
Photonic-based laser driven electron beam deflection and focusing structures

T. Plettner,* R. L. Byer, and C. McGuinness

E.L. Ginzton Laboratories, Stanford University, Stanford, California 94305, USA

P. Hommelhoff

MPQ, Garching, Germany
(Received 22 February 2009; published 26 October 2009)

We propose a dielectric photonic structure for ultrafast deflection and focusing of relativistic charged

particle beams. The structure is designed to transform a free-space laser beam into a deflection force that

acts on the free particles with the same optical phase over a distance of travel that is much greater than the

laser wavelength. The proposed structure has a two-dimensional geometry and is compatible with existing

nanofabrication methods. Deflection fields of GV=mmagnitude and subfemtosecond switching speeds are

expected to be possible from these dielectric structures. With these elements a submeter scale extreme

ultraviolet synchrotron source seems feasible.
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I. INTRODUCTION

In a prior publication we described a laser-driven
dielectric-material deflection microstructure that acts as a
building block for a compact undulator [1]. This article
explores further aspects of this structure, including its
ability for beam focusing, for ultrafast beam streaking,
and for beam switching. Generation of beams consisting
of electron pulses with sub-fsec duration from laser-driven
particle accelerators was observed recently by indirect
means [2]. A direct temporal diagnostic is desirable for
future studies of laser-driven particle accelerators and for
the successful development of other devices that manipu-
late sub-fsec electron beams. The compactness of the
proposed deflection device is possible from the ability of
dielectric materials to support ultrashort laser pulses with
electric field values in the GV=m range without damage.
The deflection structure shares a similar geometry with
dielectric grating based laser-driven particle accelerators
[3] and, hence, can be integrated with these into the same
substrate and by the same nanofabrication process.

The proposed deflection structure features three key
aspects; first, the generation of a phase-synchronous de-
flection force that allows for an interaction length that
extends far beyond a single wavelength of the laser
beam. The synchronicity condition is imposed by a peri-
odic evanescent field. Second, the deflection structure pro-
vides a symmetric force pattern that minimizes the electron
beam degradation. Finally, the structure is nonresonant,
which, as discussed in Sec. III, allows the for application
of few-cycle laser pulses.

The dielectric double grating whose cross section is
depicted in Fig. 1 supports these properties. Binary quartz

based gratings have become commercial components [4–
6]. The incoming laser beam travels in the y direction as
indicated by the solid arrow in Fig. 1, and its phase front is
parallel to the electron beam. To maintain extended overlap
with the electron beam along the vacuum channel, the laser
beam has to be pulse-front tilted. The grooves of the trans-
mission grating create phase-synchronous diffraction or-
ders inside the vacuum channel. In Sec. II it is shown that
these are evanescent. For simplicity only one laser beam is
shown, but as discussed in Sec. III, the desired field sym-

FIG. 1. (Color) Top view of a proposed periodic-phase modula-
tion accelerator structure. The grating grooves are parallel to the
ẑ axis and the laser beam is traveling parallel to the ŷ axis. The
electron beam is traveling in the vacuum channel parallel to the x̂
axis. The pulse-front tilt causes the laser pulse envelope in the
vacuum channel to remain overlapped with the relativistic elec-
tron bunch. The substrate is a dielectric material transparent to
the laser wavelength in question.*tomas.plettner@gmail.com
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metry is generated by a pair of laser beams approaching the
structure from opposite sides.

Metallic open grating accelerator structures have been
studied by Palmer [7], Pickup [8], and other authors.
Recently, metallic grating Smith-Purcell undulators for
THz radiation were explored by Lin et al. [9]. The accel-
eration and synchronicity concepts developed for metallic
gratings are applicable to the proposed dielectric double-
grating structure, but one fundamental property that ap-
pears with transparent gratings is that the laser can be
coupled from within the medium. This allows for a
double-grating geometry that has a confined vacuum chan-
nel and that, when illuminated from both sides, can provide
a field pattern that is symmetric with respect to the electron
beam orbit. In addition, the confined vacuum space brings
about a different set of boundary conditions for the eva-
nescent field when compared to the traditional, semiopen
Smith-Purcell accelerator geometry.

II. PHASE AND ENVELOPE SYNCHRONICITY
CONDITIONS

We apply a plane-wave field decomposition method to
find the diffraction modes that provide a significant de-
flection and have a phase velocity that is matched to that of
the electron beam. The electron beam is assumed to have a
velocity j ~vj ¼ �c, where � is smaller than unity. Similar
to Palmer’s open grating accelerators [7], and as shown in
Fig. 2, we allow the grating grooves to have an oblique
orientation with respect to the electron beam that is quan-
tified by the angle �. The unprimed coordinate system in
Fig. 2 is aligned with the structure grooves while the
primed is aligned with the electron beam. It is found that
� � 0 is critical for the generation of a nonzero phase-
synchronous deflection force (i.e. perpendicular to the
nominal beam direction). The geometry is assumed to
have infinite extent along the z coordinate. The validity

of this approximation is presented in the Appendix. The
electromagnetic fields can then be approximated by inde-
pendent transverse electric (TE) and transverse magnetic
(TM) polarizations. Here the TE polarization corresponds
to the mode with the electric field parallel to the grating
grooves. The period of the grating, denoted by �p, is Lp ¼
�p= cos�.

First assume that the laser beam is a TM-polarized
monochromatic plane wave of angular frequency !. Let
this wave impinge on the grating structure with an angle ’
as shown in Fig. 3 (note that ’ is not the pulse-front tilt
angle c as shown in Fig. 1). The electric field of such an
incident wave is described by

~Eðx; y; z; tÞ ¼ P̂E0e
ið!t�kx sin’�ky cos’Þ�i�: (1)

P̂ is the polarization vector, E0 is the electric field ampli-
tude,� is the optical phase of the input plane wave, and k is
the absolute value of the free-space wave vector corre-
sponding to k ¼ !=c. Since the structure and the incident
plane wave are assumed to extend to infinity along the
grating grooves, the field components show no dependence
on z, which will be omitted from here on.
The field components inside the vacuum channel deter-

mine the deflection and focusing forces acting on the
electron beam. These fields have amplitudes uðx; yÞ that
obey the Helmholtz wave equation r2uðx; yÞ=k2 þ
uðx; yÞ ¼ 0. For gratings these satisfy a pseudoperiodicity
condition of the form uðxþ �p; yÞ ¼ uðx; yÞe�i�pk sin’

[10]. Let kp ¼ 2�=�p be the grating k-vector magnitude.

Then the field can be expressed as a discrete Fourier series
having the form

FIG. 2. (Color) Perspective view of the laser-driven dielectric
deflection structure. The oblique orientation of the grating
grooves with respect to the electron beam is a key aspect of
the proposed structure.
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ẑ

α

side view

pL

top view

P̂

dielectric

vacuum

v

grating 
groove

direction

particle

ϕ

x̂

ŷ
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ẑ

k

electron 
trajectory

incident free-
space wave

x
v

pλ pλ

x̂ŷ
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FIG. 3. (Color) Geometry of the incident TM-polarized plane
wave on the grating structure and the electron beam trajectory.
The side view inset shows the oblique orientation of the electron
trajectory with respect to the grating grooves.
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Exðx; y; tÞ ¼
Xþ1

n¼�1
UnðyÞeixðnkp�k sin’Þeikct�i�

Eyðx; y; tÞ ¼
Xþ1

n¼�1
VnðyÞeixðnkp�k sin’Þeikct�i�

Bzðx; y; tÞ ¼
Xþ1

n¼�1
WnðyÞeixðnkp�k sin’Þeikct�i�:

(2)

UnðyÞ, VnðyÞ, and WnðyÞ describe the amplitudes of the
grating diffraction orders and their dependence on the y
coordinate. These are decomposed into

UnðyÞ ¼ un;þeþ�ny þ un;�e��ny

VnðyÞ ¼ vn;þeþ�ny þ vn;�e��ny

WnðyÞ ¼ wn;þeþ�ny þ wn;�e��ny:

(3)

The coefficients �n describe the mode of the nth grating

diffraction order, and since the optical field k vector is k ¼
ðk2x þ k2y þ k2zÞ1=2, these are

�n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnkp � k sin’Þ2 � k2

q
: (4)

In the present notation a real �n corresponds to an eva-
nescent mode. The field amplitudes are related to each
other, and application of Maxwell’s equations shows that
inside the vacuum channel they are related to WnðyÞ by

UnðyÞ ¼ c

ik
dWnðyÞ=dy

VnðyÞ ¼ �nkp � k sin’

k=c
WnðyÞ:

(5)

In the present analysis it is assumed that the fields do not
significantly alter the particle’s trajectory over a grating
period. Following Fig. 3 the particle’s velocity is described
by ~vðtÞ ¼ �cðx̂ cos�þ ẑ sin�Þ and a corresponding posi-
tion ~rðtÞ ¼ ~vt. The Lorentz force from the TMwave acting
on the particle, expressed in the ðx; y; zÞ coordinates, is

~F½ ~rðtÞ� ¼ qRef ~E½~rðtÞ� þ ~v� ~B½ ~rðtÞ�g

¼ qRe
Ex½ ~rðtÞ�

Ey½~rðtÞ� � �cBz½ ~rðtÞ� cos�
0

0
@

1
A: (6)

We seek the average force on the particle over an extended
interaction distance. Let sðtÞ ¼ �ct be the distance trav-
eled by the particle. The averaged force experienced by the
free particle between t ¼ 0 and t ¼ T is

hFji ¼ 1

sðTÞ
Z sðTÞ

0
Fj½ ~rðsÞ�ds: (7)

The average force components are therefore

hFxiTM ¼ qRe

�
1

sðTÞ
Z sðTÞ

0

Xþ1

n¼�1
UnðyÞeis cos�ðkpn�k sin’Þ

� eiks=��i�ds

�

hFyiTM ¼ qRe

�
1

sðTÞ
Z sðTÞ

0

Xþ1

n¼�1
½VnðyÞ � cWðyÞ� cos��

� eis cos�ðkpn�k sin’Þeiks=��i�ds

�

hFziTM ¼ 0: (8)

The interaction is cumulative if the phase term of the
exponents in Eq. (8) does not change with s, that is,

nkp � k sin’þ k=ð� cos�Þ ¼ 0: (9)

Equation (9) represents the sought phase-synchronicity
condition for a particle traveling with a velocity �c in
the structure shown in Fig. 2. It assumes that the structure
is illuminated by a plane wave with k-vector magnitude k
and an angle of incidence ’. Inspection of Eq. (9) and the
coefficient �n reveals that for �< 1 and any grating tilt
angle � phase synchronicity is only possible with the
evanescent modes. This is in agreement with the
Lawson-Woodward theorem, which states that free-space
waves cannot sustain a linear long-range interaction with
uniformly moving free particles [11]. Thus we encounter a
situation similar to linear-interaction-force laser-driven
accelerator structures, where a cumulative nonzero laser-
electron interaction (either deflection or acceleration) can
only occur in the presence of a material boundary.
Next, the analysis is extended to short laser pulses,

which can be represented as a superposition of plane waves
with different k-vector magnitudes. Define � as the center
wavelength and k0 ¼ 2�=� as the corresponding k-vector
magnitude. Equation (9) establishes that each plane-wave
component of the laser pulse with a specific kmust satisfy a
certain angle of incidence ’. Assume that phase synchro-
nicity for the center wavelength is satisfied at the angle
of incidence ’ ¼ 0. Then with Eq. (9) the phase-
synchronicity condition at the center wavelength reads

k0 ¼ �nkp� cos�: (10)

Again, kp ¼ 2�=�p is the grating structure period. For a

nonzero k0, Eq. (10) can only be satisfied for n � �1,
which corresponds to the evanescent modes described in
Eq. (4). Assume that the angles of incidence of the other
plane-wave components of different wavelength are small,
such that sin’� ’. Defining�k ¼ k� k0 and�’ ¼ ’�
’0, where ’0 ¼ 0 is the angle of incidence of the center
wavelength, Eq. (9) can be rewritten as

1

� cos�
¼ k

�’

�k
� tanc : (11)
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Equation (11) represents a pulse-front tilt condition for an
electromagnetic wave where the pulse-front tilt angle is c
[12], which guarantees synchronicity of the laser pulse
envelope with the particle. Equations (10) and (11) estab-
lish the carrier phase and the envelope synchronicity con-
ditions with the particle traveling down the vacuum
channel at a velocity �c.

The force components hFxi, hFyi, and hFzi in Eq. (8) are
expressed in a coordinate system ðx; y; zÞ that is aligned
with the structure coordinates shown in Fig. 2. However,
we are interested in these forces as observed in the parti-
cle’s coordinate system ðx0; y0; z0Þ, which is rotated by an
angle � about the y axis:

hFx0 i ¼ þhFxi cos�þ hFzi sin�
hFz0 i ¼ �hFxi sin�þ hFzi cos� hFy0 i ¼ hFyi:

(12)

hFx0 i is the average acceleration force experienced by the
particle. hFy0 i and hFz0 i are the average horizontal and

vertical deflection forces. Note that Eq. (9) can be satisfied
for one mode at a time, and in general, the diffraction
modes are weaker with increasing diffraction order num-
ber. Therefore the sum in Eq. (8) reduces to the one
particular value of n for which phase synchronicity is
satisfied, and typically the n ¼ �1 mode is the strongest
evanescent mode. This will be discussed more extensively
in Sec. III with a numerical example. For the TM-polarized
laser beam the first-order diffraction modes n ¼ �1 yield a
set of force components of the form

hFx0 iTM ¼ qc

k
cos�Re½e�i�dW�1ðyÞ=dy�

hFy0 iTM ¼ qc

�
1

� cos�
� � cos�

�
Re½e�i�W�1ðyÞ�

hFz0 iTM ¼ �qc

k
sin�Re½e�i�dW�1ðyÞ=dy�:

(13)

Section IV explores the effect of the grating tilt angle and
the depth of the grating groove on the amplitude of the
grating diffraction order WnðyÞ and on the deflection force
component.

III. SYMMETRIC LASER PUMPING OF THE
STRUCTURE

The evanescent field pattern described in Sec. II pos-
sesses the desired synchronicity conditions but is nonuni-
form and asymmetric. Furthermore, the deflection force is
not aligned with the structure coordinates. A practical
beam manipulation element is only useful if it generates
a deflection force that possesses a high degree of uniform-
ity, symmetry along the vacuum channel, and furthermore
is aligned to the beam coordinates. Excitation of symmet-
ric modes in the vacuum channel of a resonant dielectric
periodic structure is one possibility that has been explored
for other laser-driven accelerator structures [13]. However,
as stated in the Introduction, we are interested in the

application of ultrashort, few-cycle laser pulses and there-
fore cannot resort to resonant-field architectures. Instead,
we can illuminate the transparent grating structure from
opposite sides to generate a symmetric field pattern and
furthermore accomplish the cancellation of undesired force
components.
First, consider the addition of two TM-polarized laser

beams of equal amplitude whose electric field components
are in phase at the center of the vacuum channel. This
results in a laser field amplitude that modifies the expres-
sion of WnðyÞ in Eq. (3) to a hyperbolic function:

WnðyÞ ¼ wn sinhð�nyÞ; wn ¼ 2ðwn;þ � wn;�Þ: (14)

For this superposition of fields the amplitude components
in Eq. (13) become

hFx0 iTM ¼ qc

k
cos�Re½e�i�w�1��1 coshð��1yÞ�

hFy0 iTM ¼ qc

�
1

� cos�
� � cos�

�
Re½e�i�w�1 sinhð��1yÞ�

hFz0 iTM ¼ �qc

k
sin�Re½e�i�w�1��1 coshð��1yÞ�: (15)

Near the center of the vacuum channel the deflection
component hFy0 i shows a dependence that is nearly linear

with the y coordinate due to the sinhð�nyÞ function while
the other components remain nearly uniform. This external
laser beam configuration results in a force pattern that
provides a focus along the y axis while generating a
uniform synchronous force component in the other two
dimensions. This is a favorable configuration since it al-
lows for extended transport of a beam that is tightly fo-
cused in the y direction while providing a uniform
deflection parallel to the vacuum channel.
Consider the opposite case, where the laser beam elec-

tric field components are out of phase by � with respect to
each other. The amplitude function WnðyÞ in Eq. (14)
changes parity to an odd function WnðyÞ ¼ wn coshð�nyÞ;
wn ¼ 2ðwn;þ þ wn;�Þ and therefore the force components

that result from phase synchronicity with the first diffrac-
tion order modify to

hFx0 iTM ¼ qc

k
cos�Re½e�i�w�1��1 sinhð��1yÞ�

hFy0 iTM ¼ qc

�
1

�cos�
��cos�

�
Re½e�i�w�1 coshð��1yÞ�

hFz0 iTM ¼�qc

k
sin�Re½e�i�w�1��1 sinhð��1yÞ�: (16)

The deflection force that is oriented into the walls of the
structure, hFy0 i, remains nearly uniform while the other

deflection force and the acceleration force component
scale as sinhð�nyÞ. This field pattern is clearly undesirable
since it skews the electron beam.
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IV. STRUCTURE MATERIAL AND GEOMETRY
CONSIDERATIONS

Inspection of the force components of Eqs. (15) and (16)
shows an explicit dependence of these on the grating tilt
angle � and on the strength of the grating diffraction mode
W�1ðyÞ. These diffraction modes depend on the shape of
the grating grooves and on the index of refraction of
the grating material. The effect of these parameters is
discussed in this section by means of an example.
Figure 4(a) shows a schematic of the grating diffraction
modes WnðyÞ inside the vacuum channel.

Assume that a pair of laser beams with the polarization
and phase conditions of Eq. (15) with a field amplitude
jElaserj ¼ 1 are incident on a quartz (index of refraction ¼
1:58 for � ¼ 800 nm) based grating structure as shown in
Fig. 2. Furthermore, assume the grating structure having a
channel width w ¼ 0:4� and a groove depth of 0:2�. The
grating period is established by the phase-synchronicity
condition of Eq. (9), which depends on the grating tilt
angle�. In this example it will be assumed that the electron
beam is relativistic; � ! 1. We employ a multilayer grat-
ing field decomposition method to determine the magni-
tude and relative phase of the diffraction orders Wn [14].

Figure 4(b) shows the dependence of the diffraction
modes at the center of the vacuum channel Wnðy ¼ 0Þ on
the depth g of the grating grooves for a grating with a
period �p ¼ �= cos� with � ¼ 50�. Interference effects

from reflections between grating layers are appreciable on
the zeroth diffraction mode, which in the example consid-
ered here is the only nonevanescent mode. When the
grating groove depth g is zero, the first and higher order
diffraction modes are zero. The magnitude ofW�1 peaks at

g ¼ 0:2� and slightly decreases for deeper grating
grooves. The other modes remain negligibly small.
Next, Fig. 5(a) shows the amplitude coefficients of the

diffraction orders at the center of the vacuum channel
Wnðy ¼ 0Þ for g ¼ 0:2� as a function of �. The diffraction
orders become drastically weaker with increasing diffrac-
tion order number. In this particular example, W0 is the
only propagating mode while the remaining modes are
evanescent. Since the grating period is reduced with in-
creasing grating tilt angle �, the evanescent modes become
weaker. Figure 5(b) shows the magnitudes of the deflection
forces corresponding to each diffraction mode. As ex-
pected from Fig. 4(a) the first grating diffraction mode
accounts for most of the total force.
Dielectric materials can support a maximum fluence of

�1:5 J=cm2 from ultrashort laser pulses [15], which for
10 fsec translates to a maximum local electric field of
�27 GV=m. Application of Eqs. (3)–(5) and (14) allows
for an estimate of the ratio between the field at the walls of
the structure and the free-space field of the input laser
beam, which for the chosen parameters is �2:8.
Therefore the maximum applicable laser field is Ein �
10 GV=m. As shown in Fig. 5(b) the maximum deflection
force is hFz0 i � 0:1qEin for the selected grating geometry,
which hence corresponds to a maximum average deflection
field of �1 GV=m. A magnetic field of �3 T would be
required to match this average deflection force generated
from the laser beam inside the grating structure.
Some conclusions on the fabrication tolerances can be

drawn from Figs. 4 and 5. Figure 4(b) shows that the
magnitude of the deflection is a slowly varying function
of the groove depth, and near the optimum parameters the
groove depth can vary by 0:1�without a significant change

FIG. 4. (Color) (a) Top view of the grating vacuum channel and the ordersWn. (b) Magnitude of the diffraction modes as a function of
the grating groove depth g.
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in the value of W�1. Control of the etch depth on quartz
structures to within 1% has been reported [16]. Another
important fabrication aspect is the tolerance of the grating
period. Modification of Eq. (9) reveals that for the grating
order n ¼ �1 the accumulated phase mismatch �� over a
grating length L reads �L=L ¼ ð��=2�Þð�p=L� cos�Þ.
If we establish a tolerance condition of �� equal to 1� for
a grating of period �p ¼ 800 nm over L ¼ 1 cm, we

obtain a groove position tolerance of �L� 2 nm. Deep-
UV lithography fabrication techniques have shown line-
width uniformity values of 0.1 nm over 1 cm distances
[17]. The tight tolerance of the length and the thermal
expansion coefficient of �5� 10�7=�C for quartz estab-
lish a limited operating temperature range for the cm-long
grating of � 1

2
�C but also allows for postfabrication

temperature-controlled tuning of the structure, in similar
fashion as is carried out with conventional metal structure
accelerators.

V. APPLICATIONS

A. Swept beam steering and focusing devices

Beam steering devices are found in applications such as
kickers for high energy beams [18–20], electron sweepers
for A-D converters [21], and streak cameras [22,23]. Their
development toward increased sweep speed remains an
active field of research. The state-of-the-art deflectors are
millimeter-scale electronic elements that are based on
circuit- and rf-based traveling wave deflection concepts
[24–26]. The proposed laser-driven deflection structure
represents the extension of these rf-based deflection con-
cepts to optical wavelengths to reach time resolution values
in the sub-fsec scale.

Figure 6(a) shows the profile of the electron beam inside
the deflection device, having dimensions �0;y0 and �0;z0 ,

where �0;z0 	 �0;y0 . The laser beams powering the struc-

ture are set to be in phase, which as described in Sec. III
generates a deflection force parallel to the vacuum channel.
Application of focusing can enhance the angular reso-

lution along the deflection coordinate. Instead of using a
conventional focusing element we propose employing the
same type of double-grating structure for this purpose, as is
illustrated in Fig. 6(b). Applying a laser field spatial enve-
lope of the form Aðz0Þ / z0 on the structure generates a
position dependent deflection angle of the form �ðz0Þ ¼
�0 þ z0=f, where �0 is the original beam direction up-
stream of the focusing element and f is the effective focal
length.
Assume a grating structure with the optimized parame-

ters of Sec. IV, where the deflection force hFz0 i scales with
the external laser amplitude Aðz0Þ as hFz0 i � 0:1qAðz0Þ.
Assuming the acceleration from the deflection force results
in a lateral velocity much smaller than c, it can be shown
that the focal length f from a field with profile variation
dA=dz0 over a structure length LF is

1

f
¼

��������
d�

dz0

���������0:1
qLF

�m�2c2
ðdA=dz0Þ: (17)

A pair of TEM01 beams with peak field amplitude E0 ¼
9 GV=m and vertical spot size of �1 mm possesses an
amplitude variation dA=dz0 � 1013 V=m2 near the center
of the beam. For a focusing element length LF ¼ 100 	m
and a 10 MeV electron beam, Eq. (16) predicts a focal
length of �10 cm.
Define the angular resolution as the ratio of the trans-

verse sweep range z0f versus the beam spot size at the

FIG. 5. (Color) (a) Magnitude of the grating diffraction modes as a function of the grating tile angle satisfying the synchronicity
condition for the first diffraction mode. The grating groove depth g is g ¼ 0:2�. (b) Magnitude of the corresponding deflection force in
the z0 direction.
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observation plane, that is, R0 ¼ zf=�f;z0 . Similar to a

Gaussian laser beam the electron beam spot size evolution
is parametrized by a beam waist spot size �f;z0 in the focal

plane and a depth of focus �f;z0 . The spot sizes �0;z0 and

�f;z0 are related to the focal length f and the depth of focus

�f;z0 by an equation of the form [27]

�0;z0 ¼ �f;z0 ð1þ f2=�f;z0
2Þ1=2: (18)

For a deflection force hFz0 i, a deflector structure length LD,
and a focal length f, the resulting deflection is z0f �
fLDhFz0 i=�mc2 and the resolution becomes

R ¼ fLDhFz0 i
�f;z0�mc2

: (19)

Optimization of R suggests minimizing the focal plane
spot size �f;z0 . As shown in Eq. (18) for a given �0;z0 ,

�f;z0 is a function of the focal length f and the depth of

focus of the electron beam, �f;z0 ¼ �2
f;z0=4"z0 , which de-

pends on the transverse geometric emittance of the beam
"z0 . Ideal electron sources for this application are laser-
driven field emitters capable of ultralow emittance values
followed by a dielectric-structure laser accelerator. Such
devices are expected to support geometric electron beam
emittance values of "? � 10�9=� m [28,29].

To obtain an order-of-magnitude estimate of the resolu-
tion possible from the proposed device, consider a grating
structure whose total length satisfies LD þ LF < 2�0;y0 ,

where �0;y0 ¼ �2
0;y0=4"y0 . Since the vacuum channel has a

submicron width the electron spot size should be on the
order of � 1

10 	m. Consider an electron beam of 10 MeV

energy, and having an emittance "z0 � "y0 � 10�9=� m

and a transverse electron spot size that allows it to traverse
the grating structure, for example �0;y0 � 1

10 	m. This

constrains the total structure length LD þ LF to

�250 	m. The optimization consists in selecting the
lengths LD and LF such that R is maximized, which in
this example yields LD � 9LF, a focal length of 13.4 cm,
and a resolution R� 103. Figure 7 shows the evolution of
the electron beam y and z envelopes for the given example
downstream of the structure. At the focal plane the spot
size in the sweep direction is 2 	m while its other dimen-
sion is �100 times larger. Since the driving waveform is
sinusoidal in time only�10% of the cycle corresponds to a
sweep that is approximately linear.
The 2 	m spot size at the focal plane corresponds to the

smallest CCD pixel size values for commercially available
image detectors. The temporal resolution for one such
pixel and laser wavelength of � ¼ 1 	m corresponds to

FIG. 7. (Color) Transverse beam profile as a function of distance
behind the structure shown in Fig. 5. Without further focusing
elements the beam comes to a line focus about 13 cm down-
stream.
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FIG. 6. (Color) (a) Cross-sectional view of the deflector structure and the electron beam. (b) Transverse view of the deflector structure,
the focusing structure, and the electron beam. The solid arrows indicate the expected force generated by the laser beam pattern on the
electron beam.
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a temporal resolution �t ¼ �=2�cR, or �t� 5�
10�19 sec . Imaging of MeV-energy electron beams can
be accomplished with scintillator materials such as
Ce:YAG, which shows a fluorescence lifetime of
�100 nsec. The readout speed is limited by this lifetime,
and for electron bunch repetition rates above 10 MHz the
streak camera displays an average temporal structure of the
electron beam within the laser optical cycle.

B. Bending elements

The maximum deflection field was found to be
hF?=qi � 1 GV=m, which leads to a beam bending radius
of r ¼ �m�2c2=hF?i. For few-MeV beam energies it can
be on the order of 1 cm, allowing for the possibility of
fitting an electron ring into a few-cm diameter device.
Besides the deflector units, an electron ring requires input
and exit beam kickers, accelerator, and focusing sections.
As shown in Fig. 8(a) all these binary grating elements are
envisioned to be fabricated onto a pair of quartz wafers and
be powered by the corresponding laser beam modes.
Figure 8(b) shows the bending radius, synchrotron critical
frequency !c and photon flux (within 0.1% of !c) for a
10 fC, 100 attosecond electron bunch as a function of beam
energy. At 20 MeV the electron bunch would generate a
GHz-repetition visible light pulse train with a radiation
energy loss of �1 eV per turn. At 200 MeV, the required
bending radius is �20 cm, the peak radiation wavelength
is 14 nm, and the synchrotron radiation energy loss is
hundreds of eV per turn. Such a device could function as
a compact and high-repetition rate collimated extreme
ultraviolet source.

VI. OUTLOOK

A first analysis of the transparent double grating as a
deflection and focusing element was presented. Existing

nanofabrication and laser technologies render the proposed
structure a promising future beam manipulation device.
Demonstration experiments of these deflection and focus-
ing properties with MeV-energy electron beams form a
crucial next step. Finally, a series of more refined analysis
and simulation efforts will be required to study the dynam-
ics of a particle beam that is propagated through a more
complex grating based device such as an entire grating
based laser-accelerator unit, undulator, or electron ring.
These will ultimately pinpoint the capabilities and limita-
tions of the proposed beam manipulation device and will
determine their feasibility as practical devices.
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APPENDIX

A real structure and laser beam do not have infinite
spatial extent. However, if the field amplitude of the laser
beam is varying slowly in the z direction it can be approxi-
mated by a function of the form uðx; y; zÞ � aðzÞbðx; yÞ.
The incoming laser beam possesses a beam profile de-
scribed by a slowly varying envelope function aðzÞ. The
function bðx; yÞ, on the other hand, shows a rapid spatial
variation caused by the diffraction from the grating grooves
which have features with a size of �. Hence, the resulting

FIG. 8. (Color) (a) Schematic of an electron ring based on dielectric grating manipulation elements. (b) Synchrotron parameters as a
function beam energy.
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field variations include components of the form eikxxþikyy,
where kx and ky scale with the wavelength of the laser k ¼
2�=�. The amplitude uðx; y; zÞ satisfies the Helmholtz
equation ðr2 þ k2Þuðx; y; zÞ ¼ 0. Thus, to neglect the de-
pendence on z it is required that the derivative of aðzÞ with
z be small compared to the derivative of bðx; yÞ with
respect to ðx; yÞ. This yields a condition for the minimum
laser profile wz 	 �=2�. A laser focus as small as wz �
50� is readily attainable with standard focusing elements
and lies well within the mentioned condition for the two-
dimensional field approximation. The Rayleigh range of
such a focus would correspond to ZR � 800� and, assum-
ing that the beam waist is at the center of the vacuum
channel, the radius of phase front curvature at a distance �
away would correspond to a radius of �6� 105�. This
indicates that there is no significant phase variation in the z
direction and that the two-dimensional diffraction analysis
in the ðx; yÞ coordinates is applicable for the described laser
beam.
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