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Higher-order laser modes are analyzed as a method to control focusing forces and improve the electron

bunch quality in laser-plasma accelerators. In the linear wake regime, the focusing force is proportional to

the transverse gradient of the laser intensity, which can be shaped by a superposition of modes. In

particular, the transverse wakefield can be arbitrarily small in a region about the axis by adjusting the laser

modes. Plasma channel effects, which prohibit the formation of the controlled-focusing region, can be

mitigating by introducing a delay between the modes. Modes with parallel polarization produce a beat

interference in the laser intensity, which lead to deflecting forces. This can be avoided by using modes

with orthogonal polarization, different frequencies, or short pulses that do not overlap. Particle-in-cell

simulations are performed of a laser-plasma accelerator in the quasilinear regime driven by high-order

modes. Simulations show that, by including the first-order mode, the matched radius of the electron bunch

is substantially increased, which for fixed bunch density and emittance implies an increase in the beam

charge.
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I. INTRODUCTION

Guiding of intense laser pulses in plasma channels [1]
has many applications, including x-ray lasers [2], high
harmonic generation [3], and laser-plasma accelerators
(LPAs) [4,5]. Propagation of high-order laser modes is
also important for direct electron acceleration by the laser
field in vacuum [6] and in plasma channels [7], and to
improve injection schemes in LPAs [8]. Plasma channel
applications rely on the propagation of the laser pulse at
high intensity, up to 1019 W=cm2 for laser-plasma accel-
erators [9], over long distances. In vacuum, a laser pulse of
spot size r0 diffracts over a distance of the order of the
Rayleigh length ZR ¼ �r20=�, where � is the laser wave-

length. For intense pulses, the spot size is small and hence
the laser diffracts rapidly, e.g., ZR ¼ 250 �m for
� ¼ 0:8 �m and r0 ¼ 10 �m for a Gaussian pulse.
Plasma channels, with a parabolic radial density profile
nðrÞ ¼ n0 þ�nr2=r20, have the property of guiding a laser
pulse of spot size r0 over many Rayleigh lengths, provided
that the channel depth satisfies �n ¼ �nc ¼ 1=�rer

2
0 in

the low laser intensity limit, where re ¼ e2=mc2 is the
classical electron radius. This has been experimentally
demonstrated using plasma channels generated by hydro-
dynamic expansion [10,11] or capillary discharges
[12–14]. Furthermore, plasma channels have been used to

guide intense (> 1018 W=cm2) laser pulses in laser-plasma
accelerator experiments [9,15]. High quality electron
beams at the GeV level have been produced by guiding
an intense laser pulse over a 3 cm plasma capillary wave-
guide [15]. These experiments have furthered the interest
in using channel-guided LPAs to drive future electron-
positron colliders [16].
In a LPA, the accelerating and focusing fields (wake-

fields) are driven by the ponderomotive force of the
laser pulse F�ra2, where a2 ¼ 7:2� 10�19�2½�m��
I½W=cm2� is the normalized laser intensity (linear polar-
ization) and a ¼ eA=mc2 is the normalized amplitude of
the vector potential of the laser field. The accelerating
fields can be 3 orders of magnitude greater than those in
conventional accelerators. The magnitude of the focusing
field, which is typically zero on axis, can approach that of
the accelerating field off axis, depending on the laser spot
size, laser intensity, and plasma density. Two typical re-
gimes of operation [5] are presently being explored for
wakefields driven by short laser pulses (kpL & 1): the

highly nonlinear blowout (or bubble) regime and the quasi-
linear (or standard) regime. Here L is the laser pulse length

and !p ¼ ckp ¼ 2�c=�p ¼ ð4�ne2=mÞ1=2 is the plasma

frequency with n the plasma density. In the blowout re-
gime, typically characterized by a2 � ðkpr0=2Þ4 � 1, the

focusing field is maximum (determined by the ion column
left behind the laser pulse) and is comparable in amplitude
to the accelerating field [17,18], i.e., Ez=E0 ’ kp�=2 and

ðEr � B�Þ=E0 ’ kpr=2, where � ¼ z� ct (the center of

the bubble is at � ¼ 0 and r ¼ 0). In the linear or quasi-
linear regime, typically characterized by a2 & 1, the
electric fields of the wake are directly proportional to the
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gradient of the intensity profile, i.e., Ez � @a2=@z and
E? � r?a2. Hence, in the linear regime, the focusing
force can be reduced by tailoring the transverse intensity
profile of the laser pulse. For example, for a flattop trans-
verse profile a2 ¼ a20, F? �r?a2 ¼ 0.

Large focusing forces in a plasma-based accelerator can
be detrimental for several reasons. For example, large fo-
cusing forces can lead to large betatron oscillations of the
accelerated electrons. This will produce betatron (synchro-
tron) radiation [19] that can increase the energy spread on
the electron beam [20]. Furthermore, large focusing forces
require that the matched beam radius of the accelerated
electron beambevery small. The evolution of the rms radius
of a highly relativistic electron beam �x is given by
d2�x=dz

2 þ k2��x � �2n=	
2�3

x ¼ 0, assuming a linear fo-

cusing force (Fx � x), no acceleration, a narrow energy
spread, and no space charge effects. Here, �n is the normal-
ized emittance, 	 is the relativistic factor, and k� is the

betatronwave number,which is related to the focusing force
by k2�x ¼ kpðEx � ByÞ=	E0. The condition for a matched

(nonevolving) electron beam radius, which is desired for
emittance preservation and minimization of radiation, is
given by balancing the focusing and emittance terms, i.e.,

�xm ¼ ð�n=	k�Þ1=2. For example, in the blowout regime

[17–19,21], where the focusing forces are maximum,

the betatron wave number is k� ¼ kp=ð2	Þ1=2, and for

n ¼ 1017 cm�3, 	 ¼ 2� 104 (10 GeV), and �n ¼ 1 �m,
the matched beam radius is �x ¼ 0:4 �m. Such a small
electron beam radius results in exceptionally stringent
alignment and coupling tolerances between accelerator
stages. In addition, a small beam radius can limit the charge
in the accelerated bunch. For example, in the linear and
quasilinearwake regimes a large beamdensity implies large
beam loading [22], i.e., deformation of the accelerating
fields, which can degrade beam quality. In the highly non-
linear wake (blowout) regime, a high beam density can
cause ion motion, degrading the beam emittance [23].

In this paper we demonstrate reduction and control of
the focusing forces in the quasilinear wakefield regime by
using higher-order laser modes to shape the transverse
intensity profile. We first consider the propagation of
higher-order laser modes in a parabolic plasma channel.
In Sec. II, solutions of the paraxial wave equation, in the
low intensity limit and in the case of a matched laser pulse,
are presented for different geometries. Issues due to the
copropagation and beating of two laser modes are ad-
dressed. In Sec. III, analytical expressions for the trans-
verse wakefield excited by a laser pulse with higher-order
modes are derived, including corrections for a parabolic
density profile, yielding conditions to reduce and shape the
focusing forces. Particle-in-cell (PIC) simulations, with the
code VORPAL [24], are then used to propagate an electron
beam in a wakefield driven by high-order modes.
Simulations in 2D indicate that, by using a laser transverse
profile with a nearly flattop shape near axis, the matched

beam radius can be increased by a factor of �3, without
significant growth of the emittance, which, when extrapo-
lated to 3D, corresponds to an increase of a factor of�9 in
charge. Methods for mitigating the effects of mode beating
in laser-plasma accelerators are also discussed. In the
Appendix, we show the accuracy of the numerical results
of the PIC code by benchmarking with the particle tracking
code general particle tracer (GPT) [25].

II. HIGHER-ORDER LASER MODES IN
PLASMA CHANNELS

The basic properties of higher-order laser mode propa-
gation in a plasma channel can be examined using the
paraxial wave equation in the low intensity limit. First,
propagation of a single mode in a plasma channel is
considered. Two modes are discussed next, including the
effects of mode beating, which occurs when the two modes
have parallel polarizations.

A. Propagation of a single mode

The leading-order evolution of the slowly varying trans-
verse envelope â? of a low intensity (jâ?j2 � 1) laser
pulse in a plasma channel of the form nðrÞ ¼ n0 þ
�nr2=r20 is described by the paraxial wave equation [26],

�
r2

? þ 2ik
@

@z

�
â? ¼ k2p

�
1þ �n

n0

r2

r20

�
â?; (1)

where k ¼ 2�=� is the laser wave number and kp ¼
!p=c ¼ ð4�n0e2=mc2Þ1=2 is evaluated using the electron

density on axis n0. The full laser field is given by af? ¼
ðâ?=2Þ exp½ikðz� ctÞ� þ c:c:, where the vector potential
has been normalized af ¼ eAf=mc2 and Coulomb gauge

r � af ¼ 0 is assumed. The paraxial wave equation ne-

glects short-pulse effects, such as longitudinal dispersive
spreading of the laser pulse, which occurs over distances
much longer than those of interest [27]. Nonlinear effects,
such as plasma wave excitation and relativistic self-
focusing, are also neglected.
In the following, solutions are considered for linearly

polarized laser pulses in both cylindrical and Cartesian
geometries, as well as radially polarized fields in cylindri-
cal geometry. In addition to the structure of the higher-
order mode, the phase velocity is also important, as is
discussed below.

1. Linear polarization, cylindrical geometry

In cylindrical geometry ðr;
; zÞ, solutions to the para-
xial wave equation, Eq. (1), for a linearly polarized field
â? ¼ âx are of the general form [27]:
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âx;ðm;pÞðr;
;zÞ¼am;p

rs
r0
ð ffiffiffi

2
p

r=rsÞpLp
mð2r2=r2sÞ

�exp½�ð1� i�sÞr2=r2sþ i�m;pþ ip
�;
(2)

where Lp
m is the generalized Laguerre polynomial and 


the polar angular coordinate. The quantities �sðzÞ, rsðzÞ,
and �m;pðzÞ, which represent the curvature, the spot size,

and the phase shift, respectively, satisfy

�s ¼ krs
2

@rs
@z

; (3)

@2rs
@z2

¼ 4

k2r3s

�
1� �n

�nc

r4s
r40

�
; (4)

@�m;p

@z
¼ � 1

2k

�
k2p þ 4

r2s
ð2mþ pþ 1Þ

�
: (5)

The above Laguerre-Gaussian modes form a complete
orthonormal set of basis functions and, hence, any arbitrary
transverse profile âðr;
Þ can be expanded into a series of
Laguerre-Gaussian modes. Since the evolution of each
mode is known via the above equations, the evolution of
âðr;
Þ is known via the sum of series expansions.

From Eq. (4), the condition for a matched (nonevolving)
spot size rsðzÞ ¼ r0 is that the channel depth satisfy �n ¼
�nc, where �n ¼ 1=�rer

2
0 is the critical channel depth.

Notice that this condition is independent of mode number
ðm;pÞ, i.e., the condition to guide a given mode at a
matched spot rs ¼ r0 is the same for all modes [27].

In the case of a matched spot size, i.e., �n ¼ �nc and
rs ¼ r0, the solution can be written as

âx;ðm;pÞðr;
; zÞ ¼ am;pð
ffiffiffi
2

p
r=r0ÞpLp

mð2r2=r20Þ
� expð�r2=r20 þ i�m;p þ ip
Þ; (6)

with �s ¼ 0 and �m;p¼ð�1=2kÞ½k2pþ4ð2mþpþ1Þ=r20�z.
Note that the axisymmetric modes correspond to p ¼ 0.

The phase shift �m;pðzÞ depends on the mode numbers

ðm;pÞ, and hence the group and phase velocities do as well.
The axial phase velocity is given by �ph ’ 1��k=k,

where �k ¼ @�ðm;pÞ=@z is the axial wave number shift.

For the Laguerre-Gaussian modes

�ph ’ 1þ 1

2k2

�
k2p þ 4ð2mþ pþ 1Þ

r20

�
: (7)

Hence, higher-order modes will have a larger phase veloc-
ity. Even though two modes can be combined and propa-
gated simultaneously in the same plasma channel, the
difference in phase velocity will induce interference
patterns and intensity modulations.

2. Linear polarization, Cartesian geometry

The solution can also be written in terms of Hermite-
Gaussian modes in the Cartesian coordinate system
ðx; y; zÞ. For the case of a matched spot in a plasma channel
in three dimensions (3D),

âx;ðm;pÞðx; y; zÞ ¼
am;p

ðm!p!2mþpÞ1=2 Hm

� ffiffiffi
2

p
x

r0

�
Hp

� ffiffiffi
2

p
y

r0

�

� exp½�ðx2 þ y2Þ=r20 þ i�m;p�; (8)

where Hm is the Hermite polynomial of order m and
�m;p ¼ ð�1=2kÞ½k2p þ 4ðmþ pþ 1Þ=r20�z. The phase

velocity for the Hermite-Gaussian modes is

�ph ’ 1þ 1

2k2

�
k2p þ 4ðmþ pþ 1Þ

r20

�
: (9)

In two dimensions (2D), the Hermite-Gaussian modes
are given by

â xðmÞðx; zÞ ¼ am

ðm!2mÞ1=2 Hmð
ffiffiffi
2

p
x=r0Þ expð�x2=r20 þ i�mÞ;

(10)

with �m ¼ ð�1=2kÞ½k2p þ 2ð2mþ 1Þ=r20�z and

�ph ’ 1þ 1

2k2

�
k2p þ 2ð2mþ 1Þ

r20

�
: (11)

Note that Hmð
ffiffiffi
2

p
x=r0Þ is not symmetric about x ¼ 0 for

odd values of m.

3. Radial polarization, cylindrical geometry

Solutions for radially symmetric, radially polarized
modes in the cylindrical geometry ðr; zÞ are given by

âr;ðmÞðr; zÞ ¼ am
r

r0

�
2

mþ 1

�
1=2

L1
mð2r2=r20Þ

� expð�r2=r20 þ i�mÞ; (12)

assuming a matched spot size, with �m ¼ �ð1=2kÞ½k2p þ
8ðmþ 1Þ=r20�z and

�ph ’ 1þ 1

2k2

�
k2p þ 8ðmþ 1Þ

r20

�
: (13)

Note that these modes have zero amplitude on axis (r ¼ 0).

4. Simulations

The above results are analytical solutions to the paraxial
wave equation in the linear limit. To verify these solutions,
and show self-consistent propagation, simulations were
performed using the PIC code VORPAL [24]. Figure 1 shows
the results for different linearly polarized laser modes in
2D Cartesian geometry ðx; zÞ, propagating in a plasma
channel with a density on axis n0 ¼ 1019 cm�3 and a
channel depth satisfying the condition for matched propa-
gation, �n ¼ �nc ¼ 1=�rer

2
0. Figures 1(a) and 1(b) show
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the normalized intensity profile jâj2 versus kpx and kp�

for the fundamental Gaussian laser mode [Eq. (10) with
m ¼ 0] at ct=ZR ¼ 0:2 and ct=ZR ¼ 10, respectively,
where � ¼ z� ct. Here, the initial mode parameters are
a normalized amplitude of a0 ¼ 0:1, a normalized spot size
of kpr0 ¼ 5:3 (ZR ¼ kr20=2 is the Rayleigh length), and a

normalized pulse length of kpL ¼ 2, where the longitudi-

nal intensity profile is assumed to be a Gaussian of the form
a2 � expð�2�2=L2Þ. Figures 1(a) and 1(b) show that the
mode shape stays constant both longitudinally and trans-
versely over many Rayleigh lengths. The slippage in kp� is

due to the group velocity of the laser in the plasma that is
less than c. Figure 1(c) shows the transverse pulse profile
integrated over the longitudinal dimension kp� , which

determines the plasma response, of the fundamental
Gaussian laser pulse as a function of propagation distance
ct=ZR. Figure 1(d) shows the evolution of the first-order
Hermite-Gaussian mode [Eq. (10) with m ¼ 1], with
a1 ¼ 0:1, kpr0 ¼ 5:3, and kpL ¼ 2, propagating in the

same density channel. The two pulses can be guided inde-
pendently in the same plasma channel over many Rayleigh
lengths, without variations in the spot size, consistent with
the theoretical prediction.

B. Propagation of two modes

The copropagation of two laser modes in the same
plasma channel is considered next, which will allow the
combination of different laser modes to tailor the laser
intensity profile and, hence, the plasma wakefield. When

adding two modes with the same polarization and the same
frequency, the time-averaged intensity profile becomes

h½afxðm0; p0Þ þ afxðm1; p1Þ�2i

¼ a2m0;p0

2
þ a2m1;p1

2
þ am0;p0

am1;p1
cosð�m0;p0

� �m1;p1
Þ;

(14)

where angular brackets denote a time average over the fast
laser frequency. For linear polarized, Laguerre-Gaussian
modes in cylindrical geometry,

�m0;p0
��m1;p1

¼kbeatz¼½ð2m1þp1Þ�ð2m0þp0Þ�z=ZR;

(15)

where �beat ¼ 2�=kbeat is the beat wavelength. The cross
term induces an oscillation of the intensity profile. Because
the phase shift and the phase velocity are different for
different modes, the intensity profile of the laser is modu-
lated if two copropagating modes have parallel polariza-
tion. For example, for the fundamental (m0 ¼ 0, p0 ¼ 0)
and mth-order cylindrically symmetric (m1 ¼ m, p1 ¼ 0)
Laguerre-Gaussian modes, the beat wave number is kbeat ¼
2m=ZR. To avoid this envelope modulation the two modes
must be orthogonally polarized; in that case the time-
averaged intensity profile is given by h½afxðm0; p0Þ þ
afyðm1; p1Þ�2i ¼ a2m0;p0

=2þ a2m1;p1
=2, i.e., there is no

cross term.
Figure 2 shows the result of 2D PIC simulations when

copropagating the fundamental Gaussian mode (a0 ¼ 0:1)
and the first-order Hermite-Gaussian mode (a1 ¼ 0:1). The
pulse propagates in a matched plasma channel with an
on-axis density n0 ¼ 1019 cm�3 and both modes have
kpr0 ¼ 5:3 and kpL ¼ 2. Figures 2(a) and 2(b) show the

intensity profile at ct=ZR ¼ 0:2 and ct=ZR ¼ 10, respec-
tively, when the two modes have parallel polarization
showing the intensity oscillations. Figure 2(c) shows the
corresponding integrated transverse intensity profile, as a
function of propagation distance, modulated at a wave
number 1=ZR. In Fig. 2(d), however, the two modes are
orthogonally polarized and the transverse intensity profile
stays constant over many Rayleigh lengths.
Additional 2D PIC simulations show that the mode

propagation behaves similarly at intensities relevant to
the quasilinear regime of the laser wakefield accelerator
[22,28]. As an example, Fig. 3 shows the integrated inten-
sity profile (� R

d�jEj2) of the cross-polarized fundamen-
tal Gaussian and first-order Hermite-Gaussian modes with
a0 ¼ 0:7 and a1 ¼ 0:5. To compensate for the self-
focusing of the laser pulse, the channel depth is adjusted
such that �n ¼ 0:7�nc, which minimized oscillations of
the laser spot size. The two modes are guided over many
Rayleigh lengths in this same plasma channel without
intensity modulation. During propagation, the laser
depletes its energy and self-steepens [29], which results
in a decrease of the value of the integrated intensity.
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FIG. 1. Normalized intensity profile as a function of longitu-
dinal kp� ¼ kpðz� ctÞ and transverse kpx coordinates, for the

fundamental Gaussian mode propagating in a matched plasma
channel, at (a) ct=ZR ¼ 0:22 and (b) ct=ZR ¼ 10 (slippage due
to vg < c is visible); (c) corresponding transverse intensity

profile, integrated over the longitudinal dimension, as a function
of propagation distance. (d) Integrated transverse intensity pro-
file of the first-order Hermite-Gaussian mode propagating in the
same plasma channel.

E. CORMIER-MICHEL et al. Phys. Rev. ST Accel. Beams 14, 031303 (2011)

031303-4



The laser transverse shape remains constant, however,
keeping the transverse wake structure constant.

In three dimensions (3D), using two modes to create a
near flattop transverse intensity profile near axis [similar to
that shown in Fig. 2(d)] is problematic, since beating of the
modes is difficult to avoid. For example, suppose that
an axisymmetric profile is created by adding a linearly
polarized fundamental Gaussian mode, a0;0 expð�r2=r20 þ
i�0;0Þex, with a radially polarized mode, a0

ffiffiffi
2

p ðr=r0Þ�
L1
0ð2r2=r20Þ expð�r2=r20 þ i�0Þer. Along the y axis

there is no beating, but along the x axis the modes beat,
producing an intensity modulation similar to that shown in
Fig. 2(c).
For LPAs, however, the beating of modes can be miti-

gated using a variety of methods. For example, the wake
can be driven by using two short pulses (e.g., the lowest-
order linear polarized mode and the lowest-order radially
polarized mode, both with kpL � 2) that are longitudinally

separated by a multiple of the plasma period 2�=!p (the

use of multiple laser pulses in 1D to enhance the wake
amplitude is considered in Refs. [30,31]). The pulses do
not physically overlap, so there is no beating, but the
wakefield behind the second pulse will have the structure
of that driven by the sum of the intensity profiles of the two
separate pulses [5]. Another method for mitigating the
beating between modes in LPAs is to use two modes
with different frequencies such that the beat frequency is
much greater than the plasma frequency. These methods
will be discussed in more detail in the following sections.
Designs for future electron-positron colliders may re-

quire the use of highly elliptical particle beams, with aspect
ratios on the order of 100 [32]. One possibility for a future
collider based on LPAs is to use a similarly highly elliptical
drive laser. In this case the laser-plasma geometry is es-
sentially a slablike, Cartesian geometry. Two Hermite-
Gaussian laser modes could be used to control the focusing
forces, with orthogonal polarization, such that mode beat-
ing is avoided.

III. APPLICATION TO LASER-PLASMA
ACCELERATORS

As discussed in the Introduction, control and/or reduc-
tion of the focusing forces can be beneficial to LPAs. In the
linear wake regime, the focusing forces are proportional to
the transverse gradients in the laser intensity profile.
Control of the focusing forces can be achieved by tailoring
the transverse intensity profile using high-order modes. In
the following we will consider the Gaussian mode and the
first-order Hermite-Gaussian mode with orthogonal polar-
ization in 2D. Generalization to 3D is straightforward with
the methods described in Sec. III D.

A. Transverse wakefield response

In the linear wake regime [4], a2 � 1, the wake
response is determined by the normalized electrostatic
potential, 
 ¼ e�=mc2, governed by ð@2=@t2 þ!2

pÞ
 ¼
!2

pa
2=2. In terms of the independent variable � ¼ z� ct,


 ¼ kp
Z �

�0

d� 0 sin½kpð� � � 0Þ�jâð� 0Þj2=4; (16)

where �0 is in front of the laser pulse, and the additional
factor of 1=2 is from averaging the linear polarized
laser fields over the fast laser oscillation. For a Gaussian
longitudinal profile, jâð�; xÞj2 ¼ jâðxÞj2 expð�2�2=L2Þ,

2 4 6 8
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k p
x

0.000
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a2

FIG. 3. Integrated transverse intensity profile of a Gaussian
and Hermite-Gaussian (m ¼ 1) pulse with orthogonal polariza-
tion, as a function of propagation distance, with a0 ¼ 0:7 and
a1 ¼ 0:5.
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FIG. 2. Normalized intensity profile as a function of longitu-
dinal kp� ¼ kpðz� ctÞ and transverse kpx coordinates, for a

fundamental Gaussian plus a first-order Hermite-Gaussian mode,
with the same polarization, propagating in a matched plasma
channel in 2D Cartesian geometry, at (a) ct=ZR ¼ 0:22 and
(b) ct=ZR ¼ 10; (c) corresponding transverse intensity profile,
integrated over the longitudinal dimension, as a function of
propagation distance. (d) Integrated transverse intensity profile
of the two modes with cross-polarization.
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the expression of the wakefield potential behind the
driver is


¼�jâðxÞj2
ffiffiffiffiffiffiffiffiffi
�=2

p
ðkpL=4Þexpð�k2pL

2=8Þsinðkp�Þ: (17)

Consider the intensity profile of two orthogonally polar-
ized laser modes in 2D, as shown in Fig. 2(d),

â2ðxÞ ¼ a20 expð�2x2=r20Þ þ ða21=2Þ
� expð�2x2=r20Þ½H1ð

ffiffiffi
2

p
x=r0Þ�2; (18)

with H1ð
ffiffiffi
2

p
x=r0Þ ¼ 2

ffiffiffi
2

p
x=r0. The transverse electric field

is given by Ex=E0 ¼ �ð1=kpÞrx
, which, for â2ðxÞ given
by Eq. (18) and assuming that kp is constant (i.e., a uniform

density profile), gives

Ex=E0¼
0a
2
0

4x

kpr
2
0

�
1��

2
þ�

x2

r20

�
exp

�
�2x2

r20

�
sinðkp�Þ;

(19)

with 
0 ¼
ffiffiffiffiffiffiffiffiffi
�=2

p ðkpL=4Þ expð�k2pL
2=8Þ, and � ¼

4a21=a
2
0. By changing the ratio a1=a0, one can change the

transverse gradient of Ex=E0. In particular, Ex=E0 ¼ 0

near axis (x2=r20 � 1) for a1=a0 ¼ 1=
ffiffiffi
2

p
.

Figures 4(a) and 4(b) show, respectively, the transverse
intensity profile given by Eq. (18) and the corresponding
transverse electric field Ex=E0 given by Eq. (19) at the
phase where the field is maximum (kp� ¼ ��=2) for

different values of a1=a0, with kpL ¼ 2, kpr0 ¼ 5:3, and

a0 ¼ 0:1. As a1=a0 increases the slope of the focusing field

near axis decreases, and changes sign at a1=a0 ¼ 1=
ffiffiffi
2

p
,

corresponding to the appearance of a dip in the intensity

profile. Note that for a1=a0 ¼ 1=
ffiffiffi
2

p
the focusing field near

the axis is zero for all phases kp� (see Fig. 5). The

corresponding accelerating field is given by Ez=E0 ¼
ð�1=kpÞrz
 ¼ 
0â

2ðxÞ cosðkp�Þ, hence the transverse

profile of the longitudinal wakefield is proportional to the
laser intensity profile shown in Fig. 4(a). Because the
gradient of the transverse field can be reduced and con-
trolled near the axis by adjusting the relative intensity of
the two modes, this allows control of the matched beam
size for a given emittance.

B. Mitigation of plasma channel effects

The above calculation of the transverse wakefield ne-
glected the presence of the density channel. The plasma
channel, however, introduces a curvature in the transverse
profile of the wakefield. Hence, the condition described
above to have a flat transverse field near axis is more
complicated when the effects of the channel are included.
The effect of the transverse plasma density profile on
the focusing field can be evaluated, to first approximation
assuming a broad channel (k2pr

2
0 � 1), by using

kp ¼ kpðxÞ ¼ kp0
ð1þ �nx2=n0r

2
0Þ1=2 in Eq. (17) [33],

giving

Ex

E0

¼�a20L

4r0

ffiffiffiffi
�

2

r
expð�k2p0

L2=8Þ
�
A1

x

r0
þA3

x3

r30
þ���

�
; (20)
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FIG. 4. (a) Transverse intensity profile when adding a funda-
mental Gaussian mode of normalized intensity a0 ¼ 0:1 and a
first-order Hermite-Gaussian mode of normalized intensity a1,
with cross polarization, and (b) corresponding transverse electric
field (obtained from theory neglecting the plasma channel)
at kp� ¼ ��=2, for a1=a0 ¼ 0 (dashed line), a1=a0 ¼ 0:5

(dash-dotted line), a1=a0 ¼ 1=
ffiffiffi
2

p
(solid line), and a1=a0 ¼ 1

(dotted line).
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FIG. 5. Transverse electric field at x=r0 ¼ 0:1 driven by the
Gaussian and Hermite-Gaussian pulses calculated in a matched
plasma channel for a1=a0 ¼ 0:5 (dashed line), a1=a0 ¼ 1=

ffiffiffi
2

p
(solid line), and a1=a0 ¼ 0:8 (dotted line). For comparison the
transverse electric field calculated without the contribution of the
plasma channel is shown for a1=a0 ¼ 1=

ffiffiffi
2

p
(bold solid line),

i.e., for a flattop intensity profile near axis as shown in Fig. 4.
The gray areas indicate the accelerating region for electrons
(Ez < 0).
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A1 ¼
�
4��n

n0
þ k2p0

L2

4

�n

n0
� 2�

�
sinðkp0

�Þ

� �n

n0
kp0

� cosðkp0
�Þ; (21)

A3 ¼ �
�
8� 4

�n

n0
þ�n

n0
k2p0

L2 � 1

2

�n2

n20
� �n2

n20

k2p0
L2

4

þ 1

32

�n2

n20
k4p0

L4 � 8�þ 2�
�n

n0

� �
�n

n0

k2p0
L2

2
� 1

2

�n2

n20
k2p0

�2
�
sinðkp0

�Þ

þ
�
4
�n

n0
� 1

2

�n2

n20
þ �n2

n20

k2p0
L2

4

� 2�
�n

n0

�
kp0

� cosðkp0
�Þ; (22)

where �ncx
2=n0r

2
0 ¼ 4x2=k2pr

4
0 � 1 has been assumed

and terms of order x5=r50 have been neglected. Some effects

of the plasma channel include the amplitude of the focus-
ing field increasing as a function of distance behind the
laser pulse j�j, and the phase between the longitudinal and
the transverse field varying as a function of j�j such that
there is a greater overlap between the accelerating and
focusing phase regions of the wake, the greater the distance
behind the laser pulse [33]. Also neglected in the above
expressions are terms of order �2=k2pr

4
0, which can lead to a

decrease in the amplitude of the longitudinal field with
distance behind the laser pulse [33].

One consequence of the phase front curvature of the
wake (caused by the density profile of the plasma channel)
is that there is no condition on a1=a0 for which the trans-
verse electric field is constant near axis for all phases kp� ,

as there was previously for a uniform plasma profile.
Figure 5 shows the transverse electric field without (bold
solid line) and with (solid line) the contribution of the

plasma channel for a1=a0 ¼ 1=
ffiffiffi
2

p
, and �n=n0 ¼ 0:14,

corresponding to a matched spot size of kpr0 ¼ 5:3.

Whereas the transverse wakefield calculated for a uniform
plasma profile is near zero for any phase at x=r0 ¼ 0:1 (the
amplitude is of the order of 5� 10�6 due to higher-order
corrections in x=r0), this is no longer true when including
the contribution of the parabolic plasma profile. The con-
dition for the gradient of the transverse electric field in the
plasma channel to be controlled to an arbitrary value (e.g.,
zero) depends on kp0� and is given by setting the sum of

the first-order terms in x=r0 to a specified value (A1 ¼
constant), which gives

4�2���n

n0
þk2p0

L2

4

�n

n0
��n

n0
kp0

� cosðkp0
�Þ=sinðkp0

�Þ
¼ constant: (23)

For example, setting the above equation to zero determines
the phase kp0

� where the transverse field gradient crosses

the axis (for small x=r0). Note that this phase depends on
the ratio of the two mode intensities � ¼ 4a21=a

2
0, i.e., the

position of the focusing and defocusing region can be
controlled by changing the ratio a1=a0. Figure 5 shows
the transverse electric field, calculated in the plasma chan-
nel, for different values of �, at x=r0 ¼ 0:1. The minimal
amplitude for the transverse field is still obtained for

a1=a0 ¼ 1=
ffiffiffi
2

p
, but, because of the curvature of the chan-

nel, is no longer zero for all phases. The overlap between
the focusing region of the transverse field [Exðx > 0Þ=
E0 > 0] and the accelerating region of the longitudinal
electric field ðEz=E0Þ< 0 (showed by the gray areas) de-
pends on the relative intensity of the two modes.
For a LPA in the linear regime, driven with a single

fundamental Gaussian mode in a uniform plasma, the
overlap between the focusing and the accelerating field is
�p=4. With a single fundamental Gaussian laser in a

plasma channel, the overlap between the two regions can
be increased to ��p=2, several plasma buckets after the

laser pulse [33]. When using two laser modes in a plasma
channel, as discussed above, an overlap of �p=2 between

the focusing and the accelerating region can be achieved
immediately after the laser pulse by adjusting the relative
intensity of the two modes. Similarly, a focusing and
accelerating region for a positron beam [Exðx > 0Þ=
E0 < 0 and E�=E0 > 0] of width �p=2 can also be obtained

for a specific ratio a1=a0.
To increase the electron beam spot size for a fixed

emittance requires that the transverse electric field be
reduced near axis. For an electron bunch of finite duration,
it is beneficial that the transverse gradient of the focusing
force be reduced and constant near the axis over a finite
region of longitudinal phase kp� , which extends over a

distance at least as long as the length of the electron bunch.
This allows the matched beam radius to be uniform
throughout the electron bunch and can reduce the varia-
tions in the focusing force as the beam dephases. A pos-
sible solution consists of time shifting the laser modes.
Consider the response due to the Gaussian driver and that
due to the first-order Hermite-Gaussian mode individually.
For example, near the axis (to first order in x=r0), the axial
position (phase) at which the transverse wakefield is zero
for the each mode occurs at different phases. The condition

�
4��n

n0
þk2p0

L2

4

�n

n0

�
sinðkp0

�oÞ��n

n0
kp0

�ocosðkp0
�oÞ¼0

(24)

gives the phase kp0
�o for which the transverse wakefield

due to the Gaussian pulse is zero near the axis, and

sinðkp0
�o0 Þ ¼ 0 (25)
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gives the phase kp0
�o0 for which the transverse wakefield

due the Hermite-Gaussian mode only is zero near the axis.
The longitudinal position of the higher-order mode with
respect to the fundamental can then be shifted by �s ¼
�o0 � �o to align the two zero points. The condition on the
ratio a1=a0 for which the transverse field gradient is set to
an arbitrary constant (e.g., zero) over a small portion of
phase surrounding this zero point can be calculated by
linearly expanding the resulting expression of the trans-
verse electric field around the zero point. As before, using
only the term of first order in x=r0, we set A1 ¼ constant
and expand in �� about �o, i.e.,

A1 ¼
�
4� �n

n0
þ k2p0

L2

4

�n

n0

�
sinðkp�o þ kp��Þ

� �n

n0
ðkp�o þ kp��Þ cosðkp�o þ kp��Þ

� 2� sin½kpð�o þ �sÞ þ kp��� ¼ constant; (26)

with kp�� � 1. The zeroth-order term (�� independent) is

zero due to the definitions of �o, �o0 , and �s. The first-order
term in �� is then set to an arbitrary constant, for example
zero, by�
4� 2

�n

n0
þ k2p0

L2

2

�n

n0

�
cosðkp�oÞ þ �n

n0
kp0

�o sinðkp�oÞ
� 2� cos½kpð�o þ �sÞ� ¼ 0; (27)

which defines a value for � since kp�o and kp�s are known.

Figure 6(a) shows the contribution to the transverse field
of the Gaussian, with a0 ¼ 0:1, and the Hermite-Gaussian

mode, with a1 ¼ a0=
ffiffiffi
2

p
, separately and added together,

for kp0
L ¼ 2 and kp0

r0 ¼ 5:3. In Fig. 6(b) the Hermite-

Gaussian mode has been shifted by kp0
�s ¼ 0:33, so the

two curves cross the axis at the same point kp0
�o ¼ �9:75.

The amplitude of the Hermite-Gaussian mode is then
adjusted according to Eq. (27) (a1 ¼ 0:73a0), so the re-
sulting transverse field is zero (to first order) near the
crossing point. One can then shape the focusing field
longitudinally by adjusting the delay between the two
modes and their relative amplitude. The sign of the field
could, for example, be inverted locally or the slope set to
different values, as needed to control beam propagation
and compensate for beam loading.

Figure 7 shows the result of a 2D PIC simulation where a
fundamental Gaussian pulse and a first-order Hermite-
Gaussian pulse are added with crossed polarization, with
a0 ¼ 0:1 (intensity of the fundamental Gaussian) and a1 ¼
0:73a0 (intensity of the higher-order mode), the latter
being delayed by kp0

�s ¼ 0:42 compared to the fundamen-

tal. Note that the delay (kp0
�s ¼ 0:42) had to be slightly

adjusted compared to the theoretical value (kp0
�s ¼ 0:33).

Both modes have kp0
r0 ¼ 5:3 and kp0

L ¼ 2. Figures 7(a)

and 7(b) show the resulting longitudinal (dashed line) and
transverse (solid line) fields after 400 �m and 2.4 mm

of propagation, respectively, in a matched plasma
channel with a density on axis of n0 ¼ 5� 1018 cm�3.
For comparison, the resulting transverse field when the
higher-order mode is not delayed (kp0

�s ¼ 0) is also

shown (dotted line). After 2.4 mm (corresponding
approximately to half a dephasing length Ld, where
Ld ’ �3

p=�
2), the focusing field is no longer zero, at the

same phase it was zero initially, but still 2 times smaller
than the corresponding field driven by the two modes
without delay. Because the two modes have different group
velocity, the delay between the two modes is changed by
kp0

�� ¼ kp0
dð2=k2r20Þ for m ¼ 0 and m ¼ 1 in 2D, as the
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FIG. 6. Transverse electric field, at x=r0 ¼ 0:1. (a) The field
from the Gaussian (a0 ¼ 0:1) only (dashed line) is shown as well
as the field from the first-order Hermite-Gaussian mode (a1 ¼
a0=

ffiffiffi
2

p
) only (dotted line), and the sum (solid line). (b) The field

from the Gaussian (a0 ¼ 0:1) only (dashed line) is shown as well
as the field from the first-order Hermite-Gaussian mode (dotted
line) shifted by kp0

�s ¼ 0:33 (a1 ¼ 0:73a0) such that the sum

(solid line) is ’ 0, given kp0
�o ¼ �9:75. (c) Sum of the Gaussian

and the first-order Hermite-Gaussian modes transversely at
kp0

� ¼ �9, with a0 ¼ 0:1 and a1 ¼ 0:73a0, when the peaks

of the two modes are aligned (thin line) and when the higher-
order mode is shifted by kp�s ¼ 0:33 (thick line).
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pulse propagates over a distance d, i.e., the delay between
the two modes is kp0

�s ’ 0:66 after d ¼ 2:4 mm (kp0
d ’

1050) and kp0
�s ’ 0:87 after d ¼ 5 mm, leading to the

evolution of the focusing field shape. Note that at lower
density (lower kp0

), the slippage is less for the same

normalized propagation distance kp0
d. One could adjust

the delay initially so the electron beam stays in a focusing
phase during the whole acceleration distance.

C. Electron bunch evolution

Particle-in-cell simulations were used to study the evo-
lution of an externally injected test (i.e., no charge) elec-
tron bunch in the quasilinear regime (a0 ¼ 1), relevant to
the design of efficient LPA stages [22,28]. In this regime
the laser power is close to the critical power for self-
focusing (for optimal spot sizes in this regime, kpr0 ’ 5

[28]) and the laser pulse starts to evolve, although mildly,
as it propagates into the plasma, i.e., undergoes self-
focusing, depletion, and steepening. To reduce the effects
of self-focusing and minimize the spot oscillations, the
laser length is reduced to kpL ¼ 1 and a shallower plasma

channel is used, such that �n ’ 0:7�nc. Furthermore, a
laser pulse length of kpL ¼ 1 can also improve accelerator

efficiency in the quasilinear regime [22]. A test electron
beam, initially of zero length, is loaded in the accelerating
and focusing region of the wakefield in the second bucket
after the laser driver, and its evolution is followed as it

is accelerated in the wake. The transverse modes are
adjusted as described above to shape the transverse field
profile, the goal being to increase the matched electron
beam radius for a given emittance, and to demonstrate that
the latter is being conserved.
Figure 8 shows the evolution of the electron beam energy

	, radius �x, and of the emittance change j�n � �n0j=�n0,
where �n0 ¼ 0:014 mmmrad (kp�n0 ¼ 6� 10�3) is

the initial normalized rms emittance, as a function of
propagation distance for a Gaussian mode (solid line), a
Gaussian plus a first-order Hermite-Gaussian mode with
cross polarization (dashed line), and a Gaussian and
Hermite-Gaussian mode, with cross polarization, delayed
by kp�s ¼ 0:2 (dash-dotted line), propagating in a plasma

channel with a density on axis n0 ¼ 5� 1018 cm�3.
Because kpL ¼ 1 in this case the delay between modes to

achieve a flat focusing field is different than that shown in
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FIG. 7. 2D PIC simulation results showing the longitudinal
(dashed line) and transverse (solid line) electric field driven by
a fundamental Gaussian and first-order Hermite-Gaussian modes
added with cross polarization, with a0 ¼ 0:1 and a1 ¼ 0:73a0,
the higher-order mode having a delay of kp0

�s ¼ 0:42, after

(a) 400 �m and (b) 2.4 mm of propagation. The fields are
plotted at x=r0 ¼ 0:1. For comparison the focusing field driven
by the two modes, without delay, is also shown (dotted line).

FIG. 8. Results of 2D PIC simulations of a test electron beam
propagating in a wakefield driven by a Gaussian mode only
[thick solid line (magenta)], a Gaussian plus a Hermite-Gaussian
mode [dashed line (blue)], and a Gaussian plus a Hermite-
Gaussian mode, delayed by kp0

�s ¼ 0:2 [dash-dotted (black)].

(a) Energy gain, (b) evolution of the radius of the electron beam
as a function of propagation distance, the dotted line shows the
evolution of an unmatched beam in a wakefield driven by a
Gaussian pulse, and (c) evolution of the beam emittance,
j�n � �n0j=�n0, with �n0 ¼ 0:014 mmmrad.
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the previous section. The simulation box is 67� 82 �m
with 4000� 614 cells and four particles per cell for the
background plasma. In all cases, the beam is initially lo-
cated at the same phase of the accelerating field, leading to
same energy gain [Fig. 8(a)].

As seen in Fig. 8, the electron beam radius, for the
Gaussian laser pulse case, is launched at the matched
size �x ¼ 0:12 �m and oscillates around �x ’ 0:1 �m
(kp�x ’ 0:042) 	30%, with a normalized emittance of

�n ¼ 0:014 mmmrad. The variation of the emittance is
very small, about 0.01%. By using the Hermite-Gaussian
mode, with a1 ¼ 0:69a0 in addition to the fundamental
Gaussian pulse, the matched electron beam spot size can be
increased to �x ’ 0:17 �m. In this case, as the beam
dephases it slips into the defocusing region of the trans-
verse field, leading to an increase of the beam radius. It is
found that by using a1 ¼ 0:7a0 the beam dephases sooner
into the defocusing region, and the beam radius undergoes
more variations, indicating that the beam evolution is very
sensitive to small variations of the pulse intensity. If the
acceleration is stopped at ct ¼ 2 mm, the beam spot size
varies by 	5% with 96% of the maximum energy, and
again a very small variation of the emittance (’ 0:01%).
Finally, by using a delay of kp�s ¼ 0:2 between the two

modes, with a1 ¼ 0:69a0, the matched beam radius is
increased further to �x ’ 0:285 �m and the variation de-
creased to	1:5%, for ct < 2 mm, which is almost a factor
of 3 increase in radius compared to the fundamental
Gaussian only. As shown in Fig. 8(b), a beam with this
radius would be highly mismatched (130% variation) in a
wakefield driven by the Gaussian mode alone, and even
though still small, the variation of the emittance is also
larger for the mismatched beam ( ’ 0:6%), due to the fact
that the transverse tails of the electron beam distribution
reach the nonlinear part of the focusing field. The higher-
order mode uses twice the laser power and the matched
spot size was increased by almost a factor of 3. When
extrapolated to 3D, this implies that the charge of the
beam can be increased by a factor of 9, or a gain of 4.5
in efficiency, for a given beam density and emittance.

The size of the electron beam is limited to the transverse
region where the fields are linear, jx=r0j & 0:1, in order to
keep the emittance constant. To increase the region where
the focusing fields are linear, more higher-order modes
may be used to extend the flattop region of the laser pulse,
with the condition that the beating of the modes of different
orders is not significant. For example, using the first- and
second-order Hermite-Gaussian modes with the funda-
mental, the flat region can be extended to x=r0 ’ 0:2,
giving an additional factor of 2.5 gain in the beam radius.

D. Mitigation of laser mode beating

Two or more laser modes with parallel polarizations
produce interference patterns (beating) in the intensity
profile, as discussed in the previous section. In particular,

mode beating may be unavoidable in 3D, at least in one of
the transverse planes, or if more than two modes are used.
Considered next is the impact of mode beating and how it
can be avoided in LPAs.
A fundamental and first-order Hermite-Gaussian mode

propagating with parallel polarization produces mode beat-
ing. Near the axis, the beat term â0â1 � x cosðkbeatzÞ pro-
duces a transverse force Fd � a0a1 cosðkbeatzÞ that is
nonzero on axis (assuming kbeat � kp), i.e., a periodic

deflecting force. Neglecting acceleration, the equation of
motion for the transverse orbit of a highly relativistic elec-
tron is d2xe=dz

2 þ k2�xe ¼ Fd, where Fd ¼ kpExd=	E0 is

the normalized deflecting force and, near the axis,Exd=E0 ’
ð4=kpr0Þa0a1
0 sinðkp�Þ cosðkbeatzÞ. For an electron ini-

tially on axis, the transverse electron orbit is xe ¼
Fd0ðcoskbeatz� cosk�zÞ=ðk2� � k2beatÞ for k� � kbeat, and

xe ¼ ðFd0=2k�Þðz sink�zÞ for k� ¼ kbeat, where Fd0 ¼
ð4=	r0Þa0a1
0 sinðkp�Þ. Assuming that focusing is due

to the fundamental Gaussian mode alone, k2� ¼
ð4=	r20Þa20
0 sinðkp�Þ, givesFd0 ¼ k2�r0a1=a0. In the limit

k2beat � k2�, the amplitude of the transverse electron oscil-

lation is xe ’ r0a1=a0, which can be large. These transverse
oscillations will be reduced when k2beat � k2�. The condi-

tion k2beat � k2� implies 	 � ðkr0a0Þ2
0 sinkp� , e.g., 	 �
5� 104 (25 GeV) for n0 ¼ 1017 cm�3 (�p ¼ 100 �m),

� ¼ 0:8 �m, kpr0 ¼ 3, a0 ¼ 1, and 
0 sinkp� ¼ 0:38.

The transverse orbit will be maximum at resonance,
k2beat ¼ k2�, where secular growth will occur. This growth

is large, e.g., after one-quarter betatron period xe ¼
ð�=4Þr0a1=a0. However, if acceleration is included, the
electron will quickly pass through this resonance (since
k� � 1=	), limiting the growth. In general, such a trans-

verse deflection force from the beating of parallel polarized
modes should be avoided using one of the methods dis-
cussed in the following.
In LPAs, mode beating can be mitigated since laser

pulses shorter than the plasma wavelength are used, e.g.,
kpL � 2, and the wakefield response is determined by the

intensity profile integrated over roughly a plasma period,
as described by Eq. (16). Consider driving the wake by
separating two short pulses (e.g., the lowest-order linear
polarized mode and the lowest-order radially polarized
mode) by a multiple of the plasma period 2�=!p. The

pulses do not physically overlap, so there is no beating,
but the wakefield behind the second pulse will have the
structure of that driven by the sum of the intensity profiles
of the two separate pulses. This is due to the fact that in the
linear wakefield regime (and approximately in the quasi-
linear regime), the wakefield driven by two separate pulses
is a linear superposition of the two individual wakes.
Another method for mitigating the beating between

modes in LPAs is to use two modes with different frequen-
cies. Consider two modes with the same polarization but
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different wave numbers km0;p0
and km1;p1

. The cross term

in Eq. (14), without time averaging, has the form
am0;p0

am1;p1
cos½ðkm0;p0

� km1;p1
Þ� þ ð�m0;p0

� �m1;p1
Þ�.

Because the wake response is a result of a time integration
of the laser intensity profile over the plasma period 2�=!p,

for fast oscillations, jkm0;p0
� km1;p1

j � kp, the cross term

averages to zero, yielding â2 ’ a2m0;p0
=2þ a2m1;p1

=2, i.e.,

there is no intensity modulation. Note that because the
wave numbers are different, the group velocities of the
two modes will be different. To avoid too much separation
of the two short-pulse modes over a long propagation
distance, one should choose the two wave numbers suffi-
ciently close. For example, requiring the slippage between
the two modes over a dephasing length Ld � �pk

2
m0;p0

=k2p
to be shorter than half a plasma wavelength, i.e.,
j�g;m0;p0

� �g;m1;p1
jLd < �p=2, implies j1� k2m0;p0

=

k2m1;p1
j< 1, where �g is the normalized group velocity

and 4=k2pr
2
0 � 1 has been assumed. Satisfying the condi-

tions j1� k2m0;p0
=k2m1;p1

j< 1 and jkm0;p0
� km1;p1

j � kp is

facilitated by using lower plasma density, i.e., lower kp.

Effectiveness of these techniques for control of the wake
structure is demonstrated using 2D PIC simulations.
Figure 9 shows the transverse electric field, as a function
of distance behind the laser pulse, driven by a fundamental
Gaussian pulse (a0 ¼ 0:1) and a Hermite-Gaussian
pulse (a1 ¼ 0:07) in a matched plasma channel with
n0 ¼ 1019 cm�3 on axis, kpr0 ¼ 5:3, and kpL ¼ 2. The

resulting field when the pulses are crossed polarized (solid
line) is compared to the resulting field when the pulses
have parallel polarization but with the higher-order mode
delayed by 2�=!p (dashed line). Because the two pulses

do not overlap, there is no modulation of the integrated
intensity profile and the wakefield structure remains con-
stant. Figure 9 also shows the transverse field when the two
pulses have different frequencies k1 ¼ 1:325k0 (dash-
dotted line). In all cases the driven fields are similar,
although there is more variation (’ 50% at the first peak)

when using different frequencies. In that case the field also
varies more with propagation distance because of the
greater difference of group velocity between the two com-
ponents of the pulse, which can be reduced when operating
at lower plasma density.

IV. CONCLUSION

In this paper the propagation of higher-order laser modes
in plasma channels was studied with applications to LPAs.
Solutions to the linear paraxial wave equation were pre-
sented for arbitrary order Hermite-Gaussian and Laguerre-
Gaussian modes in Cartesian and cylindrical geometries
for a laser pulse propagating in a plasma channel. Even
though the condition for the matched propagation in a
channel is the same for all modes (any mode can be
propagated in the same density profile with the same
matched spot size), the phase velocities for different modes
vary (dependent on the mode number). For two or more
modes copropagating in a channel with parallel polariza-
tion, the intensity profile becomes modulated due to an
interference (beating) between the modes, with a modula-
tion (beat) wavelength on the order of the Rayleigh length
multiplied by a factor linearly dependent on the mode
numbers. This can be avoided using orthogonally polarized
modes. PIC simulations showed that these solutions hold
over long propagation distances (many Rayleigh lengths)
and at high intensities (a0 � 1).
For LPAs, a combination of higher modes was used to

control and/or reduce the wake focusing forces. In the
linear wake regime (and approximately in the quasilinear
wake regime), the focusing forces are linearly proportional
to the transverse gradient of the laser intensity. Hence, by
combining higher-order modes to produce an intensity
profile that is transversely flat near the axis, the focusing
force can be reduced to zero. The case of the fundamental
Gaussian and the first-order Hermite-Gaussian mode with
cross polarization in 2D Cartesian geometry was studied in
detail. In particular, for an initially uniform plasma, con-
ditions were found on the relative intensity of the two
modes (a1=a0) for which the laser intensity profile is flat
near axis, leading to zero focusing forces for all phases kp�

near the axis. When adding corrections due to a plasma
channel, it was shown that while there is no condition
where the focusing field gradient is constant (e.g., zero)
for all phases near the axis, the two short-pulse modes can
be shifted in time, and the relative intensity of the higher-
order mode adjusted, such that the focusing field gradient
stays constant near axis over a small interval in phase. By
using this method, it is also possible to further control the
shape of the focusing field longitudinally. In particular, the
focusing field can be kept constant over a finite length in
phase, i.e., the focusing field is constant over the length of
the electron bunch and allows for some amount of phase
slippage before the focusing force varies. These results
were confirmed with 2D PIC simulations. Because the
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FIG. 9. Transverse electric field driven by a Gaussian and a
first-order Hermite-Gaussian pulse as a function of distance
behind the laser, at x=r0 ¼ 0:1, with the two pulses having cross
polarized (solid line), the Hermite-Gaussian mode delayed by
2�=!p (dashed line), and different frequencies for the two

pulses (k1 ¼ 1:325k0) (dash-dotted line).
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two modes have different group velocities, the delay be-
tween them changes as they propagate and the condition
for a flat focusing field is not exactly satisfied over a whole
dephasing length. However, the focusing field can be sig-
nificantly reduced compared to the response due to the two
modes without initial delay.

Interference due to the beating of parallel polarized
modes can occur in 3D and for cases involving more than
two modes. Mode beating can lead to a component of the
transverse wake that is nonzero on axis, i.e., a periodic
transverse deflecting force with wave number kbeat. This
deflecting force should in general be avoided, since it can
lead to large transverse oscillations in the accelerated beam.
The amplitude of the transverse beam oscillations is re-
duced when k2beat � k2�, which will be the case at suffi-

ciently high energies since k2� � 1=	. By using two modes

of different frequencies, the beating becomes time depen-
dent, and by choosing parameters such that the beat fre-
quency is fast compared to the plasma frequency, the beat
term essentially does not contribute to wake generation, i.e.,
there is no deflecting force. Alternatively, wake generation
can be accomplished using two short-pulse modes that do
not overlap in physical space, i.e., there is no beating.

Reduction of focusing forces is beneficial to LPAs since it
can increase the matched beam radius of the accelerated
electrons, in addition to reducing betatron oscillations and
synchrotron radiation. The effects of reducing the focusing
force on the accelerated electrons was examined using 2D
PIC simulations. These simulations calculated the evolution
of a test electron beam (zero charge) in a wakefield gen-
erated within a channel by higher-order laser modes in the
quasilinear regime (a0 � 1). It was shown that the matched
beam radius is increased by a factor of 3, compared to using
a fundamental Gaussian mode only, when the first-order
mode is shifted in time relative to the fundamental mode.
This corresponds to an increase of the beam charge and
current by roughly a factor of 9 (for a flattop beam in 3D),
without changing the peak density of the beam and for
the same beam normalized emittance. The required laser
power is increased by a factor 2 due to the addition of the
higher-order mode. The beam radius, however, is limited
to the region where the transverse field is flat, roughly,
�x=r0 & 0:1, beyond which nonlinear (x3) contributions
to the focusing forces become significant. More higher-
order modes can then be added to extend the flat region of
the wake to a larger transverse region about the axis.

The present work neglected the effects of beam loading
and, similarly, simulations were performed using test elec-
tron beams. Beam loading (inclusion of the effects of the
wake produced by the accelerated beam charge) can lead to
significant distortions of the wakefield. In principle, a
proper combination of higher-order modes can be found
such that the beam-loaded wake can be flattened and/or
controlled within the region of the accelerated beam. This
will be a topic of future research.
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APPENDIX: CODE BENCHMARKING

The evolution of an externally injected electron beam in
the PIC code VORPAL [24] and in the 3D particle tracking
code general particle tracer (GPT) [25], which has been
shown to accurately model beam emittance evolution, are
compared to assess the accuracy of the emittance calcu-
lation in the PIC code [34–36]. In GPT, the expressions
for the longitudinal and transverse electric fields of the
wake are described analytically in the low intensity limit
(a20 � 1), neglecting laser evolution and the channel con-

tribution. The code GPT then evolves an electron beam in
these specified fields. For comparison between the two
codes, a case was chosen with low laser intensity (a0 ¼
0:1). The laser pulse length is chosen so the excited wake is
maximum (kpL ¼ 2, hence Ezmax

=E0 ’ 0:0038). The spot

size of the laser pulse is kpr0 ¼ 7:6 and the electron beam

radius is kp�x ¼ 0:72 (�x � 1:7 �m with n0 ¼
5� 1018 cm�3). The electron beam is composed of test
particles, i.e., there are no space charge or beam loading
effects.
Results are shown in Fig. 10, comparing a 2D PIC

simulation with GPT, for an initial electron beam energy
of 14 MeV (	 ¼ 28). The initial normalized rms emittance

is chosen so the electron beam spot size is matched, �2
x ¼

ð�nr0=2Þð	Ezmax
=E0 sin�Þ�1=2, hence �n ¼ 0:07 mmmrad.

The beam is loaded at � ¼ 0:45, where � is the
phase relative to the transverse wakefield [Ex=E0 �
sinðkp� þ �Þ], which corresponds approximately to the

peak accelerating field. The dimensions of the simulation
box for the PIC simulation are 67� 108 �m with 4000�
800 cells and four particles per cell for the background
plasma. Figure 10 shows the evolution of the test
electron beam spot size, normalized rms emittance, and
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energy (	). In Fig. 10(b) the two solid lines correspond to
the measure of the normalized emittance in the two trans-
verse dimensions x and y in GPT, the discrepancy between
the two being due to particle statistics. There is in general a
good agreement between the two codes. In particular, no
artificial growth of the emittance is observed, which could
arise from numerical noise, in the PIC simulation [34–36].
The beam radius oscillates (15% variation), due to a slight
mismatch, at half the expected electron betatron wave-
length ��=2 ¼ 3:7 mm. The discrepancy in the electron

beam radius evolution comes from the slight discrepancy
of the phase between the transverse and longitudinal elec-
tric field due to the presence of the plasma channel in the
PIC simulation. Note also that, because the beam is loaded
in the first bucket after the laser pulse, to minimize the
curvature effects due to the plasma channel in the PIC
simulation, the field is different than the prescribed field
in GPTwhen the beam slips into the region inside the laser
pulse, leading to a different 	 after dephasing.

The agreement is expected to be good in this case since a
test electron beam is used, hence there is no noise expected

from the deposition of the beam particle current on the
computational grid in the PIC simulation. Moreover, the
beam is loaded in a region where the fields are linear,
yielding to small errors in the interpolation of the fields
to the beam particle positions.
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