ¢ 0.50F -
6 £
3 0.75 3 f=0.3
S £
£ = i i
< 0.50 0.25 o
0.25
0.00 ‘ ‘ ‘
0.00 ‘ ‘ 0.000 0.125 0.250 0.375 0.500
AZ 02
-15 -1.0 -05 0.0 0.5 1.0 1.5 @ob /g
Sk, /2T,

FIG. 6. Plot of(lmaw)max/wﬁ,, versus%b/wﬁh calculated

FIG. 5. Plot of normalized growth ratéméw)/I'y versus from Eq. (96) for wﬁc 0, yop =185, Z, =1, mp/m, =
normalized axial wave numbeék.V, /2T, calculated from 1836, r,/r, = 0.5, and several values of fractional charge
Eq. (95). neutralization corresponding % = 0.1, 0.3, 0.6, and0.9.
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While the beam distribution function in the PSR 25T ]
experiment [31-35] has a (small) energy spread, and is E Yo () ]
not modeled well by the monoenergetic distribution in 2.0 Dpo /gy =2.0 5

Eq. (21), it is nonetheless instructive to apply the stability
results obtained in Eqgs. (94) and (96) to characteristic
parameters in PSR. An instability, believed to be caused °3*
by trapped electrons in the proton beam, has been 3
observed in PSR [31-35] for coasting beams at currents £
exceeding, = 2.23 A. If we take illustrative parameters i
for PSR to bel, = wh,rieByc = 2.23 A, v, = 1.85, 0.51
By = 084, f = 0.02,r, =2 cm,r, =5 cm,wp, =0, :
and w9, = 4.05 X 107 s7', thenf, = 4.4 X 107 cm™> 0.0L
and @2, /wf, = 0.025. Substituting into Eq. (96) gives
a predicted maximum growth rat@mod w)max = 6.9 X
10° s™! for step-function density profiles. On the other
hand, the observed growth rate in PSR at a beam current
of I, =223 A is in the range of3 X 10*s™!. The
discrepancy between theory and experiment is likely due
to the reduction in growth rate caused by a spread
in depressed betatron frequencies [see, e.g., Ref. [28]
and Sec. V], an effect which isot incorporated in the i
|
3

15F

b

/

1.0F

monoenergetic distributions in Eq. (21).

The quadratic approximation to the dispersion relation
given in Eq. (94) is valid for the moderately high beam * _
intensities(&2,/%,) envisioned in the proton linacs and
storage rings for tritium production and spallation neu-
tron sources [51]. For heavy ion fusion applications [6,7],
however, the beam emittance, which is proportional to o
7., in Eq. (26), is very low and the normalized beam (ke ko) Ve g
intensity is such thab2, /2y %, can approach unity in FIG. 7. Plots of (a) normalized growth rate dmiwg, and
the absence of background electr¢fis= 0). Thisis evi- (b) normalized real frequenciRew — w,)/wp, versus shifted
dent from the equilibrium force constraint for the ions in axial wave number(k, — k,)V,/wg, obtained numerically

_ 2 2 02 from the full dispersion relation (91) for the unstable branch
Eq. (26), where, for = 0 and 27/ yymy rp@gy < 1, with positive real frequency. System parameters correspond to

it follows that &2,/2y2@%, — 1. At such high beam z, = 1, my/m, = 200, (y, — Dmpc® = 10 GeV, ry/r,, —
intensities, it follows that it is necessary to solve the fullo.5, f = 0.1, and @}, = 0. Curves are shown for several
quartic dispersion relation (91) for the complex oscillationyalues of normalized beam intensi@xﬁb/wgzb ranging from
frequencyw. Typical numerical results obtained from 0.1 to 2.0.

Eq. (91) are illustrated in Fig. 7. Herélmw)/w%b and

(Rew — w,)/wpy, are plotted versusk, — k.0)V,/w s

for several values Ofb,z,;,/w?;b ranging from 0.1 to 2.0. intensities of interest for heavy ion fusion. For example,
Other system parameters in Fig. 7 corresponZfo=  (Imw)mayx = 2.15(1,?% for (?)Zb/w%zb = 2in Fig. 7.

1, mass numben = mj,/m, =200, (y, = Dmyc* = In concluding Sec. IVB, it is important to recognize
10 GeV, rp/r, = 0.5, f = 0.1, and w%e = 0. For suf- thatthe dispersion relation (85) has been derived under the

ficiently small values of»2,/wf,, the numerical results assumptions [Eq. (8)] of long-wavelength, high-frequency
obtained in Fig. 7 from the full quartic dispersion rela- perturbations satisfyingfr,f <1, |lw/k;, = V| » vy,
tion (91) are in excellent agreement with the approxi-and |w/k.| > vr,_, which allowed us to neglect kinetic
mate quadratic dispersion relation in Eq. (94). On theeffects (such as Landau damping) in thelirection [44].
other hand, at very high beam intensity wiﬂfgb/wgb —  Here, vr,, = Tp/ypmp)"? and vy, = (2T,./m,)"?

2, say, it is evident from Fig. 7 that the growth rate are the characteristic axial thermal speeds of the beam
Imw /%, has very large bandwidth and becomes signifiions and background electrons, respectively.  For
cantly skewed about. = k. [in contrast with the sym- mode numberf = 1, we estimatew = wy = w, and
metric results obtained from the quadratic approximatiork: = k-0 = V; '(w. + ;) [see Eq. (93)] and make use
in Eq. (95)]. It is also striking from Fig. 7 that the in- of Egs. (26) and (50) to expresg = 2T,/ ypymydp =
stability growth rate can be large for the very high beamu%m/ﬁ,%. The inequalities in Eg. (8) can then be
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expressed as inequalities in Eq. (99) are the most difficult to satisfy
becausev, is typically larger thanw, and?,.
A2 2
2 2 Yp 2 2 Wp
LV, ——— < . . . .
vi,, < Vi (w, + wp)?’ vr,, < Vs (0, + wp)?’ C. Dispersion relation for azimuthal mode number
3 (99) =2
2 2 e
vr,. b (@, + @) Detailed analysis of the kinetic dispersion relation

(85) for perturbations with azimuthal mode numbérs

where #,, w;, and w, are defined in Egs. (50), (89) 2 will be the subject of a future investigation. For
and (90). Equation (99) clearly requires that the directed®€S€nt purposes, we briefly summarize here properties

axial velocity V, be large in comparison with the thermal Of the dispersion for quadrupole perturbations whth-
speedsvy, . vy . and vy . Moreover, the first two For ¢ = 2, Eq. (75) gives for the ion and electron
bL b susceptibilities

A2 “2
(0 — k,Vy) = — Y () = ———°¢ . 100
e Tk T T ey YT T @ (100

Substituting Eq. (100) into Eq. (85), we obtain fibr= 2

2 @ /275 2 a2
1= ri/rs (0 = k& Vp)?2 = Q20p)2 || 1 — ri/rd w? — (20,)
6)2 2 A2 )

re/ b/ (101)

T 02— 20 [(@ — KV — 202

Equation (101) is similar in form to Eq. (88) (fdr = 1), but the particle resonances in the denominators in Eq. (101)
(for € = 2) occur at thesecondharmonics of#, and #., i.e., atw — k,V, = =29, and w = =29,. EXxpressing
(I)f,e = (y;,mb/mee)f&)f,b, wheref = 7./Z,h;, the € = 2 dispersion relation (101) can be rewritten in the form

~2 4 4
2 s N2y @b b 2 v Loyemy o )
o == [+ (1= ) o [+ 5 3mesen - £

2
1 s\ Yo .4

Comparing Eq. (102) with Eq. (91), it is clear that the bations about a wide range of nonmonoenergetic equilib-
¢ = 2 dispersion relation (102) is identical in form to the rium distribution functionsF%(H,,) and F%H,,), and
¢ =1 dispersion relation (91), with simple redefinitions corresponding self-consistent equilibrium density profiles,
of the frequencies,, ., andw;. Therefore, forf # 0, ) (r) andn{(r), that vary continuously with radial coordi-
Eq. (102) always has one unstable solution witwlr» 0 nater. A detailed, self-consistent stability analysis based
for certain ranges ok, and the analysis developed in on Eqgs. (40)—(43) for continuously varying equilibrium
Sec. IVB for ¢ =1 can also be applied to Eq. (102) profiles is beyond the scope of the present article and will
for azimuthal mode numbef = 2. Without presentzing be the subject of a future investigation. For present pur-
algebraic details, for specified values ¢f (;)f,b/w%h, poses, based on the insights gained in Secs. IlIC and IV
vy, €tc., the¢ = 2 growth rate calculated from Eq. (102) and the Appendix, we summarize the results of a simple
is smaller than thef = 1 growth rate calculated from modelthat illustrates semiquantitatively the stabilizing in-
Eqg. (91). For example, the quadratic dispersion relatioffluence [28] that a (weak) density nonuniformity and the
estimate,(IMé @ )nax = w7 /2(w, ;)"/?, gives a smaller corresponding spread in betatron frequencies can have on
growth rate for¢ = 2, using the new definitions fow,,  stability behavior.
w., andw;. In this regard, th& = 1 mode is the most The model assumes overlapping ion and electron den-
“dangerous” mode because it has the largest growth ratesity profiles with parabolic profile shape specified by
Eq. (60) for the ion density profile:)(r), and elec-
tron density profile specified by?(r) = Z,fny(r), where
V. EEFECTS OF A SPREAD IN BETATRON f = const is the fractional charge neu'tralizaf[ion. The

FREQUENCIES model furt.her makes thansr_;ltzthat the dispersion rela-
tion (considered here for azimuthal mode number 1)

The general kinetic eigenvalue equations (40)—(43has similar form to Eq. (85), obtained by making the sus-

developed in Sec. Il can be applied to electrostatic pertureeptibility replacements [see Eq. (87)]
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o2 2
drrws,(r)
I’h pb
r -k, V) — - k,V ——f ,

2 p(@ b) = xo(@ b) = @ — V) — 220)
12, r B j"z dr rwpe (r) (103)
I’)e (w) - Xﬁ(w) - (1)2 _ Vz(r)

This model implicitly assumes, for weak spatial nonuni-In Eqg. (104),n, andn, are both proportional to the inho-

formity with e < 1, that the eigenfunctionéy(r) and

mogeneity parameter and are defined in Egs. (65) and

54 (r) have (approximately) the same radial depen{63), respectively. Moreovery, and #, are the (con-
dence [Egs. (80) and (81)] as obtained for the case oftant) orbital oscillation frequencies defined in Eq. (50)

step-function density profiles in Sec. IV.
wy(r) = @p;(1 — er?/rp) for j =
use of the radial orbit equation (62) to express

1 r2
vi(r) = V;%<1 oM 7)
b
2
3
b

In Eqg. (103), for e = 0. It follows trivially for e = 0 that Eq. (103) re-
b,e, and we make duces exactly to the susceptibility expressions in Eq. (87),

obtained for step-function density profiles. Fer+# 0,
however, Eq. (103) incorporates the effects of spatial
nonuniformity in the equilibrium density profiles and the
corresponding spreads in betatron oscillation frequencies,

(104)  at least in the context of the present simple model.
V2 (r) = ,;2<1 1 e L)_ Some straightforward algebraic manipulation shows
¢ ¢ 2 r that the r mtegratlons in Eqg. (103) can be carried out
| exactly fore in the intervald = e = 1 to give
205, 2e . 1 ;
Xp(w — k. Vp) = f’2[e—[1+ — (0 — k. Vp)* = 97 |In[ 1 + =, |t
M D u 2 7 (0 = kVp)? — 7
207, 2e 1 p2
,\/E(a)) = neziz ‘6 — |:1 + W(wz — 1’)3) Inf1 + Enem . (105)

For present purposes, we limit the analysis of Eq. (1d)5)rvherew§, wi, andw‘? are defined exactly as in Egs. (89),
and the corresponding dispersion relation to the case @P0), and (92) in Sec. IV, and the inhomogeneity-induced

weak spatial nonuniformity withe, 7,, and n, < 1.
Taylor expanding Eq. (105) gives to first orderdn
A2

(@ — kVy) = — Cob
Xb zVb (w_ka)z_Ag
X [1 - eap(w — k. Vp)],  (106)
&2
Xe(w) = _%[1 - fae(w)]
w? —
wherea, anda, are defined by
(0 — kVy) =~ + =1 U
RO TR T T A e (w0 — k)2 — 92
1 I n.  #; (107)
. = — 4+ — — .
al0) =5+ 4 i 5

Here, n,/€ andn, /e are defined in terms ab2,, w%;,
etc.,

in Egs. (65) and (63), respectively. As expected{o the valueswy = w, andwy —
Eqg. (106) reduces exactly to the susceptibility expressiont Eq. (93). Expressing = wo + dw andk, =

frequency spreads\wj andAw?, are defined by

"2
1 Ty \ @pb
Aw? = — 1 - = ]—,
“r T2 Eab( rz) Y
(1209)
1 YoM
Aw? = Eeoze(l - —) Zom, fa);b,

Here, @7, = 4w, Zie*/yymy, and use has been made
of &2, = (yymy/Zym.)f@y,. In Eq. (108), the fre-
quency spreadd w; and Aw? are treated as small for

€ < 1 and, similar to Sec. IV B, the dispersion relation is
analyzed for moderate values of normalized beam inten-
sity c?)[z,b/a)?;b. In this case, a quadratic approximation to
Eq. (108) is valid in which the frequency and wave num-
ber (w, k,) of the unstable branch are very closely tuned
kz()Vb = —wyp defined

kz() +

in Eq. (87) in the limit of step-function density profiles dk., and paralleling the analysis in Sec. IV B, Eq. (108)

with € = 0.

reduces to the approximate form

We substitute Egs. (103) and (106) into Eq. (85) for

azimuthal mode numbef = 1.
gives the dispersion relation
[(w — k.Vp)* — 0} + Awi][w? — 0? + Ao?]

(108)

— wj(l — ea)(1 ~ eay).

054401-20
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Aw? Awgz
Zwe )(6(() - 5szb - th
w4
= — (1 —ea®)(1 — €a)). (110)
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054401-20



PRST-AB 2 KINETIC DESCRIPTION OF ELECTRON-PROTON ... 054401 (1999)

Here,Aw? andAw) are defined by

) 1 r? O > 1 AR
Awg = 56012(1 - T%)Y—%’ Aw? = Eea? 1 - 2 Zym. fwlz,h, (111)
where the coefficients), anda? are defined byr) = a,(wy — k.0V,) anda? = a.(wo), i.e.,
H—L 1m 3 _ 1,3 %0/v =)
P2 4 e (wo—kaoVp2— % 2 16 (1—rp/r2)
o_ 1 1m 72 1,3 (- (112)
a)=—+ - =& =—+ = —-—
2 4ewi-n 20 16£0 - n/r})

In obtaining Eq. (112), we have made use of Egs. (63) Here, we have approximated — ea?) (1 — eay) =

and (65) to eliminaten./e and n,/€ in terms ofd)f,b, 1 to good accuracy on the left-hand side of Eg. (113).

%, etc., and also made use of Egs. (89), (90), and (93)Vhenever the frequency spread is sufficiently large that

to expresswg — P2 = (6)26/2)(1 _ "13/’”»%) and (wo — th'e inequality in Eq. (1_13) is violated, the_s_y_stem is 4stable
with Iméw = 0. Making use of the definitions ok,

koVy)? — D = (6?),2;17/271%)(1 — ri/r2). 0 0®
The quadratic dispersion relation (110) of course? @b » and Aw, in Egs. (92) and (111), the necessary

reduces exactly to Eq. (94) for the case of uniformand sufficient condition for instability in Eq. (113) can be
step-function density profiles witlk = 0. In this case, expressed in the equivalent form

as discussed in Sec. IV B, therg_is no thres_holqbiﬁ'g . 1 ypmy S 2 a_},) 4 0 Yo 2
and f for the onset of instability. The situation is 4/ Zym, ¢ 7€ ,2 ¢ Zom, fos |
different whene # 0 and the (small) frequency spreads (114)

Aw22 and Awgz defined in Eq. (111) are nonzero. A o
straightforward analysis of Eq. (110) fé, = 0 shows Wherew,, w,, @2, anda; are defined in Egs. (89), (90),
that the necessary and sufficient condition for instabilityand (112).

(existence of a solution with 16w > 0) is given by Equation (114) leads to a threshold in beam intensity
1 Aw” Ae®) for the onset of the two-stream instability. To illustrate
f Wp w, . . .
- + (113)  this point, we consider the case wheag, = 0 and
4 w,wp 2wp 2w,

rw/r, — . Equations (89), (90), and (112) then give

1/2 A2 \1/2
1 Yop ~ 0 1 W ph 0 11 3 2 0 5 3
e = 7= 9 = 1 + ~J T b = . - 77 9 e = T + P
w 2 (mee> @pb Wp w,Bb( sz,%b ap 16 16 5 fa 16f 16
(115)

Making use of Eq. (115) in Eq. (114), the necessary and sufficient condition for the onset of instability can be expressed

as
A 1/2 1/2 ~
1 prh/w,(/)sb . 62(2)/;,111;,) a_;?( Zpm, ) wpb/w,%b
4 (1 + fary/20g,)? Zym, 2vemy ) (1 + fas,/20g,)!/?

2
5 + fag} . (116)
Yb

The ion term proportional tee)(m./m;)"/? on the right- | As a simple example, we consider Eq. (117) for inho-
hand side of Eq. (116) is small in comparison with mogeneity parametes = 0.075 and protons withy, =
the electron term(fa?) in the parameter regimes of 1.85, Z, = 1, andm,/m, = 1836. Equation (117) then

practical interest. Therefore, making use ¢&? =  reduces to
3/16 + (5/16)f, Eq. (116) reduces to
A 0 2
. 5
Fopm/ob A2y (3 5\ f“i”;’/wﬁ’gz >0.065<1 + —f). (118)

22 el 2~ S\ z 3 %/) (1 + f@p,/20p,)" /> 3

(1 + fw,,;,/2a)/3b) bMe
(117)

If, for example, the fractional charge neutralization by the
The derivation of the quadratic dispersion relationbackground electrons ig = 0.2, then Eq. (118) gives
(110) and therefore the instability threshold condition@ib/wgzb > (.34 as the threshold in beam intensity for
in Eq. (117) have assumed weak spatial nonuniformitythe onset of instability. Iff < 0.2, then the threshold is
with e < 1 and moderate values of beam intensity withlarger, and iff > 0.2, the threshold is smaller. For ex-
(I),z,b/w?;b =< 0.5, say (see discussion in Sec. IV B). ample, for full charge neutralization withf =1,
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Eq. (118) givesz)lz,b/wgzh > (.24 as the threshold for the including an estimate of the instability threshold for the
onset of instability. case of weak density nonuniformity. As expected, it is
To briefly summarize, the present simple model prothe spread in the electron oscillation frequency that has
vides semiquantitative evidence that a spread in betdhe largest stabilizing influence.
tron frequencies (particularly for the electrons) induced In conclusion, we reiterate that the kinetic eigenvalue
by spatial nonuniformity in the density profiles has a sta-equations (40)—(43) can be applied to electrostatic
bilizing influence on the two-stream instability, leading perturbations about a wide range of nonmonoenergetic
to a threshold for the onset of instability. It should be equilibrium distribution functionsFy (H | ) andF%(H,.),
reiterated, however, that a fully self-consistent treatmenand corresponding equilibrium density profilesy(r)
of electrostatic stability properties for nonmonoenergeticand n%(r), that vary continuously with radial coordinate
distributions with continuously varying equilibrium pro- r. In future investigations, we will make use of the
files should be based on the kinetic eigenvalue equatioridnetic eigenvalue equations (40)—(43) to determine

(40)—(43) derived in Sec. lll. self-consistently the influence of spreads in electron
energyH ;. and ion energyH |, on stability behavior for
V]. CONCLUSIONS continuously varying equilibrium profiles.
The present analysis made use of the Vlasov-Maxwell ACKNOWLEDGMENTS
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electrons. The basic assumptions, theoretical modeff Los Alamos National Laboratory. It is a pleasure

and examples of self-consistent equilibrium solutionsfo acknowledge the benefit of useful discussions with
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discussed in Sec. Il. In Sec. lll, the linearized Vlasov-
Maxwell equations were formally integrated using the APPENDIX: PARTICLE MOTION IN
method of characteristics and the properties of the ion PARABOLIC DENSITY PROFILES

and electron orbits in the applied field plus equilibrium
self-field configuration were discussed, both for the case.
of overlapping step-function ion and electron density
profiles, corresponding to monoenergetic beam ions anBy

To analyze the radial orbit equation (64), we introduce
e dimensionless quantiti&s?(t'), 7/, h, and p? defined

monoenergetic electrons, and for the case where the equi-  R'(t)) = r'(t)/rf, =200t — 1),
librium density profiles have a continuous variation with H P\ (A1)
radiusr, corresponding to a spread in (depressed) betatron 4 = % pl= ( A" 2) ,
frequencies. The necessary orbit integrals were evaluated MeVTh MeVel')

in closed analytical form in Sec. IV for the case of step-where the particle motion in the equilibrium field configu-
function ion and electron density profiles, leading to aration is restricted to the regioh < R'> < 1 (the beam
kinetic dispersion relation which7is valid for arbitrary interior). Substituting Eq. (A1) into Eq. (64) gives in
normalized beam intensity;,/wg,, fractional charge dimension;ess variables

neutralizationf, and azimuthal mode numbet The d ., A 1 5 1 6

resulting dispersion relation was analyzed in detail forl ;. R~ | =hR" = R™ = p~+ = n.R7.  (A2)
the case of azimuthal mode numbge= 1, which corre- . .
sponds to the strongest instability (largest growth rate), Uniform beam densitfe = 0 = 7.): For . =0,
As a general remark, the instability growth rate is foundEd: (A2) reduces to

2
. . . . . . 0? d
to m_crease'Wlth increasing beam |nten§|aiyf,b/wﬁh /Rlz _ (RSZ ~ R)(R" - R?z)’ (A3)
and increasing fractional charge neutralizatign and dr

decrease with increasing proximity of the conducting wallyhere

ry/ry. FOr monoenergetic ions and electrons and the b b 2 1/2
corresponding step-function density profiles considered in RY = — — [(—) — p2j| ,
Sec. IV, a key result is that there is no threshold in beam 2 2

intensity or fractional charge neutralization for the onset of L 2 1/2
instability. Finally, for the case of continuously varying RY = 5 + [(3) - PZ} .
density profiles with parabolic profile shape, in Sec. V we

made use of a simple model to obtain a semiquantitativd/otion is allowed by Eq. (A3) forR"*(r') in the interval
estimate of the effects of the corresponding spread iR} = R'2 < RY. Equation (A3) can be integrated ex-
(depressed) betatron frequency on stability behavioractly to give

(A4)
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dr’

R2(t) = (1/2) RY + RY) + [R? — (1/2)(RY + RY)]cog2p.(t' — 1)] + (i R’2) sin29.(t' — 1], (A5)
7'=0

whereR'2(t' = t) = R? = r2/r# and use has been macJe

of 7' = 29,.(t' — t). Note that fore = 0 the oscillations
in R’?(¢') are exactly at frequencg?, = const, as ex-
pected [compare with Eq. (53)].

Nonuniform density profile(e # 0, n. # 0): For
n. # 0, we rewrite Eq. (A2) in the form
2 2
iRIZ :ln Rl6_iRl4+%R/2_3L
dr’ 37 Ne Ne Ne
1
= 3 MR = R (R — R"*) (RS — R").
(A6)

2

Here,Ri < R; < Rj is assumed, anfR;} are related by

3p?
RIRSRS =~
Ne
RIR? + RIR + RIRS — (A7)
2743 143 172 ’
Me
3

R + R} + R} = —

2 2 2 0? 0?
Fore =0 = Nes note that(Rl,Rz,R3) — (Rl ,R2 ,OO).
Furthermore, becausg, = (3/4)e [see Eq. (63)], an&
is in the interval0) = € = 1, it follows from Eq. (A7)
when n, # 0 that R > 1 (which is outside the beam).

Therefore, the region of allowed motion in Eq. (A6) is in

the intervalR? < R’ = R3 (= 1).
To solve Eq. (A6) we introduce the scaled variables
R? - R}

Y=——5. Y
R; — R}

R? — R}
IR A

where R'(t' =t) =R and Y'(' =¢) =Y. We also
define
R3 — R}
2 2 1
= =1, A9
R - R (A9)

where k> < 1. Substituting Egs. (A8) and (A9) into
Eqg. (A6) and integrating with respect t6 = 29,.(¢' — 1)
gives

Y’ day’
fY [Y'(1 —Y)(1 — k2Y")]1/2

— =+ %(R% — R)'2:'. (A10)

Here, the +(—) sign corresponds to particles with where ¢/(¢') is determined from Eq. (A12).

dR'?/d7' > 0 (< 0). Defining

054401-23

R/2 _ R12

Y = sint¢’ = ,
PTR R

(A11)
Eq. (A10) gives

F(¢'.x) — F(dh,x) = =~

n
>y (R~ RD'r

(A12)
Here, ¢'(t' = t) = ¢, where siR¢p = Y = (R2 — R?)/
(R3 — R?), and

!

da
(1 — k2sifa)l/?

F(¢', k) = ]0 (A13)

is the elliptic integral of the first kind.

Equations (Al1l) and (Al12) constitute a closed ana-
lytical expression for the periodic motion @&'?(¢') =
#'2(¢")/r? in the intervalR? < R'> < R3. If we denote
by 7.(H..,Ps) the period for one complete oscillation
of R'2(#) from R} to R3 and back toR? again, then
it follows directly from Eq. (A12) thatr.(H .., Py) =
27 /2v.(H ., Pg), Where

1/2
R} — R}
e H 69P = Ae a7
v ( 1 9) v ( 3/776
X 2[7/2 da o
7)o (1 — k2sirfa)!/? ’

(A14)

Here, k* < 1 is defined in Eq. (A9). Equations (A12)
and (Al14) are valid for the arbitrary value of density
nonuniformity parametefe in the interval0 < € < 1.
In the limit e — 0 (and thereforen, — 0), note from
Egs. (A7) and (A9) that?> — 0 and R} — 3/75, — =,
and Eq. (A14) reduces to,(H .., Py) = ¥., as expected.
Some algebraic manipulation that makes
of Egs. (A8), (A9), (All), (Al12), and s’ =
(1/2) (1 — co¢’) shows that the orbit foR’?(z') can be
expressed in the equivalent form

1
R™(f") = = (R} + R))

n |:R2 _ %(R% + R%)}cos[z(dﬂ - ¢)]

(R'dR'/dt")—

. sin2(¢’ — ¢)],

(A15)

Here, the
turning pointskR; andR3 (= 1) solve Eq. (A7), and
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dR' 1
(R/ W) = 5 (pr + ypy),
=t

merp
dg’ 2 R — r2\" R - 2\’ (A16)
= 2 P2, K (H, . P | ——— | = +p, 22— .
dt/ i T ( / ) ( 1 0) R% o R12 3/776

In Eqg. (A16), (r'dR'dt')y—, has been expressed ih a particularly useful representation for application of
terms of the transverse phase space-space vasstandard Fourier series representations [52] ofp¢ad)
ables (x,y,px, py). Furthermore, use has beenand sirp/() obtained from Eq. (A12). For example,

made of Eqg. (A12) to express(de¢'/dt'),—, =  defining
+(1 — w2si ) 2(n./3)'2(R; — R])'?b..
Equation (A15), which is similar in overall form to _ exp[_ﬂF(W/lvl - KZ)] (A17)
Egs. (A5) and (53), is valid for general inhomogeneity 1 F(7/2, k) ’
strengthn, consistent withk> < 1 and0 < € = 1 and
the discussion in Sec. llIC. Furthermore, Eq. (A15) iswe obtain from Eq. (A12) [52]
L am & g TF(b.K) :
cosp KF(m/2, k) HZ‘I 1+ ¢! COS{(2n 1)|:2F(7T/2, K) velie, Po) (& = 011,
. . 2 ® qn71/2 ) 7TF(¢),K) . , (A18)
sing Fn /R n; T sm|(2n 1)|:2F(7T/2, o = v (H,,, Po)t — 1) |},
wherev,.(H, ., Pg) is defined in Eq. (A14). ltis evident and
from Egs. (A15) and (A18) that the d@$¢’ — ¢)] and
siN2(¢’ — ¢)] oscillations in the radial orbiR’?(t') = v (H ., Py) = D, 7 1
r'2(¢")/r? are at harmonics dv,.(H ., Pp), and that the 2F (7 /2, k) 212
period of theR'2(¢') motion ist, = 27 /2v.(H ., Py), as 4 1/2)1/2
expected. X {1 + |:1 -3 nehj| } (A21)

Radial orbit7'%(¢') for zero angular momentuiiPy =

0): Before considering the case of weak inhomogeneity\y/hile Egs. (A19)—(A21) have been derived By = 0,

it should be noted that certain simplifications occur inthese expressions are valid for arbitrary inhomogeneity
the radial motion wherPy = 0. In this special case, the parametek in the intervald < e < 1.

transverse orbitéx’, y') pass through the origif0, 0), and Radial orbit /2(1') for weak inhomogeneitye < 1):
the solutions to Eq. (A7) are given exactly by We now allow for general values of angular momen-
R? =0, tum Py and energyH, ., assuming weak density inho-

mogeneity withe < 1. In this case,y, < 1, and the
3 leading-order solutions fo{R}} obtained from Eq. (A7)

12
R: = 1—1|1- =mn.h ., (A o :
27 2, [ |: 37 } } (A19) ar(?(R? RY . RY), whereRY = 3/7, > 1, andR! and
3 1/2 RY are defined in terms of = 2H,,/m.p2rp andp? =
2 [1+|:1——neh:| }

R? (Pg/m..r})? by Eq. (A4). We express

27,
2 _ p0? 2 _ p0?

for p> = (Py/m.¥.r;)* = 0. From Eq. (63), forwy, = Ri=Ri(1+ a1, Ry =Ry (1 + 8),

0, we note thatn, = (3/4)e, where the inhomogeneity R} = R§2(1 + Aj),

parametere is in the interval0 = € = 1 [see Eqg. (60)].

For weak inhomogeneity witl, < 1, Eq. (A19) gives and solve Eq. (A7) iteratively fofA;}, treatingn, < 1.

R} = h = 1andR3 = 3/7. > 1. For general inhomo- This gives to leading order

geneity parameten, < (3/4)e, where0 = € = 1, it fol-

lows from Eqg. (A19) that the conditioRs < 1 gives 1 RY 1 RY

(A22)

the requirement: = 1 — 7,./3, and that the inequality A= A T Ay = 3 e g0 oo
2 . . o . 2 1 2 1

R3 > 1 is automatically satisfied. The expressions#ér

and v.(H_,, Py) also simplify in the special case where U S (A23)

Py, = 0 andR{ = 0. We obtain from Egs. (A9), (A14), 3= 73 n.(R{ + Ry),

and (A19)
where RY + RY = and RY — RY = 2[(h/2)? —

o _ 1= (1= 4n.h/3)
p2]'/2 follow from Eq. (A4).

1+ (1 — 4n.h/3)/2°

(A20)
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We further expand Eq. (A12) fok? < 1, wherex? = (R3 — R})/(R3 — R}). Retaining terms to ordex?, this
gives
/ 1, R} — R} I/ZA / [T / -
(¢ — D)1+ ik + )= = p.(t' — 1) + 3K {siN2(¢’ — @) + 2¢] — sin2¢} + ---.
(A24)
Solving Eq. (A24) for¢’ — ¢, we obtain
¢ — b =xv,(t' — 1)+ %KZ{Sir{izve(t/ — 1) + 2¢] — sin2¢} + -, (A25)

where v.(H, ., Pg) is given by the approximate expreé— R?2(1 + Ay + Rgz(l + A;), whereA; and A, are ap-
sion proximated by Eq. (A23) fom, < 1. Some straightfor-

1 R? — R? 12 ward algebra that makes use of Egs. (A4) and (A23) gives
Ve(H o, Pg) = (1 - K2> (33/777‘> p., (A26)

correct to ordernp, < 1. We make use oRg2 =3/7,
and Egs. (A22) and (A23) to express

.1
R+ R} =RY + RY + 3 ne(RY + RY + RVRY)

— l 2 2
l_lezl_luzl_&(Rgz_R?z) —h+3ne(h+p), (A31)
4 4 R} - R? 12 ’
3 ! (A27) where h =2H,./m,p2rj and p2? = (Pg/m.per})>.
Here, making use of Egs. (18), (50), (61), and (63), the
and ) 12 12 electron Hamiltoniarf |, is given (exactly) by
(u) =<1+A3_&R%) ) L e
3/m. ) 3 Hle=p—l + —m 2?1 — —Ne (A32)
Ne > > Zme 2 3 ry
=1- Z(zR? + RY). (A28)
. ) for0 = r = r, and arbitrarye in the interval) = € = 1.
S_ubstltutlng Egs. (A27) and (A28) into Eq. (A26) then For present purposes, we approximate Eq. (A25) by
gives @) = b = v (H ) (' — 1), where v, (H..)

(do'/dt")y—; = *v.(H,,.), and Eq. (A15) for the radial

ve(H e, Pg) = |:1 - %ﬂe(R(fz + RSZ)}% (A29) IS defined in Eq. (A30) forn, < 1. This gives
orbit #'2(t') = R'2(t")/r? reduces to

correct to ordern,. From Eq. (A4),RY + RY =h
2H,./m.p%r}, SO that Eq. (A29) becomes
1 2H., )

ve(Hy)=[1—- — MNe — 5 2 |Ve- (A30)
4 7 mpirp

1 1
() = E(rlz +r3) + |:r2 - 3(;’12 + 1} :|

X cog2v,(H ) (1" — 1)]
For weak inhomogeneity withy, < 1, we note from
Eq. (A30) that the oscillation frequenay (H | .) deviates (xpy + yp,) .
from », = const by a (small) amount proportional to + ms'sze(Hie)(’l — 1] (A33)
n.H ., but is independent of angular momentn

We now return to the exact representation of the radiaHere, making use of Egs. (A1) and (A3L)7 + r5 is
orbit R’2(¢") in Eq. (A15). Here, we expres®; + R; = | defined by

2 2
1 2H |, 1 2H |, P
r12+r22=r§h+—ne(h2+p2) =r£ Lz + =7, lz + 02 . (A34)
3 me2rj 3 m,v2rj MePerj,

Note that Eq. (A33) is similar in form to the electroh  Cartesian orbitsc/(¢+') andy’(¢') for weak inhomogene-
analog of Eqg. (53) (derived foe = 0 = 75,), provided ity (e < 1): In the previous section of this Appendix, we
we make the appropriate generalization9f+ r;, and  showed for weak spatial nonuniformity with < 1 and
the replacement?, — v.(H,,). Equation (A33) has 7. < I thatthe radial orbit for’?(¢t') = x'%(¢') + y'?(¢/)
been derived for the case of weak spatial inhomogeneitgscillates atone distinct frequency2v,(H,.), where
with ., < 1. In the limit wheree = 0 = %,, note v.(H,.) is defined in Eq. (A30) [see Eq. (A33)]. This
that Eq. (A33) reduces exactly to the electron analogs true both for P, = 0 and for Py # 0. Whenever
of Eq. (53), derived for uniform, step-function density Py # 0, however, analysis of the complete Cartesian or-
profiles. bit equation forx’, (') = x'(t)é, + y'(¢')&, in the beam
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interior (0 = v’ < rp),
2

dr’?

2
x| (1) + 193(1 -3

shows that théndividual motionsfor x/(¢') andy’(¢') havetwo distinct frequency components. We define

4
1

vl (HY,.Py) = ﬁe[l -

v, (HY,.Py) = ,;{1 -

— e

1 2HY, 2
4 e meﬁgr;% 3 meﬁer;% ’

12 lJ
e ’"—(2)>x;(z’) =0, (A35)
rp
A2 2 3 A 2 °
meVgrp MeVelp
(A36)

Py

where Py = xp, — yp, = const is the angular momen- which is identical toZve(Hﬁe) defined in Eg. (A30).

tum andHY, is the zero-ordetn, = 0) Hamiltonian for
the electrons defined by

pt 1 2.2 2
2m, —I—Emef/e(x + y7).

A careful analysis of Eq. (A35) fom, < 1 shows that
the transverse orbits fox/(¢) and y’(¢+/) are given to
leading order by

x'(t) = Ay codw) (¢t — 1) — 4]
+A_codv, (t' — 1) — ¢-],

Y(') = —Assinlv, (i — 1) = ¢+]
+ A_sily, (/' — 1) — -],

Here, the constant amplitude6A-,A+) and phases

HO, = (A37)

(A38)

Whenever Py # 0, however, the individual/(t') and
y'(¢") motions have frequency components at tive dis-
tinct frequenciesy (HY,, Py) and v, (HY,, Py), defined
in Eq. (A36), which are separated by an amount

Py

Ve TVe = T Me 73,

MeVelp

(A42)

Note thaty] — v, is linearly proportional to the angular
momentum(Py) and the strength of the density nonuni-
formity (7.).

Finally, it should be pointed out that the orbit analysis
in this Appendix can also be applied to the ion motion
in parabolic density profiles by making the obvious
replacementsp, — y,my, —e¢ — Zye, 1. — 1y, €1C.

(-, ¥+) are defined in terms of the phase-space vari-

ables(x,y, px. py) by
1

= - 0 _ =~ 1/2
A+ - (Zmeﬁg)l/z (Hie VeP())
1 . N
= 5= [(pe + mebey)” + (py = meex)*]"?,
ere
1 ) (A39)
_ 0 N 1/2
A= —(Zmeﬁg)l/z (H], + #.Py)
1 N N
= m[([)x - mee.V) + (Py + mfyex)z]l/zv
ere
and
- (2222
MeVeX — Py
oo (A40)
any = P2 meey)
Py T mebex

To the level of
examination of the transverse orbits foi(z’) and y'(¢')
shows that the radial orbit for’2(¢’) = x'>(t') + y'?(¢')
oscillates at aingledistinct frequency given by

1 2HY,

- 5 TMe ~y 2
4 mev2rj,

20v) +v)) = 2ﬁe(1 ) (A41)
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