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A sequential arrangement of three pairs of modulators and dispersive sections that performs precise

manipulation of a relativistic electron beam’s longitudinal phase space is described. We show that using

only a single laser wavelength, this scheme acts as a waveform synthesizer through linearization of local

regions of phase space to generate sawtooth, triangular, and square wave-type distributions. It also acts as

an optical analog of an rf function generator to generate intense coherent radiation that has periodic

triangle and square field profiles at the optical wavelength. The same setup can also be used to improve the

high-harmonic bunching factors in echo-enabled harmonic generation schemes up to 25% and to produce

a bunching factor above 90% at the laser fundamental wavelength for high-efficiency capture in inverse

free electron laser acceleration applications.

DOI: 10.1103/PhysRevSTAB.16.010706 PACS numbers: 41.75.Ht, 41.60.Cr, 42.65.Ky, 29.27.�a

I. INTRODUCTION

Recent advances in the generation and control of
high-brightness electron beams (e-beams) have lead to a
new class of intense accelerator-based light sources
capable of examining matter at Angstrom wavelengths
and femtosecond time scales [1]. With these advances
has come tremendous progress in the techniques of optical-
scale manipulation of the e-beam phase space. Born of
demands to improve the harmonic content, coherence, or
beam quality of the coherent radiation from these facilities,
such techniques also provide new opportunities to produce
e-beams that themselves may be of use for probing nature
at the smallest scales [2,3].

One of the more robust ways to precisely manipulate the
e-beam is through the interaction of the beam with a laser
inside a magnetic undulator. In the laser modulator (M), the
laser exchanges energy with the e-beam, generating a
sinusoidal energy modulation in the e-beam longitudinal
phase space. This stage is often followed by a dispersive
magnetic chicane (C) that introduces a momentum com-
paction factor to convert the energy modulation into a
density modulation. Several distinct combinations of this
arrangement are currently used to tailor the e-beam energy
and density distribution. High harmonics of the laser fre-
quency can be generated in the e-beam density distribution,
making this approach powerful for harmonic radiation
schemes such as high-gain harmonic generation (HGHG)
[4–6]. Higher harmonics can be obtained by cascading
HGHG with radiators [7], or by using two pairs of modu-
lators (M-C-M-C) as in echo-enabled harmonic generation
(EEHG) [8–11]. Strong density modulations imposed at

wavelengths much longer than the radiation wavelength
produce regions of high-current that can enhance the output
of self-amplified spontaneous emission (SASE) in free-
electron lasers (FELs) [12], or be used for the production
of a train of phase-locked pulses in x-ray FELs [13,14].
Increasing the density modulation—or bunching factor—
also leads to increased efficiency in inverse FEL (IFEL)
accelerator applications [15,16], where an M-C prebuncher
is used as an injector to increase the number of particles at
the optimal phase of the high-power drive laser field, which
accelerates the beam [17]. Laser modulators using higher-
order transverse interactions have also been proposed for
subfemtosecond longitudinal profile diagnostics [18], and to
perform mode–up-conversion of the laser profile for the
production of light with orbital angular momentum [19–21].
In this paper we examine an arrangement of three pairs

of laser modulators and chicanes (M-C-M-C-M-C) to per-
form precise manipulation of the electron beam for several
purposes, namely, (1) for the synthesis of optical-scale
waveforms in the phase space and in the emitted coherent
radiation, (2) as a method to enhance the high-harmonic
microbunching in EEHG, and (3) for the production of a
nearly ideally prebunched beam.We focus specifically on a
layout in which the same wavelength is used in each
section. Shown in Fig. 1, this design enables the use of a
single laser and thus eases demands on the precision timing
control of the e-beam and laser between sections. We show
that successive single-frequency modulations interspersed
by dispersive elements can be used to synthesize a train of
periodic sawtooth, triangle, and square waveforms in the
longitudinal phase-space distribution. This results in an
e-beam analog of an rf function generator, but at the optical
scale. Alternatively, the scheme can also be used to gen-
erate periodic square and triangle waveforms in the inte-
grated e-beam current distribution. In a broadband radiator,
the beam emits optical fields with temporal structures that
replicate the current profile, therefore this technique can be
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used as an optical waveform generator to produce instan-
taneous fields with square or triangle waveforms at the
optical wavelength. Both of these techniques may have
compelling applications in ultrafast science and quantum
control [22,23]. We show that a linearization procedure
also enables this technique to improve the harmonic bunch-
ing in EEHG applications. Finally, we also present a
scenario in which the beam bunching factor at the laser
frequency exceeds 90%, suggesting a way to significantly
increase the capture and acceleration efficiency in modern
IFEL applications [24].

We note that the versatile triple modulator/chicane
scheme has been explored previously in different contexts.
In [25] the setup was examined as a method to strongly up-
convert the frequency of a low-power, short wavelength
laser in order to seed an x-ray FEL. An alternate arrange-
ment (M-C-M-M-C) in which the wavelength of the third
modulation is large was described in [26] as a way to
combine EEHG with compression from a linear chirp to
produce an attosecond x-ray pulse. An extension of this
was introduced in [27] for the production of a train of
attosecond pulses for amplification in a mode-locked
x-ray FEL. In [28], an arrangement in which the first
M-C section density modulates the beam was proposed
as a technique to enhance the performance of EEHG for the
production of high harmonics. Thus, given the multitude of
optimizations and modularity of the setup, what we present
is not meant to be exhaustive, but merely to outline several
new additional advanced applications.

II. BEAM EVOLUTION AND BUNCHING FACTOR

Consider an e-beam with energy E0 described by a

Gaussian distribution function fðp0Þ ¼ ð2�Þ�1=2e�p2
0
=2,

where p0 ¼ ðE� E0Þ=�E is the scaled energy of an elec-
tron with energy E and �E is the beam energy spread. The
energy modulation and longitudinal coordinate transfor-
mations performed by N successive modulator and disper-
sion pairs is given generally by

pN ¼pN�1þAN sinðkNzN�1þ�NÞ;
zN ¼ zN�1þBNpN=k1;

(1)

where pN ¼ ðEN � E0Þ=�E is the scaled energy after the
Nth modulation at the frequency kN , AN ¼ �EN=�E is
the modulation amplitude, �N is the laser phase, and zN is

the electron’s longitudinal coordinate. The longitudinal

dispersion is BN ¼ RðNÞ
56 k1�E=E0, where RðNÞ

56 is the mo-

mentum compaction. The longitudinal complex-valued
bunching factor at the frequency k can be calculated from

bðkÞ ¼
�Z

e�ikzNffðzN; pNÞdpN

�
; (2)

where ffðzN; pNÞ is the final e-beam distribution, and

brackets denote averaging over the final coordinates,
h� � �i ¼ limL!1 1

2L

R
L
�Lh� � �idzN .

We consider a series of three modulator/dispersive
sections (N ¼ 3). The bunching factor for a beam much
longer than the modulation wavelengths has sharp peaks at
the frequencies

k � ak1 ¼ ðnþmK2 þ lK3Þk1; (3)

where K2 ¼ k2=k1 and K3 ¼ k3=k1 and n, m, and l are
integers. At this frequency the bunching is given by

bðak1Þ ¼
X1

n;m;l¼�1
bn;m;l�a;nþmK2þlK3

: (4)

A full expression for the bunching factor bn;m;l is given

in the Appendix, Eq. (A2). Concentrating on identical
wavelengths between sections, we set K2 ¼ K3 ¼ 1. The
harmonic number is therefore an integer and we can make
the replacement l ¼ a� n�m to obtain

bðak1Þ ¼
X1

n;m¼�1
bn;m; (5)

where

bn;m ¼ e��2
n;m=2þimð�2��3Þþiða�nÞ�3

� Jnð�A1�n;mÞJm½�A2ðnþmÞB2 � aA2B3�
� Ja�n�m½�aA3B3� (6)

and

�n;m ¼ nðB1 þ B2Þ þmB2 þ aB3: (7)

We have set the relative phase factor�1¼0 for convenience.

III. PHASE-SPACE WAVEFORM SYNTHESIZER

A. Synthesis with laser harmonics

Simple periodic sawtooth, triangle, and square wave-
forms are mathematically described by an infinite sum of
sine waves and their harmonics. An ideal sawtooth wave of
amplitude A and periodicity � ¼ 2�=k is obtained with the
infinite Fourier series of all harmonics,

xsawðzÞ ¼ 2A

�

X1
h¼1

ð�1Þh sinðhkzÞ
h

: (8)

A square wave is similarly expressed by a sum of only odd
harmonics,

A
1

A
2

A
3

B
1

B
2

B
3

k
1

FIG. 1. Triple modulator and chicane layout. The timing of
single laser in each section can be adjusted by adjustable phase
delay. Variable quadrupoles between bends in the chicanes
(yellow diamonds) permits reversal of the sign of the momentum
compaction.
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xsquðzÞ ¼ 4A

�

X1
h¼1

sin½ð2h� 1Þkz�
ð2h� 1Þ ; (9)

as is a triangular wave, albeit with different harmonic
amplitudes and phases:

xtriðzÞ ¼ 8A

�2

X1
h¼1

ð�1Þh�1 sin½ð2h� 1Þkz�
ð2h� 1Þ2 : (10)

Such waveforms are ubiquitous in a wide range of appli-
cations. However, the crucial feature relevant to high-
brightness beams is the potential to introduce linearity in
the phase space through harmonic modulation. This can
lead to increases in both the obtainable bunching factor in
harmonic generation schemes [29,30], and in particle
capture efficiency [17].

The triple modulator/chicane setup can be used in two
distinct ways to generate each of these waveform distribu-
tions. Conceptually, the most straightforward way is to
modulate the beam with three harmonic wavelengths with
the proper amplitudes and phases following Eqs. (8)–(10).
Figure 2 shows the resulting distributions with zero disper-
sion between modulations. The phase space evolves into a

waveform that approaches the ideal with each step, showing
distinct and increasingly flatter regions of macrolinearity.
For sawtooth and square waves, the macrolinear regions
also contain a greater fraction of electrons, which makes
them useful for further manipulation or radiation produc-
tion downstream. Consider a dispersion section (B3) placed
after the final modulation section. Dispersion by B3 ¼
�=2A of a squarewaveform distribution, for example, shifts
the flattop regions to the same phase position. This suggests
a method for creating precisely separated, quasimonoener-
getic energy bands for the amplification of subfemtosecond
pulse structures via the two-stream instability [31]. In a
sawtooth wave, the slope of the macrolinear portion ap-
proaches �k1A=�, for which a dispersion of B3 ¼ �=A1

leads to enhanced bunching from that of a single-frequency
modulator. With three sections, analysis shows that the
maximum achievable bunching at the a ¼ 1 fundamental
is �80% versus 58% for a single stage, which could im-
prove IFEL performance [17]. Used as a seed for HGHG,
such a distribution leads to marked improvement in the
high-harmonic bunching factors which relaxes demands
on the downstream radiator for the production of intense

FIG. 2. Waveform generation through harmonic modulation. Different waveforms are shown in independent rows. The left column is
the modulation by one laser, the middle column is with two lasers, and the right column is with three lasers. Top: Sawtooth wave
generation with modulations of wavelengths �1, �2 ¼ �1=2, and �3 ¼ �1=3. Here A1 ¼ 10, A2 ¼ A1=2, A3 ¼ A1=3, B1 ¼ B2 ¼ 0,
�2 ¼ �3 ¼ 0. Middle: Square wave generation with �2 ¼ �1=3, �3 ¼ �1=5, A1 ¼ 10, A2 ¼ A1=3, A3 ¼ A1=5, B1 ¼ B2 ¼ 0, �2 ¼
�3 ¼ 0. Bottom: Triangle wave with �2 ¼ �1=3, �3 ¼ �1=5, A1 ¼ 10, A2 ¼ A1=9, A3 ¼ A1=25, B1 ¼ B2 ¼ 0, �2 ¼ �, and �3 ¼ 0.
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coherent light [30]. A similar benefit is obtained in EEHG
seeding schemes, where the ultrahigh harmonics are en-
hanced by optical manipulation of the sawtooth in subse-
quent sections [29,30].

B. Synthesis with single laser

With dispersive sections between modulators however,
there is another method by which analogous such wave-
forms can be generated in the longitudinal phase space.
Further, by the transformative effects of dispersion, they
emerge using the same wavelength laser in each modulator,
which suggests an arrangement where a single laser pulse
can be used in all three sections to relax synchronization
constraints (discussed later). It allows the modulators to
have the same tuning, with the modulation amplitudes
controlled by number of periods and/or laser spot size, for
example. The concept is based on piecewise manipulation
of specific phase-space regions, and is shown in Fig. 3.

The technique is illustrated by examination of the local
phase space at each step. The energy modulation generated
by an initial sinusoidal laser field [Fig. 3(a)] creates a local
chirp in the beam as a function of z0 given by C ¼
dp1=dz0 ¼ A1k1 cosðk1z0Þ. Particles near the k1z0 ¼ 0
zero crossing have a positive chirp (C> 0), whereas those
near k1z0 ¼ �� have a negative chirp (C< 0). After
passage through the following dispersion section
[Fig. 3(b)], the region where C> 0 becomes stretched, or
decompressed, while the negatively chirped region is com-
pressed. At a dispersion strength of B1 ’ 1=A1, the nega-
tively chirped regions at k1z0 ¼ �� are fully compressed,
and half of the particles are localized to this narrowed
region of phase. The other half are stretched over the
decompressed region extending from ��1=2 to �1=2 and
form a shape that approximates a sinusoid with twice the
wavelength of �1. We see that through dispersion, the
second laser (with k2 ¼ k1) now interacts effectively like
the second harmonic frequency in this stretched region of
the phase space, and can therefore be used to partially
linearize [as shown in Fig. 3(c)] or otherwise manipulate
the local distribution in the second modulating section.
Linearization requires shifting the laser phase in the second

section by �2 ¼ � to correct the initial curvature and to
leave particles in the fully compressed regions (where the
electrons are piled up in z) essentially unaffected by the
second modulation since they are at the zero field crossing.
The same procedure can then be performed on the

electrons in the compressed region by reversing the sign
of the second dispersive section, B2 ’ �2B1, and acting on
the beam with the third modulator. Again, decompression
enables harmonic manipulation in this portion with the
third laser with frequency k3 ¼ k1 at �3 ¼ � (in phase
with the laser in the second modulator). By setting A2 and
A3 to compensate for the dominant sinusoidal curvature,
one can use this method to synthesize the linear regions of
the triangular waveform. Shown in Fig. 4, the resulting
distribution is a series of partially linearized sections with
alternating signs of local chirp. Depending on the magni-
tude of the third chicane, the final distribution is that of a
synthetic sawtooth with either left or right facing slopes, or
a nearly ideal triangular waveform.
To get a feel for the requiredmodulations and dispersions,

it is useful to track the evolution of the particles at the design
orbit (p0 ¼ 0) through the first three successive transforma-
tions. After the first modulator the electron energy is
p1 ¼ A1 sinðk1z0Þ, and after the chicane the new position
is z1 ¼ z0 þ B1p1=k1. Combining these and solving for p1

in terms of z1, the energy after the second modulation p2 ¼
p1 þ A2 sinðk1z1 þ�2Þ can be expanded near z1 ¼ 0 as

p2 ’ A2 sin�2

�
1� ðk1z1Þ2

2!
þ ðk1z1Þ4

4!
� � �

�

þ k1z1

�
A1

1þ A1B1

þ A2 cos�2

�

� ðk1z1Þ3
3!

�
A1

ð1þ A1B1Þ4
þ A2 cos�2

�
: (11)

Prior to the second modulation, a dispersion strength of

B1 ¼ 1=A1 (or Rð1Þ
56 ¼ �1E0=2��E1) results in a linear

chirp ofC ¼ A1k1=2, confirming decompression by a factor
of 2 after the chicane. The local distribution thus resembles a
subharmonic 2�1 modulation with amplitude A1. From
Eq. (11) we find that a laser phase in the second stage of

FIG. 3. Local linearization with a dispersive section between twomodulations at the samewavelength, �1. The beam is first modulated
with amplitude A1 (a), and then longitudinally dispersed by B1 ¼ 1=A1 (b). This distributes particles in the region��1=2< z1 < �1=2
along a sinusoid with wavelength 2�1 (dashed line). A subsequent smaller modulationA2 shifted by� (solid line), removes the curvature
in the decompressed region (c).
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�2 ¼ � prevents excitation of even powers of the curvature.
Note that the cubic term can be fully compensated with
A2 ¼ A1=ð1þ A1B1Þ4 ¼ A1=16. However, while this value
results in local linearity to fifth order, canceling the cubic
term by itself is not sufficient to properly correct for the
higher-order curvature near the peaks that originates from
the initial sinusoidal modulation. Thus, since the primary
function of this arrangement is to synthesize a triangular
waveform, optimization necessitates increasing either B1 or
A2 to slightly overcompensate and reduce the linear slope.
This comes at the expense of canceling the cubic term, but
leads to macrolinear regions that both closely model the
ideal waveforms and contain a larger fraction of particles
after dispersion.

A sawtooth wave can be synthesized in a similar fashion,
again with a single wavelength. Unlike previously where
the second modulation is used to compensate for curvature,
here the second modulation acts to effectively remove the
chirp at z1 ¼ ��1=2, producing a waveform similar to that
of a sawtooth generated by the first two harmonics in Fig. 2.
The phase-space evolution is shown in Fig. 5. The final
distribution (bottom right) closely approximates an ideal
sawtooth shape, and analysis shows that the maximum
fundamental bunching factor is about 80%, matching that
of the sawtooth generated with three harmonic modulations

in Fig. 2. The direction of the sawtooth is reversed by
changing the sign of the dispersion in each stage.
Finally, a more complex single-frequency manipulation

also generates a synthetic square wave distribution (Fig. 6).

FIG. 6. Synthetic squarewave generationwith threemodulations
of wavelength �1. Here A1 ¼ 10, A2 ¼ A1=4, A3 ¼ A2=16, B1 ¼ffiffiffi
3

p
�=2A1, B2 ¼ �3B1, B3 ¼ �3B2=4, �2 ¼ 0, and �3 ¼ �.

FIG. 4. Synthetic triangle or sawtooth wave generation with
three modulations of wavelength �1. The initial modulation
(top left) is weakly dispersed in the first chicane (top right).
Compensation of the curvature takes place in the second modu-
lator (middle left). Reversing the dispersion (middle right) then
enables correction of the remaining portion in the third modulator
(bottom left). The last dispersion section sets the final waveform
shape (bottom right). HereA1 ¼ 10,A2 ¼ A1=16,A3 ¼ A2,B1 ¼
�=2A1, B2 ¼ �2B1, B3 ¼ �B2=2, �2 ¼ �, and �3 ¼ �.

FIG. 5. Synthetic sawtooth wave generation with three modu-
lations of wavelength �1. Here A1 ¼ 10, A2 ¼ 3A1=4, A3 ¼ A1,
B1 ¼ �1=2A1, B2 ¼ �2B1, B3 ¼ 2B1, �2 ¼ �3 ¼ �.
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This process involves overdispersing the beam in the first
chicane to generate a nonlinear phase space. While more
complicated, the procedure can be seen to be of the same
sort as the triangular wave synthesizer. Namely, reversing
the dispersion between modulator sections allows the laser
to operate on both the positive and negative regions of local
chirp generated by the initial laser; in this case simulta-
neously. The result is a square waveform of amplitude ’ A1

and periodicity �1. It is interesting to note that the synthetic
square wave has density peaks every half period, which
leads to partial suppression of the fundamental and all
odd-bunching harmonics.

In all three waveform synthesizers, the modulation and
dispersion values scale directly with the amplitude A1 of
the initial modulation. Note that, in contrast to the triangle
and sawtooth synthesizers, the square wave synthesizer
closely resembles the overall shape of the ideal square
wave but is quantitatively different from that of modulation
from multiple laser harmonics shown in Fig. 2. By inspec-
tion one can see that, while the local regions of the distri-
bution become partially linearized, this procedure does not
separate the beam into distinct, narrow energy bands.

IV. RADIATION WAVEFORM SYNTHESIZER

While single-frequency modulations mediated by disper-
sion can synthesize simple waveform distributions in the
longitudinal phase space, here we show that the same
arrangement can also be used to generate triangular and
square densitymodulations in the beam. Because the coher-
ent fields emitted by the beam are a replica of the longitu-
dinal density profile, this allows the possibility of generating
square and triangular shaped fields at the scale of the optical
wavelength. This is enabled by the freedom one has to
control the phase and amplitude of the harmonic bunching
components by adjustment of the dispersion andmodulation
amplitudes. Optical-scale waveforms of this sort are a topic
of recent interest [32], and may be ideally suited for resolv-
ing atomic-scale processes at the subfemtosecond time
scales [22], or in control of quantum systems by matching
excitations with properly tuned spectral components [23].

The coherent electric field spectrum produced by a beam
is proportional to the beam form factor, given by the
Fourier transform of the beam distribution. Assuming a
simple model where the emission is dominated by the
longitudinal distribution of a highly relativistic beam, the
electric field spectrum is

EðkÞ ¼ EeðkÞ
Z

ffðp; zÞe�ikzdpdz; (12)

where EeðkÞ is the single particle emission kernel. If the
radiator bandwidth evenly extends over the spectral
domain of harmonics excited in the beam, EeðkÞ can be
treated as constant. This suggests the use of, for example,
coherent transition radiation or coherent edge radiation
from a bend magnet. The electric field spectrum is then

given by the longitudinal form factor, which is simply the
bunching factor bðkÞ over all frequencies by Eq. (2). By the
properties of the Fourier transform, the spatial electric field
distribution is thus simply the beam density distribution.
As a result, if the complex-valued bunching factor spec-
trum has the amplitude and phase content as defined in
Eqs. (9) and (10), the density distribution will be that of the
desired waveform.
Figures 7 and 8 illustrate the final output of different

optimizations to produce triangular and square density
distributions at the laser wavelength. The longitudinal
phase space is shown in red, and the density distribution
(found by integration over the energy) is shown in blue.
The modulus of the bunching factor spectrum is also
shown, and displays a series of harmonic peaks whose
magnitudes decrease in accord with the decreasing ampli-
tudes of the waveform harmonics. The triangular density
shape in Fig. 7 is produced by adjusting the modulating
amplitudes and dispersions to suppress the even harmonics
and to excite odd-harmonic amplitudes that decrease quad-
ratically as 1=ð2h� 1Þ2, each with alternating phase.
Similarly, the square-shaped density profile in Fig. 8 is
composed of only odd-bunching harmonics in phase, with
amplitudes that fall off as 1=ð2h� 1Þ. It is also possible to
generate symmetric cosine-series density distributions us-
ing all harmonics in phase, with amplitudes scaling as 1=h.
(These have the same Fourier expansion as sawtooth

FIG. 7. Three modulator generation of odd-harmonic bunching
that goes like b½ð2h� 1Þk1� ¼ bðk1Þ=ð2h� 1Þ2 for the emission
of triangular radiation fields. Top: Modified phase space and
current distribution with A1 ¼ 10, A2 ¼ 1:934, A3 ¼ 0:287,
B1 ¼ 0:013, B2 ¼ �0:294, B3 ¼ �0:233, �2 ¼ �3 ¼ �.
Bottom: Bunching factors compared with 1=ð2h� 1Þ2 depen-
dence of sawtooth amplitudes.
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waves, but with the sine replaced by cosine.) Finding the
proper modulation and dispersion values is just a matter of
numerically finding the values of A1, A2, A3, B1, and so on,
such that the bunching factor in Eq. (5) at a given harmonic
has the proper amplitude and phase with respect to the first
harmonic. Note that the square wave shown in Fig. 8 is
formed reasonably well with a simpler two-modulator setup
(M-C-M-C). From Eq. (12) the instantaneous field ampli-
tudes jEðzÞj calculated from the Fourier transform of the
complex bunching factor

R
bðkÞeikzdz match the shape of

their respective density modulations in blue, demonstrating
that the waveforms are generated at scale of the laser
wavelength. Note that, within the limits of this framework,
asymmetric density distributions like a sawtooth cannot be
generated in this fashion because of the symmetric way in
which the dispersion transforms the phase space.

V. ENHANCING FEL AND IFEL PERFORMANCE

A. Improved EEHG (i-EEHG)

In standard EEHG, two modulator/chicane modules
(M-C-M-C) are used to generate high harmonics in the
e-beam bunching with a small associated increase in the
total energy spread [8,9,11]. For convenience, here we
denote the amplitudes and dispersion strengths of standard
EEHG with the superscript 0 to distinguish them from
those of the present triple modulator/chicane. EEHG uses

a strong chicane in the first stage (B0
1) to turn the initial

sinusoidal modulation with amplitude (A0
1) into striated

energy bands in the phase space. These are then converted
into harmonic density peaks after the second modulation
(A0

2) and dispersion (B0
2) stage. The cubic curvature of the

sinusoidal energy distribution is ultimately what leads to

the a�1=3 scaling of the bunching factor [33]. Thus, linea-
rization of the phase space can ultimately improve the
scaling in EEHG, as described in [29,30].
With the addition of a third modulator-chicane section,

we find that the partial-linearization procedure performed
with a single wavelength can also result in improved
bunching factors in EEHG. We refer to this procedure as
i-EEHG, and the concept is illustrated in Fig. 9. The
approach follows a similar piecewise phase-space manipu-
lation as depicted in Fig. 3, but here linearization takes
place in the third modulator only after the beam has under-
gone the first two stages of EEHG manipulation. This way,
the first two-thirds of the setup is essentially standard
EEHG with A1 ¼ A0

1 and A2 ¼ A0
2, but now the third laser

modulator with A3 ¼ A2=16 is used to linearize the indi-
vidual energy bands in the decompressed portion of the
beam after the second chicane, which has strength B2 ’
�1=A2 ’ �B0

2. Reversing the dispersion in the third stage

by B3 ’ �2B2 then stands these bands upright. This results
in an enhancement of 20%–25% of the high-harmonic
bunching compared with EEHG for the same final energy
spread (Fig. 10). Inspection shows that this increase is
similar to that obtained by synthesizing a sawtooth with a
second harmonic laser in a pre-EEHG injector stage, but
here uses a single wavelength. Note that the tuning of

FIG. 9. i-EEHG compensation in third modulator.
FIG. 8. Two-modulator generation of odd-harmonic bunching
with amplitudes b½ð2h� 1Þk1� ¼ bðk1Þ=ð2h� 1Þ for the emis-
sion of square-wave fields. Top: Modified phase space and
current distribution with A1 ¼ 10, A2 ¼ 1:388, B1 ¼ 0:295,
B2 ¼ �0:551, �2 ¼ �3 ¼ 0. Bottom: Bunching factors com-
pared with 1=ð2h� 1Þ dependence of square-wave amplitudes.
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i-EEHG is relatively straightforward. For a desired
harmonic a, one can optimize the simpler standard
two-module EEHG scheme to obtain the necessary disper-
sions in the first B0

1 and second B0
2 sections. These values

are then used as offsets for the dispersions in the i-EEHG
setup surrounding the compensation section.

It is worth commenting that the final bunching factor in
i-EEHG is necessarily sensitive to timing and laser ampli-
tude jitter, particularly in the compensation section.
Figure 11 shows a map of the final bunching as a function
of A3 and �3 for the example parameters given in Fig. 10.
Clearly, the tolerances become tighter as the final harmonic
number is increased, so the jitter must be controlled at the
appropriate level for practical implementation in a given
system.

B. Adiabatic buncher

In IFELs, a high-power laser is used to accelerate a
charged particle beam inside a magnetic wiggler [15].
The beam is usually injected into the wiggler at near
relativistic speeds from a preacceleration stage, and is
captured and boosted in energy through the high-gradient
laser fields. Because the initial e-beam is evenly distributed
across the accelerating phase buckets, the capture efficiency
of single-stage IFELs can be rather poor unless the beam is
density prebunched at the laser wavelength (multistage).
Prebunching by a single modulator/chicane section can
increase the overall efficiency to near 80%, but this still
leaves a portion of the beam behind during acceleration.

With the triple modulator arrangement, however, it is
possible to further increase the bunching factor to boost the
capture efficiency. One such possibility (described above)
is the generation of a sawtooth-type distribution in the
longitudinal phase space with laser harmonics, followed
by a dispersive section. With three harmonics, this
increases the bunching to about 80% (Fig. 5). One can do
even better, however, by utilizing the dispersive sections

between modulators and using only a single laser
frequency to increase the bunching to over 90%.
In this method, each dispersion section is used to rotate

the local phase space so as to deposit the maximum number
of particles into the phase region between peaks, �=2 �
k1z � 3�=4, after each modulation. The concept is similar
to the prebunched enhanced EEHG scheme in [28], but is
repeated in each section. The evolution of the phase space
is shown in Fig. 12. After an initial modulation of A1, the
first chicane overbunches the beam with B1 ’ 2=A1. A
second, larger modulation A2 is again overbunched by
the middle chicane with the strength B2 ’ 2=A2. By the
end of the third chicane, most of the particles have been
rolled up into the center of the phase bucket, resulting in a
bunching factor of 92% at the frequency k1. The sharply
peaked density distribution is shown in Fig. 13. This beam
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FIG. 11. Bunching factor tolerances of i-EEHG in third
modulator for 50th harmonic (top) and 150th harmonic (bottom)
using parameters given in Fig. 10.

40 50 60 70

2

4

6

8

harmonic

|b
|%

140 150 160 170

1

2

3

4

5

6

harmonic

|b
|%

FIG. 10. I-EEHG compensation (red solid line) in third
modulator for (a) 50th and (b) 150th harmonic. Standard
EEHG is shown as a dashed line. Here A1 ¼ A0
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can then be injected into an optimized IFEL with drive
laser frequency k1 and efficiently accelerated. The use of
a single laser wavelength with negligible phase shift
between sections to both prebunch and accelerate the
beam suggests a simple scenario in which the high-power
drive laser performs all the manipulations in sequence.
The increasing modulation amplitudes may be optimized,
for example, by using an initially large but converging
laser spot size such that the modulating field grows in
each section and the accelerating stage is positioned
at the laser waist. Repeatability in the final bunching
depends primarily on timing control between sections.
The sensitivity of the system to the arrival phase of the
second and third lasers is shown in Fig. 14. Analysis
shows that control of each laser phase to within ��=2
is required.

VI. CONCLUSIONS AND DISCUSSION

We have examined the use of a triple modulator/chicane
arrangement to perform a variety of optical-scale manipu-
lations on a relativistic electron beam. With only a single
laser, this versatile setup can synthesize triangular, saw-
tooth, and square waveforms in the longitudinal phase
space, generate precisely tuned density distributions for
the emission of square and triangle waveforms at the
optical scale, provide moderate increase in EEHG high-
harmonic bunching, and generate bunching above 90% at
the laser fundamental frequency to enhance the efficiency
of IFEL accelerators.
In our paper we limited our analysis to cases to N � 3,

where N is the number of M-C modules. However, it is
straightforward to extend the analysis to N > 3 which will
provide more accuracy to the surgery of beam longitudinal
phase space, at the expense of more complexity in practical
implementation. For instance, analysis shows the trap
efficiency is approximately 1� 0:42N in the adiabatic
buncher, which indicates that nearly 99% of the particles
can be trapped with five M-C modules. With four M-C
modules in the i-EEHG scheme, one can linearize the
modulation in both modulators and this will further
increase the bunching factor at high harmonics.
Several considerations remain for applying these tech-

niques in practice. For instance, the chicanes convert beam
energy jitter into timing jitter which changes the phase of
the modulation in subsequent modulators. To accurately
control the phase, the beam energy jitter needs to be much
smaller than the laser energy modulation. The laser timing
between sections must also be adequately controlled
according to the demands of the particular scheme and
parameter space. It should also be mentioned that, for
most of the proposed schemes, the beam has significant
bunching at the laser frequency in the second and third
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FIG. 12. Adiabatic buncher with three modulations of wave-
length �1. Here A1 ¼ 3, A2 ¼ 3A1, A3 ¼ 3A2, B1 ¼ 1:8=A1,
B2 ¼ 2:2=A2, B3 ¼ 1:55=A3, �2 ¼ �3 ¼ 0.
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modulators. This means the beam will radiate coherent
radiation as it goes through the modulator. As the zeroth
order approximation, this effect is neglected in our analy-
sis, which is justified when the coherent radiation is much
weaker than the external laser. However, depending on
the beam peak current and external laser power, the
self-interaction between the coherent radiation and the
electron beam may need to be accounted for in some cases.
Nevertheless, the cascaded modulator-chicane modules
promise many advanced optical manipulations and may
lead to enhancement in FEL and IFEL performance.
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APPENDIX

The general form of the bunching factor at the frequency
k at the end of the last chicane section is given by the
Fourier transform of the longitudinal distribution. From
Eq. (2) for N ¼ 3 sections,

bðkÞ ¼
�Z

e�ikz3ffðz3; p3Þdp3

�
: (A1)

As in the cited references, the calculation is simplified by
transforming back to the initial variables z0 and p0, which
gives

bn;m;l ¼ e��2
n;m;l

=2þim�2þil�3Jnð�A1�n;m;lÞ
� Jm½�A2ðnþmK2ÞðB2 þ B3Þ
� lA2K3B3�Jl½�ðnþmK2 þ lK3ÞA3B3�; (A2)

with

�n;m;l ¼ nðB1 þ B2 þ B3Þ þmK2ðB2 þ B3Þ þ lK3B3:

(A3)

The total complex-valued bunching factor is given by the
sum over n,m, and l in Eq. (4). With identical wavelengths
between sections we set K2 ¼ K3 ¼ 1. The harmonic
number is therefore an integer a ¼ nþmþ l, and we
can replace one of the sums in (A2) to obtain Eq. (6),

bn;m ¼ e��2
n;m=2þimð�2��3Þþiða�nÞ�3Jnð�A1�n;mÞ

� Jm½�A2ðnþmÞB2 � aA2B3�Ja�n�m½�aA3B3�;
(A4)

with

�n;m ¼ nðB1 þ B2Þ þmB2 þ aB3; (A5)

as in Eq. (7).
It is useful to compare the general scaling of the triple

modulator scheme with that of simple EEHG. For high-
harmonic generation withm; l > 4, the Bessel functions Jm

and Jl reach their maximal values 0:67=m1=3 and 0:67=l1=3

when their arguments are equal to gðmÞ and gðlÞ, respec-
tively, where gðxÞ ¼ �ðxþ 0:81x1=3Þ. The optimal second
and third dispersion values are then given by

B2 	 A2gðlÞ � A3gðmÞ
A2A3ðnþmK2Þ ; B3 	 � gðlÞ

aA3

: (A6)

At these values � ¼ nB1 � gðmÞ=A2, which is kept small

due to the e��2=2 factor. Thus, the dispersion in the first
section scales like

B1 � gðmÞ
nA2

: (A7)

Combined with the peak value of 0.58 for the term

e��2=2J1ðA1�Þ for A1 
 1, the maximum bunching factor
obtainable in the triple modulator scheme for a given set of
indices m; l > 4 is

b�1;m;l 	 0:26

ðmlÞ1=3 : (A8)

From this expression it becomes clear that implementation
of the triple modulator/chicane scheme as a simple exten-
sion of the EEHG technique for large m and l results in
smaller bunching factors, as seen by comparison with the

harmonic bunching in EEHG that goes like ’ 0:39=a1=3.
Nevertheless, there are specific optimizations, such as
described here and in [25–27], where multiple contribu-
tions to the bunching from differentm and l add to produce
an increased total bunching factor in Eq. (4), specifically
when one of either m or l is kept small for a 
 1.
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