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A novel cavity structure is described that could be the basis for a two-beam, high-gradient, accelerator.

Versions of the structure could be used for acceleration of beams of electrons, positrons, muons, protons,

or heavier ions; with either electron or proton drive beams. The structure embodies cavities that are

excited in several harmonically related eigenmodes, such that rf fields reach their peak values only during

small portions of each basic rf period. This feature could help raise breakdown and pulse heating

thresholds. The two-beam accelerator structure comprises chains of these cavities. In this configuration,

no transfer elements are needed to couple rf energy from the drive beam to the accelerated beam, since

both beams traverse the same cavities. Purposeful cavity detuning is used to provide much smaller

deceleration for a high-current drive beam, than acceleration for a low-current accelerated beam, i.e., to

provide a high transformer ratio. A self-consistent theory is presented to calculate idealized acceleration

gradient, transformer ratio, and efficiency for energy transfer from the drive beam to the accelerated beam,

for either parallel or antiparallel motion of the beams. The theory has been cast in dimensionless quantities

so as to facilitate optimization with respect to efficiency, acceleration gradient, or transformer ratio, and to

illuminate the interdependence of these parameters. Means for dramatically shortening the structure fill

time are also described. However, no beam dynamics analysis is presented, so the range of parameters

within which this new acceleration concept can be used will remain uncertain until it is established that

stable beam transport along the structure using an appropriate focusing system is possible.
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I. INTRODUCTION

Great interest attaches to any new concept that could
lead to practical design of a high-gradient linear accelera-
tor for a future multi-TeVelectron-positron collider, for an
efficient proton driver, or for a compact medical accelera-
tor. This paper describes a new type of rf cavity structure
for a two-beam accelerator [1], with cavities that are
excited by a drive beam in several harmonically related
modes that are detuned from resonance to allow achieve-
ment of a high transformer ratio [2,3]. As will be shown
below, this two-beam structure embodies a number of other
appealing features, namely (a) the structure is all metallic;
(b) no transfer or coupling elements are needed between
the drive and acceleration channels; (c) the cavity fields are
symmetric with respect to the paths of the drive beam and
the accelerated beam; and (d) exposure times for the peak
rf electric and magnetic fields on cavity surfaces are less
than for a single-mode cavity at the same fundamental
frequency with the same pulse width. Features (a) and (b)
lead to simplicity in construction and savings in cost.
Feature (c) is favorable from a beam stability standpoint.
Feature (d) could allow rf breakdown and pulse heating

thresholds to be higher than for a conventional cavity that
operates at the same fundamental frequency. Finally, a high
transformer ratio can make the structure attractive for a
two-beam accelerator, since this leads to fewer drive beam
stages than for an interaction with low transformer ratio.
Other two-beam accelerator systems have been de-

scribed [4] and one, CLIC at CERN [5], is under intense
study. Another, based on dielectric wakefields generated in
cylindrical cross-section structures [6,7], has been tested.
Also, two-beam accelerator configurations with structures
built of rectangular or coaxial cross-section dielectric-lined
elements are under development [8,9].
In a collinear two-beam accelerator, decelerated drive

bunches and accelerated test bunches travel along the same
channel. Usually, in this arrangement, particles in a test
bunch can acquire energy at a rate that cannot exceed about
twice the average energy loss of particles in a drive bunch;
this is often expressed through the transformer ratio T
which, according to Wilson’s theorem [10], will normally
not exceed a value of 2. The number of drive beam sections
N in a two-beam accelerator needs to be greater than
Nmin ¼ WF=TWD, where WF is the final beam energy
andWD is the drive beam energy. As an example, forWF ¼
1:5 TeV, WD ¼ 2:0 GeV, and T ¼ 2, this translates to
N >Nmin ¼ 375, a sizable number of independent drive
beam sections. It would seem that T values well in excess
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of 2 are desirable for a practical two-beam accelerator. In
this paper, it will be shown that use of detuned cavities
allows one to achieve T � 2.

II. SUPERPOSITION OF HARMONICALLY
RELATED CAVITY MODES

A particle beam to be accelerated is modeled in this
paper to be a periodic sequence of tight bunches that move
along a straight path with a velocity close to the speed of
light. High accelerating fields need exist only during the
narrow time intervals when test bunches traverse the cav-
ities that comprise the accelerator structure. During time
intervals between bunches, fields in each cavity should
preferably be as small as possible. In each cavity, fields
localized in space should move between the structure axis
when a bunch to be accelerated arrives, and at other times
move away from the axis and generally weaken [11,12].
This scenario is illustrated in cartoon form in Fig. 1. The rf
power that flows in the longitudinal direction is neglected
due to assumed small cutoff apertures between cavities
only large enough for beam transport. The ideal electric
field seen by bunches along the structure is sketched in
Fig. 2 (curve 1—in green), in comparison with field be-
havior in a single-frequency structure (curve 2—in red). In
the case of a limited number of modes used in the proposed
accelerating structure the resulted field would look like that
in curve 3—in blue.

It is widely accepted that thresholds increase for rf
breakdown and thermal fatigue due to pulse heating, as
one decreases the rf pulse width—or perhaps more accu-
rately, reduces the exposure time to intense rf. It is thus
natural to anticipate that a cavity in which the peak fields
are present only during transit of the bunches—rather than
during a substantial fraction of the interbunch period—
should be capable of sustaining higher peak fields than
would be the case for a cavity driven at a single frequency.
This is a key feature that motivates design of cavities for an
accelerator structure that support strong fields only during

a small fraction of each rf period. It is not within the scope
of this paper to examine the physics underlying rf break-
down and/or pulse heating dependence upon exposure
time, other than to observe that shortening the exposure
time is expected to be beneficial.
The simplest structure that can produce fields such as

shown in Fig. 2 is a cavity whose eigenmodes have har-
monically related eigenfrequencies !mn. Thus, for the
TMmn0 mode in a square box of side L, one has
ð!mnL=�cÞ2 ¼ n2 þm2. Here, c is the speed of light
and ðm; nÞ are indices for transverse ðx; yÞ field variations;
the fields are uniform in the longitudinal z direction. When

n ¼ m, one has !mn ¼ ffiffiffi
2

p
n�c=L, so this class of modes

has eigenfrequencies that are harmonically related. If the
desired modes are to have electric fields that peak at the
center of the cavity, even values of n should not be excited.
However, selective external excitation of this class of
modes, and no others, could prove daunting; it would
require a separate phase-locked high-power source at the
appropriate frequency for each mode, plus an intricate
coupling scheme. Fortunately, excitation of only the odd-
harmonic modes can be effectively accomplished using a
drive beam consisting of a train of charge bunches injected

at the frequency !11 ¼
ffiffiffi
2

p
�c=L along the axis of the

cavity. This phenomenon is illustrated in Fig. 3, which
shows the rf electric field distribution in a square box
cavity excited in the three modes with frequencies !11,
!33 ¼ 3!11, and !55 ¼ 5!11 due to the passage of a train
of point charge bunches. The field distribution is shown at
the instant when the bunch passes through the cavity and
1=20 of a period later where the peak electric field is seen
to be lower than its maximum value by about a factor of 3.
A similar comparison can be made for rf magnetic fields

in the cavity. Figure 4(a) shows the magnetic field profile at
its peak, 90� in phase after the peak in electric field. A
strong multimode superposition is seen along the cavity
walls that could promote pulse heating and surface fatigue

FIG. 1. (Color) Acceleration of moving periodic bunches in
uncoupled cavities operating with a superposition of synchro-
nized harmonically related eigenmodes.

bunches
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FIG. 2. (Color) Time dependence of fields in an accelerating
structure consisting of a chain of uncoupled, multimode, har-
monically related eigenmodes. Curve 1 (green) has the ideal time
dependence; curve 2 (red) has the sinusoidal time dependence as
in conventional single-frequency accelerating structures; curve 3
(blue) represents the field in a multifrequency accelerating
structure operating in a limited number of modes.

KAZAKOV, KUZIKOV, JIANG, AND HIRSHFIELD Phys. Rev. ST Accel. Beams 13, 071303 (2010)

071303-2



in a high-gradient cavity. Figure 4(b) shows the profile at a
time 1=20 of the bunch period after that in Fig. 4(a). As
with the rf electric fields, it is seen that strong fields only
persist for short portions of the bunch period.

The reduction in time of exposure to high fields that
results from use of superposition of harmonic modes is
illustrated in further detail in Fig. 5. Here a comparison in
exposure times to the rf electric field is made between
excitation in a single mode, and in three equal amplitude
harmonic modes. The figure shows for the same peak fields
that 95%, 90%, and 80% of the peak field is present 20%,
29%, and 41% of the time for excitation in a single mode;
but these same amplitudes are only present 6%, 8.4%, and

10% of the time when three modes are excited. These
exposure reductions illustrate the potential value that this
strategy may hold to allow higher peak fields to be sus-
tained before encountering unacceptable breakdown rates
or excessive pulse heating.
In passing, it is worth mentioning that another rectan-

gular structure has harmonically related modes in which
both even and odd harmonics can couple to a centered
beam. This structure is a rectangular box with sides L andffiffiffiffiffiffiffiffi
5=3

p
L. Here the TM110 mode has eigenfrequency !11 ¼ffiffiffiffiffiffiffiffi

8=5
p

�c=L, and TMnn0 modes have eigenfrequencies
equal to n!11. But among these only the odd-n modes

FIG. 4. (Color) (a) The rf magnetic field pattern one-quarter period after the electric field pattern shown in Fig. 3(a) appears. Note
strong fields along the cavity walls. (b) The rf magnetic field pattern at a time 1=20 of the bunch period later. The peak magnetic field
on the walls is smaller by about a factor of 2, than in (a).

FIG. 3. (Color) (a) Axial E field in a square cavity of side L excited in its first three odd-n TMnn0 modes by a train of point charge
bunches spaced in time by

ffiffiffi
2

p
L=c, at the time of transit of a bunch. (b) Same as (a), except at a time 1=20 of the bunch period after

passage of the bunch. One notes that the peak electric field is now smaller by about a factor of 3, than in Fig. 3(a).
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will couple to a centered beam, as with the square box
cavity. However, it is possible to show that the TM1;3;0,

TM5;1;0, TM3;9;0, TM1;13;0, and TM5;15;0 modes have reso-

nances at 2!11, 4!11, 6!11, 8!11, and 10!11, respectively,
and will also couple to a centered beam. This cavity may be
further superior to the square box cavity because of its
more dilute density of possible spurious modes.

However, from the practical point of view, an axisym-
metric cavity is preferable to a rectangular one, in order to
maximize the Q factor, and to facilitate fabrication and
tuning. A design for such a cavity has been found, where
the first three axisymmetric modes are related harmoni-
cally. This cavity is a modified cylindrical pillbox, with the
usual planar end walls tilted to obtain the harmonicity.
Outline images and a drawing for this type of cavity are
shown in Fig. 6. Field maps are shown in Fig. 7.

The mode eigenfrequencies andQ factors found for the
first three axisymmetric modes of a copper version of this
cavity (similar to TM010, TM020, and TM030 modes for
a standard pillbox) are 2.999 98 GHz, 7:041� 103;
5.999 95 GHz, 1:079� 104; and 8.999 93 GHz, 1:408�
104.

It is, of course, advantageous to operate without the need
to skip modes with even indices as is the case here, since
this lowers the frequencies for modes above the first and
thus avoids the smaller transit-time reduction factors en-
tailed for higher mode frequencies, and lowers the number
of possible spurious modes. In what follows, it is assumed
that a chain of cavities similar to those shown in Figs. 6 and
7 is assembled to constitute each accelerator section.

III. A CHAIN OF DETUNED, DECOUPLED
CAVITIES AS ATWO-BEAM ACCELERATOR

STRUCTURE

The use of detuned cavities to constitute a two-beam
accelerator with high transformer ratio was first introduced
by Kazakov et al. [1]. That concept can embody excitation
of several modes in a cavity as described above for raising
breakdown thresholds, but is equally valid for single-mode
cavities. Discussion in this section is limited to single-
mode cavity excitation, but examples given below are for
multimode excitation. Analysis that extends single-mode
theory to multimode is given in Appendix A.
The accelerator scheme uses a drive beam having a

bunch frequency detuned slightly away from the eigenfre-
quency for the lowest-order TM010-like cylindrical cavity
mode, with test bunches interspersed periodically between
drive bunches. We assume that both the high-current drive
beam and the low-current accelerated (or test) beam propa-
gate collinearly along the axis of the cavity chain.
Without detuning, the electric fields induced by the

decelerating drive beam particles, and in turn seen by the
accelerating test particles later in the cycle, are evidently at
best equal in magnitude, indicating that the transformer
ratio would not exceed unity. This is clearly not a useful
circumstance for a two-beam accelerator. However, the
transformer ratio can be made noticeably greater than unity
when the cavity is detuned. The principle of operation of a
detuned cavity without loss is illustrated in Fig. 8(a), and
for a cavity with loss in Fig. 8(b). Without loss, and off
resonance, current and voltage for each beam are 90� out
of phase with each other. Thus, the peak electric field in the
cavity occurs one quarter period after passage of the drive
current bunch. But, since a test particle bunch can be

FIG. 7. (Color) Profiles, outline drawing, and field maps for an
axisymmetric modified pillbox cavity with harmonically related
eigenfrequencies for its first three axisymmetric modes.

FIG. 5. (Color) Time dependence of fields in a square box cavity
excited in a single mode during half of a fundamental mode
period, as compared with the same cavity excited in three
harmonic modes. A dramatic reduction in exposure time to
strong fields for the latter case is evident. Reduction is doubled
for a full cycle (cf. Fig. 2).

FIG. 6. (Color) Profiles and outline drawing for a modified pill-
box cavity with harmonically related eigenmodes for its first
three axisymmetric TM modes. Dimensions are in mm.
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phased to arrive at an arbitrary time after a drive beam
bunch, drive beam voltage and accelerated (or test) beam
current can be in phase (so work is done on the test beam
particles by the drive beam), while accelerated beam volt-
age and drive beam current are 180� out of phase (and
work is done by the test beam on the drive beam particles).
Thus, energy is gained by the test beam, with an equal
energy lost by the drive beam; and with a transformer ratio
T equal to the ratio of currents, i.e., T ¼ ID=IT as in any
ideal transformer. If the drive beam current were to greatly
exceed the test beam current, one can view the cavity as a
simple resonant circuit driven from a constant current
source, where the phase lag or lead between current and
voltage is zero when the bunch frequency for the drive
beam current is exactly resonant with the natural frequency
of the circuit. But off resonance, the voltage will lag or lead
the current, depending upon the degree and sign of detun-
ing. This differs from the customary situation with accel-
erator cavities driven at resonance, where the induced
cavity voltage has a phase to give maximum deceleration,
linked to the arrival phase of bunches in the gap. When the
test beam current is not negligible, and when one seeks a
self-consistent description, it is necessary to consider both

currents as comprising a ‘‘source’’ that induces a net gap
voltage which is a phasor sum of voltages seen by both
beams. Clearly, the phase differences depend upon the
degree of detuning, but one is free to impose an optimum
difference by adjusting the detuning. This is the premise
invoked in the theory described here.
Figure 9 shows another explanation of the working of a

detuned cavity, where deceleration of drive particles is
seen to be much smaller (in magnitude) than is acceleration
of test particles, effected solely by the relative phase angle
between accelerated test bunches and decelerated drive
bunches. Figure 9(a) shows the respective phases for elec-
tron acceleration, while Fig. 9(b) is for positrons. This
principle of two-beam acceleration using detuned cavities
does not depend on the mass of either beam species,
allowing one to also consider this mechanism for two-
beam acceleration of protons, muons, or heavier ions,
using either an electron or proton drive beam.

IV. ANALYTIC THEORY FOR TWO-BEAM
ACCELERATION IN A DETUNED CAVITY

STRUCTURE

In this section, a self-consistent theory is presented for
two-beam acceleration in a structure consisting of a chain
of detuned cavities. For simplicity, the magnitude of detun-
ing is assumed to be identical for all cavities. However, for
some applications it turns out to be advantageous to em-
ploy detuning of alternate signs in alternate cavities; in
what follows these two choices are distinguished by the
labels ‘‘fixed detuning’’ and ‘‘alternate detuning.’’ The
model employed has drive bunches and test bunches in-
jected at the same frequency, so that test bunches are
uniformly interleaved between drive bunches; generaliza-
tion to the case of harmonically related bunch and test
frequencies is straightforward. For the derivations in this
section, it is assumed in the interest of clarity that only one
cavity mode is excited by the drive beam. However, as
described above, it could be desirable to operate with
multimode excitation to reduce the exposure times of

FIG. 9. (Color) (a) Accelerating test electron bunches (blue dots)
and decelerating electron drive bunches (red dots).
(b) Accelerating test positron bunches (green dots), and decel-
erating electron drive bunches (red dots), for a structure consist-
ing of a chain of detuned cavities.

FIG. 8. (Color) (a) Exciting a detuned cavity without loss.
(b) Exciting a detuned cavity with loss. Excitation off resonance
allows a transformer ratio greater than unity.
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cavity surfaces to high fields.1 Self-consistent theory for
multimode excitation is presented in Appendix A.
Examples presented below are based on multimode
excitation.

The test beam with current ITðz; tÞ is taken to propagate
along the ẑ direction passing on axis through each cavity.
The drive beam with current IDðz; tÞ is taken to propagate
either forward along the ẑ direction or backward along the
�ẑ direction, also on axis. The two currents can be written
as superpositions of harmonically related modal currents
with frequencies !s and wave numbers kTs and kDs i.e.,

ITðz; tÞ ¼
X
s

ITse
ið!st�kTszþ�TsÞ (1)

and

IDðz; tÞ ¼
X
s

IDse
i½!st�kDsðz�z0Þþ�Ds�; (2)

where �Ds and �Ts are the initial temporal phases of the
modes; the wave numbers are kTs ¼ !s=c�T and kDs ¼
!s=c�D for normalized particle velocities �T and �D; all
quantities are positive, except that the sign of kDs goes with
the sign of �D; and zo is the separation between drive and
test bunches. Invoking the orthogonality of cavity eigen-
modes allows decomposition of the excited electric field
into independent modal components Ezs excited by each
mode of the composite current. For purely axial currents,
the excited spectrum is taken to be composed only of
TM0m0-like modes in a modified pillbox cavity with har-
monically related eigenfrequencies (as described above).
Thus the amplitude of Ezs is assumed to be constant along
the axis within each cavity. The steady-state excited elec-
tric field in the nth cavity along the accelerator structure
can be written in a Fourier series, i.e.,

Ezðz; tÞ ¼
X
s

EsðzÞei!st (3)

with

EsðzÞ ¼ rs
2g2

1

1þ i2Qs�n

Z n�þg=2

n��g=2
IðzÞdz (4)

as follows from a lumped-circuit model for a current-
driven resonator. Thus we have

EðzÞ ¼ r

2g

�DIDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Q2�2

p
� e�i�nf&e�iðnkT�þ�T Þ þ e�i½kDðn��z0Þþ�D�g: (5)

In Eq. (5), the subscript s has been suppressed to sim-
plify the notation; rs and Qs are the shunt impedance and
quality factor of the sth cavity mode; IðzÞei!st ¼
IDsðz; tÞ þ ITsðz; tÞ is the sth modal component of the total
beam current; g is the cavity gap and � is the spacing
between cavity centers, both assumed to be the same for all
cavities; � ¼ �!=! is the magnitude of relative detuning,
also assumed to be the same for all cavities; �n ¼ ð�1Þ�n�
includes the sign of detuning, with � ¼ 0 for fixed detun-
ing and � ¼ 1 for alternate detuning; the phase angle
between current and electric field is �n ¼ arctan2Q�n;
& ¼ IT�T=ID�D is the modified current ratio; and
the transit-time reduction factors are �D;T ¼
sinð!sg=2c�D;TÞ=ð!sg=2c�D;TÞ.
We can now find the propagator �E, namely, the factor

that projects the electric field from one cavity into the next.
Thus, between adjacent cavities n ¼ 0 and n ¼ 1, we have

�E � Ezðz ¼ �Þ
Ezðz ¼ 0Þ ¼

&e�ikT�þi�T þ e�ikDð��z0Þþi�D

&ei�T þ eikDðz0þ�DÞ ei2��;

(6)

where � ¼ arctan2Q�.
The propagator for particles in the test beam is �T ¼

ITð�Þ=ITð0Þ ¼ e�ikT�. For phase synchronism between
test particles and the accelerating field, it is necessary
that the ratio �T=�E be a real number R. Thus,

R ¼ e�i2�� &ei�T þ eikDðz0þ�DÞ

&ei�T þ eiðkDz0þ�DÞeiðkT�kDÞ� (7)

with the requirement for a vanishing imaginary part, i.e.,
IðRÞ ¼ 0.
At this stage in the analysis we can examine four general

cases, namely, parallel and antiparallel propagation of the
drive and test beams, and fixed and alternate detuning of
the cavities. For fixed detuning � ¼ 0, we find for IðRÞ ¼
0 that ðkT � kDÞ� ¼ 2m�, where m is either zero or an
integer. Substituting kT ¼ !=c�T and kD ¼ !=c�D leads
to the following expression that must be satisfied to ensure
synchronism for fixed detuning:

�T ¼ �D

1þ 2m�c�D

!�

: (8)

For alternate detuning � ¼ 1, the condition IðRÞ ¼ 0
leads to a tangled implicit relationship between �T and �D

that does not yield to easy interpretation. But in the limit as
the modified current ratio & ! 0, i.e., for a test beam
current much smaller than the drive beam current, we
find as a condition for IðRÞ ¼ 0 the equation

ðkD � kTÞ�� 2� ¼ �!

c�D

�
1� �D

�T

�
� 2� ¼ 2m� (9)

which gives

1Recently [13], it has been shown that multimode operation of
a longitudinally asymmetric cylindrical cavity can result in
electric fields directed towards one cavity surface that are weaker
than those directed away from the opposite surface. This could
result in an elevation in the rf breakdown threshold for a
structure composed of such cavities, as compared with use of
symmetric cavities, by analogy with breakdown in a DC vacuum
diode which originates preferentially at the cathode.
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�T ¼ �D

1� ðmþ �
�Þ 2�c�D

!�

: (10)

The two equations found above that prescribe the syn-
chronism conditions for the four cases yield fairly straight-
forward guidelines for the architecture of two-beam
accelerators for use in various parameter regimes. For
specificity in analyzing the synchronism conditions, it is
assumed that �T > 0, but that one may have either �D > 0
(parallel beams) or �D < 0 (antiparallel beams).

With fixed detuning and acceleration of highly relativ-
istic particles (�T � 1) using a highly relativistic drive
beam (j�Dj � 1), it is seen from Eq. (8) for the m ¼ 0
case that synchronism can be maintained with only parallel
beams for arbitrary values of 2�c=!� ¼ �=� where the
wavelength � is the bunch spacing. For m ¼ 1, synchron-
ism requires � � �=2, but for antiparallel beams only.
However, the restriction � � �=2 could result in either a
significant transit-time field reduction or a high degree of
dilution (i.e., gap g comparatively smaller than the cavity
spacing �).

Synchronous acceleration of moderately relativistic par-
ticles (�T � 1) with a highly relativistic drive beam
(j�Dj � 1) is seen to be possible with fixed detuning and
parallel beams for m 	 1. However, this would require
� 
 � for small values of �T , which in turn would lead
to relatively low energy gain for test particles crossing each
gap, and a larger number of cavities with attendant greater
complexity. A similar situation arises with fixed detuning
and antiparallel beams for achieving synchronism for small
values of �T .

As a result, the preferred configuration for two-beam
acceleration of initially low-�T particles is seen to be that
with alternate detuning. In this case, with antiparallel
beams �D � �1, one finds from Eq. (9) that synchronism
with � � ��=2 can be obtained for �T � 1, for all nega-
tive m (including zero) and for values of �=� that satisfy
Eq. (9); but when � � þ�=2 as depicted in Figs. 8 and 9,
only for m � �1 and values of �=� that satisfy Eq. (9).
Synchronism can prevail for arbitrarily low values of �T if
�=� is low enough; but if this is too low, a scheme withM
cavities detuned positive followed by M detuned negative
can be used—as described below. These choices can yield
transit-time reduction factors�T that are close to unity. As
a consequence of these factors, antiparallel beams together
with alternate detuned cavities are seen to be favored
choices for acceleration of low-�T particles, say protons
into the GeV range; while parallel beams would be em-
ployed in exploring regimes for acceleration of electrons or
positrons up into the TeV range. It can also be pointed out
that the roles of test and drive beam can be interchanged, so
that a low-� high-current drive beam (say a sub-GeV high-
power proton beam) could in principle drive acceleration
of a low-current test beam (say multi-GeV electrons or
positrons) to high energies; this exotic option will not be
further pursued in this paper.

The counterintuitive possibility of synchronism for anti-
parallel beams arises from the particular choice of gap
spacing dictated once �T and j�Dj are specified. The fields
from a continuous periodic train of drive bunches seen by
test particles when they pass each gap can appear as a
synchronous wave moving opposite to the drive beam,
since exposure to the drive bunch fields is restricted only
to designated portions of each rf cycle. The apparent
reverse sense of rotation of wagon wheel spokes often
seen in films is analogous.
The synchronism conditions can now be imposed upon

the expression for the electric field experienced by the test
beam particles and the drive beam particles. From the real
part of Eq. (5), we find the field at frequency !s which can
do work on test particles at the center of the nth cavity at
z ¼ n� and at time t ¼ tT ¼ kTn�=!, to be

ETðn�; tTÞ ¼ r

2g

�DID
1þ 4Q2�2

f& cos�T þ 2Q�n& sin�T

þ cos½kDz0 � ðkD � kTÞn�þ�D�
þ 2Q�n& sin½kDz0 � ðkD � kTÞn�þ�D�g:

(11)

Similarly, the excited electric field that acts on drive
beam particles at t ¼ tD ¼ kDðn�� z0Þ=!when the drive
beam is in the center of the nth cavity at z ¼ n� is

EDðn�; tDÞ ¼ r

2g

�DID
1þ 4Q2�2

fcos�D þ 2Q�n sin�D

þ & cos½kDz0 � ðkD � kTÞn���T�
� 2Q�n& sin½kDz0 � ðkD � kTÞn���T�g:

(12)

Equations (11) and (12) can be applied to explore a
range of parameters of two-beam collinear acceleration
using an ultrarelativistic electron drive beam, for accelera-
tion of ultrarelativistic electrons, and acceleration of mod-
erately relativistic protons.
Electron acceleration.—For ultrarelativistic electron ac-

celeration, the drive beam and the test beam have �T �
�D � 1, and the beams propagate in the same direction so
kD � kT . The electric field contributed by both beams that
acts on test beam particles is, from Eq. (11), given by

ETðn�; tTÞ ¼ r

2g

�ID
1þ 4Q2�2

ð&þ coskz0 þ 2Q� sinkz0Þ;
(13)

where k ¼ !=c, the transit-time reduction factors are� ¼
sinðkg=2Þ=ðkg=2Þ equal for both test beam and drive beam,
the modified current ratio & is the current ratio IT=ID itself,
and the initial phases are chosen to be �T ¼ �D ¼ 0.
Similarly, the electric field that drive beam particles expe-
rience in the center of each cavity is
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EDðn�; tDÞ ¼ r

2g

�ID
1þ 4Q2�2

� ð1þ & coskz0 � 2Q� sinkz0Þ: (14)

By choosing the proper delay between test beam and
drive beam, i.e. z0 ¼ ð2j� 1=2Þ�=k with j equal to zero
or an integer, one finds

ETðn�; tTÞ ¼ r

2g

�ID
1þ 4Q2�2

ð&� 2Q�Þ (15)

and

EDðn�; tDÞ ¼ r

2g

�ID
1þ 4Q2�2

ð1þ 2Q�&Þ: (16)

So the transformer ratio T ¼ ET=ED for ultrarelativistic
two-beam electron acceleration, i.e., the ratio of accelerat-
ing field seen by the test particles to the decelerating field
seen by the drive particles, is

T ¼ &� 2Q�

1þ 2Q�&
: (17)

As an example from these equations, for a drive beam
current of 100.8 A and an accelerated beam current of
4.8 A, an acceleration gradient of over 150 MV=m is
predicted for cavity detuning of �!=! ¼ 0:9� 10�3,
with a transformer ratio of 13:1 and a beam-to-beam power
transfer efficiency of 60%. Here, the bunch frequency is
assumed to be 3.0 GHz, the Gaussian bunch lengths to be
15 ps (4.5 mm), the cavity gap widths to be 3.65 cm, walls
between cavities to be 1 mm thick, and Q values for
copper are used.

Proton acceleration.—For proton acceleration, the drive
beam is relativistic with �D � �1, while the test beam has
�T � 1 and propagates in the opposite direction. The
cavity chain has alternatively detuned cavities, tuned
equally above and below the drive beam frequency. By
choosing the proper delay between test beam and drive
beam, that is with ðkD � kTÞn�� kDz0 ¼ ð2j� 1=2Þ�
with j equal to zero or an integer, one finds expressions
identical to those for ultrarelativistic electron acceleration,
except that the transit-time reduction factors are different,
and the modified current ratio & reverts to IT�T=ID�D.
Thus, for acceleration of moderately relativistic particles
(say protons), one has

ETðn�; tTÞ ¼ r

2g

�DID
1þ 4Q2�2

ð&� 2Q�Þ (18)

and

EDðn�; tDÞ ¼ r

2g

�DID
1þ 4Q2�2

ð1þ 2Q�&Þ: (19)

The transformer ratio T is given by the same relationship
as for ultrarelativistic electrons. It should be noted that the
mass of the accelerated species does not enter into any of

these equations, so they could apply to moderately relativ-
istic muons or heavy ions, as well as to protons.
As an example predicted by these equations for a 1-GeV

proton accelerator, the electron drive current is taken to be
25.2 A and the proton accelerated current to be 2.4 A,
giving a proton pulsed power of 2.4 GW; a duty factor of
4:2� 10�3 would give an average beam power of
10 MW. The bunch frequency is 3.0 GHz, and the
Gaussian bunches are 15 ps long. In one case, the cavity
frequencies are alternately detuned with �!=! ¼ �6�
10�4, giving T � 4:5, so the drive beam energy would be
�225 MeV; the average acceleration gradient is predicted
to be �100 MV=m. The drive bunches are 8.4 nC each
while the proton bunches are 0.8 nC each, i.e., 5�
109 protons=bunch. The accelerator structure has gradu-
ally increasing cavity and gap widths. Walls between ad-
jacent cavities are taken to be 1 mm thick andQ values for
copper are used. In contrast, for alternate cavity detunings
of �!=! ¼ �3� 10�3, one finds T � 9:0, so the drive
beam energy would be about 110 MeV. Here, the average
acceleration gradient is about 20 MV=m. These examples
show the inherent trade-off between transformer ratio and
acceleration gradient that can be encountered, in this case
merely by changing the detuning.
Power transfer.—The power transfer �P from a beam

into the cavity is given by �P ¼ R
R
dzI � E=2, whereR

signifies the real part of the quantity that follows. Hence,
the power gain of the test beam in the nth cavity is

�PðnÞ
T ¼�R

Z n�þg=2

n��g=2
dzIT �ET=2

¼� I2Dr�
2
D

4ð1þ 4Q2�2Þ
� f&2 þ &cos½kDz0 �ðkD � kTÞn�þ�D ��T�
þ 2Q�n& sin½kDz0 �ðkD � kTÞn�þ�D ��T�g:

(20)

A minus sign is explicitly added in the first line to
anticipate positive power gain by the test beam from the
cavity. Similarly, the power loss of the drive beam into the
nth cavity is

�PðnÞ
D ¼ R

Z n�þg=2

n��g=2
dzIDED=2

¼ I2Dr�
2
D

4ð1þ 4Q2�2Þ f1þ & cos½kDz0 � ðkD � kTÞn�
þ�D ��T� � 2Q�n& sin½kDz0 � ðkD � kTÞn�
þ�D ��T�g: (21)
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The power dissipated in the walls of the nth cavity is

�PðnÞ
W ¼ V2=r

¼ I2Dr�
2
D

4ð1þ 4Q2�2Þ
� f1þ &2 þ 2& cos½kDz0 � ðkD � kTÞn�
þ�D ��T�g; (22)

where V ¼ gE is the amplitude of the voltage across the
cavity gap. One can verify the self-consistency of this

model by checking energy conservation, namely �PðnÞ
D ¼

�PðnÞ
T þ�PðnÞ

W , which confirms that the equations correctly
show that power taken from the drive beam is completely
accounted for by wall losses and power gain of the test
beam.

Power transfer for electron acceleration.—The power
transfer equations in the two-beam structure for electron
acceleration can be written as

�PT ¼ I2Dr�
2
D

�&2 � &ð2Q� sinc þ cosc Þ
4ð1þ 4Q2�2Þ (23)

�PD ¼ I2Dr�
2
D

1þ &ð�2Q� sinc þ cosc Þ
4ð1þ 4Q2�2Þ (24)

�PW ¼ I2Dr�
2
D

1þ &2 þ 2& cosc

4ð1þ 4Q2�2Þ ; (25)

where the initial phase difference is c ¼ kDz0 þ�D �
�T . One can maximize the test beam power gain �PT by
choosing the initial phase c ¼ � arctan2Q� and applying
the synchronization condition [Eq. (8)]. In the limitQ� �
1, one can simplify the expression by approximating c ¼
��=2, to yield

�PT ¼ I2Dr�
2
D

4

2Q�&� &2

1þ 4Q2�2
(26)

�PD ¼ I2Dr�
2
D

4

2Q�&þ 1

1þ 4Q2�2
: (27)

Power transfer for proton acceleration.—For the proton
accelerator case, we have considered a cavity chain with
alternativeþM�M cavity detunings, i.e., withM cavities
having positive detuning followed by M cavities having
negative detuning, etc. The time-averaged power gain of
the test beam per cavity is found to be

�PT ¼ 1

2M

X2M�1

n¼0

�PðnÞ
T

¼ � I2Dr�
2
D&

4Mð1þ 4Q2�2Þ
�
M&þ ð2Q� sin�þ cos�Þ

� cos½c � ð2M� 1Þ�� sinð2M�Þ
sinð2�Þ

�
; (28)

where � ¼ ðkD � kTÞ�=2 and c ¼ kDz0 þ�D ��T .
Similarly, the power loss of the drive beam can be shown
to be

�PD ¼ I2Dr�
2
D

4Mð1þ 4Q2�2Þ
�
Mþ &ð�2Q� sin�þ cos�Þ

� cos½c � ð2M� 1Þ�� sinð2M�Þ
sinð2�Þ

�
: (29)

Particularly for the case of M ¼ 1 with �T < 1, the
power gain of the test beam is

�PT ¼ � I2Dr�
2
D&

4ð1þ 4Q2�2Þ ½&þ ð2Q� sin�þ cos�Þ
� cosðc ��Þ� (30)

and the power loss of the drive beam is

�PD ¼ I2Dr�
2
D&

4ð1þ 4Q2�2Þ ½1þ &ð�2Q� sin�þ cos�Þ
� cosðc ��Þ�: (31)

By applying the synchronization condition, Eq. (9), one
has 2� ¼ ðkD � kTÞ� ¼ 2�, so for a proper choice of the
phase delay between test beam and drive beam c ¼ �, in
the limit Q� � 1, one finds

�PT ¼ I2Dr�
2
D

4

2Q�&� &2

1þ 4Q2�2
(32)

�PD ¼ I2Dr�
2
D

4

2Q�&þ 1

1þ 4Q2�2
: (33)

It is seen that these formulas are identical to those for
electron acceleration, provided the full form for the modi-
fied current ratio & is used.
Parameter space.—The theory developed above pro-

vides the interrelationships between the main parameters,
as is needed to provide guidance in optimizing structure
design for a particular application. The fundamental pa-
rameters are the cavity peak field amplitude ET seen by the
accelerated test particles, the power transfer efficiency �
between drive and accelerated beams, and the transformer
ratio T . These parameters depend upon cavity detuning
� ¼ �!=!, cavity quality factorQ, and modified current
ratio & between the beams. It is important to note that each
beam is only characterized by its current and normalized
particle velocity �, and not explicitly by the beam energy
or beam particle mass.
To restate results of the previous derivations, the excited

electric field Eqs. (15) and (18) that the test beam experi-
ences at the center of cavity can be expressed as

ET ¼ �
2&� 4�

1þ 4�2
(34)

while the excited electric field the drive beam experiences
at the center of cavity can be expressed as
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ED ¼ �
2þ 4�&

1þ 4�2
; (35)

where � ¼ Qð�!=!Þ, and with the normalization factor
for the electric field � ¼ r�DID=4g.

The power gain of the test beam can be written as

�PT ¼ I2Dr�
2
D

4

2�&� &2

1þ 4�2
(36)

and the power loss of the drive beam can be written as

�PT ¼ I2Dr�
2
D

4

2�&þ 1

1þ 4�2
: (37)

It is instructive to normalize all quantities to dimension-
less variables, defined as follows.

Modified current ratio & ¼ ð�T=�DÞðIT=IDÞ, where IT
and ID are the test (i.e., accelerated) current and the
drive current, and where �T and �D are the respective
beam transit-time reduction factors, e.g., �TðDÞ ¼
sinð�g=�TðDÞ�Þ=ð�g=�TðDÞ�Þwith g the cavity gap width,

and � the free-space wavelength. For the electron-electron
two-beam case, � ¼ 1.
Transformer ratio T ¼ ET=ED is the ratio of accelerat-

ing field seen by the test particles, to the decelerating field
seen by the drive particles.
Beam-to-beam power transfer efficiency � ¼

�ITET�T=IDED�D � �&T .
Normalized detuning factor � ¼ Qð�!=!Þ, where Q

is the cavity quality factor and ð�!=!Þ is the fractional
frequency detuning for the cavities, fixed or alternating in
sign for each successive cavity, and assumed to be equal for
all modes.
Normalized electric field " ¼ ET=�. The field seen by

the drive beam is ED ¼ "�=T .
These five quantities can be shown to be related as

follows:

T ¼ &� 2�

1þ 2&�
(38)

and

FIG. 10. (Color) Two-beam accelerator parameters. Parts (a), (b), and (c) show efficiency �, normalized accelerating gradient seen by
test particles ", and transformer ratio T , each as a function of modified current ratio & and normalized detuning �. Part (d) shows " as
a function of T and �.
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" ¼ 2&� 4�

1þ 4�2
(39)

subject to the constraints j"j þ � � 1, ð2�� &Þ& > 0,
"ð"þ 2&Þ � 1, and "�< 1. These relationships show
that there is a direct trade-off between efficiency and
acceleration gradient. One can use any two of parameters
f&; ";T ;�; �g to represent the rest. For example, using the
modified current ratio & and the scaled detuning � as
parameters,

T ¼ &� 2�

2�&þ 1
(40)

� ¼ 2�&� &2

2�&þ 1
(41)

" ¼ 2&� 4�

1þ 4�2
: (42)

While using the efficiency � and the transformer ratio T
as parameters, one has

" ¼ � 2ð1� �ÞT
1þT 2

: (43)

Graphical representations to show the interrelationships
are shown in Fig. 10. Figures 10(a) and 10(b) show the
strong trade-off between efficiency � and accelerating
gradient ": Fig. 10(a) shows that efficiency is high
for large detuning � and large current ratio &; while
Fig. 10(b) shows that accelerating gradient " peaks with
the detuning factor � � 1, and that it falls as the current
ratio & increases. Figure 10(c) shows the transformer ratio
T to be a strong function of current ratio &, decreasing as
current ratio increases, but that it is a weak function of
detuning�, unless the detuning is small—in which caseT
is also small. Figure 10(d) recasts the picture, showing
again that the accelerating field " falls as transformer ratio
T and efficiency � increase. These relationships provide
important guidance in optimizing design.

V. CONCLUSIONS

A novel cavity structure has been described that could be
the basis for a two-beam high-gradient accelerator.
Versions of the structure could be used for acceleration
of beams of electrons, positrons, muons, protons, or heav-
ier ions; with either electron or proton drive beams. The
structure embodies novel axisymmetric cavities that are
excited in several harmonically related eigenmodes, such
that rf fields reach their peak values only during small
portions of each basic rf period. This feature could help
raise breakdown and pulse heating thresholds. The two-
beam accelerator structure comprises chains of these cav-
ities. In this configuration, no transfer elements are needed
to couple rf energy from the drive beam to the accelerated
beam, since both beams traverse the same cavities.

Purposeful cavity detuning has been shown to provide
much smaller deceleration for a high-current drive beam
than acceleration for a low-current accelerated beam, i.e.,
to provide a high transformer ratio. A self-consistent the-
ory has been presented to calculate idealized acceleration
gradient, transformer ratio, and efficiency for energy trans-
fer from the drive beam to the accelerated beam, for both
parallel and antiparallel motion of the beams. The theory
has been cast in dimensionless quantities so as to facilitate
optimization with respect to efficiency, acceleration gra-
dient, or transformer ratio; and to illuminate the interde-
pendence of these parameters. Means for dramatically
shortening the structure fill time are also described (see
Appendix B). Preliminary examples have been provided
for electron and proton accelerators, in each case using a
high-current electron drive beam. However, it is important
to stress that no beam dynamics analysis has yet been
presented, so the range of parameters within which this
new acceleration concept can be used will remain uncer-
tain until it is established that stable beam transport along
the structure using an appropriate focusing system is
possible.
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APPENDIX A: FORMALISM FOR MULTIMODE
ACCELERATOR STRUCTURE

By analogy to the single-mode excitation detailed in the
body of this paper, we here develop the formalism for the
multimode accelerator structure. Applying Eqs. (1) and (2)
into Eq. (3), one can write the excited electric field ETðtÞ ¼P

sETse
i!st, where the sth mode of electric field in the nth

cavity is

ETs ¼ rs
2g

IDs

1þ i2Qs�ns

� ½	se
i�Tse�inkTs��Ts þ ei�Dse�inkDsðn��z0Þ�Ds�

(A1)

and the transit-time factors are �TðDÞs ¼
2 sinðkTðDÞsg=2Þ=kTðDÞsg and 	s ¼ ITs=IDs.

The power transfer in the cavity can be written as the
sum of power gain or loss of each mode �Ps, by taking the
time average over the period of the fundamental frequency
mode such that the cross terms with higher frequencies
drop out,

�P ¼ R
Z

dzI � E=2 ¼ R
X
s

Z
dzIs � Es=2 ¼ X

s

�Ps:

(A2)
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Hence, the average power gain of the test beam in the
nth cavity is

�PðnÞ
T ¼ �X

s

I2Dsrs�
2
Ds

4ð1þ 4Q2
s�

2
sÞ

� f&2s þ &s cos½kDsz0 � ðkDs � kTsÞn�
þ�Ds ��Ts� þ 2Qs�ns&s

� sin½kDsz0 � ðkDs � kTsÞn�þ�Ds ��Ts�g:
(A3)

Similarly, the average power loss of the drive beam in
the nth cavity is

�PðnÞ
D ¼ X

s

I2Dsrs�
2
Ds

4ð1þ 4Q2
s�

2
sÞ

� f1þ &s cos½kDsz0 � ðkDs � kTsÞn�
þ�Ds ��Ts� � 2Qs�ns&s

� sin½kDsz0 � ðkDs � kTsÞn�þ�Ds ��Ts�g:
(A4)

The average power dissipated in the nth cavity wall is

�PðnÞ
W ¼ X

s

I2Dsrs�
2
Ds

4ð1þ 4Q2
s�

2
sÞ
f1þ &2s þ 2&s

� cos½kDsz0 � ðkDs � kTsÞn�þ�Ds ��Ts�g:
(A5)

These last three equations combine to satisfy the energy
conservation relationship �PDn ¼ �PTn þ �PWn, show-
ing as it must that energy delivered by the drive beam is
converted into wall losses and energy gain of the test beam.
Following the same derivation for single mode detailed
above, the interrelation between the accelerating field "s,
transformer ratio T s, and efficiency �s is shown to be still
valid for individual modes. These relationships provide
important guidance in optimizing design. The drive current
profile and cavity structure will modify the contribution of
each mode to the accelerating field spatially and tempo-
rally, hence effect the exposure time of the cavity to the
peak field.

APPENDIX B: TRANSIENT SUPPRESSION

Excitation of detuned cavities involves a filling time, as
for tuned cavities, except that (as shown below) the cus-
tomary exponential buildup of cavity fields has interfer-
ence beats at the detuning frequency interval superimposed
upon it. Energy dissipated during cavity fill times repre-
sents an inefficiency, elimination of which would be
advantageous in many applications. In this Appendix, sev-
eral means are described for shortening the fill time for
detuned (or even tuned) cavities—typically by 1 order of
magnitude.

A simplified model of cavity filling can be demonstrated
using the equivalent lumped-parameter circuit driven by a
current I as shown in Fig. 11. Any frequency shift due to
beam loading is ignored here as it would typically be much
smaller than the imposed detuning for the two-beam struc-
ture discussed above.
The drive current is at frequency !, which is slightly

detuned from the cavity resonance frequency !0 ¼ffiffiffiffiffiffiffiffiffiffiffiffi
1=LC

p
. For small detuning �! ¼ !�!0, one has

�!=! 
 1. The differential equation describing transient
buildup of voltage V is

V

R
þ C _V þ 1

L

Z
Vdt ¼ Iei!t: (B1)

The solution, subject to the initial conditions Vð0Þ ¼
_Vð0Þ ¼ 0 is

V ¼ IRei!t

1þ i2Q�!=!
ð1� e�t=
e�i�!tÞ (B2)

with the conditionQ � 1 and 4Q2�!=! � 1, where the
quality factor is Q ¼ R=!0L ¼ RC!0 and the nominal
cavity filling time 
 ¼ 2Q=!0. Inside the parentheses, one

FIG. 12. (Color) Fore pulse method. (a) Current profile. (b) The
reduced filling time by cancellation of the two beating transients.
The cyan curve is the voltage induced by the first step pulse, the
purple curve is induced by the second one, the red curve is the
final voltage by summing two beating transients, and the green
curve is the standard filling time curve for a single step pulse.

FIG. 11. (Color) Simplified equivalent circuit of the cavity
driven by a current I.
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can see the second term is the transient term with a decay-
ing oscillation at the beat frequency �!.

To minimize transient effects, several methods can be
considered that involve injecting a prepulse current prior to
the main pulse. One example is shown in Fig. 12(a), in
which a square pulse I1 rises at t ¼ �t1 with pulse width T
that induces a voltage V1, followed by a step pulse I2 at
t ¼ 0, where V1 is

V1 ¼ � I1Re
i!te�i�!te�t=


1þ i2Q�!=!
e�i�!t1e�t1=


� ei!t1ð1� ei�!TeT=
Þ (B3)

which will asymptotically decay away. By summing
Eqs. (B2) and (B3), the induced total voltage after t ¼ 0 is

VðtÞ ¼ Rei!t

1þ i2Q�!=!
fI2 � ½I2 þ I1e

�i�!t1e�t1=


� ei!t1ð1� ei�!TeT=
Þ�e�i�!te�t=
g: (B4)

By choosing I1 ¼ �I2e
i�!t1et1=
e�i!t1=ð1�

ei�!TeT=
Þ, the second term in the bracket (the beating
decay component) is canceled and the total voltage
immediately reaches the steady state V ¼ I2Re

i!t=ð1þ
i2Q�!=!Þ.

One possible implementation of this method to achieve
such step current relationship is to phase lock I1 and I2 and
choose the prepulse width T ¼ n�=�!, with n equal to an
integer. Note that this method also applies to a cavity that

is not detuned, i.e., with �! ¼ 0, where I1 ¼
I2e

ðt1�TÞ=
e�i!t1=ð1� e�T=
Þ.
In the limit of zero pulse interval as t1 ! T, such that

I1 ¼ I2e
�i!T=ð1� e�i�!Te�T=
Þ, this profile will reduce

to a two-step function. One can modulate the amplitude as
shown in Fig. 13(a), or phase as shown in Fig. 14(a) of the
first step I1 relative to the following step I2. For the first
case, one can phase lock I1 and I2 and choose the step
width T ¼ 2n�=! and detuning�! ¼ !=mwithm and n

integers, such that the first and second currents are related

by I1 ¼ I2=ð1� e�T=
Þ. The consequence of transient sup-
pression is shown in Fig. 13(b).

As to the second case, one can choose e�T=
 ¼
2 cos�!T with the constraint �!T >�=6, such that I1 ¼
I2e

ið2�!�!ÞT with the phase flip equal to ð2�!�!ÞT, as
shown in Fig. 14(b). Note that the phase flip case only
works in the detuned cavity.
In conclusion, by modifying the beam profile in phase or

amplitude, the effective beam filling time can be substan-
tially shortened for the detuned acceleration structure. For
the driven resonance cavity, the frequency shift due to the
beam loading is a nonlinear effect that should be included
in the model. Details of experimental implementation are
beyond the scope of this paper.
One can see that in general it only takes only a time

�=�! to fill the cavity instead of the nominal cavity filling
time 
 ¼ 2Q=!0 by modifying the current pulse profile.
For the detuned cavities as discussed in this paper,
Q�!=! is in the order of several tens, hence the filling
time can be shortened at least by a factor of 10.
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FIG. 14. (Color) Phase shift method. (a) Current profile. (b) The
reduced filling time by cancellation of the two beating transients.
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