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In circular machines, nonlinear dynamics can impact parameters such as beam lifetime and could result

in limitations on the performance reach of the accelerator. Assessing and understanding these effects in

experiments is essential to confirm the accuracy of the magnetic model and improve the machine

performance. A direct measurement of the machine nonlinearities can be obtained by characterizing

the dependency of the tune as a function of the amplitude of oscillations (usually defined as amplitude

detuning). The conventional technique is to excite the beam to large amplitudes with a single kick and

derive the tune from turn-by-turn data acquired with beam position monitors. Although this provides a

very precise tune measurement it has the significant disadvantage of being destructive. An alternative,

nondestructive way of exciting large amplitude oscillations is to use an ac dipole. The perturbation

Hamiltonian in the presence of an ac dipole excitation shows a distinct behavior compared to the free

oscillations which should be correctly taken into account in the interpretation of experimental data. The

use of an ac dipole for direct amplitude detuning measurement requires careful data processing allowing

one to observe the natural tune of the machine; the feasibility of such a measurement is demonstrated

using experimental data from the Large Hadron Collider. An experimental proof of the theoretical

derivations based on measurements performed at injection energy is provided as well as an application of

this technique at top energy using a large number of excitations on the same beam.
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I. INTRODUCTION

The recent start-up of the Large Hadron Collider (LHC)
triggered renewed interest in nonlinear diagnostics for
high-energy operation. Nonlinearities can be the source
of resonance excitation and lead to a reduction of the
dynamic aperture and poor beam lifetime. Although non-
linear field errors and related beam dynamics are generally
optimized during the design phase of the accelerator, beam
based diagnostics allow one to validate the models and
their predictive capabilities for future upgrades. In addi-
tion, the efficiency of eventual corrections can be directly
assessed by looking at the detuning coefficients. On the
other hand, beam stability in the presence of collective
effects such as impedance relies on Landau damping.
Nonlinearities may be purposely introduced to mitigate
these effects and possible interference with the machine
nonlinearities could lead to inadequate magnet settings and
misinterpretation of experimental results such as stability
threshold.

A direct measurement of the machine nonlinearities can
be obtained by characterizing the dependency of the tune

as a function of the amplitude of oscillations. The conven-
tional technique is to excite the beam to large amplitudes
with a single kick and derive the tune from turn-by-turn
data acquired with beam position monitors (BPMs).
Although this provides a very precise tune measurement
it has the significant disadvantage of being destructive and
difficult to apply at high energies. An alternative, non-
destructive way of exciting large amplitude oscillations is
to use an ac dipole.
Linear optics measurements using an ac dipole have

been successfully achieved in various machines [1–3].
The possibility of using an ac dipole for nonlinear diag-
nostics was described in [4,5] and a first experimental
application measuring the resonance driving terms is de-
scribed in [6]. Finally, an indirect amplitude detuning
measurement was achieved at the Tevatron [2] using an
ac dipole under some approximations described below.
However, past studies seem to assume that the effect of

the ac dipole on the amplitude detuning is negligible and
that one can approximate the motion undergoing forced
oscillations to the case of free oscillations as long as linear
optics distortions introduced by the ac dipole are small. In
addition, the Tevatron studies [2] consist of an indirect
measurement fitting the measured oscillation amplitude
with theoretical expectations from the free oscillation
model in the presence of a strong octupolar field and a
drive frequency.
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The main objective of this paper is to present a new
theory with experimental verification and demonstrate the
feasibility of direct amplitude detuning measurement using
an ac dipole as an efficient method to measure the machine
nonlinearities at high energy. Although a comparison with
the LHC nonlinear model is provided in Sec. VIII C to
assess the validity of the measurement, it is not our purpose
to provide a detailed evaluation of the LHC multipole
errors.

The first three sections are dedicated to the theory of
particle motion undergoing driven oscillation. The pertur-
bation Hamiltonian in the presence of an ac dipole excita-
tion is derived and a distinct behavior compared to the free
oscillations is demonstrated. It will be shown that the
correction factors to be applied for the case of driven
oscillation are well defined by the theory. A measurement
of the tune as a function of the driven oscillation amplitude
can therefore be considered as a direct amplitude detuning
measurement. Section V presents the validation of the
theory with tracking simulations and Sec. VI discusses
the experimental protocol. An experimental verification
of the theory at injection energy is presented in Sec. VII
and a demonstration of the feasibility of the technique at
high energy is presented in Sec. VIII.

II. LINEAR MOTION WITH AC DIPOLE

The Hamiltonian describing the linear motion of a single
particle undergoing an ac dipole excitation can be ex-
pressed as [5]

H0ðx; px; s; tÞ ¼ 1
2p

2
x þ 1

2KxðsÞx2 þ �ðs; tÞx; (1)

where x and px are the transverse coordinates, s the
longitudinal coordinate, KxðsÞ is the focusing strength,
and �ðtÞ is the time dependent kick from the ac dipole
given by

�ðs; tÞ ¼ qBL

p
�Diracðs� sDÞ cosð2�QDtþ ’DÞ; (2)

where BL is the integrated field amplitude, q is the charge
of the particle, p its momentum, sD, QD, and ’D are the
location, the drive tune, and initial phase of the ac dipole,
and �Dirac is the Dirac � function. As shown in [4], an
exact solution can be found for the particle motion at the
location of the ac dipole for a given turn number T. Using
the Courant-Snyder variables ðx̂; p̂xÞ this solution can be
written as

x̂ðTÞ � ip̂xðTÞ ¼
ffiffiffiffiffiffiffi
2Jx

p
eið2�QxTþc x0Þ

þ ��ei2�QDT � �þe�i2�QDT; (3)

where Jx and c x0 are the linear invariant and the phase
given by the initial conditions of the test particle and
depending on the adiabaticity of the ramping process of
the ac dipole. �� is defined as

�� ¼ ffiffiffiffiffiffiffi
�D

p qBL

p

e�ið�Q��’DÞ

4 sinð�Q�Þ ; (4)

where �D is the � function at the ac dipole location and
Q� ¼ QD �Qx with Qx the natural tune. When the
ac dipole is driven at a tune close to Qx, which is generally
the case, �� is much larger than �þ and Eq. (3) can be
reduced to

x̂ðTÞ � ip̂xðTÞ �
ffiffiffiffiffiffiffi
2Jx

p
eið2�QxTþc x0Þ þ ��ei2�QDT: (5)

In the case of free oscillations, one can define the
parametrized transverse coordinates x and y, which will
be used later in this paper

xðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jx�xðsÞ

q
cos�x; (6)

yðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jy�yðsÞ

q
cos�y; (7)

where �x and �y are the angle variables and Jx and Jy are

the invariant of the motion. In case the ac dipole is driving
the beam in the horizontal plane, an equivalent parametri-
zation exists [2] and the x coordinate becomes

xDðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jx�xðsÞ

q
cos�x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A�0

xðsÞ
q

cos�D; (8)

where A and �D are the action and angle variables of the
forced oscillations and �0ðsÞ is the � function modified by
the ac dipole. Here we make the approximation that the
forced oscillation term only depends on �D as was pre-
viously done in [5]. Jx is determined by the adiabaticity of
the ramping process of the ac dipole, i.e., for a perfectly
adiabatic process Jx ¼ 0. In reality, the presence of non-
linearities or nonzero chromaticity will degrade the adia-
baticity of the ramping process [7]. The term related to Jx
therefore appears and we could expect to observe a spectral
line related to the natural tune when performing a
frequency analysis of the beam motion.
The � functions of a particle undergoing driven oscil-

lation (�0) differs from those of the same particle under-
going free oscillation. A detailed analysis and computation
of this effect can be found in [2]. The new � functions of
the driven particle are given by

�0ðsÞ ¼ 1þ �2
D � 2�D cosðc DÞ
1� �2

D

�ðsÞ; (9)

where

�D ¼ sinð�Q�Þ
sinð2�Qx þ �Q�Þ ; (10)

and c D relates to the phase advance with respect to the ac
dipole location. As an example, typical parameters for the
LHC collision optics are Qx ¼ 0:31 and Q� ¼ 0:01 which
gives a peak ð�0 � �Þ=� due to the ac dipole of about 7%.
This difference can significantly vary depending onQx and
Q� and should be reevaluated for other configurations.
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III. AMPLITUDE DETUNING
WITH OCTUPOLAR FIELD

The magnetic field of a multipole of order m is given by

Byðx; y; sÞ þ iBxðx; y; sÞ ¼ ½bmðsÞ þ iamðsÞ�ðxþ iyÞm�1;

(11)

where the coefficients bmðsÞ and amðsÞ are the so-called
normal and skew coefficients expressed as

bmðsÞ ¼ 1

ðm� 1Þ!
@m�1By

@xm�1

��������ð0;0;sÞ
; (12)

amðsÞ ¼ 1

ðm� 1Þ!
@m�1Bx

@xm�1

��������ð0;0;sÞ
: (13)

This leads to the expression of the total Hamiltonian
which becomes H0 þHp where Hp is the perturbation

Hamiltonian expressed as

Hp ¼ q

p
Re

�X1
m¼3

1

m
½bmðsÞ þ iamðsÞ�ðxþ iyÞm

�
: (14)

In the following, we will neglect all the contributions from
x=y coupling. For clarity we introduce the variable H2n

corresponding to the terms of the perturbation Hamiltonian
related to the multipole of order 2n. When the beam is
oscillating at reasonable amplitudes the detuning is domi-
nated by the octupolar term. Expanding Hp and keeping

only the b4 terms the perturbation Hamiltonian H4 for a
normal octupole (n ¼ 2) is given by

H4 ¼ q

p

b4ðsÞ
4

ðx4 � 6x2y2 þ y4Þ; (15)

where x and y come from Eqs. (7) and (8). The detuning
can be derived analytically by averaging the perturbation
Hamiltonian over all the phase variables and computing the
integrals,

�Qx;y ¼ 1

2�

I @

@Jx;y
hH2nids: (16)

Inserting Eqs. (7) and (8) into Eq. (15) and making use
of the properties of the cosine function we get

hH4i ¼ q

p

b4ðsÞ
4

½32�xðsÞ2J2x þ 3
2�yðsÞ2J2y þ 3

2�
0
xðsÞ2A2

þ 6�xðsÞ�0
xðsÞJxA� 6�xðsÞ�yðsÞJxJy

� 6�0
xðsÞ�yðsÞAJy�: (17)

Under the approximation that the � functions and b4 are
constant over the length of the magnet, this leads to the
expressions of the amplitude dependent tunes,

�Qx ¼ q

p

3B4

8�
ð�2

xJx þ 2�x�
0
xA� 2�x�yJyÞ; (18)

�Qy ¼ q

p

3B4

8�
ð�2

yJy � 2�y�
0
xA� 2�x�yJxÞ; (19)

where B4 is the coefficient of the integrated field. The
amplitude detuning for a purely horizontal ac dipole
excitation (Jy ¼ 0) is then expressed as

�Qx ¼ q

p

3B4

8�
ð�2

xJx þ 2�x�
0
xAÞ; (20)

�Qy ¼ � q

p

3B4

8�
ð2�0

x�yAþ 2�x�yJxÞ: (21)

From these expressions it is seen that there is a distinct
behavior of the amplitude detuning for free oscillations
(A ¼ 0, �Qx / �2

xJx) and for driven oscillations (A � Jx,
�Qx / 2�x�

0
xA). Assuming�0 � � the direct term�Qx is

larger by a factor 2 while the cross term �Qy is not

affected. This will have to be taken into account when
analyzing the data.

IV. GENERALIZATION TO
MULTIPOLES OF ORDER m¼ 2n

Although it is more difficult to measure the contribution
of multipoles of order higher than the octupole, it is inter-
esting to generalize the above calculations. Multipoles of
order 2nþ 1will not contribute to the first order amplitude
detuning. We will therefore restrict ourselves to the calcu-
lation for multipoles of order 2n. The average value of a
cosine to the powers 2n and 2nþ 1 can be expressed as

hcosðxÞ2ni ¼ 2�2n
2n

n

 !
; hcosðxÞ2nþ1i ¼ 0; (22)

where

2n

n

 !

is the binomial coefficient Cn
2n. From Eq. (14), the pertur-

bation Hamiltonian of a normal multipole of order 2n is
expressed as

H2n ¼ qb2n
2np

Re½ðxþ iyÞ2n� ¼ qb2n
2np

Xn
k¼0

2n

2k

 !
x2n�2ki2ky2k:

(23)

Using Eq. (22) the average Hamiltonian is given by

hH2ni ¼ qb2n
2np

Xn
k¼0

2�n
2n

2k

 !
2n� 2k

n� k

 !

� 2k

k

 !
i2k�xðsÞn�k�yðsÞkJn�k

x Jky: (24)

The amplitude dependent tunes can be calculated using
Eq. (16) and are expressed as
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�Qx ¼ qB2n

2np

1

2�

Xn�1

k¼0

2�n
2n

2k

 !
2n� 2k

n� k

 !

� 2k

k

 !
i2k�n�k

x �k
yðn� kÞJn�k�1

x Jky; (25)

�Qy ¼ qB2n

2np

1

2�

Xn
k¼1

2�n
2n

2k

 !
2n� 2k

n� k

 !

� 2k

k

 !
i2k�n�k

x �k
yJ

n�k
x kJk�1

y : (26)

One can see from these expressions that for multipoles
of order 2n > 4 the direct and cross term of the amplitude
detuning will not strictly depend on Jx and Jy as was the

case for 2n ¼ 4. However, when measuring the amplitude
detuning, only one plane is generally excited. Under the
assumption that coupling is negligible we have Jx � Jy in

case of horizontal excitation and can make the approxima-
tion that all the terms depending on Jy are negligible. The

amplitude dependent tunes are then reduced to

�Qx ¼ qB2n

2np

2�n

2�

2n

0

 !
2n

n

 !
�n

xnJ
n�1
x

¼ qB2n

2np

2�n

2�

ð2nÞ!
ðn� 1Þ!n!�

n
xJ

n�1
x ; (27)

�Qy ¼ �qB2n

2np

2�nþ1

2�

2n

2

 !
2n� 2

n� 1

 !
�n�1

x �yJ
n�1
x

¼ �qB2n

2np

2�n

2�

ð2nÞ!
ðn� 1Þ!ðn� 1Þ!�

n�1
x �yJ

n�1
x : (28)

When the beam is excited by an ac dipole instead of a
single kick, the variable x has to be replaced by xD as
defined in Eq. (8). The averaged Hamiltonian in Eq. (24)
now becomes

hH2ni ¼ qb2n
2np

Xn
k¼0

2n

2k

 !
2k

k

 !
2�ki2k�yðsÞkJkyhx2n�2k

D i;

(29)

where

hx2n�2k
D i ¼ Xn�k

l¼0

2n� 2k

2l

 !
2n� 2k� 2l

n� k� l

 !

� 2l

l

 !
2�nþk�xðsÞn�k�l�0

xðsÞlJn�k�l
x Al; (30)

where only even powers of l were retained, odd powers
vanish due to the averaged cosine. The amplitude depen-
dent tunes in the presence of an ac dipole excitation are
again computed using Eq. (16) and are expressed as

�Qx ¼ qB2n

2np

1

2�

Xn�1

k¼0

2n

2k

 !
2k

k

 !
2�ni2k�k

yJ
k
y

� Xn�k�1

l¼0

2n� 2k

2l

 !
2n� 2k� 2l

n� k� l

 !

� 2l

l

 !
�n�k�l

x �0l
x ðn� k� lÞJn�k�l�1

x Al; (31)

�Qy ¼ qB2n

2np

1

2�

Xn
k¼1

2n

2k

 !
2k

k

 !
2�ni2k�k

ykJ
k�1
y

� Xn�k

l¼0

2n� 2k

2l

 !
2n� 2k� 2l

n� k� l

 !

� 2l

l

 !
�n�k�l

x �0l
x J

n�k�l
x Al: (32)

In the case of free oscillations, we have A ¼ 0 and only
the terms for l ¼ 0 survive, in which case we recover
Eqs. (25) and (26). When amplitude detuning is measured
with the ac dipole we have A � Jx and A � Jy and make

the approximation that all the terms depending on Jx and Jy
are negligible. In this case the amplitude dependent tunes
are reduced to

�Qx ¼ qB2n

2np

2�nþ1

2�

2n

2n� 2

 !
2n� 2

n� 1

 !
�x�

0n�1
x An�1

¼ qB2n

2np

2�n

2�

ð2nÞ!
ðn� 1Þ!ðn� 1Þ!�x�

0n�1
x An�1; (33)

�Qy ¼ � qB2n

2np

2�nþ1

2�

2n

2

 !
2n� 2

n� 1

 !
�y�

0n�1
x An�1

¼ � qB2n

2np

2�n

2�

ð2nÞ!
ðn� 1Þ!ðn� 1Þ!�y�

0n�1
x An�1: (34)

Using n ¼ 2 in Eqs. (27), (28), (33), and (34) we recover
the free oscillation and ac dipole terms for an octupolar
field derived in the previous section. Assuming �0

x ¼ �x

we can conclude, from the comparison of the derivation for
free oscillation, Eqs. (27) and (28), and ac dipole, Eqs. (33)
and (34), that for multipoles of order 2n, the direct term of
the amplitude detuning measured with an ac dipole will be
a factor n larger than what is expected for free oscillations
while the cross terms in both cases are equal. Under the
approximation �0

x ¼ �x the correction factors to be ap-
plied when measuring the detuning as a function of A are
therefore well defined and the measurement of amplitude
detuning with ac dipole can therefore still be considered as
direct.
It should be noted that these theoretical derivations do

not include any second order effects. In reality, second
order effects can have a sizable effect and should be taken
into account when comparing the model and experimental
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data. The comparison between the model and experimental
data presented in Sec. VIII was performed by tracking the
full LHC lattice in MAD-X [8] which takes into account
higher order terms. Table II provides a direct comparison
between the free oscillation and ac dipole models and
confirms the theoretical expectations. This indicates that
no significant additional discrepancies between free and
forced oscillations amplitude detuning measurements
should be expected from second order effects.

V. SINGLE PARTICLE TRACKING

In order to validate the above calculations a simple
tracking codewas built. A single particle is tracked through
a linear betatron map to which an ac dipole and an arbitrary
number of multipoles of order 2n are added. This simple
tracking code was benchmarked with MAD-X in the case of
a single octupole as the only source of nonlinearity. The
tunes at zero amplitude used in the following examples are
Qx ¼ 0:31 and Qy ¼ 0:32 and the excitation is applied in

the horizontal plane only with Q� ¼ 0:01. The ac dipole
ramp and flattop both last 2000 turns. A small initial
amplitude was applied in the vertical plane in order to
measure the tune from the turn-by-turn data. The model
uses Eqs. (33) and (34) where the effect of the ac dipole on
the � function was also included. The amplitude of oscil-
lations corresponds to half the peak-to-peak amplitude of
the turn-by-turn data over the ac dipole flattop and the
natural tunes are computed using an interpolated fast
Fourier transform (FFT) over the whole ac dipole flattop.
The tracking was performed up to unrealistic amplitudes
and the value of the field components were set in order to
clearly observe the effect of higher order multipoles.

The results of the single particle tracking for a single
multipole of order 2n are shown in Figs. 1 and 2. Even
though we assumed that all the Jx and Jy terms are

negligible, tracking data are in excellent agreement with
theoretical predictions up to a B10 field component. This
confirms that the direct amplitude detuning from a multi-
pole of order 2n field has to be corrected by a factor nwhen
measured with an ac dipole while the cross term is directly
measured.
As shown in Figs. 3 and 4, the behavior for the combined

effect of nonlinear field components up to B10 is similar to
the one for a single multipole. The cross term is consistent
with the free oscillation model whereas the coefficients of
the direct term have to be corrected by a factor n in order to
reach agreement. Small discrepancies are observed at large
amplitudes which could be due to higher order effects or
the approximations made in the model. These are not so
relevant in real experiments.

 0.31

 0.3105

 0.311

 0.3115

 0  5  10  15  20  25

Q
x

Horizontal oscillation amplitude [σ]

B4 B6 B8 B10

Tracking
Theory

FIG. 1. Direct term of amplitude detuning for a single multi-
pole of order 2n. The red dots are the result of the tracking and
the black lines are the theoretical predictions for an ac dipole
excitation (free oscillations term corrected by n).
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 0  5  10  15  20  25
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Horizontal oscillation amplitude [σ]

B4 B6 B8 B10

Tracking
Theory

FIG. 2. Cross term of amplitude detuning for a single multi-
pole of order 2n. The red dots are the result of the tracking and
the black lines are the theoretical predictions for an ac dipole
excitation (equal to the free oscillations term).
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 0.3135

 0.314

 0  2  4  6  8  10  12  14

Q
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Horizontal oscillation amplitude [σ]
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Theory (ac dipole)

Theory (Single kick)

FIG. 3. Direct term of amplitude detuning for the combined
effect of nonlinear field components up to B10. The red dots are
the result of the tracking, the blue line is the model prediction for
free oscillation, and the black line represents the model with all
coefficients rescaled by n. Tracking data are consistent with the
model for free oscillation corrected by a factor n.
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VI. DATA PROCESSING AND ANALYSIS

Approximately 500 BPMs are spread around each of the
LHC rings providing as many independent signals to be
combined for frequency analysis. In order to compute the
amplitude detuning both the action and the natural tune
must be derived from the turn-by-turn data. This is done
using an analysis package developed for the LHC. A
description can be found in [3,9]. The action is derived
from the measured � functions and represents the average
of all BPMs in the ring. The natural tune measurement is
extracted from a frequency analysis of the LHC BPMs and
will be described in more detail in the following section.

BPMs could be malfunctioning or subject to noise that
can degrade the measured signals. This is particularly
relevant in the case of an ac dipole excitation where the
frequency spectrum is dominated by the drive frequency.
The natural tune peak amplitude is typically a few orders of
magnitude smaller than the ac dipole peak. The first step in
the analysis is therefore to perform a singular value decom-
position (SVD) analysis allowing to remove the faulty
BPMs and retain only the real physical modes of the
beam, removing those related to noise as described
in [10].

The SVD of an arbitrary matrix M is given by

M ¼ U�VT ¼ X
i

ui�i�
T
i ; (35)

where ui and �i are the normalized eigenvectors of MMT

and MTM, respectively. � is a diagonal matrix of singular
values �i. Performing an SVD analysis of a matrix com-
bining the turn-by-turn data from all ring BPMs, one can
therefore extract a collection of singular vectors character-
izing the temporal and spatial variation of modes, which
describe the beam motion. Only the dominant modes are
representative of the real physical motion of the beam.

Performing a truncation over the singular values and in-
verting the SVD transformation therefore allows one to
restore the turn-by-turn data from which the irrelevant
modes are removed, and hence reduce the noise floor of
the frequency spectrum. We can define the SVD cut as the
number of singular values considered for the analysis.
The effect of the SVD preprocessing of the data is

illustrated in Fig. 5 where it is seen that an SVD cut of
10 is necessary to measure a clean natural tune signal
above the noise floor. The data set shown on this plot is
for an excitation amplitude of 1�. Once the data is cleaned,
the natural tune seen by each of the available BPMs is
computed using an interpolated FFT algorithm. The global
tune of the machine and its statistical error bar are derived
from the mean and standard deviation of these values.
Typical tune distributions obtained for the LHC are shown
in Fig. 6 where it is seen that a proper cleaning of the raw
turn-by-turn data not only allows one to observe the natural
tune but also significantly improves the resolution of the
measurement.
As mentioned in Sec. II, the observation of the natural

tune spectral line relies on the fact that the ac dipole is not
perfectly adiabatic. The nonadiabaticity of the ramping
process is mostly driven by the machine nonlinearities
and should increase with the oscillation amplitude. In
case of strong nonadiabaticity, the approximation Jx � A
does not hold anymore and the theoretical derivations
presented in Sec. IV cannot be applied. The relative am-
plitudes of the natural tune and drive frequency spectral
lines give a good measurement of the importance of this
effect. This is illustrated on the top plot of Fig. 7 where the
ratio of these spectral lines in both planes is shown as a
function of the horizontal oscillation amplitude. The ratio
in the horizontal plane, in which the ac dipole kick strength
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was scanned, remains constant indicating that the non-
adiabaticity of the ramping process approximately scales
with the oscillation amplitude. In the vertical plane,
although the driven Qy action is constant as shown on

the bottom plot of Fig. 7, this ratio increases during the
scan. This increase can therefore be attributed to coupling,
i.e., the horizontal ac dipole also excites the vertical plane.

The example shown here is for data taken at top
energy presented in Sec. VIII. This verification was
performed for all the data sets presented in this paper
and it was found that in all cases the natural tune
amplitude is within a few percents of the drive frequency
amplitude. The net effect on the total action can there-
fore be considered as negligible and should not affect the
amplitude detuning measurement.

VII. EXPERIMENTAL
VERIFICATION OF THE THEORY

Nonlinear beam optics measurements were performed
for Beam 2 at the LHC injection energy (450 GeV) during
which both the ac dipole and a single kick were used to
excite the beam [11]. Comparing the detuning coefficients
measurements with both methods provides a direct valida-
tion of the theoretical derivations from Secs. III and IV.
The original objective of these experiments was not to
measure amplitude detuning with ac dipole or demonstrate
the related theory. Only one useful data set could be
extracted from these experiments for this purpose. The
results are shown in Fig. 8 where a distinct behavior of
the amplitude detuning measured with the ac dipole and a
single kick is clearly observed.
Table I summarizes the results obtained with ac dipole

excitation and single kick excitation. In this example the
detuning is dominated by the octupolar term and a simple
parabolic fit was applied to find the coefficients. The un-
certainties shown in the first two rows of Table I account
only for the statistical error bars from the parabolic fits.
The theoretical derivations in Secs. III and IV were done
under the approximation that �0 ¼ �. Applying Eq. (9) to
the experimental conditions (Qx ¼ 0:28 and Q� ¼ 0:01),
one can derive an upper limit of 6% for the systematic
error to be applied to theoretical predictions from Sec. III.
The measured direct term of the detuning differs by a
factor 2:07� 5:0% and the cross terms by a factor
0:95� 13:2% while the theory predicts ratios of 2.0 for
the direct term and 1.0 for the cross term in the case of
octupolar detuning. The measured values are therefore
consistent with theoretical expectation. This constitutes
the experimental verification of the theory presented in
this paper.
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Detailed nonlinear optics measurements at injection
energy and comparison with the LHC nonlinear model
can be found in [12]. Amplitude detuning measurements
based on single kick data were performed before and after
nonlinear optics corrections. The measurements and the
model agree within 10%–20% for nominal injection set-
tings (strong octupoles).

VIII. APPLICATION AT TOP ENERGY

Amplitude detuning measurements with ac dipole were
performed at the LHC top energy of 4 TeV [13]. Squeezed
optics with �� ¼ 0:6 m in IR1 and IR5 (IR stands
for insertion region) were used for these measurements.
The experimental data presented in this section were
acquired during the same fill taking full advantage of the

nondestructive properties of ac dipole excitation. Since it
was not possible to acquire single kick data during this
experiment, the experimental results are compared to the
model. A detailed description of how the model was built is
therefore provided in this section. Difficulties related to
nonlinear resonances encountered during this measure-
ment will be discussed.

A. Modeling the LHC in MAD-X

The model of the LHC has been developed using MAD-X

and includes our best knowledge of the nonlinear sources.
The model is constructed using the thin lens approxima-
tion, to which the measured magnetic errors (generated by
the Windows Interface to Simulation Errors, WISE [14]) of
order ðB3; A3Þ up to ðB15; A15Þ in the main bends (MB),
main quadrupoles, insertion quadrupoles, and insertion
dipoles are applied. The B2 and A2 errors are assumed to
be well corrected. The spool piece magnets (which correct
for the errors in the MB), and the IR correctors are set in
the model to reproduce the conditions during the measure-
ment. The status of the nonlinear correctors in the IRs
during the measurement was with corrections applied for
the sextupolar and normal-octupolar errors in IR1, and the
sextupolar errors in IR5. The status of the spool pieces was
nominal operational settings with the exception of mal-
functioning B4 circuits in three arcs, which were at zero
field. The crossing angles and separation bumps present
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TABLE I. Octupolar term given by the fit results ac dipole and
single kick data at injection energy. The errors given in this table
represent the fit errors. The predicted ratio represents theoretical
expectations for octupolar detuning.

@Qx=@2Jx [m�1] @Qy=@2Jx [m�1]

ac dipole �20507� 4:0% 6627� 11:5%
Free oscillation �9918� 3:0% 6944� 6:5%
Measured ratio 2:07� 5:0% 0:95� 13:2%
Predicted ratio 2.00 1.00
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during the measurements are incorporated. The orbit is
corrected to zero and the coupling, tune, and chromaticity
are matched to the measured values. The detuning may
then be determined using the PTC_NORMAL module in
MAD-X [15], or from tracking, to enable a comparison

with the measured data.
The dominant source of the uncertainty in the model

seems to be the amplitude and phase of the linear coupling.
While we may characterize the coupling by the value
measured with the LHC base band tune (BBQ) system
[16], local sources mean the amplitude and phase of the
linear coupling resonance driving terms vary around the
ring. As yet we do not have a coupling model of the LHC
which accurately reproduces this variation. To assess the
uncertainty in the modeled anharmonicities due to the
linear coupling, the matching targets of the coupling am-
plitude and phase were varied. The coupling amplitude was
varied randomly with a Gaussian distribution of� ¼ 0:002
centered on 0.003 (the value measured by the BBQ), and
truncated at 1�. The coupling phase was varied randomly
on an even distribution between 0 and 2�.

From these random parameters we produced 1000 in-
stances of the LHC, and analyzed the detuning in each
case. The results are presented in Fig. 9.

We observe a substantial distribution in the measure-
ments, with a standard deviation of approximately 20% for
the term @Qx=@	x and of approximately 	100% for the
term @Qy=@	x. These results were used as uncertainties in

Fig. 13 where the measurements are compared to the
model.

It is worth recalling that during these measurements the
dominant sources of amplitude dependent detuning in the
LHC (notably the Landau octupoles and the octupolar
errors in the arc dipoles and the triplets) were either
switched off or partially corrected. This leaves the smaller
and less well understood errors to drive the detuning: this
clearly limits our ability to accurately reproduce the non-
linear optics during these measurements. Other sources of
uncertainty related to misalignments and orbit effects
may also apply. These sources have not been included in
these simulations due to technical limitations with MAD-X

and PTC.

B. Impact of nonlinear resonances

In some cases, nonlinear resonances can be excited and
bias the analysis. These resonances are described by [5,7]

nQx þmQy þ lQxD þ kQyD ¼ u; (36)

where n, m, k, l, and u are integers and n and m cannot be
equal to zero at the same time. It is seen that in the presence
of dual plane ac dipole excitation four different frequencies
can be used to build resonance conditions whereas only
Qx and Qy are relevant for free oscillations. Nonlinear

resonances were mainly observed when trying to measure
the cross term of the amplitude detuning for which the

excitation is provided by the other plane. In some cases, the
natural tune signal was weaker than some other spectral
lines associated with nonlinear resonances resulting in the
peak finder locking onto the wrong spectral line.
Figure 10 shows a comparison between the direct term,

where the tune distribution of all BPMs is described by a
single peak, and the cross term which is much more noisy
and for which several peaks are observed even with a very
aggressive cleaning. The example shown here is a particu-
larly bad data point and is not representative of what is
generally observed. One could simply exclude these bad
data points from the final analysis but it is also possible to
identify which peak is the natural tune by comparison with
low amplitude data points. At low amplitude, the beam
samples fewer nonlinearities and therefore nonlinear reso-
nances should be weaker. From there it is possible to
identify the natural tune peak and avoid confusion with
nonlinear resonances by reducing the range over which the
peak finder will scan the spectrum around this initial guess.
This is illustrated in Fig. 11 where it is clearly observed
that for low oscillation amplitude a clean tune peak is
observed around 0.325. We can therefore conclude that
the natural tune signal is around 0.325 and the line close
to 0.324 corresponds to a nonlinear resonance. This reso-
nance was indeed identified to be an octupolar resonance of
the form Qx �Qy �QxD þQyD ¼ 0:0 (in Fig. 10, Qx ¼
0:3104, QxD ¼ 0:32, QyD ¼ 0:334 and Qres ¼ 0:3244).

The spectral line to the right of the bottom plot in Fig. 10
was identified to be another octupolar resonance.
Figure 12 shows the frequency of the spectral line

associated to this resonance as a function of amplitude
both from a direct analysis of the vertical turn-by-turn
data and derived from the measured horizontal tune and
ac dipole drive tunes for the data sets where it was possible
to observe it. Good agreement is found between the two
quantities confirming the hypothesis of the resonance.
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Although the parasitic lines could be identified and the
natural tune extracted these results also show that the beam
was driven on or close to a resonance. This may signifi-
cantly affect the results and make the theoretical approach
presented above not appropriate. One should therefore be
careful in the interpretation of the final results. Exciting the
beam with an ac dipole in one plane only could partially
mitigate the impact of nonlinear resonances by removing
one of the four tunes from Eq. (36).

C. Experimental results

As mentioned in Sec. VIII A during these measurements
the dominant sources of amplitude dependent detuning in
the LHC (notably the Landau octupoles and the octupolar
errors in the arc dipoles and the triplets) were either
switched off or partially corrected. This leaves the smaller

and less well understood errors to drive the detuning. This
clearly compromises our ability to build an accurate model
for comparison and makes the measurement more difficult
by reducing the amplitude detuning. Nevertheless, our
objective is to demonstrate the feasibility of this measure-
ment at high energy by exciting the same beam multiple
times. The comparison to the model is only done to verify
the validity of the data. An accurate evaluation of the LHC
multipole error and validation of the nonlinear model at top
energy should be performed in a dedicated experiment.
During the top energy experiment, it was possible to

acquire quality data sets only for Beam 2 horizontal ex-
citations. The results are shown in Fig. 13. The amplitude
of excitation in this case was limited to 2:5� due to losses
in the final focusing triplets in IR1 and IR5 where the �
function reaches its maximum. Although this limit in
aperture did not allow to reach very large amplitudes a
clear detuning is observed for both planes. The cross term
measurement proved to be very difficult due to the pres-
ence of nonlinear resonances and a low signal to noise
ratio. However, a very clean measurement of the direct
term of the amplitude detuning was achieved. Global cou-
pling was well corrected during the experiment and no
apparent cross talk between the horizontal and vertical
driven actions was observed as seen in Fig. 7. To reproduce
this behavior, it was decided to compare the data with the
model without coupling and use the standard deviation of
the distributions in Fig. 9 as error bars for the model. It is
worth mentioning that the detuning coefficients without
coupling are very close to the central values from the
distributions in Fig. 9.
Referring to the theoretical results presented in Secs. III

and IVof this paper, the octupolar contribution to the direct
term of the amplitude detuning should be overestimated by
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a factor 2 (n ¼ 2 for an octupolar field) when measured
with an ac dipole while the cross term should not be
affected. This is seen in Table II by comparing the free
oscillation model (PTC) and ac dipole model (MAD-X track-
ing) and was verified experimentally at injection energy as
presented in Sec. VII. Figure 13 shows the measured
amplitude detuning and the one derived from MAD-X track-
ing with ac dipole using experimental working points and
drive tunes. The fit results are presented in Table II.

Even in tracking simulations the cross term in the pres-
ence of the ac dipole deviates from theoretical prediction
by approximately 20% whereas the direct term is consis-
tent with predictions within error bars. This difference
between tracking and theoretical expectation could be
attributed to the excitation of nonlinear resonances which
are also seen in simulations and indicates that the cross
term measurement is strongly biased by these nonlinear
resonances, in which condition the beam behavior is rather
unpredictable. As shown in Sec. VIII A the cross term of
the amplitude detuning also suffers significant uncertainty
related to coupling. Under these conditions the cross term
measurement interpretation is very difficult and should not
be trusted. In future measurements, special care should be
dedicated to coupling correction and working point opti-
mization to reduce uncertainties, avoid resonances, and
allow for a more meaningful measurement.

The direct term measurement appears to be rather clean
and tracking simulations show a good agreement with
theory. The uncertainty related to coupling is of the order
of 20% which could be consistent with measurement er-
rors. In this case, the disagreement between the measure-
ment and the model can be assumed to be real and indicates
an overestimation of approximately a factor 2.5 of the
amplitude detuning in the model. The source of this dis-
crepancy is attributed to the inaccuracy of the model with
small detuning coefficient, i.e., after nonlinear corrections.
The method remains however valid demonstrating the
feasibility of amplitude detuning measurement with ac
dipole at high energy.

IX. CONCLUSION

The amplitude detuning equations in the presence of an
ac dipole have been derived using a perturbation
Hamiltonian for multipoles of order 2n. It has been

demonstrated that a direct measurement of the amplitude
detuning can be achieved using an ac dipole.
An experimental protocol has been defined and was

applied to the LHC data to provide a first direct measure-
ment of the amplitude detuning using an ac dipole. SVD
cleaning of the raw data proved to be essential to measure
the natural tune.
The theoretical derivations were demonstrated in the

case of a detuning dominated by the octupolar term at
LHC injection energy. The differences between the detun-
ing coefficients measured with an ac dipole and a single
kick are consistent with theoretical expectations.
The feasibility of the method at top energy by perform-

ing multiple large amplitude excitations on the same beam
was demonstrated. Unfortunately, the experimental proce-
dure was not optimized at the time and the measurement of
the cross term may have been biased by nonlinear reso-
nances. However, even under these conditions the mea-
surements agree with model predictions within a factor 2.5.
Provided the difficulties to build a reliable nonlinear model
for a machine as complex as the LHC, the discrepancy is
most probably dominated by deficiencies from the model.
This is nevertheless an excellent achievement for a first
attempt and represents a demonstration of the feasibility of
the method at top energy.
With some efforts, mostly in the direction of avoiding

the excitation of nonlinear resonances (single plane ac
dipole excitation, more adequate working point), and cou-
pling correction, we believe that this method could become
fully operational and provide an efficient and nondestruc-
tive tool to the measurement of amplitude detuning at high
energy.
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S. WHITE, E. MACLEAN, AND R. TOMÁS Phys. Rev. ST Accel. Beams 16, 071002 (2013)

071002-12

http://dx.doi.org/10.1103/PhysRevSTAB.5.054001
http://dx.doi.org/10.1103/PhysRevSTAB.8.024001
http://dx.doi.org/10.1103/PhysRevSTAB.8.024001
http://dx.doi.org/10.1103/PhysRevSTAB.8.024401
http://dx.doi.org/10.1103/PhysRevSTAB.8.024401
http://dx.doi.org/10.1103/PhysRevSTAB.15.091001
http://dx.doi.org/10.1103/PhysRevSTAB.15.091001
http://dx.doi.org/10.1103/PhysRevSTAB.7.042801
http://dx.doi.org/10.1103/PhysRevSTAB.7.042801

