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We have developed 1D analytic and 2D fully electromagnetic models of radial transmission-line
impedance transformers. The models have been used to quantify the power-transport efficiency and pulse
sharpening of such transformers as a function of voltage pulse width and impedance profile. For the cases
considered, we find that in the limit as I' — O (where I is the ratio of the pulse width to the one-way transit
time of the transformer), the transport efficiency is maximized when the impedance profile is exponential.
As T increases from zero, the optimum profile gradually deviates from an exponential. A numerical
procedure is presented that determines the optimum profile for a given pulse shape and width. The
procedure can be applied to optimize the design of impedance transformers used in petawatt-class pulsed-

power accelerators.
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I. INTRODUCTION

Radial transmission-line impedance transformers pro-
vide an efficient method of combining the outputs of as
many as several hundred traditional Marx generators or
linear-transformer-driver (LTD) modules to produce a
petawatt-level power pulse [1]. Modular pulsed-power sys-
tems making use of LTD technology [2,3] have been
proposed for versatile transmission line and a wide range
of applications including z-pinch experiments [4], flash
radiography [5], and excimer lasers [6] for inertial fusion
energy. An LTD module is a compact inductive voltage
adder in which each of the adder’s cavities is driven by
capacitors and switches that are located within the cavity.
This technology may offer an attractive alternative to tradi-
tional Marx-generator systems, such as that currently being
used in the 55-TW Z accelerator [7] at Sandia National
Laboratories.

In a recently published design of a petawatt-class
z-pinch accelerator [1], LTD modules are used to drive
monolithic water-insulated radial transmission lines with
an exponentially increasing impedance. The design is out-
lined in Fig. 1. Through the interface between the LTDs
and the water-filled transformers, bunches of 7 LTD mod-
ules drive 2 of the 60 total transformers which consist of
parallel plates broken in azimuth as shown. In the complex
3D convolution, the LTD electrodes connect to two levels
of transformers at a given azimuth. At their outputs, the
impedance transformers are connected to magnetically
insulated transmission lines (MITLs). These are combined
in parallel at small radius by a vacuum posthole convolute.
Finally, the output of the convolute is a short single MITL
that delivers current to the z-pinch load. The transformers
also serve as passive high-pass filters that reduce the am-
plitude of any low-frequency prepulse that might exist, and
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in addition, compress slightly the electrical power pulse.
This characteristic may reduce the need for additional
pulse sharpening components and make an accelerator
design more compact.

In the design of Ref. [1], the transformer impedance
profile is assumed to be exponential. In an exponential
profile the fractional change in impedance per unit length
is constant; i.e., Zjilef/dr = constant [8]. Such a profile
has been found to be more efficient than, for example, a
linear impedance profile (dZ /dr = constant) [9,10];
however, it appears that the impedance profile that opti-
mizes power transmission has not been previously estab-
lished. Since a future petawatt-class pulsed-power
accelerator would likely require a substantial effort to
design and build, it is of interest to maximize the accelera-
tor’s efficiency, which would include determining the im-

Eeq=180MJ /=68 MA
Petectiical = 1050 TW T pjogion = 95 NS diameter = 104 m
V=24 MV E,miieg ~ 20 MJ
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FIG. 1. (Color) Proposed architecture of a petawatt-class pulsed-
power accelerator for z-pinch experiments in Ref. [1]. The LTD
modules drive the radial-transmission-line impedance transform-
ers, which in turn drive the MITLs, and ultimately, the z-pinch
load in the center of the accelerator.
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pedance profiles that maximize the efficiencies of the
accelerator’s impedance transformers.

In this paper, we examine the behavior of idealized
transmission-line impedance transformers, both analyti-
cally and in the first 2D fully electromagnetic simulations
of such transformers. In Sec. II, we present an analytic 1D
model of a transmission line with an arbitrary impedance
profile, and calculate the power efficiency and pulse sharp-
ening for several different profiles. Section III describes the
electromagnetic simulations of the geometry and accelera-
tor characteristics shown in Fig. 1, as well as that of the
alternate profiles discussed in Sec. II. Results predicted by
the analytic model and numerical simulations are pre-
sented in Sec. IV. We also present in Sec. IV a numerical
technique that can be applied to determine the impedance
profile that optimizes a transformer’s power-transport effi-
ciency, for a given pulse shape and width. A summary of
the work is presented in Sec. V. An alternate method for
calculating the transformer power efficiency using a series
of transmission-line elements is presented in the Appendix.

II. ANALYTIC MODEL OF A RADIAL-
TRANSMISSION-LINE IMPEDANCE
TRANSFORMER

In this section, we describe the transformer character-
ization and analytic technique used to model the pulse
transmission properties of an idealized 1D radial-line im-
pedance transformer.

A schematic of the geometry under consideration is
shown in Fig. 2. The input impedance is Z;, (at radius
r,); the output impedance is Z, (at radius r;). The trans-
former gap h(r) is in general a function of radius. We
assume that the transformer is impedance matched to a
constant-impedance line at each end.

In the quasi-TEM mode approximation [11], the prop-
agating voltage wave in the frequency domain is governed
by the model equation,

1dy/ dv
——|r—1 -
r dr( dr)

where k = w/c is the wave number,

1 d(rz) dav

+ K2V =
rZ dr dr KV =0, M

Z=2Zy5—, 2

-
-
- -
- - -
- - -
~ .~ -—

FIG. 2. Schematic of the radial-transmission-line impedance-
transformer geometry used by the analytic model. The function
h(r) is the transmission-line gap as a function of r.

and the impedance Z, = /u /&, where the permeability w
and the permittivity e are those of the transformer medium.
When the transformer gap &(r) is a constant, Eq. (1) re-
duces to Bessel’s equation and the propagating solutions
are Hankel functions of the first and second kind. A com-
plete discussion of the modes and transmission and reflec-
tion properties of a radial transmission line with a constant
gap can be found in Ref. [12].
Expanding the derivative of rZ in Eq. (1), we see that the
governing equation for the voltage reduces to
dz_V—l@d—VvazV:O, 3)
dx> Z dx dx
which is identical in form to the model equation for the
voltage in a planar transmission line, as it must be, and r
and x are interchangeable when operating in cylindrical or
Cartesian coordinate systems. Hence, we can carry out our
analysis in the simpler Cartesian geometry keeping in mind
the additional factor of 1/r in the impedance of the radial
line. For a constant-impedance line, solutions for V are
plane waves e’** (or cylindrical waves e¢’*" in radial ge-
ometry) which produce no reflection in the quasi-TEM
approximation.
For short pulses and a variable impedance line, an ex-
ponential impedance profile, which corresponds to
1dz
7 constant, (@]
has been shown to be more efficient for power transmission
than the linear impedance profile [9,10] (% = constant)
and several other functional forms [11], some of which are
designed to reduce the discontinuities in slope of the input
and output ends. The calculation of power transmission
efficiency is necessarily numerical and depends on as-
sumptions regarding the input pulse shape and width.
Thus, a general analytic expression for the impedance
profile that optimizes power transmission is not possible.
We find below, however, that in the limit as I' — 0,
where I is the ratio of the pulse width to the transformer’s
one-way transit time, the optimal impedance profile is an
exponential function of distance. We also find that as I’
increases from 0, the optimal profile deviates gradually
from an exponential. Significant deviations from an expo-
nential profile are found for I' > 0.5.

A. Semianalytic approach

In the numerical calculations and 2D electromagnetic
simulations discussed below, we assume an input voltage
with peak V; of the form

0, t=0
Vin(1) = { Vosin(wot), 0=1=7T 5)
0, t 2 wl,

0

where w, determines the full-width-at-half maximum

030401-2



OPTIMIZED TRANSMISSION-LINE IMPEDANCE ...

Phys. Rev. ST Accel. Beams 11, 030401 (2008)

(FWHM) T of the pulse according to T = 277/3w,. The
Fourier transform of V,,(¢) is given by

T/ ® )
Vin(w) = / ’ Vo sin(wqt)e' ! dt
0

pimw/@y) 4
= Vowog—5—5— (6)
w* — wj

Our approach is to calculate the voltage transfer function
[via a solution of Eq. (4)] as a function of frequency. We
assume that the inlet and outlet of the transformer are
connected to semi-infinite uniform planar transmission
lines with impedances matched to the input and output
impedances of the transformer. In the inlet region, we
prescribe an incoming plane wave of unit amplitude, e**,
and a reflected wave V,e **_ In the outlet region, the
transmitted plane wave is taken as V,e**~L) The bound-
ary conditions then take the form

Z_V+ikv=2ik, atx=0

d’“ (7)
Vo

— —ikV=0, atx=L.

dx

Discretized on a uniform grid in x to second order, Eq. (3)
takes the usual form

Vien =2Vi+Viey 1 (Zisy = Ziy\(Viea — Vi
Ax? Z,»( 2Ax )( 2Ax )
+ szi = 0.

Making use of the boundary conditions in Eq. (7) (after
similar discretization), we obtain a linear system for the
unknown values of the voltage Fourier transform V; at
prescribed grid locations x;, 0 = x; = L. A minimum of
200 points per cycle of the oscillatory solution are used.
The solution for V(L) (at each frequency w) is obtained
using a standard tridiagonal matrix algorithm [13]. Since
we chose a unit amplitude input, this procedure results in a
dimensionless transfer function V,(w), from which the
output voltage is calculated by inverse Fourier transforma-
tion, i.e.,

1 00 )
Vol = 5 [ V@@ o, @)

In the special case of the exponential profile, the solu-
tions to Eq. (3) are damped plane waves and the voltage
transfer function is given analytically by

oOL/2
cos(yL) — iksin(yL)/y’

where 8 = log(Zo,/Zi,)L ™" and y? = k*> — /4, In gen-
eral, however, V,(w) must be tabulated from the numerical
solution of Eq. (3) as a function of w with boundary
conditions given by Eq. (7).

ViP(w) = (€))

B. Parametrization of impedance profiles

In the numerical examples presented in Sec. IV, the
following parameterization of the impedance profile is
used,

Z(x) = A + Be™, (10)

where « = md. For the radial line, we must replace x with
r, — r and keep in mind the additional factor of 1/r in
calculating the transmission-line gap profile A(r),

rZ(r)

h(r) = by ——,
() =l

(1D
where h;, is the gap at the inlet. When m = 1 the profile is
exponential:

7% = 7, 0%, (12)

In the limit as m — 0, we obtain the linear impedance
profile,

. X
Zhn = Zin + (Zout - Zin)z' (13)

Values of m >1 and m <1 give profiles for which the
largest relative changes in impedance occur near the outlet
and inlet, respectively. In the numerical examples that
follow, we consider values of m in the range [—2, 2].

III. DESCRIPTION OF 2D ELECTROMAGNETIC
SIMULATIONS OF THE TRANSFORMER

In order to test thoroughly the quasi-TEM-mode ap-
proximation of the theory, we conduct 2D cylindrical
simulations of a radial transmission line using the fully
relativistic electromagnetic code LsSP [14]. We use two
different electromagnetic field solution techniques: an op-
tional implicit field-solving algorithm [15] (to relax
Courant in this case by 40%) and the standard explicit
(leapfrog) electromagnetic solver. A comparison of the
two field solvers using the exponential impedance profile
(design I discussed in the next section) shows negligible
differences. Figure 3 gives an example of the radial
transmission-line geometry used in simulation for the
transformer design I case (described in the next section)
with m = 0; i.e., a linear impedance profile. A forward-
going TEM voltage wave is fed into the transmission line at
large radius and propagates through the water-filled (¢ =
80) cavity toward the load, exiting at small radius. To
ensure that the simulation region near the outlet boundaries
(simple wave-transmitting boundaries) well represents the
injected TEM wave structure, and to avoid rapidly chang-
ing impedances at the outlet, 50-cm matching sections
(constant gap) are placed just upstream of r, and down-
stream of r;. The simulation impedances at r, (3688 cm)
and r; (305 cm) are 0.203 and 2.16 (), respectively [1].
The forward-going pulse is modeled as in Eq. (5).

The LSP code uses a structured orthogonal grid that
necessitates a “‘stair stepping’’ of the cathode and anode
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FIG. 3. (Color) Geometry of the radial-transmission-line imped-
ance transformer used in the 2D (7, z) LSP simulation for m = 0
(linear impedance profile) showing the propagating electromag-
netic pulse after 450 ns.

surfaces as seen in Fig. 3 which could yield spurious
reflections. We found that, given the 30-m radial scale
and 1-m axial scale length, cell sizes of Ar = 6.6 cm and
Az = 1.7 cm provide reasonably accurate results. Indeed,
with an exponential impedance profile, the use of a 4 times
larger cell size in both directions results in <1% change in
the peak of the output wave.

IV. RESULTS FROM THE SEMIANALYTIC
AND 2D SIMULATIONS

Making use of the techniques described in Secs. II and
III, we investigate in this section the power-transport effi-
ciency and other characteristics of the transformer of the
two published accelerator designs.

A. Transformer design I

We investigate two water-insulated transformer designs
under consideration for the next generation of petawatt-
class z-pinch drivers [1]. Parameters of the first design
are r, = 3688 cm, Z;, = 0.203 Q, r; = 304.8 cm, and
Zow = 2.16 ), which give a one-way transit time 7 =
1009 ns. Semianalytic calculations and 2D simulations
are carried out for impedance profiles corresponding to
m=2,1,0, —1, and —2 in Eq. (10). The gap profiles
are found from Eq. (11) with &, = 112 cm. The radial and
equivalent planar transmission-line profiles are shown in
Figs. 4 and 5 respectively.

The input voltage is of the form Eq. (5) with wg = 1.4 X
107 s~'. This corresponds to aratio I’ = T/7 =~ 0.15, com-
fortably in the high-frequency regime. (We consider the
effect of longer T in the second design.) Numerical solu-
tions of Egs. (3) and (7)—(9) are obtained for the same
design parameters and the equivalent gap profiles of Fig. 4.

800 -
m=-2

600
&
)
= 400
)

2
O T T T 1
0 1000 2000 3000 4000
r (cm)

FIG. 4. (Color) Gap profiles h(r) as a function of r for trans-
former design I and several values of the gap parameter m.

From the results presented in Table I, we see that the 1D
numerical results based on the quasi-TEM approximation
agree to 1% with the 2D electromagnetic simulations. Each
show that the exponential profile (m = 1) gives the highest
power transmission efficiency (confirming the value
chosen in Ref. [1]).

B. Transformer design II

An alternative transformer design from Ref. [1] was
chosen for a series of numerical calculations to investigate
the effect of pulse length (as measured by the ratio I') and
shape, in addition to a more systematic study of the opti-
mization of the impedance profile. The parameters for

12

h(x)/h(0)

2000 3000

X (cm)

0 1000

FIG. 5. (Color) Equivalent planar-transmission-line gap profiles
of the normalized gap h(x)/h(0) as a function of x.
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TABLE I. Power transmission efficiencies of the design I
impedance transformer with various impedance profiles from
Eq. (10).

Profile ID numerical 2D EM simulation
parameter (m) efficiency (%) efficiency (%)
=2 69.1 68.9
-1 77.9 76.9
0 87.2 87.4
1 90.8 90.5
2 88.4 86.7

design 1I are Z,/Z;, = 16.05 and L = 2063 cm, which
corresponds to 7 = 615 ns for a water-filled line or I' =
0.243. The sampled gap profiles are shown in Fig. 6.

Results from calculations for transformer power effi-
ciency as a function of input pulse length are shown in
Fig. 7 for the exponential profile, linear profile, and m = 2
profile from Fig. 6. Each curve approaches 100% efficiency
in the short-pulse limit (as I' — 0) and each approaches the
low-frequency result (I' — ),

P out
P in

_ 4Zinzout
(Zin + Zout)2 ’

(g — 0) (14)

in the long pulse limit.

At intermediate values, 0 < I' < 2, the exponential pro-
file has the highest efficiency of the three profiles consid-
ered. At values of I' > 2, the m = 0 curve (linear profile)
efficiency exceeds that of the exponential curve. It is
shown below where intermediate values of m are resolved
that, for pulses with I' > 0.5, the optimum profile deviates
significantly from an exponential.

h(x)/h(0)

0 ' 1000 2000

x {cm)
FIG. 6. (Color) Normalized planar-transmission-line gap pro-

files for design II for several values of the profile parameter m
(in steps of %).
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FIG. 7. (Color) The power transmission efficiency as a function
of normalized input pulse width I" for the exponential (m = 1),
linear (m = 0), and m = 2 profiles.

As pointed out previously (e.g., Ref. [11]), the imped-
ance transformation results in a shortening of the output
voltage pulse in addition to a drop in peak power. This
effect is illustrated in Fig. 8 for the exponential profile. The
reduction of the voltage pulse width is a maximum of
~15% which occurs near I' = 1; however, this compres-
sion comes at the expense of a 50% power transmission
efficiency. Because the power efficiency decreases in time,
the transported energy efficiency integrated to the time of
peak power is always higher than the power efficiency
(particularly important for z-pinch loads). Figure 8 is
qualitatively consistent with Fig. 5 of Ref. [11] which

1.00

0.95

0.90 -

0.85

Pulse Compression Ratio

0.80 T . .
0.01 0.1 1 10 100

r

FIG. 8. The ratio of the output to input voltage pulse width for
the exponential impedance profile as a function of the normal-
ized pulse width T'.
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FIG. 9. (Color) The input and output power pulses for the half-
sine and Gaussian shapes are compared for design II parameters
with an exponential impedance profile.

shows results corresponding to Gaussian pulses of varying
widths.

Input and output waveforms of both the half-sine and
Gaussian pulses are compared in Fig. 9. The input
Gaussian pulse width is chosen such that the FWHM of
the input power pulse is the same as that of the half sine.
The key difference between the two pulses is that the
Gaussian has significant temporal wings. Because of re-
flections from the early portion of the pulse, the transported
power for the Gaussian pulse deviates from that of the
input at a lower power level. Thus, the Gaussian pulse

1.0
0.9 r=0.122
3 //_\
I'=0.243
& 08 -
=
W07 4 r=0.487
S
o 06 1
a
0‘5 _/m\
0.4 . . :
0.0 0.5 1.0 15 2.0
m

FIG. 10. (Color) The transmitted power efficiency as a function
of profile parameter m for several values of the normalized
voltage pulse width I" at the input.

has a 3% lower power efficiency, but otherwise similar
behavior, as the half-sine pulse.

In Fig. 10, we plot the power efficiency as a function of
profile parameter m for four values of I" for the half-sine
pulse shape. For the shorter pulse width, the curves peak at
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FIG. 11. (Color) Initial guess for gap optimization procedure
(), final optimized values (O), and the exponential curve
(dashed line) are plotted. In (a), the initial guess is a m =0
(linear) profile; in (b), the initial guess is the m = 2 profile; and
in (c), the initial guess the profile from Eq. (15).
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or very close to m = 1. For I' = 0.487, however, optimum
power efficiency shifts to the left to m = 0.9, and continues
to shift to values of smaller m for even longer pulses. The
corresponding differences in peak power efficiency are,
however, small ( < 1%) in this range of pulse width.

As a final demonstration of the optimal nature of the
exponential profile, an optimization procedure was devised
that allows for continuous variations in the impedance
profile for a number of discrete elements. For these calcu-
lations, the profile is represented approximately by fixing
the end point impedances (Z;, and Z,,,) and allowing for 10
variable impedance values at uniformly spaced x positions.
The total of 12 functional values formed the basis for a
look-up tabular function which uses quadratic interpola-
tion for the intermediate values of x on the 12 node grid. An
input voltage pulse with wy = 1.4 X 107 s7! (I' = 0.243)
from Eq. (5) is used. From an arbitrary initial guess for the
10 functional values, a multivariable (Powell’s method)
optimization procedure [13] is used to iterate toward a
solution corresponding to maximum transmitted power.

Figures 11(a)—11(c) shows the results for three different
initial guesses. In Figs. 11(a) and 11(b), the initial guesses
corresponded to the m = 0 (linear) and m = 2 profiles,
respectively. In Fig. 11(c), the initial guess is based on a
profile that connects smoothly in slope to the constant-
impedance inlet and outlet matching sections, i.e.,

Zin + Zout 1 tanh(a(% — %))
2 tanhg

Z(x) = Z;, + } (15)
with @ = 5.

As is clear from Fig. 11, in each case the procedure
converges to a set of values very close to the exponential
profile, and is optimized to within 0.1% of the exponential
transmitted power efficiency. The optimization calcula-
tions were repeated for a shorter pulse width (I' =
0.122), and again convergence to a near-exponential profile
is obtained. For reasons stated earlier, it is impossible to
generalize to all pulse shapes and transformer designs, but
certainly for the designs considered here and I' = 0.5, the
exponential impedance profile is for all practical purposes
optimal. Nevertheless, it is clear that the approach outlined
in this section can be used to determine the optimum
impedance profile of a transformer, for any given pulse
shape and width.

V. SUMMARY AND CONCLUSIONS

We find in semianalytic theory and 2D simulation that an
impedance transformer can provide reasonable voltage
transformation and high transmission efficiency for
pulsed-power applications. We also present the first 2D
simulations that verify the quasi-TEM approximation of a
semianalytic transmission-line model, giving agreement to
within 1% over a wide range of impedance profiles.

In the short-pulse limit, the power transmission effi-
ciency approaches unity for all transformers, generally a

huge improvement over that of a sudden change (I' > 0) in
impedance from initial to final impedances. Using an
optimization procedure, we find that in the short-pulse
limit, an exponential impedance profile offers the most
efficient transmission but slightly deviates from optimal
for longer pulses, i.e., I' > 0.5. The exponential profile
results in a constant AZ/Z along its entire length leading
to the smallest level of wave reflections per unit length. We
have also developed a procedure that can be used to
determine the optimum impedance profile, for an arbitrary
pulse shape and width.

An impedance transformer can also be used to sharpen
the incoming power pulse. We find, however, that this
characteristic is optimized for 7/7 near unity where the
power transmission efficiency is likely too low to be of
interest. Nevertheless, a transformer would reduce signifi-
cantly the amplitude of a low-frequency prepulse as sug-
gested in Ref. [1].

The modeling has been applied to two published pulsed-
power designs for a petawatt-class z-pinch driver. We find
the results are in good agreement with those of Ref. [1]
with transformer efficiencies as high as 91%. The results
presented here are for ideal 2D geometries. In future work,
we will examine the practical application of the trans-
former in 3D in a radial line as well as the associated
nonideal coupling at the ends of the transmission line.
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APPENDIX: NUMERICAL TRANSMISSION-LINE
REPRESENTATION OF AN IMPEDANCE
TRANSFORMER

Commonly, transmission-line codes such as BERTHA
[16] are used to aid the design of large-scale pulsed-power
generators. We briefly compare the results of a simple
transmission-line representation of an exponential imped-
ance transformer with the more rigorous model presented
in Sec. II. For simplicity, we choose to represent the
impedance transformer as a finite number of fixed length
transmission-line elements. For an impedance transformer
with an exponential profile, the ratio of the change in
impedance to the local impedance value is a constant, 3.
Therefore, the impedances for the individual elements are
given by the iterative equation,

Ziy =1+ Pz, (A1)

where Z; is the impedance of the ith transmission-line
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FIG. 12. Incident (P;,) and transmitted (P,,) power pulse
waveforms from an exponential impedance transformer (design
II) as represented by 41 elements in the transmission-line model.

element. For an n-element series with Z; = Z;, and Z, =
Zoue (both known values), expression (Al) represents a
series of n — 1 coupled equations in n — 1 unknowns
(Z,, ..., Z,—4, B) that can be solved to find B8 and therefore
all of the element impedances. The value of 8 is simply

Zou\ /D)
= —1
P (Zi )

(A2)

For direct comparison with the results presented in
Sec. II, we carried out a sample impedance-transformer
calculation using a simple transmission-line code con-
tained within the LSP code. The impedance-transformer
section parameters are identical to the example used in
Sec. IV design II: Z;, = 0.0162 Ohms, Z,,, = 0.26 Ohms,
L = 2050 cm, and & = 80. The transmission-line repre-
sentation of the impedance transformer used 41 elements
(B ~ 0.071856), each 50-cm in length, driven by a one-
half period sinusoidal voltage pulse (T/7 = 0.243 or
~225 ns, zero-to-zero width). The transmission-line
model also included very long, constant-impedance sec-
tions at the inlet and outlet to isolate the incident and
transmitted power pulse, and track any numerical signal
dispersion. The incident and transmitted power through the
impedance transformer is shown in Fig. 12. The trans-
mitted peak power efficiency obtained for this 41-element
representation is ~80.5%, in very good agreement with the
model of Sec. II (see Fig. 8, for curve /7 = 0.243 at m =

1). Both results also agree, to within <1%, with those
presented in the fourth row of Table III of Ref. [1].
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