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Krylov complexity is a measure of operator complexity that exhibits universal behavior and bounds a large
class of other measures. In this paper, we generalize Krylov complexity from a closed system to an open system
coupled to a Markovian bath, where Lindbladian evolution replaces Hamiltonian evolution. We show that Krylov
complexity in open systems can be mapped to a non-Hermitian tight-binding model in a half-infinite chain.
We discuss the properties of the non-Hermitian terms and show that the strengths of the non-Hermitian terms
increase linearly with the increase of the Krylov basis index n. Such a non-Hermitian tight-binding model can
exhibit localized edge modes that determine the long-time behavior of Krylov complexity. Hence, the growth
of Krylov complexity is suppressed by dissipation, and at long times, Krylov complexity saturates at a finite
value much smaller than that of a closed system with the same Hamiltonian. Our conclusions are supported by
numerical results on several models, such as the Sachdev-Ye-Kitaev model and the interacting fermion model.
Our work provides insights for discussing complexity, chaos, and holography for open quantum systems.

DOI: 10.1103/PhysRevResearch.5.033085

I. INTRODUCTION

Operator complexity describes how an operator becomes
increasingly complicated under the Heisenberg time evolu-
tion. The concept of operator complexity has emerged as a
tool in studying quantum matters [1–10]. It can characterize
the chaotic behavior and integrability of a quantum many-
body Hamiltonian, and it is correlated with the dynamics of
quantum information processes. Through holography, it also
becomes an entity to study black hole physics. A mathemat-
ically rigorous definition of operator complexity depends on
the choice of a predefined basis. Previously, various measures
of operator complexity have been proposed and studied in
different contexts [1–10].

Recently, the Krylov recursion method has been applied
to investigate operator complexity [11]. It is proposed that
the operator complexity in the Krylov basis, called Krylov
complexity, exhibits universal behaviors and can bound a large
class of other measures [11]. Thanks to its advantages, Krylov
complexity has attracted considerable attention from various
communities [12–44]. Nevertheless, research on Krylov com-
plexity has so far been limited to closed systems. In this
article, we generalize Krylov complexity from a closed system
to an open system. In a closed system, operator growth is gov-
erned by Hamiltonian, while for an open system coupled to a
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Markovian bath, operator growth is governed by Lindbladian.
Here we will discuss how this change from Hamiltonian to
Lindbladian affects the behavior of Krylov complexity.

II. REVIEW OF KRYLOV COMPLEXITY

Before starting the generalization, let us briefly review
Krylov complexity in a Hamiltonian system [11]. First of all,
for a system with its Hilbert space spanned by {|i〉}, an opera-
tor X̂ = ∑

i j Xi j |i〉 〈 j| can be mapped to a state in the double
space, denoted by |X̂ 〉 = ∑

i j Xi j |i〉 ⊗ | j〉. We introduce a su-

peroperator L̂ acting on an operator X̂ as L̂X̂ = [Ĥ, X̂ ], and
|L̂X̂ 〉 is the state corresponding to the operator L̂X̂ . Hence,
using the Baker-Campbell-Hausdorff formula, the Heisenberg
evolution of a reference operator Ô(t ) = eiĤt Ôe−iĤt can be
expressed as expanding the state |Ô(t )〉 in a set of basis |L̂nÔ〉
as

|Ô(t )〉 =
∑

n

(it )n

n!
|L̂nÔ〉. (1)

However, this set of basis |L̂nÔ〉 is neither normalized
nor orthogonal. Hence, we first need to apply the Gram-
Schmidt procedure with the infinite-temperature inner product
〈O1|O2〉 = Tr[O†

1O2] to orthogonalize this set of basis. This
results in the Krylov basis {|Ŵn〉} as

|Ŵ0〉 = 1

b0
|Ô〉, (2)

|Ŵ1〉 = 1

b1
|L̂Ŵ0〉, (3)

|Ŵn〉 = 1

bn
(|L̂Ŵn−1〉 − bn−1 |Ŵn−2〉) for n � 2. (4)
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FIG. 1. (a) Schematic mapping between Krylov complexity in
open systems and a non-Hermitian tight-binding model in a half-
infinite chain. (b) Krylov complexity K(t ) in open systems (red
solid line), compared with K(t ) in a closed system with the same
Hamiltonian (blue dashed line). Krylov complexity is suppressed by
dissipation.

Here {bn} are called the Lanczos coefficients introduced to
normalize these states. It is discussed that bn increases linearly
in n for a generic chaotic Hamiltonian [11], until it saturates
at large enough n for a finite system [12,18,19,42]. Therefore,
we can expand the state |Ô(t )〉 under the Krylov basis as

|Ô(t )〉 =
∑

n

ϕn(t ) |Ŵn〉. (5)

ϕn(t ) satisfy the following tight-binding model that describes
single-particle hopping in a half-infinite chain [11]:

i∂tϕn = −bn+1ϕn+1 − bnϕn−1. (6)

This particle sits at n = 0 with only ϕ0 being nonzero at t = 0,
and hops away from n = 0 at finite t . Krylov complexity K(t )
is defined as the mean distance measured from n = 0 as

K(t ) =
∑

n

n|ϕn(t )|2. (7)

III. SUMMARY OF RESULTS

To generalize the Krylov complexity to open systems, one
can either use the generalized Lanczos algorithm to define
a new set of basis [45], including the unsymmetric Lanczos
tridiagonalization algorithm and Arnoldi algorithm [43,44], or
keep using the Krylov basis defined in Eqs. (2)–(4) for closed
systems but modify the tight-binding model. Since our study
focuses on how the dissipation effect changes the behavior
of Krylov complexity in open quantum systems, we take the
latter approach. Here the operator dynamics is changed from
the Heisenberg evolution to the Lindblad evolution. A Lind-
bladian contains both the Hamiltonian part and the dissipative
part with the dissipation operator M̂. The main results are
schematically shown in Fig. 1 and summarized as follows.
We emphasize that these results are also universal for chaotic
Hamiltonians with generic local dissipations.

(1) Krylov complexity in an open system can also be
mapped to a particle hopping in a half-infinite chain, but
described by a non-Hermitian tight-binding model as

i∂tϕn = −bn+1ϕn+1 − bnϕn−1 − iγ
∑

m

dnmϕm, (8)

where γ represents the dissipation strength. dnm are dominated
by their diagonal terms dnn.

(2) For Hermitian dissipation operator M̂, dn is always
positive. And for a generic chaotic Hamiltonian, dn grows
linearly in n until it saturates at n > ns. ns increases linearly
with the increasing of the system size.

(3) When γ > γc, this imaginary part of the spectrum of
this non-Hermitian tight-binding model exhibits a gap. The
wave functions of the modes below the gap are localized at
the edge. γc decreases toward vanishing when ns increases.

(4) The growth of Krylov complexity is suppressed by
dissipation. For γ > γc, the localized modes below the gap
dominate the long-time evolution of Krylov complexity;
therefore, at long times, Krylov complexity saturates to a
value much smaller than the fully scrambled case.

IV. NON-HERMITIAN TIGHT-BINDING MODEL

Now we illustrate these results in detail. First of all, we
consider the dynamical equation of an operator Ô under the
Lindblad evolution as

dÔ(t )

dt
= i[Ĥ, Ô] + γ

∑
i

(±2M̂†
i ÔM̂i − {M̂†

i M̂i, Ô}), (9)

where M̂i are dissipation operators. Here we note that the
minus sign should be taken when both Ô and M̂i are fermionic
operators [46]. This is crucial for the following discussion,
and we present the detailed derivation and explain the ori-
gin of this minus sign in the Appendix. Substituting Eq. (5)
into both sides of Eq. (A3), we arrive at Eq. (8), and dnm is
given by

dnm =
∑

i

Tr[Ŵ †
n {M̂†

i M̂i,Ŵm} ± 2Ŵ †
n M̂†

i ŴmM̂i]. (10)

Note that the total weight Z = ∑
n |ϕn|2 is conserved in the

Hermitian case but is not conserved in the non-Hermitian case.
Nevertheless, we still define the Krylov complexity as the
mean distance measured from n = 0 in the half-infinite chain,
and the definition now needs to be modified as

K(t ) = 1

Z
∑

n

n|ϕn(t )|2. (11)

V. ILLUSTRATING EXAMPLES

To illustrate the physics concretely, we consider two rep-
resentative models. The first model is the Sachdev-Ye-Kitaev
(SYK) model [47–49]. The Hamiltonian reads

ĤS =
∑

i< j<k<l

Ji jkl ψ̂iψ̂ jψ̂kψ̂l , (12)

where ψ̂i (i = 1, . . . , N ) denotes N Majorana fermions in
the system. Ji jkl are independent random Gaussian variables

with variances given by J2
i jkl = 3!J2/N3. The second model
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FIG. 2. Coefficients of the non-Hermitian terms |dnm| for the
SYK model (a) and for the spinless fermion model (b). For (a),
we have chosen M̂i = ψ̂i and Ô = iψ̂1ψ̂2, and we have set J = 1.
The system contains the total number of Majorana fermion N = 24.
For (b), we have chosen M̂i = ĉ†

i + ĉi and Ô = n̂1, and we have set
J1 = 1, J2 = 0.2, V1 = 0.6 and V2 = 0.1. The model contains the
total number of sites N = 13.

is a one-dimensional lattice model of interacting spinless
fermions. The Hamiltonian reads

ĤF = −
∑

i

(J1ĉ†
i ĉi+1 + J2ĉ†

i ĉi+2 + H.c.)

+
∑

i

(V1n̂in̂i+1 + V2n̂in̂i+2), (13)

where J1 and J2 are the nearest and next-nearest hopping
strengths, and V1 and V2 are the nearest and the next-nearest
interaction strengths. Here we include the next-nearest hop-
ping and interaction to break the integrability. The SYK model
contains random and all-to-all interactions, while the spinless
fermion model has locality. These two models represent two
different types of chaotic Hamiltonians. Aside from these two
models, we have also numerically studied other models, such
as the Ising model with transverse and longitudinal fields and
the spin-1/2 Hubbard model. The results are similar.

VI. BEHAVIOR OF dnm

In Fig. 2, we plot typical dnm for these two models [50].
It is clear that the diagonal matrix elements dnn (short-noted
as dn) are much larger than all off-diagonal matrix elements.
The suppression of dnm (n �= m) can be understood as follows.
When a local dissipative operator acts on a local opera-
tor, it approximately gives the operator size of this local
operator [51]. Furthermore, the Krylov basis contains a su-
perposition of operators with approximately the same system
size [44]. By combining these two approximations, it leads to
the suppression of dnm (n �= m) because two operators with
different sizes are orthogonal to each other.

For Hermitian operators M̂i and using the fact Ŵ †
n =

(−1)nŴn, it is straightforward to show that

dn =
∑

i

Tr[[Ŵn, M̂i]
†[Ŵn, M̂i]], (14)

FIG. 3. Coefficients dn for the diagonal components of the non-
Hermitian terms for the SYK model (a) and for the spinless fermion
model (b). For (a), four different curves cover four different cases: Ô
and M̂i are either fermionic operator ψ̂i or bosonic operator iψ̂iψ̂ j .
We have set J = 1. The system contains the total number of Ma-
jorana fermion N = 24. For (b), four different curves cover four
different cases: Ô and M̂i are either fermionic operator ψ̂i or bosonic
operator n̂i, where ψ̂i denotes ĉ†

i + ĉi. We have set J1 = 1, J2 = 0.2,
V1 = 0.6, and V2 = 0.1. The model contains the total number of sites
N = 13. ns marks the places where dn saturates.

if a plus sign is taken in Eq. (10). And

dn =
∑

i

Tr[{Ŵn, M̂i}†{Ŵn, M̂i}], (15)

if a minus sign is taken in Eq. (10), and anticommutators re-
place commutators. In both cases, dn are always non-negative
real numbers.

Since Ref. [11] has shown that bn increases linearly in
n for a generic chaotic Hamiltonian, here we focus on the
behavior of dn, as shown in Fig. 3. We find that dn also
increases linearly with the increasing of n and saturates
when n > ns.

This behavior of dn can be understood as follows. Suppose
M̂i is a local operator at site i, and if Ŵn acts trivially at
site i, then these two operators commute with each other and
this commutator does not contribute to dn. Hence, when the
operator size of Ŵn increases with the increasing of n, dn

increases. Inspired by this argument, let us then assume dn

increases as ∼nδ . Below we argue δ = 1. To this end, we
utilize the result of Ref. [11] that in a closed system, Krylov
complexity is a proper bound of the out-of-time-ordered com-
mutator (OTOC). Here we consider the OTOC 〈|[Ô(t ), M̂i]|2〉
of the closed system at infinite temperature, and we
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have

∑
i

〈|[Ô(t ), M̂i]|2〉 =
∑

i

〈∣∣∣∣∣
[ ∑

n

ϕc
n(t )Ŵn, M̂i

]∣∣∣∣∣
2〉

≈
∑

i

∑
n

∣∣ϕc
n(t )

∣∣2〈|[Ŵn, M̂i]|2〉 =
∑

n

∣∣ϕc
n(t )

∣∣2
dn. (16)

Here we use ϕc
n(t ) to denote the expansion coefficients of

Ô(t ) of the closed system. On the other hand, the infinite
temperature OTOC 〈|[Ô(t ), M̂i]|2〉 should be bound by CK(t )
in the same closed system, where C is certain constant. Hence,
we have ∑

n

dn

∣∣ϕc
n(t )

∣∣2 � CK(t ) = C
∑

n

n
∣∣ϕc

n(t )
∣∣2

. (17)

If this bound is valid, it requires δ < 1 and if the bound is
tight, it further requires δ = 1. Hence, this gives rise to a linear
growth of dn.

A similar argument can be applied to the situation where
both Ô and M̂ are fermionic. In this case, the infinite tem-
perature OTOC is also defined in terms of anticommutator
〈|{Ô(t ), M̂i}|2〉. Similarly, we have

∑
i

〈|{Ô(t ), M̂i}|2〉 =
∑

i

〈∣∣∣∣∣
{ ∑

n

ϕc
n(t )Ŵn, M̂i

}∣∣∣∣∣
2〉

≈
∑

i

∑
n

∣∣ϕc
n(t )

∣∣2〈|{Ŵn, M̂i}|2〉 =
∑

n

∣∣ϕc
n(t )

∣∣2
dn. (18)

Also using Eq. (17), we reach the same conclusion that dn

increases linearly in n.

VII. SPECTRUM OF NON-HERMITIAN HOPPING MODEL

Below we simplify the non-Hermitian tight-binding model
Eq. (8) by only considering the diagonal components of dnm.
We assume that bn = βb + αbn and dn = βd + αd n up to n =
ns and both remain constants for n > ns, where βb, αb, βd , and
αd are always positive. We obtain reasonable values of these
parameters by fitting Fig. 3(b).

The spectrum of the non-Hermitian tight-binding model
determines the dynamical behavior of K(t ). We write the
eigenenergies as ε = ε′ − iε′′. The imaginary part ε′′ is always
positive. We solve all the eigenstates φl of the non-Hermitian
tight-binding model and plot their eigenenergies {(ε′

l , ε
′′
l )} in

Fig. 4. We find that for γ > γc, the imaginary part of the
spectrum acquires a gap ∼� as shown in Fig. 4(b). Note that
the time evolution in the half-infinite chain follows

ϕ(t ) =
∑

l

cl e
−i(ε′

l −iε′′
l )tφl . (19)

Hence, the eigenmodes with larger ε′′ decay faster. When
t 	 1/�, all modes above the gap damp out and the mode
below the gap dominates ϕ(t ). We show in Fig. 4(c) that the
wave functions of these two modes below the gap are localized
around the edge of the half-infinite chain. We note that the
existence of such localized edge states is a universal behavior
of such non-Hermitian tight-binding models. Therefore, K(t )
saturates to a much smaller value at long times, and this value
is determined by the center position of the wave function
shown in Fig. 4(c). Such a behavior of K(t ) is shown by the

FIG. 4. Spectrum for the non-Hermitian tight-binding model.
(a–c) We choose βd = 2.80, αd = 0.35, βb = 0.66, αb = 0.34, and
ns = 1000. (a) Eigenenergy ε = ε ′ − iε ′′. (ε ′, ε ′′) for γ = 0.007 <

γc (b) (ε ′, ε ′′) for γ = 0.04 > γc. Here we shift the imaginary part ε ′′

by a constant such that the smallest ε ′′ is zero. (c) The wave functions
for two modes below the gap in (b). (d) γc versus ns.

solid line in Fig. 1, compared with the closed system with
the same Hamiltonian. This can also be understood from the
fact that dn is larger for larger n, which means that more
complicated operators are subjected to stronger decay, and
therefore, simpler operators survive at long times. Hence, we
conclude that the growth of Krylov complexity is suppressed
by dissipation.

Here we also find that γc depends on ns. Figure 4(c) shows
that γc ∼ 1/n0.85

s . ns increases as the total system size in-
creases. Hence, for an infinite system, ns → ∞, and therefore,
γc → 0.

This localization behavior bounds the information scram-
bling in a dissipative quantum many-body system at the
long-time limit. Suppose we initially enclose certain infor-
mation into a quantum state by applying a quench operator.
Then, the evolution of this operator means information scram-
bling. In a closed system, this information will eventually
be scrambled to the entire system. Now, we show that the
operator complexity finally saturates in a dissipative system.
That means that beyond a certain range one cannot detect the
initial information at the long-time limit.

VIII. SUMMARY AND OUTLOOK

In summary, we generalize Krylov complexity to an open
system governed by the Lindblad equation. We show that
Krylov complexity defined for the open system can be mapped
to a non-Hermitian tight-binding model. This model also
exhibits universal behavior, and its localized edge modes de-
termine the long-time behavior of Krylov complexity in an
open system. This work opens a new route to extend the
discussion of operator complexity and chaos to open quantum
systems. For those systems such as the SYK model with
gravity interpretation, such discussion can also shed light on
gravity physics through holographic duality.
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APPENDIX: DERIVATION OF OPERATOR LINDBLAD
EQUATION

In this Appendix, we derive the Lindblad equation for
an operator Ô(t ). Especially, we should highlight that an
extra minus sign is required in front of the quantum jump
term when both Ô and the dissipation operator M̂ are both
fermionic ones. First of all, we consider the duality between
the Schrödinger picture and the Heisenberg picture

Tr[Ôρ̂(t )] = Tr[Ô(t )ρ̂]. (A1)

Since it is known that the density matrix ρ̂(t ) of an open
system obeys the Lindblad equation [52]

d ρ̂(t )

dt
= −i[Ĥ, ρ̂] + γ

∑
i

(2M̂iρ̂M̂†
i − {M̂†

i M̂i, ρ̂}), (A2)

it is straightforward to show that Ô(t ) obeys the adjoint equa-
tion [52]

dÔ(t )

dt
= i[Ĥ, Ô] + γ

∑
i

(2M̂†
i ÔM̂i − {M̂†

i M̂i, Ô}). (A3)

However, Eq. (A3) is not always correct. When the operator
Ô is fermionic, the expectation value of Ô(t ) is always zero.
As a result, Eq. (A1) cannot result in a unique equation for
Ô(t ) given the Lindblad equation for ρ̂(t ). Therefore, in order
to include the situations with both bosonic and fermionic
operators Ô, we shall derive the operator Lindblad equation by
first explicitly including the operators in the bath and then
integrating out the bath operators.

We start with the general form

Ĥ = ĤS + ĤB + Ĥ int, (A4)

where ĤS and ĤB are, respectively, the Hamiltonians for the
system and the bath. Ĥ int represents the interaction between
the system and bath, which is assumed to be

Ĥ int = λ(M̂†ξ̂ + ξ̂ †M̂ ). (A5)

The operator evolution in the entire system obeys the Heisen-
berg equation as

i∂t Ô = [Ô, Ĥ ]. (A6)

The effective evolution of the operator acting on the sys-
tem only can be derived by tracing out the bath degree of
freedom ÔS(t ) = TrB[ρ̂BÔ(t )]. Below we turn into the in-
teraction picture by introducing the unitary transformation
Û0(t ) = e−i(ĤS+ĤB )t . We write down the operator in the inter-
action picture as ÔI(t ) = Û0(t )Ô(t )Û †

0 (t ). Then, the evolution
equation becomes

i∂t ÔI = [
ÔI, Ĥ int

I

]
. (A7)

We assume a Markovian bath and apply the white noise
approximation to the Green’s function of the bath, that is,

〈ξ̂I(t )ξ̂ †
I (t ′)〉 = δ(t − t ′), (A8)

and we also have

〈ξ̂I (t )〉 = 〈ξ̂ †
I (t )〉 = 〈ξ̂ †

I (t )ξ̂I (t ′)〉
= 〈ξ̂I (t )ξ̂I (t ′)〉 = 〈ξ̂ †

I (t )ξ̂ †
I (t ′)〉 = 0. (A9)

Formally integrating out Eq. (A7), we obtain

ÔI(t ) = ÔI(0) − i
∫ t

0
dt ′[OI(t

′), H int
I (t ′)

]
. (A10)

Substitute this equation back into Eq. (A7) we obtain

i∂t ÔI(t ) = [
ÔI(0), Ĥ int

I (t )
]

− i
∫ t

0
dt ′[[ÔI(t

′), Ĥ int
I (t ′)

]
, Ĥ int

I (t )
]
. (A11)

Now we trace out the bath degree of freedoms, and it yields

i∂t Ô
S
I (t ) = TrBρ̂B

([
ÔS

I (0), Ĥ int
I (t )]

− i
∫ t

0
dt ′[[ÔS

I (t ), Ĥ int
I (t ′)

]
, Ĥ int

I (t )
])

(A12)

= −i
∫ t

0
dt ′TrB

[
ρ̂B

(
ÔS

I (t )Ĥ int
I (t ′)Ĥ int

I (t )

+ Ĥ int
I (t )Ĥ int

I (t ′)ÔS
I (t ) − Ĥ int

I (t ′)ÔS
I (t )Ĥ int

I (t )

− Ĥ int
I (t )ÔS

I (t )Ĥ int
I (t ′)

)]
. (A13)

The first term in Eq. (A12) only contains a single bath op-
erator, therefore, thanks to Eq. (A9), it vanishes after tracing
out the bath. Since the correlations of bath operators are suf-
ficiently short-ranged in the time domain, we can extend the
the upper limit of the integration to infinity. Then, using the
bath correlation function Eqs. (A8) and (A9), we have

i∂t Ô
S
I (t )

= −iλ2
∫ ∞

0
dt ′TrB

[
ρ̂B

(
ÔS

I (t )M̂†
I (t ′)ξ̂I(t

′)ξ̂ †
I (t )M̂I(t )

+ M̂†
I (t )ξ̂I(t )ξ̂ †

I (t ′)M̂I(t
′)ÔS

I (t )

− M̂†
I (t )ξ̂I(t )ÔS

I (t )ξ̂ †
I (t ′)M̂I(t

′)

− M̂†
I (t ′)ξ̂I(t

′)ÔS
I (t )ξ̂ †

I (t )M̂I(t )
)]

= −iλ2
∫ ∞

0
dt ′〈ξ̂I(t )ξ̂ †

I (t ′)〉({M̂†
I (t )M̂I(t ), ÔS

I (t )
}

− 2(−1)ηM̂†
I (t )ÔS

I (t )M̂I(t )
)

= −iλ2
({

M̂†
I (t )M̂I(t ), ÔS

I (t )
} − 2(−1)ηM̂†

I (t )ÔS
I (t )M̂I(t )

)
,

where the index η comes from exchanging operator ξ̂ or ξ̂ †

with operator ÔS
I in the system. When M̂ is fermionic, ξ̂

should also be fermionic. Then, if Ô is also fermionic, there
will be an extra minus sign when exchanging ξ̂ or ξ̂ † with Ô,
and therefore, η = 1. Otherwise, if either ξ̂ or Ô is bosonic,
or both of them are bosonic, there will be no extra sign when
exchanging ξ̂ or ξ̂ † with Ô, and therefore, η = 0. Then, we re-
turn to the Heisenberg picture from the interaction picture by
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the unitary transformation ÔS (t ) = Û †
0 (t )ÔS

I (t )Û0(t ). Hence,
we finally reach the operator Lindblad equation

dÔS (t )

dt
= i[Ĥ, ÔS] − γ ({M̂†M̂, ÔS} − (−1)η2M̂†ÔSM̂ ),

(A14)
where γ = λ2. When η = 0, it is consistent with Eq. (A3).

There is a tricky point that is worth mentioning in
Eq. (A14). Considering the term M̂†

I (t )ξ̂I(t )ÔS
I (t )ξ̂ †

I (t ′)M̂I(t ′),
we can also write it as

TrB[ρ̂BM̂†
I (t )ξ̂I(t )ÔS

I (t )ξ̂ †
I (t ′)M̂I(t

′)]

= TrB[ρ̂Bξ̂I(t )M̂†
I (t )ÔS

I (t )M̂I(t
′)ξ̂ †

I (t ′)]. (A15)

In order to trace out the bath operators, we need to move
ρ̂B, ξ̂ , and ξ̂ † together. There are seemingly two different
methods to do so. The first method is to utilize the partial
trace’s permutation as follows:

TrB
[
ρ̂Bξ̂I(t )M̂†

I (t )ÔS
I (t )M̂I(t

′)ξ̂ †
I (t ′)

]
= TrB

[
ξ̂

†
I (t ′)ρ̂Bξ̂I(t )M̂†

I (t )ÔS
I (t )M̂I(t

′)
]

= TrB[ξ̂ †
I (t ′)ρ̂Bξ̂I(t )]M̂†

I (t )ÔS
I (t )M̂I(t

′)

= TrB[ρ̂Bξ̂I(t )ξ̂ †
I (t ′)]M̂†

I (t )ÔS
I (t )M̂I(t

′). (A16)

The second method is to directly pass ξ̂ † through M̂†ÔSM̂,

TrB
[
ρ̂Bξ̂I(t )M̂†

I (t )ÔS
I (t )M̂I(t

′)ξ̂ †
I (t ′)

]
= (−1)ηTrB

[
ρ̂Bξ̂I(t )ξ̂ †

I (t ′)M̂†
I (t )ÔS

I (t )M̂I(t
′)
]

= (−1)ηTrB[ρ̂Bξ̂I(t )ξ̂ †
I (t ′)]M̂†

I (t )ÔS
I (t )M̂I(t

′). (A17)

This method generates a minus sign in the case when M̂†, ÔS,
M̂, and ξ̂ † are all fermionic. Obviously, these two methods
contradict each other once this minus sign is present. Here we
should argue that the first method is not correct when ξ̂ and ξ̂ †

are fermionic.

FIG. 5. A quantum circuit illustration of evaluation of
TrB[ρ̂Bξ̂I(t )M̂†

I (t )ÔS
I (t )M̂I(t ′)ξ̂ †

I (t ′)]. (a) When ξ̂ and ξ̂ † are
fermionic, they are supported on the total Hilbert space and the
partial trace’s permutation is incorrect. (b) When ξ̂ and ξ̂ † are
bosonic, they are only supported on the Hilbert space of the bath and
the partial trace’s permutation is correct.

Let us consider the total Hilbert space Htotal as a tensor
product of the system and bath HS ⊗ HB. And let us consider
that M̂†, M̂, and ÔS are supported solely on HS. When ξ̂ and
ξ̂ † are bosonic operators, their support is solely on HB. Then,
ξ̂ † and ξ̂ commute with M̂†ÔSM̂. Both methods are consis-
tent with each other. However, when ξ̂ and ξ̂ † are fermionic,
although they are bath operators, they are supported on the
total Hilbert space Htotal in order to fulfill the anticommutation
relation with fermion operators in HS. In other words, the
matrix representation of ξ̂ or ξ̂ † requires a sign that depends
on the physical state of the system. This is reminiscent of the
Jordan-Wigner transformation where fermions carry nonlocal
strings in its matrix representation. Thus, the partial trace’s
permutation, i.e., the first equality in Eq. (A16), is not correct.
This difference between bosonic and fermionic operators is
explicitly illustrated in Fig. 5. Moreover, in the fermionic
case, one can alternatively assume that ξ̂ and ξ̂ † are solely
supported on HB. Then, M̂†, M̂, and ÔS should be supported
on the entire Htotal in order to fulfill the anticommutation
relation. Then, the second equality in Eq. (A16) is not correct.
In any case, the first method fails. The same discussion applies
to another term M̂†

I (t ′)ξ̂I(t ′)ÔS
I (t )ξ̂ †

I (t )M̂I(t ) in Eq. (A14).

[1] D. A. Roberts and B. Yoshida, Chaos and complexity by design,
J. High Energy Phys. 04 (2017) 121.

[2] R. Jefferson and R. C. Myers, Circuit complexity in quantum
field theory, J. High Energy Phys. 10 (2017) 107.

[3] D. A. Roberts, D. Stanford, and A. Streicher, Operator growth
in the SYK model, J. High Energy Phys. 06 (2018) 122.

[4] R.-Q. Yang, Complexity for quantum field theory states and ap-
plications to thermofield double states, Phys. Rev. D 97, 066004
(2018).

[5] R. Khan, C. Krishnan, and S. Sharma, Circuit complex-
ity in fermionic field theory, Phys. Rev. D 98, 126001
(2018).

[6] R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang, and K.-Y. Kim, Prin-
ciples and symmetries of complexity in quantum field theory,
Eur. Phys. J. C 79, 109 (2019).

[7] X. L. Qi and A. Streicher, Quantum epidemiology: Operator
growth, thermal effects, and SYK, J. High Energy Phys. 08
(2019) 012.

[8] A. Lucas, Operator Size at Finite Temperature and Planckian
Bounds on Quantum Dynamics, Phys. Rev. Lett. 122, 216601
(2019).

[9] V. Balasubramanian, M. Decross, A. Kar, and O. Parrikar,
Quantum complexity of time evolution with chaotic Hamilto-
nians, J. High Energy Phys. 01 (2020) 134.

[10] V. Balasubramanian, M. DeCross, A. Kar, Y. C. Li, and O.
Parrikar, Complexity growth in integrable and chaotic models,
J. High Energy Phys. 07 (2021) 011.

[11] D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, and E. Altman,
A Universal Operator Growth Hypothesis, Phys. Rev. X 9,
041017 (2019).

[12] J. L. F. Barbón, E. Rabinovici, R. Shir, and R. Sinha, On the
evolution of operator complexity beyond scrambling, J. High
Energy Phys. 10 (2019) 264.

[13] A. Dymarsky and A. Gorsky, Quantum chaos as delo-
calization in Krylov space, Phys. Rev. B 102, 085137
(2020).

033085-6

https://doi.org/10.1007/JHEP04(2017)121
https://doi.org/10.1007/JHEP10(2017)107
https://doi.org/10.1007/JHEP06(2018)122
https://doi.org/10.1103/PhysRevD.97.066004
https://doi.org/10.1103/PhysRevD.98.126001
https://doi.org/10.1140/epjc/s10052-019-6600-3
https://doi.org/10.1007/JHEP08(2019)012
https://doi.org/10.1103/PhysRevLett.122.216601
https://doi.org/10.1007/JHEP01(2020)134
https://doi.org/10.1007/JHEP07(2021)011
https://doi.org/10.1103/PhysRevX.9.041017
https://doi.org/10.1007/JHEP10(2019)264
https://doi.org/10.1103/PhysRevB.102.085137


KRYLOV COMPLEXITY IN OPEN QUANTUM SYSTEMS PHYSICAL REVIEW RESEARCH 5, 033085 (2023)

[14] T. Xu, T. Scaffidi, and X. Cao, Does Scrambling Equal Chaos?
Phys. Rev. Lett. 124, 140602 (2020).

[15] A. Avdoshkin and A. Dymarsky, Euclidean operator growth and
quantum chaos, Phys. Rev. Res. 2, 043234 (2020).

[16] J. L. Barbón, J. Martín-García, and M. Sasieta, Momen-
tum/complexity duality and the black hole interior, J. High
Energy Phys. 07 (2020) 169.

[17] J. M. Magán and J. Simón, On operator growth and emergent
Poincaré symmetries, J. High Energy Phys. 05 (2020) 071.

[18] S. K. Jian, B. Swingle, and Z. Y. Xian, Complexity growth of
operators in the SYK model and in JT gravity, J. High Energy
Phys. 03 (2021) 014.

[19] E. Rabinovici, A. Sánchez-Garrido, R. Shir, and J. Sonner,
Operator complexity: A journey to the edge of Krylov space,
J. High Energy Phys. 06 (2021) 62.

[20] C. F. Chen and A. Lucas, Operator growth bounds from graph
theory, Commun. Math. Phys. 385, 1273 (2021).

[21] A. Dymarsky and M. Smolkin, Krylov complexity in conformal
field theory, Phys. Rev. D 104, L081702 (2021).

[22] J. D. Noh, Operator growth in the transverse-field Ising spin
chain with integrability-breaking longitudinal field, Phys. Rev.
E 104, 034112 (2021).

[23] F. Ballar Trigueros and C. J. Lin, Krylov complexity of
many-body localization: Operator localization in Krylov basis,
SciPost Phys. 13, 037 (2022).

[24] P. Caputa and S. Datta, Operator growth in 2d CFT, J. High
Energy Phys. 12 (2021) 188.

[25] D. Patramanis, Probing the entanglement of operator growth,
Prog. Theor. Expt. Phys. 2022, 063A01 (2022).

[26] P. Caputa, J. M. Magan, and D. Patramanis, Geometry of Krylov
complexity, Phys. Rev. Res. 4, 013041 (2022).

[27] A. Kar, L. Lamprou, M. Rozali, and J. Sully, Random matrix
theory for complexity growth and black hole interiors, J. High
Energy Phys. 01 (2022) 016.

[28] J. Kim, J. Murugan, J. Olle, and D. Rosa, Operator delocaliza-
tion in quantum networks, Phys. Rev. A 105, L010201 (2022).

[29] N. Hörnedal, N. Carabba, A. S. Matsoukas-Roubeas, and A.
del Campo, Ultimate physical limits to the growth of operator
complexity, Commun. Phys. 5, 207 (2022).

[30] E. Rabinovici, A. Sánchez-Garrido, R. Shir, and J. Sonner,
Krylov localization and suppression of complexity, J. High
Energy Phys. 03 (2022) 211.

[31] B. Bhattacharjee, X. Cao, P. Nandy, and T. Pathak, Krylov
complexity in saddle-dominated scrambling, J. High Energy
Phys. 05 (2022) 174.

[32] V. Balasubramanian, P. Caputa, J. Magan, and Q. Wu, Quantum
chaos and the complexity of spread of states, Phys. Rev. D 106,
046007 (2022).

[33] R. Heveling, J. Wang, and J. Gemmer, Numerically probing the
universal operator growth hypothesis, Phys. Rev. E 106, 014152
(2022).

[34] T. Faulkner, T. Hartman, M. Headrick, M. Rangamani, and
B. Swingle, Snowmass white paper: Quantum information in
quantum field theory and quantum gravity, arXiv:2203.07117.

[35] K. Adhikari and S. Choudhury, Cosmological Krylov complex-
ity, Fortschr. Phys. 70, 2200126 (2022).

[36] K. Adhikari, S. Choudhury, and A. Roy, Krylov Complex-
ity in quantum field theory, Nucl. Phys. B 993, 116263
(2023).

[37] P. Caputa and S. Liu, Quantum complexity and topo-
logical phases of matter, Phys. Rev. B 106, 195125
(2022).

[38] W. Mück and Y. Yang, Krylov complexity and orthogonal poly-
nomials, Nucl. Phys. B 984, 115948 (2022).

[39] A. Banerjee, A. Bhattacharyya, P. Drashni, and S. Pawar, From
CFTs to theories with Bondi-Metzner-Sachs symmetries: Com-
plexity and out-of-time-ordered correlators, Phys. Rev. D 106,
126022 (2022).

[40] Z. Y. Fan, Universal relation for operator complexity, Phys. Rev.
A 105, 062210 (2022).

[41] Z. Y. Fan, The growth of operator entropy in operator growth,
J. High Energy Phys. 08 (2022) 232.

[42] E. Rabinovici, A. Sánchez-Garrido, R. Shir, and J. Sonner, K-
complexity from integrability to chaos, J. High Energy Phys. 07
(2022) 151.

[43] A. Bhattacharya, P. Nandy, P. P. Nath, and H. Sahu, Operator
growth and Krylov construction in dissipative open quantum
systems, J. High Energy Phys. 12 (2022) 081.

[44] B. Bhattacharjee, X. Cao, P. Nandy, and T. Pathak, Operator
growth in open quantum systems: Lessons from the dissipative
SYK, J. High Energy Phys. 03 (2023) 054.

[45] G. Golub and C. Van Loan, Matrix computations (JHU Press,
Baltimore, 2013).

[46] F. Schwarz, M. Goldstein, A. Dorda, E. Arrigoni, A.
Weichselbaum, and J. von Delft, Lindblad-driven discretized
leads for nonequilibrium steady-state transport in quantum im-
purity models: Recovering the continuum limit, Phys. Rev. B
94, 155142 (2016).

[47] A. Kitaev, A simple model of quantum holography, talks given
at KITP, April 7 and May 27 (2015), http://online.kitp.ucsb.edu/
online/entangled15/kitaev/.

[48] S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals,
Phys. Rev. X 5, 041025 (2015).

[49] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-
Kitaev model, Phys. Rev. D 94, 106002 (2016).

[50] The numerical codes for this work are available at https:
//github.com/LiuChangIASTU/Krylov-Complexity-in-Open-
Quantum-Systems.git.

[51] T. Schuster and N. Y. Yao, Operator growth in open quantum
systems, arXiv:2208.12272.

[52] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

033085-7

https://doi.org/10.1103/PhysRevLett.124.140602
https://doi.org/10.1103/PhysRevResearch.2.043234
https://doi.org/10.1007/JHEP07(2020)169
https://doi.org/10.1007/JHEP05(2020)071
https://doi.org/10.1007/JHEP03(2021)014
https://doi.org/10.1007/JHEP06(2021)062
https://doi.org/10.1007/s00220-021-04151-6
https://doi.org/10.1103/PhysRevD.104.L081702
https://doi.org/10.1103/PhysRevE.104.034112
https://doi.org/10.21468/SciPostPhys.13.2.037
https://doi.org/10.1007/JHEP12(2021)188
https://doi.org/10.1093/ptep/ptac081
https://doi.org/10.1103/PhysRevResearch.4.013041
https://doi.org/10.1007/JHEP01(2022)016
https://doi.org/10.1103/PhysRevA.105.L010201
https://doi.org/10.1038/s42005-022-00985-1
https://doi.org/10.1007/JHEP03(2022)211
https://doi.org/10.1007/JHEP05(2022)174
https://doi.org/10.1103/PhysRevD.106.046007
https://doi.org/10.1103/PhysRevE.106.014152
http://arxiv.org/abs/arXiv:2203.07117
https://doi.org/10.1002/prop.202200126
https://doi.org/10.1016/j.nuclphysb.2023.116263
https://doi.org/10.1103/PhysRevB.106.195125
https://doi.org/10.1016/j.nuclphysb.2022.115948
https://doi.org/10.1103/PhysRevD.106.126022
https://doi.org/10.1103/PhysRevA.105.062210
https://doi.org/10.1007/JHEP08(2022)232
https://doi.org/10.1007/JHEP07(2022)151
https://doi.org/10.1007/JHEP12(2022)081
https://doi.org/10.1007/JHEP03(2023)054
https://doi.org/10.1103/PhysRevB.94.155142
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
https://doi.org/10.1103/PhysRevX.5.041025
https://doi.org/10.1103/PhysRevD.94.106002
https://github.com/LiuChangIASTU/Krylov-Complexity-in-Open-Quantum-Systems.git
http://arxiv.org/abs/arXiv:2208.12272

