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The genetic algorithm (GA) has been a popular technique in optimizing the design of particle
accelerators. As a population based algorithm, GA requires a large number of evaluations of the objective
functions, which can be time consuming. One can benefit from parallel computing with significantly
reduced computing time when fulfilling the function evaluation by a numerical machine model in
simulation codes. Indeed, this is the most common approach in GA applications. In this paper, instead of
applying GA in the conventional numerical calculations as described above, we present a successful
experimental demonstration of implementing GA in real machine based optimization. We conduct the
minimization of the average vertical beam size of the SPEAR3 storage ring using GA. Beam loss rate is
chosen as the sole objective function because it is inversely proportional to the vertical beam size and can
be measured instantaneously in SPEAR3. The decision variables are the strengths of SPEAR3 skew
quadrupoles, by varying which we can change both the betatron coupling and the vertical dispersion while
searching for the minimum beam size. The results in this paper can shed light on new applications of GAs
in the particle accelerator community, for example, optimizing the luminosity of a high energy collider or
the injection efficiency of a diffraction limited storage ring in real time.
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I. INTRODUCTION

The interest in optimizing the operation and design of
particle accelerators has long been driven by various
beam requirements for different scientific applications.
Since modern accelerators are always complex, optimiza-
tion typically deals with multi-interrelated variables and
physical quantities, and a global solution sometimes cannot
be reached using classical techniques such as exhaustive
search or gradient based search methods. The concept of
population based search allows evolutionary algorithms
(EAs) to be used as very attractive tools for global
optimization. Consequently, there are growing interests
in applying EAs, especially genetic algorithms, for accel-
erator design and optimization in recent years.
Genetic algorithm (GA) is one of three major indepen-

dent implementation instances of EAs along with evolution
strategies [1] and evolutionary programming [2]. These
algorithms are broadly similar and all based on the concept
of solving complex problems by mimicking the processes
of Darwinian evolution. Individual solutions compete
with each other continuously to discover the optimum in
the whole search space. However, significant differences
between genetic operators and population selections [3]
make them suitable for different applications. Ever since

GAs were developed by Holland in the 1970s [4], they have
become popular and their applications have been extended
from the classical single-objective optimization to multi-
objective optimization [5]. GAs were originally introduced
to particle accelerator related research for a wiggler design
in the early 1990s [6]. Thereafter, they have been success-
fully applied in more areas such as designing injector
systems [7], diagnosing and designing accelerating cavities
[8–12], and optimizing beam optics design in storage rings
[13–15]. Some of these applications of GAs in the particle
accelerator community are well summarized in Ref. [16].
One core process of the GA is to evaluate objective
functions from a given set of decision variables, i.e. knobs,
to be adjusted for optimum search. In spite of various
approaches used in previous efforts, all of them evaluate the
objective functions based on numerical simulations using
particle tracking codes such as ELEGANT [17], which has
been used for optimizing the lattice of the SPEAR3 storage
ring [18], or analytical models, such as an equivalent circuit
of accelerating cavities [12].
In principle, when the optimization targets or their

correlating parameters are measurable experimentally, it
is possible to use the real machine as the function evaluator
to directly measure the objective functions, rather than
using a computer model. Compared to the simulation based
optimization, the machine based optimization has the most
accurate representation of the machine condition that
includes all lattice errors. Moreover, the machine based
optimization can excel in speed when the underlying
physics quantities can be measured quickly in experiment.
One example of such quantity is the luminosity of the high
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energy colliders. It can take hours to calculate the lumi-
nosity in a particle accelerator even using parallel comput-
ing. However, its measured value can normally be obtained
in real time during the machine operation. In SPEAR3, we
have identified a similar parameter of interest that can be
measured nearly instantaneously, which in turn enables us
to carry out machine based GA optimization. In this paper,
we report an innovative application of GA to minimize the
average vertical beam size of the SPEAR3 storage ring in
real time. Smaller vertical beam sizes in a storage ring can
produce higher photon brilliance. Therefore, there have
been several results reported for achieving ultralow vertical
beam size or emittance recently [19]. To construct the GA,
we use 13 skew quadrupoles in the SPEAR3 storage ring
as decision variables and the average vertical beam size as
the objective function. The results can serve as a proof of
principle for using GA in machine based optimization.
However, the average beam size cannot be directly mea-
sured in SPEAR3; instead, we optimize the beam loss rates
due to their negative correlation. Thus, to minimize the
vertical beam size, we need to find the maximum beam loss
rate. In SPEAR3, the lattice with magnetic errors can be
derived from a computer code called LOCO (Linear Optics
from Close Orbits) [20] by minimizing the deviation
between the model and measured orbit response matrix
data. It has been proven that LOCO can give accurate
predictions of parameters such as emittances, dispersions,
and beta functions. Using LOCO data, optics correction
can also be made, although typically several iterations are
required. Since the ideal model lattice is free of transverse
coupling and vertical dispersion, LOCO correction has
been the regular method to minimize vertical beam size in
SPEAR3. We have reduced the emittance ratio to 0.05% in
the past [21]. In this paper, we will compare the results
using LOCO correction with those from the GA method.
The structure of this paper is as follows. In Sec. II, we

derive the relationship between the beam loss rate, emit-
tance ratio, and the average vertical beam size in SPEAR3.
In Sec. III, we briefly describe the algorithm details. The
optimization results using GA are presented in Sec IV.
Finally, in Sec. V, we discuss the work presented in the
paper and the direction of future research.

II. MINIMIZING THE VERTICAL BEAM
SIZE IN SPEAR3

SPEAR3 is a third-generation, double-bend achromat
electron storage ring with a circumference of 234.1 m. With
the present low emittance lattice, the nominal horizontal
emittance is 10 nm rad at 3 GeV with a typical emittance
ratio of 0.1%. The transverse beam sizes vary along the
ring due to the effect of local coupling and dispersion.
By optimizing the strength of the 13 skew quadrupoles
distributed around the ring, we can minimize the coupling
and vertical dispersion and hence reduce the average
vertical beam size. Beam size reduction leads to the

shrinkage of the beam volume, which increases the
Touschek beam loss in SPEAR3. In the following, we
briefly describe the relationship of Touschek beam loss
rates, vertical beam sizes, and emittance ratio.
In a storage ring, circulating electrons are lost due to

collisions with gas molecules and electron-electron scatter-
ing inside the bunch, where the latter is known as the
Touschek effect. As with most modern electron storage
rings, the loss of stored beam current in SPEAR3 is mainly
due to the Touschek scattering [22]. In the Touschek effect,
the collisions of particles with transverse oscillations can
lead to the loss of particles by transferring transverse
momenta to longitudinal momenta. The Touschek lifetime,
τT , can be used to characterize the electron loss rate due to
Touschek scattering [23]:

1

τT
¼ Nr20c

8γ2πσ̄xσ̄yσ̄z

�
γmc
cΔp

�
3
~DðξÞ; (1)

where N is the number of electrons in the bunch and is
proportional to the beam current I; r0 is the classical
electron radius; γ is the Lorentz factor; σ̄x;y;z represents
average sizes around the ring for all directions; cΔp
represents the rf bucket height; ξ ¼ ðβx cΔp=γ2mcσ̄xÞ2 with
a typical range from 0.001 to 1 in a storage ring; ~DðξÞ is
the Touschek integral, a slowly varying function. Normally
σ̄x ≫ σ̄y, so when varying the skew quadrupoles of the
storage ring, the vertical beam size changes much faster
than the horizontal beam size. Neglecting the beam length-
ening effect with small change in a stored beam current, σ̄z
can be treated as a constant as well. Furthermore, assuming
a fixed momentum aperture and a nearly constant ~DðξÞ, one
can derive the simple scaling law between beam loss rates
dI=dt and vertical beam size as shown below:

��� dIdt
���

I2
∝

1

σ̄y
: (2)

In the literature, the emittance ratio is also used to
characterize the vertical beam size in the storage ring.
However, depending on the definition, transverse emittance
and beam size could refer to different quantities. The rms
apparent emittance E is the observable quantity that varies
around the ring and can be directly derived from beam size
σ, dispersion D, energy spread δ, and beta function β:

Ex;yðsÞ ¼
σx;y

2ðsÞ − ðδDx;yðsÞÞ2
βx;yðsÞ

: (3)

However, in the presence of transverse betatron cou-
pling, the rms apparent emittance is different from the rms
projected emittance ε (the second-order statistical moment
represents the beam phase space) and the eigenemittance ϵ
(the invariant characterizing the lattice). The influence of
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betatron coupling on these three transverse emittances has
been described using the resonance driving term formalism
in Ref. [19]. For a coupling free lattice, these three
quantities coincide, E ¼ ε ¼ ϵ. When coupling sources
exist, the apparent emittance oscillates around the ring and
its amplitude generally increases with the coupling. This
effect is especially important for the vertical emittance. The
projected emittance stays constant in coupling free regions
and exhibits abrupt jumps at locations of coupling sources.
However, with enough observation points, the mean
projected emittance is equal to the mean apparent emit-
tance. Therefore, the emittance ratio can be calculated from
both of them, i.e. ε̄y=ε̄x ≈ hEyi=hExi. When the average
vertical beam size is minimized in a storage ring, the
vertical dispersion is also small. Hence, one can claim that
minimizing vertical beam size is equivalent to minimizing
the emittance ratio. As a matter of fact, the emittance ratio
has been widely used interchangeably with vertical beam
size in the literature on reducing vertical beam size in
storage rings.
In SPEAR3, direct validation of Eq. (2) can be demon-

strated by experimentally measured data. During the experi-
ment, 100 mA is filled in SPEAR3 with the normal filling
pattern of 280 bunches.We achieve 20 conditions in the ring
by varying all skew quads in a fixed step size. The current
decay during the experiment is about 4%, hence is negli-
gible. For each condition, we measure the vertical beam size
at 1Hzwith an x-ray pinhole camera [21]. The beam loss rate
is recorded at 1 Hz by a beam loss monitor (BLM), a 2-inch
NaI scintillator and photomultiplier tube [24], installed
downstream of the SPEAR3 horizontal beam scraper, which
is inserted to make it the minimum physical aperture in the
ring. Both beam size and beam loss data are averaged for
2 min to reduce noise. The global beam loss is also acquired
by recording the current decay during this 2-min period
using a dc current transformer (DCCT). The current droop
during the entire period of the experiment is less than 4%;
thus, the stored current can be considered as a constant for
the analysis in Eq. (2). Touschek scattered electrons tend to
be lost at locations with a large dispersion area or smaller
horizontal aperture. In SPEAR3, the horizontal scraper is
parked beyond−33 mm during operation so that it does not
interfere with the stored beam. A large amount of the
Touschek beam loss during operation occurs at a high
dispersion section that is designed intentionally as a beam
loss point. Another BLM was installed there to monitor the
beam loss rate. By inserting the horizontal scraper closer to
the beam, more andmore electrons are lost at the scraper. As
shown in Fig. 1, at −15 mm, the scraper replaces the high
dispersion section as the dominant place for the Touschek
beam loss. In order to capture as much loss as possible, we
insert the scraper to −6 mm for a loss rate above
16; 000 counts= sec. We believe that this insures that we
havemost of the Touschek beam loss captured at the scraper
and recorded by the scraper BLM.

Considering the demagnification of the beam from the
optics setup and pixel resolution of the CCD sensor in
the digital camera, the effective resolution for imaging the
beam with the pinhole camera is about 6 μm=pixel. This
resolution is fine for the beam with relatively larger vertical
beam size, but can be less accurate for vertical beam size
measurement when the beam size is small. In addition,
the measurement of beam size at one location of the ring is
not enough to determine the Touschek life time. Therefore
it can only be used as verification to the change of the
lifetime. The measured results are shown in Fig. 2.
Agreeing with the scaling law in Eq. (2), the beam loss
rate is inversely proportional to the vertical beam size. The
global beam loss, measured from the stored DCCT, has
more pronounced noise, but it still serves as a reasonable
cross-check to our assumption that the BLM near the
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scraper captures most of the beam loss. As the data shows,
the vertical beam size measured at the x-ray pinhole camera
tends to overestimate the average beam size in SPEAR3.
As previously discussed, the emittance ratio and vertical

beam size can be calculated from LOCO analysis.
Sampling 5 out of the 20 different cases, we measured
the response matrix of the ring for each, and then fit the
model to the measured data using LOCO. Emittance ratio
and average vertical beam size then can be calculated from
the fitted model. The results are shown in Fig. 2, where the
quadraticlike relationship between the emittance ratio and
beam loss rates agrees with Eqs. (2) and (3). In addition
to reduction of the average vertical beam size, decreased
off energy dynamic aperture through resonance excitation
could also be the cause for increasing beam loss rate while
adjusting the skew quadrupoles. In such a case, we could
fail to minimize the vertical beam size by maximizing the
beam loss rate. However, the monotonic relationship of the
measured beam loss monitor data, the vertical beam size,
and the emittance ratio in Fig. 2 helps to ease this concern.
Furthermore, the small beam size we achieved by maxi-
mizing the measured beam loss further eliminates concerns
about resonant effects. One can also verify the absence of
resonance excitation by repeating the measurement with
smaller rf acceptance by reducing rf cavity gap voltage.
But as it has been well proved that the resonance excitation
is not present while varying the skew quadrupoles in
SPEAR3, this is not necessary in our study. Therefore,
based on the above discussion, we can conclude that,
by setting the horizontal scraper to −6 mm, finding the
maximum of the beam loss rates measured by the BLM
near the horizontal scraper is equivalent to minimizing the
vertical beam size or the emittance ratio.

III. ALGORITHM DESCRIPTION

GAs start an optimization process by initializing a
random population. Each individual in the population is
a chromosome, which at least contains a vector in the hyper
dimensional space of decision variables that represent a
solution to the problem and the values of corresponding
objective functions. Additional information including the
rank of the objective functions, fitness, and crowding
distance is usually encoded into a chromosome depending
on specific problems. Under some selection strategies,
some of the chromosomes are chosen as parents to generate
the offspring via genetic operations. Values of objective
functions are provided by the function evaluator after each
offspring is generated. Depending on algorithms, the
population size of each generation can be fixed or varied.
The parents can be used to form the new generation with
offspring, the elitist approach, or always be discarded, the
nonelitist approach. After a new generation is created, it
repeats the same process for generating the next generation
and will not stop until meeting the stopping criterion. In
this section, we will detail the formation of a GA based

technique for maximizing the beam loss rate of SPEAR3 in
real time.

A. Objective functions and decision variables

As discussed in the previous section, the normalized
beam loss rate measured by the BLM next to the scraper is
the single objective function in our GA formation. The
currents, which represent the strengths of the skew quadru-
poles in SPEAR3, are the independent decision variables.
After varying the currents of the 13 skew quadrupoles, the
objective function is evaluated from the direct measurement
of the BLM. Distinct from most other applications of GA,
the accelerator serves as the function evaluator, instead of a
numerical or analytical model. This approach has the
obvious advantage of providing the exact evaluation with-
out any approximation, but it is usually difficult for two
reasons. First, the experimental evaluation is usually sub-
ject to noise, and thus can be inconsistent. Second, it can be
too slow to implement a machine based GA. As a global
optimizing algorithm, a large number of evaluations are
required before reaching the vicinity of the optimum in
the solution space. Unlike parallel computing capability in
many simulation codes, the machine normally can only
evaluate one variable set at a time. Additional time has to be
spent if magnet ramping or standardization is involved
when changing the decision variables. However, with
proper diagnostics in SPEAR3, we can overcome these
problems due to the following facts. The SPEAR3 skew
quadrupoles are powered by high precision power supplies
featured with fast switching and the field variations of the
skew quadrupoles are small enough to neglect the hyste-
resis effects when searching with GA. The data acquisition
from the BLM is also nearly instantaneous.
Using the objective function, i.e. the beam loss rate

normalized to the squareof storedcurrent, decisionvariables,
and the rank of the objective function in the current
generation, we form each individual in the population, i.e.
the chromosomes. A pool of parents is selected in each
generation from these individuals to create children through
the process of genetic operations.

B. Genetic operations

Except the first generation, all sequential generations are
generated via the process of genetic operations. We use two
of the most popular genetic operators: real-coded simulated
binary crossover [16,25] and polynomial mutation [16,26].
In each genetic operation, one of the two operators is
chosen randomly but conforms to a predefined ratio.
During a crossover, two parents are picked to create two
children, while one child is generated from one parent in
the case of mutation. Once a child is created, its corre-
sponding objective function is evaluated. Eventually, an
offspring population is generated. Crossover and mutation
are governed by the user-configurable non-negative tuning
parameters ηc and ηm, respectively. A more detailed

K. TIAN, J. SAFRANEK, AND Y. YAN Phys. Rev. ST Accel. Beams 17, 020703 (2014)

020703-4



discussion of these two parameters can be found in the
literature such as Ref. [16]. In short, these tuning param-
eters control the probability density function of the likeness
between parents and children. For mutation, a smaller ηm
represents less probability of having a similar child, which
in turn provides a global search to the optimum regardless
the parent solution. On the other hand, with a bigger ηm, it is
very likely that the child only varies slightly from the parent
and the operation is conducting a local search of optimum
around the parent. The behavior of ηc is quite similar to ηm:
the children tend to be close to one of the parents with large
ηc or be randomly generated with small ηc.

C. Replacement, reevaluation, and stopping criteria

To ensure an elitist approach, the current population is
replaced by the best solutions chosen fromboth the offspring
and the older generation. Tomaintain a fixed population size,

the remaining solutions are discarded. As the objective
functions are measured directly from the SPEAR3machine,
the results may change over time due to variation ofmachine
condition. Therefore, we reevaluate the surviving solutions
from all previous generations every 10 generations. Limited
by the machine time available for the experiment, we run
the algorithm as long as possible, so normally we stop the
program manually after a certain amount of time.

IV. RESULTS

We choose the population size of 120 in each generation
for reasonably big sample size and relatively short time for
generating the whole population during the experiment. As
a result, it takes less than 3 min to generate one generation.
Figure 3 shows the results with 211 generations of GA
optimization. To reduce the effect of stored beam current
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decay, we refilled SPEAR3 twice during this experiment as
shown by the normalized stored beam current in Fig. 3(a)
(scaled stored current shown as red curve). The optimiza-
tion was paused during the refill and restarted by loading
the dumped data after the fill. The total running time of the
algorithm is a bit over 9 hr.
Overall, the algorithm behaved well. The normalized

beam loss rates in Fig. 3(a) grow steadily for the first 150
generations, and then start to converge. In Fig. 3(b), we also
plot the decision variables of select generations with 120
individuals apiece for better understanding of the progress
of optimum search. Starting from the first generation (in
red), the decision variables or the individuals are generated
randomly with a nearly uniform distribution within the
boundaries of the hyperspace. The solutions start to cluster
at several regions rather than spread out in the whole
hyperspace in the 6th and 11th generation. It appears that
the final region of the solution is found in the 156th
generation. Thereafter, new solutions stop drifting away
from this area. This is consistent with the results of the
beam loss rate shown in Fig. 3(a). The skew quadrupoles
currents of the best solutions in these select generations
are shown in Fig. 3(c). In Fig. 3(d), we compare the skew
quadrupoles currents of the GA solution and the LOCO
solution. The beam loss rates for the best solution found
using GA are compared with the solution found using
LOCO in Table I. The average vertical beam size and
emittance ratio of the ring with these two solutions are also
calculated from the fitted model using LOCO.
The normalized beam loss rate measured with the GA

solution is increased by 17.9% from that with the LOCO
solution. According to the scaling law in Eq. (2), this is
translated to the reduction of vertical beam size by 15.18%.
On the other hand, the calculated values of average vertical
beam size using LOCO fitting show a 10.99% reduction of
vertical beam size for the GA solution. The discrepancy
comes from the accuracy of the fitting in LOCO, loss rates
measurement, and the assumption of the solely Touschek
effect when deriving the scaling law in Eq. (2).
With the GA based optimization, we have found a

solution that outperforms the LOCO solution. But the
LOCO correction only takes about 15 min compared to
the 9-hr run of the GA optimization. We can significantly
reduce the time of GA optimization to be within 2 hr by
including the LOCO solution in the first generation. The
performance and speed of genetic algorithms highly

depends on specific problems and can be adjusted with
mutation and crossover tuning parameters. Although we
have not conducted a thorough study of setting the most
appropriate tuning parameters for our problem, we have
programmed the code to dynamically adjust these factors
according to the diversity of the population in the new
generation. It appears that the optimization progresses
faster by promoting a more global search with relatively
small mutation tuning parameters in early generations.
When the population starts to cluster toward the optimum
region, it helps to save time by using a large mutation
tuning parameter or by shrinking the search space. Without
setting the tuning parameters properly, we have observed
early convergence of the program, which causes the failure
of meeting our goal within a reasonable amount of machine
running time.

V. DISCUSSION AND CONCLUSION

Genetic algorithms are believed to be especially suitable
for problems with high complexity where traditional
gradient based search methods normally fail to optimize.
As the storage ring lattice is well designed, the coupling
optimization of the ring tends to be a well behaved
problem. This is evident from the final solution: out of
13 skew quadrupoles, only 3 are required to be set above
5 A, while most of the others are near zero. This fact
weakens the advantage of using GA based optimization. A
thorough simulation study has been carried out in SPEAR3
in parallel to comparing different algorithms for real time
optimization of the beam loss rate [27]. After comparing
other techniques including the Nelder-Mead simplex
method, Powell’s conjugate direction method, and a modi-
fied conjugate direction method, it is found that for this
particular problem, GA lacks speed for real time optimi-
zation, and its performance is sensitive to the random noise
of the measured data. Nevertheless, with machine based
GA, we are able to find a good solution regardless the
time spent. Also, we have more confidence in its global
validation. In addition, one should note that machine based
GA may show advantage in speed over the traditional
gradient based techniques when optimizing problems with
more decision variables. As long as the corresponding
hardware can be set roughly simultaneously, the time cost
by machine based GA is independent of the number of
decision variables. However, most traditional algorithms
are scaled with the number of decision variables in high
order. Thus, machine based GA can be more valuable for
large machines.
Genetic algorithms are also usually considered to be

good candidates for multiple objective optimizations
and not appealing when dealing with single objective
optimization such as decision making problems.
However, unlike a definite lattice model in simulation,
the real machine lattice varies with time, which makes the
accurate prediction of objective functions difficult even for

TABLE I. Comparison of optimized solutions from LOCO
and GA.

LOCO GA

σ̄y (μm) 7.9617 7.087
Emittance ratio 0.0605% 0.0461%
Normalized beam loss rate 2.07 2.44
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a single objective function, for example, the luminosity of a
high energy collider. As a result, it is normally impractical
to find the exact best solution. Therefore, it is required the
one searches for a better solution from time to time with a
certain algorithm, where the GA technique can be a
powerful candidate. Our experimental results illustrate that
with proper hardware, fast data acquisition capability, and
solid underlying physics, GA can be successfully used for
problems of machine based optimization, even beyond the
particle accelerator community. We believe this is the most
important contribution of this work.
However, the GA techniques we used are far from being

refined. In future study, we will focus on improvements in
speed and robustness. One possible approach is to create a
hybrid algorithm that combines both GA and one of the
traditional techniques for a fast local search. When blend-
ing the two algorithms, it is challenging to maintain each
one’s original advantage, which requires thorough study.
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