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Electron beam energy chirp is an important parameter that affects the bandwidth and performance of a
linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing
between flat metallic plates with small corrugations, and then apply such a device as a passive dechirper
for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond
electron beam. Similar devices have been tested in several places at relatively low energies (∼100 MeV)
and with relatively long bunches (> 1 ps). In the parameter regime of the LCLS dechirper, with the
corrugation size similar to the gap between the plates, the analytical solutions of the wakefields are no
longer applicable, and we resort to a field matching program to obtain the wakes. Based on the numerical
calculations, we fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful
parameter range. Finally, since the transverse wakefields—both dipole and quadrupole—are strong, we
compute and include them in beam dynamics simulations to investigate the error tolerances when this
device is introduced in the LCLS.
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I. INTRODUCTION

In a linac-based X-ray free electron laser (FEL) there
is often a need for energy chirp control of the beam as
the magnetic compression employed in such FELs [1–4]
typically leaves an undesired time-energy correlation in the
bunch. Such a chirp, if left uncorrected, can broaden the
FEL bandwidth and degrade FEL performance [5,6]. While
the chirp can be removed by off-crest acceleration in a
following linac section, this solution can be costly or
impractical, particularly for a superconducting linac-based
FEL. For such cases, a dedicated passive structure that can
intentionally generate a strong longitudinal wakefield was
recently proposed to “dechirp” the beam. Additionally, the
dechirper can do the opposite to make X-ray pulses with a
broader energy spectrum and generate ultrashort pulses for
a variety of applications.
In Ref. [7], a round metallic structure with corrugated

walls was suggested and analyzed as a passive dechirper.
Compared to the round geometry, the flat geometry using
two corrugated plates has the advantage of allowing the
dechirper strength to be adjusted by changing the separa-
tion of the plates [8]. In both round and flat structures, the
short-range transverse wakes can be strong, with amplitude
scaling as the −4th power of aperture (versus the −2nd

power for the longitudinal wake). In a flat structure,
however, in addition to the usual dipole wakefield that is
excited when the beam passes through off axis, there is also
a quadrupole wake excited, even when the beam moves
exactly along the symmetry axis. These transverse wakes
will, if not properly controlled, increase the projected
transverse emittance and lead to a deterioration in FEL
performance.
Recently dechirper systems have been tested in Pohang,

Brookhaven, and Shanghai at relatively low energies
(∼100 MeV) [9–11]. However, when this structure is used
for multi-GeV beams, such as the several GeV beams of the
Linac Coherent Light Source (LCLS) [12,13], in order to
generate a significant dechirping effect within a reasonable
length of structure, the gap between the two plates needs
to be set very small (e.g., ∼1 mm), which will introduce
strong transverse effects. In addition, from the point of view
of manufacturing feasibility with relaxed tolerances, the
preferred size of corrugations should not be too small (e.g.,
≳0.5 mm). In this case, the corrugation parameters become
comparable to the gap of the two plates and the analytical
solutions of wakefields for the structure [7,14] are no
longer applicable.
In this paper we adopt the field matching method [15]

to calculate the longitudinal and transverse wakefields of
the flat corrugated structure that will serve as a dechirper
for the LCLS. For the longitudinal case, we, in addition,
perform wake calculations over a wide parameter range and
find a simple fitting formula that can be useful for quickly
finding the short-range wake of such devices. In these
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studies, it is found that higher band modes arise with small
gap size. The amplitude of the rising second band modes
is evaluated numerically for comparison. Finally, for the
application to the LCLS, we study the effects of the
transverse wakefields on beam quality and the tolerances
these imply.
The structure we consider in this paper is a periodic,

rectangular structure, two periods of which are sketched
in Fig. 1. The parameters are: half-gap a and width w;
corrugation parameters: depth h, period p, opening g. The
nominal parameters of the proposed LCLS dechirper
are shown in Table I. They will be used in illustrative
calculations of wakefields in the following sections. The
appropriateness of this choice of parameters for LCLS
applications will be addressed in Sec. III.
This paper is organized as follows. In Sec. II we

introduce the field matching method and present some
numerical results. Fitting formulas of the longitudinal
wakefield are obtained based on the field matching calcu-
lations, which are given in Appendix A. The application of
this structure to the LCLS of this structure is analyzed in
Sec. III, including simulations of chirp control, the effects
of the transverse wakefields and the subsequent tolerances
for the beam position jitter and the misalignment of the
structure necessary to preserve the transverse beam emit-
tance. Finally, in Sec. IV we give concluding remarks.

II. WAKEFIELDS AND FIELD MATCHING

A. Analytic formulas

The analytical solutions of the wakefields for the
structure in Fig. 1 are developed from the ones for a round
pipe with similar corrugations [16,17]. For round geometry,

if we assume all corrugation dimensions are much smaller
than the gap size (p; h ≪ a, with a the radius) and the
corrugations are relatively deep (h≳ p), then the point
charge wake can be written as a pure cosine oscillation with
one mode wave number k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p=ðahgÞp
and with ampli-

tude Z0c=ðπa2Þ (Z0 ¼ 377Ω is the characteristic imped-
ance of free space and c is the speed of light). And
the dipole wakefield is given by a sine oscillation of the
same frequency, with the slope at the origin of
W0

dð0þÞ ¼ 2Z0c=ðπa4Þ. There is no quadrupole wakefield.
For the flat geometry, the wakefield is more complicated

than a simple cosine function. However, if we assume a
large aspect ratio, ðw=2aÞ, and only care about the wake-
field over the short range, we can still approximate its
longitudinal wake by a single frequency oscillation, with a
modified amplitude factor: [15]

W∥ðzÞ ¼
π2

16

Z0c
πa2

HðzÞ cosðkzÞ 0 < kz≲ 3π; ð1Þ

where z is the distance the test particles is behind the
driving particle and HðzÞ ¼ 1ð0Þ when z > 0ð< 0Þ. For
small corrugations, the wave number k is well approxi-
mated by [15]

k ¼
ffiffiffiffiffiffiffiffi
p
ahg

r
: ð2Þ

In flat geometry there are both dipole and quadrupole
transverse wakes, where the total vertical wake effect near
the y ¼ 0 symmetry plane is given by

Wy ¼ y0Wd þ yWq; ð3Þ

with y0 (y) the offset of the driving (test) particle. The short-
range transverse wakes are reasonably well approximated
by sine functions with the same wave number k, and with
slopes near the origin [18]

W0
dð0þÞ ¼ W0

qð0þÞ ¼
2Z0c
πa4

�
π

4

�
4

: ð4Þ

Note that in Eqs. (1) and (4), the amplitudes of the
wakefields are independent of the dimensions of corruga-
tions. However, for structures with corrugation size com-
parable to a, such as the LCLS dechirper as shown in
Table I, Eqs. (1) and (4) are no longer applicable and we
need to use a numerical method, such as the field matching
method, to find the wakefields.

B. Field matching method

The field matching method to solve the wakefields of the
structure of Fig. 1 is described in an Appendix of Ref. [15].
We have written a Mathematica program based on this
formalism with which we perform our parameter studies.

FIG. 1. Geometry of dechirper parameters: longitudinal cut
with two periods (left) and transverse cut (right).

TABLE I. Structure parameters of LCLS dechirper.

Parameter Value Units

Half-gap a > 0.5a mm
Period p 0.5 mm
Depth h 0.5 mm
Opening g 0.25 mm
Width w 12 mm
Total length L 4b m

aNominal half-gap is 0.7 mm.
bThe dechirper is composed of two sections of 2 m each.
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We sketch the method briefly here; the reader is referred to
Ref. [15] for more details (though she should be warned
that there are a few typos in the equations there). It is useful
to understand the method, in order to better make sense of
the parameters studies. In addition, the calculation of the
transverse wakes, which were not addressed in Ref. [15],
are also sketched out here. (Note that all derivations in this
section are in Gaussian units.)
Field matching is used to find the synchronous (to a

speed-of-light particle), resonant modes of the structure.
The domain of calculation is one period of the structure
in Fig. 1, which extends longitudinally to z ¼ �p=2. The
domain is divided into two regions: Region I, the “tube
region,” extends to y ¼ �a; Region II, the “cavity region,”
for z ≤ �g=2, extends beyond y ¼ �a to y ¼ �ðaþ hÞ.
In the field matching program smooth walls at x ¼ �w=2
are assumed. (In the real structure there are no side walls.
However, the side walls do not affect the short-range wake,
provided the structure width is chosen so that w=a ≫ 1.)
We are interested in the steady-state wakes excited by the

beam and assume that the fields of a mode have a time
dependence ejkct, where k is the modewave number and t is
time. For either region the electric and magnetic fields can
be obtained from two Hertz vectors Πm;Πe, that represent
TM and TE components:

E ¼ ∇ ×∇ × Πe − jk∇ × Πm;

H ¼ ∇ ×∇ × Πm þ jk∇ × Πe: ð5Þ

Since there is no boundary variation in the x direction the
Hertz vectors have only an x component. To satisfy the
boundary condition at x ¼ �w=2, the fields vary as cosines
and sines of kxx where

kx ¼
lπ
w
; ð6Þ

with l an odd integer. The general solution of the wake
involves a summation over all l.
Consider modes with a given horizontal mode number l.

If the modes with Ez ≠ 0 on axis are chosen, the Hertz
potentials for each region can be written as the sum of space
harmonics as follows. For region I:

ΠI
mx ¼

X∞
n¼−∞

½Bn coshðkIynyÞ� sinðkxxÞe−jβnz;

ΠI
ex ¼

X∞
n¼−∞

½Cn sinhðkIynyÞ� cosðkxxÞe−jβnz; ð7Þ

with

βn ¼ β0 þ
2πn
p

; kIyn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n − k2 þ k2x

q
; ð8Þ

For region II:

ΠII
mx ¼

X∞
s¼1

Es sin ½kIIysðaþ h − yÞ� sinðkxxÞ

× sin

�
αs

�
zþ g

2

��
;

ΠII
ex ¼

X∞
s¼0

Fs cos ½kIIysðaþ h − yÞ� cosðkxxÞ

× cos

�
αs

�
zþ g

2

��
; ð9Þ

with

αs ¼
πs
g
; kIIys ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α2s − k2x

q
: ð10Þ

The Bn, Cn, Es, Fs, are expansion coefficients. The
arbitrary phase constant is set to β0 ¼ k, so that the modes
of the system are those excited by the beam (the synchro-
nous modes).
Then the tangential components of the fields Ez;x;Hz;x in

the two regions are obtained from the Hertz vectors and are
matched in the matching planes, at y ¼ �a:

EI
z;x ¼

�
EII
z;x jzj < g=2;

0 g=2 < jzj < p=2;
ð11Þ

HI
z;x ¼ HII

z;x jzj < g=2: ð12Þ

From the orthogonality of the expansion functions a
system of equations is obtained that can be written as a real,
symmetric, homogeneous matrix equation involving the
expansion coefficients. The solution will give the fields to
an arbitrary scale factor. For numerical calculation the
infinite matrix is truncated to finite size. If N is the largest
value of n—the space harmonics number in region I—that
is kept, the system matrix equation will be of dimension
2ð2N þ 1Þ × 2ð2N þ 1Þ. (The parameter s is also trun-
cated, so that its maximum value S ∼N .) The wave
numbers at which the determinant of the resulting matrix
vanishes correspond to the modes excited in the structure.
The loss factor κ of each mode (which is defined per unit

length of structure) can be calculated from the field
components:

κ ¼ jE0j2p
4uð1 − vg=cÞ

; ð13Þ

with E0 the synchronous component of the longitudinal
field (n ¼ 0 represents the synchronous space harmonic), u
the stored energy per period, and vg is the group velocity of
the mode. Note that the arbitrary constant in the numerator
and denominator cancel.
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The longitudinal wakefield is given as the sum over l, of
the modes, which can be written as

W∥ðzÞ ¼ 2HðzÞ
X
l

κl cosðklzÞ; ð14Þ

where kl ðκlÞ is the wave number (loss factor) of mode l.
The quadrupole wakefield can be obtained as

WqðzÞ ¼ 2HðzÞ
X
l

κðqÞ⊥l sinðklzÞ; ð15Þ

where κðqÞ⊥l ¼ ðlπ=wÞ2ðκl=klÞ is the kick factor of the
quadrupole mode with horizontal mode number l.
For the dipole modes, we need to rewrite the Hertz

potentials Eq. (7) in terms of the functions that yield Ez ¼ 0
on axis (viz. by exchanging the sinh and cosh functions)
and repeat the procedure above to obtain the corresponding
wave numbers. The dipole kick factors are obtained as:

κðdÞ⊥l ¼
j dE0dy j2p

4uð1 − vg=cÞkðdÞl

; ð16Þ

where kðdÞl is the wave number of the dipole modes. Then
the dipole wakefield becomes

WdðzÞ ¼ 2HðzÞ
X
l

κðdÞ⊥l sinðkðdÞl zÞ: ð17Þ

Finally, note that in the field matching we have assumed
perfect conductivity in the walls. This approximation is
good in that the resistance of metallic walls has but a
small effect on the wake of these structures. Also we have
assumed that the steady-state solution is a good approxi-
mation to the wake. The so-called catch-up distance, zcu ¼
a2=2σz (σz is the rms bunch length), is the approximate
distance over which the transient response becomes the
steady-state response. For representative LCLS dechirper
parameters, a ¼ 1 mm, σz ¼ 25 μm, zcu ¼ 25 mm, which
shows that the distance to steady-state indeed is small
compared to the total structure length L ¼ 4 m.
We have programmed the truncated field-matching

equations—for both longitudinal and dipole modes—into
Mathematica. For given horizontal mode number l, in the
longitudinal case the program obtains the wave number kl,

loss factor κl, and quadrupole kick factor κ
ðqÞ
⊥l ; for the dipole

modes it obtains the dipole wave number kðdÞl and dipole

kick factor κðdÞ⊥l . Then, by performing the sums Eqs. (14),
(15), and (17), we obtain the wakes.

C. Numerical results

In this section we numerically address the questions of
what matrix size should be chosen, how many horizontal
modes are needed (in the wake sums), and how strong is the

effect of higher band modes. In addition, we perform
longitudinal wake calculations over a large useful param-
eter range, and then provide fitting formulas that can be
used for generating the wake without needing to resort to
numerical calculations. (Details of the fitting are given
in Appendix A.) We focus here on the longitudinal wake
calculations because we want to accurately know the
wake effect on the beam chirp, whereas for the transverse
wake effects, which we want to keep under control,
accuracy is not as important.

1. Convergence studies

We begin by studying the question of what is a
reasonable matrix size for the calculations. We use the
nominal parameters of the LCLS dechirper in Table I, with
a ¼ 0.7 mm. Note that ðw=2aÞ ¼ 8.6, meaning that the
side walls have little effect on the wakes. We calculate the
first three horizontal modes (l ¼ 1; 3; 5) for different values
of N . The wave numbers and loss factors versus N are
shown in Fig. 2. It can be seen that the two wakefield
parameters converge quickly as functions ofN , and even a
small number suffices (N > 3). A similar kind of con-
vergence was found for other horizontal modes and for
other dechirper parameters. Consequently, in the following
sections of this report, we choose N ¼ 5—which corre-
sponds to a system matrix of size 22—for the field
matching calculations.
Another question is, how many horizontal modes (with

mode number l) are needed to obtain a good approximation
to the wakefields? As an example, we again consider the
LCLS dechirper parameters. Figure 3 presents the wave
number, longitudinal loss factors, and transverse kick
factors as functions of horizontal mode number l. Note
that, in the plot, the units for loss factor are [mm−2] and
for kick factor [mm−3]. Also note that for given l, the
longitudinal and quadrupole wakefields have the same
wave number. We can observe that for these dechirper
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FIG. 2. Wave number (left) and loss factor (right) conver-
gence versus N for l ¼ 1; 3; 5. The corresponding matrix size
is 2ð2N þ 1Þ.
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parameters, the contributions from l≳ 30 can be neglected.
In general, when performing these wake calculations one
needs to be sure to take enough terms so that the series has
converged.

2. The wakefields

Inserting the wave numbers, loss factors, and kick factors
of Fig. 3 into Eqs. (14), (15), and (17), we obtain the
longitudinal, quadrupole, and dipole wakefields, respec-
tively, of the LCLS dechirper. The results are shown in
Fig. 4 (the solid lines), where the wakes have been
converted to MKS units (to convert wakes from cgs to
MKS, they are simply multiplied by Z0c=4π). Note that, in
MKS, the units of the longitudinal and transverse wakes are
[MV=ðnCmÞ] and [MV=ðnCm2Þ], respectively. In the
figure we also give the wake functions of the flat, analytical
model for comparison [18] (the dashes). It is expected that
the results of the field matching method agree well with the
analytical model when the size of the corrugations is small
compared to the gap. However, it is obvious that in the
parameter regime of the LCLS dechirper, the analytical
model no longer applies. The amplitudes of the wake
functions with field matching are smaller than the ones of
the analytical model (67% for the longitudinal wake) and
the oscillation periods also differ.

Based on the calculations of the field matching program,
we obtain simple fitting formulas for the short-range
longitudinal wakefield, which can be used for dechirper
design and optimization studies (see Appendix A). The
parameter range of validity is p; h ≤ a, h=p≳ 0.8, and
g=p ¼ 0.5. The fitting formula is given by

W∥ðzÞ ¼
π2

16

Z0c
πa2

FHðzÞe− kz
2Q cosðkzÞ; ð18Þ

where F is an amplitude correction factor, k is an effective
wave number, andQ is an effective quality factor. By short-
range we mean that the formula is valid for kz≲ 3π. The
three fitting parameters are all simple functions of structure
parameters a; h; p. For example, the effective wave number
is given by

k ¼ 1

a

�
c1ffiffiffiffiffiffiffiffi
h=a

p þ c2

�
; ð19Þ

with c1 ¼ 1.7096 and c2 ¼ −0.5026. The expressions for
F and Q are given in Appendix A. We show the fitting
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FIG. 3. (Up) wave numbers and (down) loss factor of longi-
tudinal wake and kick factor of dipole and quadrupole wake for
horizontal mode number l for nominal LCLS dechirper param-
eters, with a ¼ 0.7 mm.
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pole Wq (red) wake functions. The wakes according to the
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The fitting formula for the longitudinal wake is also shown for
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formula in Fig. 4 for comparison with the field matching
and analytical model.

3. Higher band modes

Up to now, for any horizontal mode number l, we have
considered only the lowest modes; but there are also higher
such modes—i.e., higher frequency solutions to the system
matrix equation—which we call “higher band modes.” For
a wide structure (w=a ≫ 1) with small corrugations, the
spacing of the bands will be large compared to the spacing
of the modes in the first band, and the loss factors of the
modes in the higher bands will be small compared to those
of the lowest modes. But when the corrugation parameters
p; h, become comparable to a, the contribution of the next
band modes starts to grow.
For the nominal LCLS dechirper parameters, with

a ¼ 0.7 mm, we compare in Fig. 5 the wave numbers
and loss factors of the first two band modes as functions of
horizontal mode number l. We note that the second band
mode loss factors are small, contributing about 10% of
those of the first band. If we further extend the range of
solving the system matrix equation, we find still higher
band modes; however, in the parameter space of interest,
their loss factors will be even smaller. So in this report we
consider mainly the contribution of the first band modes to

the wakes; the second band modes are calculated only for
the purpose of gauging the accuracy of this approximation.
The impact of the second band modes on the wakefields

is to add high-frequency features to the wakefield shape. In
Fig. 6 we compare the longitudinal wakefields including
only the first band modes (solid) with those including the
first two bands (dashed). For the three cases considered the
aperture is a ¼ 0.5, 0.7, 1.0 mm, while the other parameters
are left unchanged (the a=h ¼ 1.4 curves correspond to the
nominal parameters of Fig. 4). The distortion of the wake
from a cosine shape is largest for the case of largest
corrugations, i.e., for a=h ¼ 1. Note that such distortions
have little effect on the dechirping, other than slightly
changing the strength of interaction, because the bunch is
very short compared to the wake oscillation period (the rms
bunch length in an X-ray FEL is typically σz ≲ 20 μm).
Figure 7 gives the relative increase in the wakefield

amplitude after including the second band modes as
functions of a=h, for different h=p. As h=p increases
the effect of the second band modes first becomes larger
and then settles down. For the LCLS dechirper, h=p ¼ 1,
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so when a ∼ h ¼ 1 mm, the amplitude when including the
second band modes increases by ∼18%. Since the fitting
formula of Eq. (18) only considered the first band modes,
for the LCLS dechirper, when a is small (≲1 mm) the
formula will noticeably underestimate the dechirping
effect.

III. APPLICATION TO LCLS CHIRP CONTROL

In this section, we apply the analysis of the previous
section to the proposed LCLS dechirper [13]. We also
analyze other physical effects that are important.
As a demonstration experiment of chirp-control for

high energy beams, the dechirper will be installed at the
linac-to-undulator (LTU) area of the LCLS. Essential
diagnostics for the proposed dechirper experiment are
shown in Fig. 8. The dechirper will be located in a low
β region. Neighboring BPMs will be used to ensure beam
alignment through the device. A distant downstream BPM
will be used to detect any deflection due to the dipole
wakefield. Transverse emittance measurements will be
performed using LTU quads (not shown) along with the
COTR-mitigated transverse profile monitor [19] at the end
of LTU or, alternatively, LTU wire scanners (not shown).
Finally, slice energy spread measurements will be per-
formed in the LCLS electron dump using an X-band
transverse deflecting cavity (XTCAV) [20] in conjunction
with the final spectrometer bend.
The beam parameters for the proposed dechirper experi-

ment are shown in Table II. The beam peak current after
compression is ∼1.5 kA and the energy chirp induced by
the RF off-crest acceleration in the downstream linac is not
fully canceled by the linac wakefield.

The proposed dechirper for the LCLS is 4 meters with
two 2-m sections. The total length is chosen with the aim of
generating a significant dechirping effect while at the same
time maintaining the beam quality. A longer dechirper will
benefit the experiment as it allows a larger gap to achieve
the same integrated longitudinal wake, while the transverse
wakefields decrease more quickly with gap size. The
parameters of the dechirper used in the simulations have
been given in Table I.
The gap of the two plates can be varied in the experiment

based on the required longitudinal wakefield strength. The
minimum gap is 1.0 mm due to physical constraints and
the nominal full gap size is 2a ¼ 1.4 mm. The longitudinal,
dipole and quadrupole wakefields for this gap were
presented in Fig. 4, and the beam longitudinal phase space
before and after the dechirper are given in Fig. 9 by Elegant
[21] simulation with beam parameters in Table II and
nominal gap of the dechirper. The head of the beam lies to
the left side with negative time values. The energy loss of
the tail particle is ∼20 MeV at nominal gap, inducing
energy chirp −0.4 MeV=fs for 50 fs bunch length. The
projected energy spread can be tuned as much as�200% of
the core slice energy spread. In the experiment, we will use
the XTCAV to measure the beam longitudinal phase space
downstream of the FEL undulator. The final simulated
images with and without the dechirper wakefields at the
dump screen, which is located after the XTCAV and at a
location of vertical dispersion, are given in Fig. 10. The

FIG. 8. Schematic of the proposed dechirper experiment (not to scale). See text for description.

TABLE II. Beam parameters for proposed dechirper experi-
ment.

Parameter Value Units

Charge Q 150 pC
Peak current Ip ∼1.5 kA
Energy E 6.6 GeV
Emittance ϵx 0.77 μm
Emittance ϵy 0.39 μm
βx 5 m
βy 19 m

FIG. 9. Longitudinal phase space w=o (left) and w= (right) the
dechirper wakefields after the dechirper location with half-gap
2a ¼ 1.4 mm. Bunch head lies at the left.
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expected dechirping effect can be clearly measured. The
simulated images at dump screen appear to have deviations
with the longitudinal phase space in Fig. 9. This is due
to the effects of the wakefields in the undulator vacuum
chamber. During FEL operations, the gap will be varied to
minimize the energy chirp of the real beam.
The dechirper can, in addition, do the opposite, i.e., it

will increase the energy chirp for an overcompressed beam.
The large energy chirp can help make X-ray pulses with a
broader energy spectrum and generate ultrashort pulses
under the self-seeding scheme [22].

A. Quadrupole wakefield

The choice of dechirper parameters is determined by the
following considerations. A smaller dechirper gap gener-
ates a stronger longitudinal wakefield, and allows one to
shorten the device for the required strength of effect.
However, an extremely small gap makes the transverse
dipole and quadrupole wakefields stronger and leads to
projected emittance growth and tight tolerances on the
beam position jitter and dechirper alignment. Note that the
transverse wakefields used in the following tolerance study
were calculated by the field matching program (see the
solid lines in lower plot of Fig. 4).
The quadrupole wakefield can introduce time-dependent

focusing or defocusing in the beam and increase the
projected emittance. In the proposed design, the dechirper
will be divided into two sections of equal length. The two
sections will be oriented orthogonal to each other, one with
vertical plates and the other with horizontal ones. (Here the
direction of dechirper is determined by the direction of the
gap, e.g., the dechirper structure shown in Fig. 1 is a
vertical dechirper.) There are four possible arrangement for
the two sections. We use Elegant with beam parameters in
Table II and nominal gap to simulate the different combi-
nations and compare the projected emittance in Fig. 11,
which is defined as

δϵ

ϵ0
¼ ϵ

ϵ0
− 1; ð20Þ

where ϵ0 and ϵ are the emittance before and after the
dechirper, respectively. The smaller increase in the hori-
zontal plane is due to the smaller βx value and larger initial
emittance ϵx before the dechirper, due to the CSR effect in
upstream magnetic compression. It can be observed that if
the two sections are oriented in the same direction, the
projected emittance growth in the vertical plane will be
∼5% even when the beam and the device are both perfectly
aligned. However, if the second is rotated by 90° with
respect to the first one, the emittance increase in both planes
will become very small. That is, the quadrupole wakefield
effect can be largely canceled if the two sections are crossed
by 90°. According to Fig. 11 we adopt the “Vþ H” design
for the LCLS dechirper: the first section is vertical and
the second one is horizontal. It is also noticed that in the
simulations in order to cancel the quadrupole wakefield we
need to keep the average β functions nearly symmetry over
the structures.
We also studied the projected emittance increase versus

different crossing angles of the two sections as shown in
Fig. 12. When the crossing angle is not 90°, there will be a
residual quadrupole wakefield effect that deteriorates the
beam quality. However, based on the simulations, we find
that the tolerance for the crossing angle is very relaxed,
with 0.5% or less emittance increase even for 10° deviation
from the nominal.

B. Dipole wakefield

If the beam enters the structure offset from the axis, it
will excite the dipole wakefield, where the tail of the
beam will be kicked, increasing the projected emittance.
In Fig. 13 we present the projected emittance growth
versus beam offset for beam parameters in Table II with
nominal gap a ¼ 0.7 mm. Vertical (horizontal) offset
leads to vertical (horizontal) emittance growth. An
analytical estimate is derived based on the method in

FIG. 10. Simulated images on the dump screen w=o (left) and
w= (right) the dechirper wakefields with half-gap 2a ¼ 1.4 mm.
Bunch head lies at the left. The simulated images appear to have
deviations with longitudinal phase space in Fig. 9 due to the
wakefield effects of the undulator vacuum chamber.
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FIG. 11. Projected emittance increase for different combina-
tions of the two dechirper sections. “V” means vertical dechirper
and “H” means horizontal dechirper.
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Ref. [8] with the fitting formulas of the longitudinal
wakefields. The results are plotted in Fig. 13. We can see
the emittance growth is more sensitive in the vertical
plane due to the larger β function and smaller initial
emittance. In the vertical plane, the beam position jitter
should be controlled to within 30 μm if the allowed
emittance growth is to be less than 10%. This tolerance
can be relaxed to 50 μm for the horizontal plane. These
numbers are achievable for the LCLS beam conditions
and current diagnostics.
Note that this transverse jitter requirement is for the

nominal gap of the dechirper. For other values, the require-
ment will differ. For example, if the full gap is reduced to
a ¼ 0.5 mm to generate larger (factor of ∼2) longitudinal
wakefield, the beam transverse position jitter should be
controlled within 20 μm if we want limit the emittance
growth to 10%. A smaller gap requires better control of
the beam.
In addition to the beam offset, the alignment errors of the

device will also induce dipole wakefields and increase the
projected emittance, as analyzed in Appendix B. However,
different from beam offset, the alignment error is steady

after installation. We can offset the beam at the device
entrance to find a trajectory that has no dipole kick on the
beam. Thus, we are left with the requirements for transverse
position jitter.
Note that the effects of the transverse wakefields also

depend on the betatron functions of the beam optics. For the
quadruple wakefield, it is required that the change of
betatron function be small or symmetric over the device.
And for dipole wakefield, smaller betatron function means
looser tolerance for beam position jitter. So optimization of
the optics should be performed for better performance and
relaxed tolerance.

IV. CONCLUSIONS

We have investigated the use of a pair of flat metallic
plates with small corrugations as a passive device for chirp
control—a “dechirper”—a type of device that will be
installed in the LCLS. We studied the device’s wakefields
and provided numerical results obtained by field matching.
When the corrugation dimensions become comparable
to the gap between the two plates, the wakefields of the
structure deviate from the analytical solutions that are
valid for small corrugations. In addition, higher band
modes arise, changing the shape of the wakefields and
increasing their amplitude slightly. We also scanned the
structure parameters over a large range and fit the longi-
tudinal wake to a simple formula that can be used for quick
calculation in further studies.
We then considered the application of this structure to

the LCLS for the proposed chirp control, including
effects of both longitudinal and transverse wakefields.
Under nominal operating conditions, the 4-meter-long
device will generate a large dechirping range for the
LCLS beam. The energy loss of the beam tail is
∼20 MeV, inducing large energy chirp over short
(∼50 fs) bunch. The projected energy spread is estimated
to be as much as �200% of the core slice energy spread
(with the precise amount depending on the incoming
beam conditions). Through analysis and simulation, the
quadrupole wake can be largely canceled by crossing the
two sections of the device by 90° and locally using
symmetric optics. The dipole wakefield gives a tolerance
on beam position jitter. If the emittance growth is to be
limited to 10%, the beam position jitter needs to be
controlled to within 30 μm for half-gap a ¼ 0.7 mm, and
20 μm for a ¼ 0.5 mm. We have also studied possible
structure alignment errors in the dechirper that can induce
transverse wakefields and cause beam quality to deterio-
rate. The dipole wake due to an alignment error of the two
plates can be canceled by offsetting the beam trajectory.
After optimizing the beam optics in the LTU area of
LCLS, mechanical stability and positioning requirements
are found to be acceptable for the current beam param-
eters and available diagnostics.
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APPENDIX A: FITTING FORMULAS FOR
THE LONGITUDINAL WAKE

In this Appendix, we give the fitting formulas for the
longitudinal wakefields. The form of the fitting formula is
taken to be a damped cosine oscillation as shown as

W∥ðzÞ ¼
π2

16

Z0c
πa2

FHðzÞe− kz
2Q cosðkzÞ; ðA1Þ

where F is an amplitude correction factor, k is an effective
wave number, and Q is an effective quality factor. The
three fitting parameters are all simple functions of structure
parameters a; h; p. The fitting formula is valid in the
specific range of the interest shown in Fig. 14. We assume
the dimensions of corrugations are not larger than the gap
size

p; h ≤ a; ðA2Þ

and the corrugation is “deeply corrugated” in order to have
a strong dominant mode

h=p≳ 0.8: ðA3Þ

The factor 0.8 here is chosen based on the results of
numerical calculations. The applications of this structure
focus on the short-range wakefields, and the longitudinal
range of the fitting formulas is limited to

kz≲ 3π: ðA4Þ

Note that in the field matching calculations, we keep
g=p ¼ 1=2 for simplicity.

The field matching and the fitting results for F, k, and Q
are shown in Figs. 15, 16, and 17. Each line in Fig. 15
corresponds to a value of p=a from 0.1 to 1 and the range
of h=a is determined by the requirement Eq. (A3). The
double-arrow line in Figs. 16 and 17 signify that for a given
h=a, we plot all wave numbers under different p=a values
ranging from 0.1 to 1. Based on these results, we can obtain
the formulas for the three fitting parameters. The fitting
forms for the parameters:
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where biði ¼ 1; ::; 5Þ, c1; c2, d1; d2; d3 are the fitting
coefficients. The best fit result for these coefficients is
given in Table III.
The results of the fitting formulas are also indicated in

the corresponding figures by red dashed lines. It can be
seen that for the amplitude factor F and wave number k the
fitting formulas agree well with the results of the field
matching program. The sum of the five coefficients
Fð0; 0Þ ¼ P

5
i¼1 bi ≈ 1 indicates that the new formula is

consistent with the analytical formula as p=a ≪ 1;
h=a ≪ 1. For the wave number k and quality factor Q,
the precision is also good enough for applications which
focus on the short-range wakefields, such as for energy
chirp control.

APPENDIX B: DECHIRPER
STRUCTURE ERRORS

We study here the effect of the structure rotation error as
shown in Fig. 18. The two planes of the dechirper can both
have a rotation angle with respect to the beam direction,
which can induce dipole wakefields, even when the beam
passes through the structure on axis.

The period of the corrugation is much shorter than the
length of the dechirper and the rotation angles (denoted by
θ1; θ2 in Fig. 18) should be small, so we can assume that
within a short longitudinal range, the corrugations can be
viewed as of a constant gap size. Then we can write down
the emittance growth due to the dipole wakefield within a
small rang s → sþ Δs

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϵ

ϵ0

�
2

− 1

s #
s→sþΔs

¼ 0.375Z0c ·
FqβσzΔs

½aþ sðθ1 − θ2Þ=2�4E
·
sðθ1 þ θ2Þ

2σ0
;

ðB1Þ

with q bunch charge, σz bunch length, σ0 transverse beam
size, E beam energy, β the twiss parameter and F the
amplitude factor of dipole wakefield calculated by
the field matching. For simplicity, we choose θ1 as the
variable and set θ2 ¼ 0, then we can integrate Eq. (B1)
over the beam path in the 2-meter-long section to get the
effect of the dipole wakefield. The projected emittance
increase versus the rotation angle θ1 is given in Fig. 19.
The vertical projected emittance will increase by ∼9%
if one plane of the dechirper is tilted 0.1 mrad
(θ1 ¼ 0.1 mrad; θ2 ¼ 0).
However, for a given rotation angle we can cancel the

dipole wakefield effect by offsetting the beam at the
entrance. Assuming the beam is offset by Δ, Eq. (B1)
can be rewritten as

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϵ

ϵ0

�
2

− 1

s #
s→sþΔs

¼ 0.375Z0c ·
FqβσzΔs

½aþ sðθ1 − θ2Þ=2�4E
·
sðθ1 þ θ2Þ=2 − Δ

σ0
;

ðB2Þ

FIG. 18. Dechirper with x-rotation error. Anticlockwise (clock-
wise) rotation corresponds to positive (negative) angle.
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TABLE III. Coefficients of best fit for Eqs. (A5), (A6), (A7) to
the field matching calculations.

Coefficient Value Coefficient Value

b1 0.1483 c1 1.7096
b2 0.1418 c2 −0.5026
b3 −0.0437 d1 3.2495
b4 0.1460 d2 −9.1830
b5 0.5908 d3 10.2230
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For example, if the rotation angles of the two planes are
θ1 ¼ 0.1 mrad and θ2 ¼ 0, we can offset the beam in y in
Fig. 18 by þ40 μm to cancel the dipole wakefield, which
can be seen in Fig. 20. Although the analysis here is
only for the angle errors of the two plates, it can be also
applied to other structure errors that can excite the dipole
wakefields.
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