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Mapping state transition susceptibility in quantum annealing
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Quantum annealing is a novel type of analog computation that aims to use quantum-mechanical fluctuations
to search for optimal solutions for Ising problems. Quantum annealing in the transverse field Ising model,
implemented on D-Wave devices, works by applying a time-dependent transverse field, which puts all qubits into
a uniform state of superposition, and then applying a Hamiltonian over time, which describes a user-programed
Ising problem. We present a method that utilizes two control features of D-Wave quantum annealers, namely
reverse annealing and an h-gain schedule, to quantify the susceptibility, or the distance, between two classical
states of an Ising problem. The starting state is encoded using reverse annealing, and the second state is encoded
on the linear terms of a problem Hamiltonian. An h-gain schedule is specified, which incrementally increases
the strength of the linear terms, thus allowing a quantification of the h-gain strength required to transition the
anneal into a specific state at the final measurement. Because of the nature of quantum annealing, the state
tends towards global minima, and therefore we restrict the second classical state to a minimum solution of
the given Ising problem. This susceptibility mapping, when enumerated across all initial states, shows in detail
the behavior of the quantum annealer during reverse annealing. The procedure is experimentally demonstrated
on three small test Ising models which were embedded in parallel on the D-Wave Advantage_system4.1.
Analysis of the state transition mapping shows detailed characteristics of the reverse annealing process, including
intermediate state transition paths, which are visually represented as state transition networks.
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I. INTRODUCTION

Quantum annealing in the transverse field Ising model
was proposed as a novel analog computation model that
utilizes quantum fluctuations in order to search for optimal
solutions of combinatorial optimization problems [1–6]. Adi-
abatic quantum computing is an ideal computation that is
entirely isolated from the environment and slowly evolves
the Hamiltonian [7]. Adiabatic quantum computing (AQC) is
of interest because it is equivalent to circuit model quantum
computing. Quantum annealing (QA) is a practical heuristic
implementation of adiabatic quantum computing [7] where
the coherence times are small [8], the system is not per-
fectly isolated from the environment, the variable connectivity
is limited, and the time evolution is not necessarily slow.
Quantum annealing has been implemented in hardware in
a variety of contexts [8–11], and D-Wave system quantum
annealing hardware is currently available as a cloud com-
puting resource. D-Wave quantum annealers are implemented
via typically sparse hardware graphs of superconducting flux
qubits. Quantum annealing has been used as an experimen-
tal physics simulation tool [12–16] and as a computer to
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sample a wide variety of optimization problems [17–20] in-
cluding, to name specific problem types, the graph coloring
problem [21,22] semiprime factorization [23–28] the travel-
ing salesperson problem [29,30], air traffic management [31],
maximum clique [32–34], graph partitioning [35,36], boolean
tensor networks [37–39], community detection [40], spanning
trees [41], fault detection [42], and maximum cut [43,44]. Fol-
lowing with the theme of sampling optimization problems that
are of interest for many possible applications, there have been
numerous studies developing methods to improve the capabil-
ities of modern quantum annealers using different parameter
tuning techniques and algorithms [44–51]. Overall, quantum
annealing, and in particular the cloud based D-Wave systems
quantum annealers, are an active topic of study because of the
potential heuristic capability of quantum annealing to sam-
ple optimization problems of interest in the NISQ-era [52]
where hardware error rates and limited hardware connectiv-
ity [53–55] prohibit more exact computation. For D-Wave
quantum annealers, the Hamiltonian that is implemented in
hardware can be represented in Eq. (1) as a sum of the initial
transverse field Hamiltonian and the user-encoded Hamilto-
nian,
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FIG. 1. The logical N6 Ising, N7, and N8 in order from left to right. Quadratic weights of +1 are encoded as blue edges in these problem
graphs, and quadratic weights of −1 are encoded as red edges in these problem graphs. The N6 Ising has four ground states (optimal solutions),
N7 has two ground states, and N8 has eight ground states. All linear terms are set to 0. The variable indices are drawn on the node labels. Each
of these Ising models are subgraphs of the Pegasus graph topology.

where σ̂x,z are Pauli matrices operating on qubit i. hi ∈ R
are the qubit biases, and Ji, j ∈ R are the coupling strengths.
D-Wave quantum annealers also allow users to change many
parameters of the anneal beyond the problem Ising that is
mapped to the device. For example, the users can modify the
annealing schedule that defines where the anneal fraction s is
at each time step in the anneal; in normal forward annealing,
the points of the anneal schedule are defined as a linear inter-
polation from s = 0 at the start of the anneal and s = 1 at the
end of the anneal [56]. Another relevant parameter that the
user of cloud-based D-Wave quantum annealers can specify
is the annealing time which specifies the anneal duration in
microseconds (for the D-Wave Advantage_system4.1, for
example, the annealing times can be in a range from 0.5 to
2000). Equation (2) defines the problem Hamiltonian that is
minimized during quantum annealing as a variable assignment
problem,

H (x1, . . . , xn) =
n∑
i

hixi +
∑
i> j

Ji, jxix j . (2)

The linear weights hi ∈ R and the quadratic couplers
Ji j ∈ R define the discrete optimization problem, where the
goal is to find the assignment of unknown binary variables
xi, i ∈ {1, . . . , n} that minimizes Eq. (2). Equation (2) is
called a Quadratic Unconstrained Binary Optimization prob-
lem (QUBO) problem if xi ∈ {0, 1}, and an Ising problem if
xi ∈ {−1,+1}, where i ∈ {1, . . . , n}. The reason that quantum
annealing can be applied to so many different problem types,
including NP-Hard problems, is because they can be formu-
lated as Ising models [57], or equivalently QUBOs [58,59],
which can be mapped to a problem Hamiltonian of the form
of Eq. (2).

Alongside expanding its possible application domains, un-
derstanding the dynamics of how quantum annealers sample
problems has been a subject of research [60–64]. For exam-
ple, one of the examples of a notable property of quantum
annealing in the transverse field Ising model is that it does
not sample ground states fairly for optimization problems
which have multiple optimal solutions [65–72]. Fairly sam-
pling optimal solutions, while not always necessary when
solving optimization problems, is important for a variety of
applications [73–81].

In this article, we present a state transition susceptibility
mapping methodology where a quantification can be made of
the susceptibility of transitioning between two classical states
in a quantum annealer, which can then be enumerated across
all possible initial states for small Ising models. This state
mapping is accomplished by specifying an initial classical
state as the starting point of the anneal (this is accomplished
using reverse annealing), and h-gain state encoding guides the
anneal towards a specific intended classical ground state. This
measure can be regarded as a type of susceptibility because it
is measuring the response to an applied magnetic field during
the quantum annealing process. These data are then analyzed
using several different metrics which show correlations be-
tween initial state energy and hamming distance proportions.
The data are then further characterized by creating state tran-
sition networks to show intermediate states. The results show
that there are some initial states that are significantly more
susceptible to being moved into an intended ground state, but
are not necessarily near the ground state in terms of energy.
The results are also analyzed to determine if they have a biased
state transition susceptibility towards some ground states, and
if that correlates to unfair sampling in forward annealing.

All raw data from the experiments are publicly available
datasets [82–85].

II. METHODS

In this section, we outline the experimental methods used
to map the susceptibility from input states to ground states
of small test Ising models. First, in Sec. II A we outline the
three Ising problems that will be investigated. In Sec. II B,
we present the settings and methods used to encode the initial
state and the intended ground state of the Ising models. In
Sec. II C, the different metrics that the results will be analyzed
with are defined. All figures generated in this article use the
python packages MATPLOTLIB [86,87] and NETWORKX [88].

A. Problem Ising models and hardware embedding

Figure 1 defines the three problem Ising models we will
investigate. Importantly, these three Ising models are natively
embeddable onto the D-Wave Pegasus Quantum Processing
Unit (QPU) topology [55,89,90]. This allows for these small
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FIG. 2. Test Ising models embedded in parallel onto the hardware connectivity graph of Advantage_system4.1. The N6 Ising is embedded
722 times (left). The N7 Ising is embedded 625 times (middle). The N8 Ising is embedded 525 times (right). The nodes and edges used in
the hardware graph embeddings are colored red (left), blue (middle), and green (right), and unused qubits and couplers are colored with
high-transparency gray. The Advantage_system4.1 device has a Pegasus P16 topology, however it also has some missing hardware components
(qubits and couplers) which are unintentional manufacturing defects, therefore these parallel (or tiled) embeddings must account for these
hardware defects.

Ising models to be repeatedly embedded onto the chip con-
nectivity, which allows us to execute a large sample size of
these small Ising models in parallel during the same annealing
cycle—i.e., parallel quantum annealing [32,39]. These paral-
lel embeddings are also referred to as tiling [91]. Embedding
many problem instances onto the hardware not only ensures
that robust statistics of the problem will be gathered, but it
also aims to average out any specific biases that may exist
for specific groups of qubits. Not using minor-embedding
also mitigates the additional potential problems that can come
with minor embedding [92], including resolving chain breaks
[34,93] and the ferromagnetic coupling chain strength dom-
inating the programed energy scale on the chip [94]. All
experiments use the D-Wave Advantage_system4.1; Fig. 2
shows these three Ising models embedded onto the Advan-
tage_system4.1 connectivity at least several hundred times
using the minorminer heuristic minor embedding tool [95].
These test Ising models were selected for several reasons.

(i) They match the native connectivity of the Pegasus
graph, which means that minor embedding will not be re-
quired in order to execute these Ising models on D-Wave
Advantage_system4.1.

(ii) They have multiple optimal solutions, which allows us
to examine any differences, or similarities, in the behavior of
the h-gain response curves for the different ground states.

(iii) They are simple random spin glasses, which are typical
for test problems on quantum annealers [67,96–98], and in
general this class of problem is NP-Hard [99].

(iv) They are small enough that we can easily compute
their optimal solutions and we can also enumerate over all
possible initial states with the reverse annealing and h-gain
state encoding methods.

(v) Linear terms are intentionally not included on the prob-
lem Ising so that the h-gain state encoding can be utilized.

Because these Ising models are sufficiently small, it is pos-
sible to enumerate over all possible solutions of the variable
assignment problem {+1,−1} and determine which states are

the optimal solutions. These types of Ising problems (meaning
edge coefficients with a weight of either 1 or −1 and there
no linear terms) naturally will have complementary ground
states, meaning that there are always at least two optimal
solutions and they will be complements of each other. Here
we provide these Ising optimal solutions:

(i) The N6 Ising has exactly four optimal solutions, each
with an energy of −6. These optimal variable assignments
are [−1,−1,−1,+1,−1,+1], [−1,−1,+1,+1,−1,+1],
[+1,+1,−1,−1,+1,−1], [+1,+1,+1,−1,+1,−1].

(ii) The N7 Ising has exactly two optimal solu-
tions, each with an energy of −7. These optimal
variable assignments are [−1,+1,+1,−1,−1,−1,+1],
[+1,−1,−1,+1,+1,+1,−1].

(iii) The N8 Ising has exactly eight optimal solutions, each
with an energy of −11. These optimal variable assignments
are [−1,+1,−1,+1,+1,−1,−1,+1], [−1,+1,−1,+1,

+1,−1,+1,+1], [−1,+1,+1,−1,−1,−1,+1,+1], [−1,

+1,+1,−1,+1,−1,+1,+1], [+1,−1,−1,+1, −1,+1,

−1,−1], [+1,−1,−1,+1,+1,+1,−1,−1], [+1,−1,

+1,−1,−1,+1,−1,−1], [+1,−1,+1,−1,−1,+1,+1,

−1].

B. State encoding methods

The h_gain_schedule parameter on D-Wave quantum an-
nealers works by introducing a time-dependent function g(t )
to the linear terms of the problem Hamiltonian, resulting in a
modified version of Eq. (1),

HIsing = −A(s)
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The h-gain feature of D-Wave quantum annealers has been
used before in a variety of contexts [12,43,60,100,101]. The h-
gain feature could also be used for other interesting simulation
methods such as implementing adiabatic reverse annealing
[102,103]. The h-gain field allows the user to program a longi-
tudinal magnetic field into the system according to a specific
schedule, meaning that it can vary over time. The h-gain
encoding of the ground-state solutions involves specifying the
linear weights of the Ising as the complements (multiply all
variables by −1) of the ground state. Then we also specify
the h_gain_schedule (which starts out at 0 strength). More
details of this implementation can be found in Ref. [43]. For
simplicity, the Ising models we consider in this study do not
have linear terms, however it is important to note that by
introducing an additional slack variable (which may require
minor-embedding depending on the problem) one can still
utilize this h-gain encoding method for other problems. For
consistency, in the article when referring to this specific en-
coding method, the term h-gain state encoding will be used.

The h_gain_schedule is defined to be [[0.0, 0],
[0.05, 0], [0.1, h], [99.1, h], [99.15, 0],
[100, 0]] where the first coordinate is time in
microseconds, and the second coordinate is the applied
factor by which the linear terms are multiplied [i.e., this
schedule defines the function g(t )]. The parameter h is varied
from 0.1 to 3 in steps of 0.1; 3 is the maximum h-gain strength
allowed on the Advantage_system4.1 hardware. The intent
of this schedule is to begin applying the h-gain field very
quickly once the anneal starts using a high slope ramp up,
and then to ramp down just before the anneal ends. However,
the applied h_gain field is turned off both at the very start
and very end of the anneal, with the field being turned off
nearly 1 µs before the end of the anneal. The intention of
beginning and ending the schedule in this manner is to allow
the state transition measurement at the end of the anneal to be
entirely based on the state of the system having been allowed
to evolve a small amount before measurement without the
applied h-gain field. The exact choice if timing here is based
only on empirical results where the applied field was strong
enough to get many states into the intended ground state, but
not so strong as to overwhelm the anneal immediately into
the intended ground state. Other choices of h_gain_schedule
also have these properties and could be utilized in the future
as well; for example, smaller pulses of h-gain fields could be
used to induce smaller “pushes” towards an intended state.
This choice of h-gain schedule satisfies another constraint
of the Advantage_system4.1, which is that the maximum
number of points we can use to define the g(t ) function is 20.
The maximum slope present in the h_gain_schedule is also
constrained, which is the reason for the jumps of 0.05 µs.
Although not used in our methodology, the h_gain_schedule
is also allowed to have negative values. When instantiated
in the hardware, the user-programed points are linearly
interpolated in between, and a continuous function over time
is created, which is then implemented in the hardware.

The initial variable state is specified using the reverse
annealing control feature of the D-Wave quantum annealer.
Reverse annealing is a variant of quantum annealing, which
begins and ends the anneal in classical states, where the
beginning state is programed by the user, and over the dura-

tion of the anneal the system can be set to different anneal
fractions s over time with the goal of improving upon the
initial state the anneal began with [43,68,104–109]. Program-
ming reverse annealing consists of specifying three different
parameters. First, the boolean state reinitialize_state
must be specified, which dictates whether the state is re-
initialized after each read out or not. For all experiments we
set reinitialize_state to True. Next the anneal schedule
is chosen, which needs to begin and stop in the classical
state (meaning the anneal fraction s = 1). The reverse anneal-
ing schedule is fixed to [[0.0, 1.0], [20, 0.65], [80,
0.65], [100, 1.0]] where the first coordinate is time in
microseconds and the second coordinate is the anneal frac-
tion s. The reverse annealing schedule was chosen to have
a standard ramp up and ramp down that is symmetric, both
with a duration of 20 µs. The anneal fraction to pause at was
chosen empirically so as not to overwhelm the samples with
either the initial state or the intended state—in other words,
these parameters were chosen such that the response curves
were not flat. A smaller anneal fraction during the pause (for
example, 0.5 or 0.4) would make the state transitions overall
more susceptible, and a larger anneal fraction (for example,
0.8) would make the state transitions less susceptible. Lastly,
we need to specify the initial classical state for all active
qubits. This is done using the initial_state parameter,
which encodes the variable states as spins of either 1 or −1.
As with the h_gain_schedule, the programed points that define
the anneal schedule are linearly interpolated between in order
to create a continuous anneal schedule over the anneal time
which is implemented in the hardware.

Each device call uses exactly 1000 anneals. Ev-
ery other parameter is set to default; for example,
auto_scale is set to True. The annealing_time is al-
ways 100 µs. Both the programming_thermalization and
readout_thermalization are set to 0 µs.

Combining reverse annealing to specify an arbitrary initial
state and the h-gain state encoding to specify a final state
results in the unified state transition susceptibility mapping
technique. For simplicity and because the annealing process
naturally tends towards ground states by design, we restrict the
intended final states to be those of optimal solutions, or ground
states, of the problem Ising models. Data which show the
success proportion of how many final states were the intended
ground state as a function of increasing the parameter h for the
h-gain schedule will be referred to h-gain response curves. To
denote this mapping procedure, we will use A → B, where A
is any classical initial state and B is any classical ground state
of the problem Ising.

C. Metrics and algorithms

The primary quantity of interest in these experiments is the
proportion of samples, out of all measured samples across the
1000 anneals and hundreds of embedded instances which we
will denote as n_samples, that are in the ground state that was
encoded in the linear terms of the problem. Given we find that
n_GS samples are in this specific ground state, we will define
this proportion of ground-state samples:

PGS = n_GS

n_samples
. (4)
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Because each D-Wave backend call requests 1000 samples
and the Ising is embedded multiple times on the hardware, the
total number of samples for each device call is n_samples =
722 000 for the N6 Ising, n_samples = 625 000 for the N7

Ising, and n_samples = 525 000 for the N8 Ising. This exper-
imental setup allows for robust sample sizes to be collected
and to get high-accuracy simulation results.

Having enumerated across all h strengths ∈ [0, 3] in steps
of 0.1 indexed by the variable j, we get a PGS measure for each
of those different h strengths. From these measures, we create
a susceptibility metric defined in Eq. (5), which describes
the amount of h-gain strength that was required to move the
anneal from the initial state (encoded using reverse annealing)
to the specified ground state (encoded using the h-gain state
encoding method),

χ =
∑30

j=0 PGS j

30
. (5)

The susceptibility metric captures across all measured h-
gain strengths how successful this mechanism was at causing
the system to end in the intended ground state. If χ = 1
(e.g., high susceptibility), at every amount of applied h the
system A → B was very susceptible to transitioning to the
target ground state. If χ = 0 (e.g., low susceptibility), there
were no samples from the quantum annealer at any value of h
that were measured in the intended ground state—indicating
that the mapping system A → B was not susceptible to tran-
sitioning to the target ground state. In practice, no states will
have exactly χ = 0 or 1 due to the high measurement count
and the noise present on the device. Note that this metric is
similar to measuring magnetic susceptibility in other contexts
of quantum annealing (see [1,100,110]), however it is slightly
different in that it is a sum over several h-gain strengths, not a
single pulse, and the system was in a very specific initial state
due to reverse annealing.

One of the interesting trends that is observed in the data,
which will be explored in detail in Sec. III, is a consistent
lower overall susceptibility measure for some states that are
very near the ground state in terms of hamming distance, but
not necessarily close in terms of other relevant metrics such
as the energy of the state. It turns out that these states that
exhibit very high susceptibility towards the ground state are
one bit flip away from the ground state, but the index of that
bit flip corresponds to the highest degree node in the Ising
graph. To determine whether this trend is consistent across
other states (and across all three test Ising models), we define
a metric δ on states to be maximized where the state is exactly
one highest degree variable away from a ground state, and
minimized for the state that is the complement of the ground
state. This metric is based on defining the subset V of variables
out of the variables in a given initial state i whose state is
opposite that of the ground state we are pushing the system
into. Thus if V contains one variable, then our state i is exactly
one bit-flip away from the ground state, and if V contains the
same number of variables as the Ising, then the given state
i is exactly the complement of the ground state. Assume the
procedure G_deg computes the degree of the variable v of the
specific Ising graph G,

δ =
∑

v∈V G_deg(v)

length(V )
· 1

length(V )
. (6)

Equation (6) is undefined when the initial state is the same
as the ground state because in that case V = ∅; therefore,
when this case occurs we set δ = M + 1, where M is the
largest degree in the Ising graph.

Two other metrics that will be utilized are as follows:
(i) The energy of the initial state evaluated on the given

test Ising (either N6, N7, or N8). We denote the energy metric
as E (i) for the initial state vector i.

(ii) The hamming distance between the initial state and
the intended ground state as a proportion of the number of
variables. The hamming distance proportion is denoted as
d (i, GS) for the initial state vector i and the ground-state
vector GS.

To help differentiate some of the different observed h-
gain response curves, unsupervised spectral clustering is
performed on the vectors of the h-gain response curves.
Specifically, we cluster the vectors for each collection of h-
gain response curves that are transitioning the annealer to a
single ground state; this clustering is then repeated for each of
the other ground states in the Ising. We cluster the data into
four clusters across all experiments; this number of clusters
is somewhat arbitrary and a similar number of clusters could
be utilized, however four gives a reasonable balance between
having reasonably distinct behaviors in the clusters while also
being able to visually present all of the clusters in a reasonable
amount of space. The spectral clustering implementation used
is from the python library scikit-learn [111–117].

A natural question that arises in the state transition data
is what intermediate states does the anneal pass through at
different slices of h (i.e., the strength of the amplification
of the ground state). One way to represent this process is to
simply construct a graph that consists of the classical states
represented as nodes and edges representing when moving
from one h value to another changed the dominant classical
state in the readout of the samples. For a single mapping
procedure from one classical state to a ground state, this graph
would simply be a path; the node representing the starting
state is at one end, and the node representing the largest
classical state found among all anneals at the readout when
h = 3 (which we would expect to typically be the intended
ground state). Then if there were any intermediate states
that the anneal found across the increasing h strengths, we
could connect these together in a linear line thus forming
a simple linear nearest-neighbor (LNN) path. If there are
no intermediate states (for example, if the samples imme-
diately were pushed into the ground state), then the path
would consist entirely of the two nodes and a single edge
connecting them. Taking the union of each of these paths
across all state mappings of initial state to ground state can
then form a coherent state transition network for that problem
Ising. This representation is a simplification of the data and
the state transition process because it only forms edges for
the dominant classical state found at each h step. However,
this representation does give a notion of distance between
the starting states and the ground states in the form of how
many other states the anneal transitions to before reaching the
ground state. For drawing these graphs, the layout used is the
spring layout in the python Networkx [88] library, which in
part uses the Fruchterman-Reingold force directed algorithm
[118].
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FIG. 3. The left-hand gray-colored plot shows the distribution of PGS as h increases for transitioning all 26 input states into a single ground
state (the exact ground state is shown in the title of each of the subfigures). The four rightmost plots split up these data into four distinct
clusters using unsupervised spectral clustering of the vectors of PGS values across the increasing h strengths. Each cluster of vectors is colored
uniquely, and the coloring arbitrary and randomly chosen.

III. RESULTS

In this section, we present state transition mapping results
for each of the three test Ising models. Section III A details
results for the N6 Ising, Sec. III B details results for the N7

Ising, and Sec. III C shows results for the N8 Ising. Sec-
tion III D details the state transition network representation
of the data. Section III E further investigates ground-state to
ground-state transitions in each of the three test Ising models.
Section III F analyzes what the h-gain susceptibility metric
shows with regard to fair sampling—specifically how simi-
larly the h-gain response curves and susceptibility quantities
behave across the multiple ground states for each of the test
Ising models. Lastly, Sec. III G examines the ground-state
proportion sampling rate of the three test Ising models when
only reverse annealing is applied in order to determine if there
are similarities to the h-gain response curves.

A. N6 Ising h-gain response curves

Figures 3 and 4 show the clustering results for two of the
four ground states of the N6 Ising. An interesting characteristic
of the results shown in Figs. 3 and 4 is the similarity between
them even though they are showing the h-gain response curve
for two different ground states, and these two ground states
are not complements of each other. This suggests that there is
quite a bit of symmetry even in this problem Ising. While the
h strength parameter is consistently increasing on the x-axis
of both Figs. 3 and 4, we see that the h-gain response curves
are not all monotonically increasing as a function of h. This
means that this incremental increase of h is transitioning the
annealing process into other intermediate states, including in

particular other ground states, which would therefore nec-
essarily decrease the success probability. The unsupervised
clustering of the h-gain response curves helps to differentiate
which response curves have a nonmonotonic response and
which ones do not; for example, the cluster of red curves in
Fig. 3 and the cluster of purple curves in Fig. 4 have identified
a subset of states that required a comparably smaller amount
of applied h strength in order to transition to the ground state.
This state transition process will be investigated in more detail
for ground-state to ground-state transitions in Sec. III E and in
the form of a state transition network in Sec. III D. The h-gain
response curves for the other two ground states are not shown
here for brevity.

Figure 5 shows the susceptibility metric across all 26 initial
states of the N6 Ising when forcing the anneal into the four
distinct ground states. An immediate observation that can be
made on these data is that for each ground state, its comple-
ment is always the minimum susceptibility across all possible
states.

Figure 6 shows scatterplots of the three metrics (hamming
distance, energy, and δ) outlined in Sec. II C versus χ for
each of the initial states. For each of these three metrics there
are a couple of clear observations to be made. First, there is
a consistent positive correlation between susceptibility and
hamming distance proportion, where a higher hamming dis-
tance proportion leads to lower susceptibility. Second, there is
seemingly very little trend between energy and susceptibility;
we can see a clear stratification of states with a similar sus-
ceptibility being distributed across the entire energy spectrum
of the Ising. Third, there does appear to be some correlation
between δ and χ , where a larger δ corresponds to higher
susceptibility.

FIG. 4. The left-hand gray-colored plot shows the distribution of PGS as h increases for transitioning all 26 input states into the single
ground state (the exact ground state is shown in the title of each of the subfigures). The four rightmost plots split up these data into four distinct
clusters using unsupervised spectral clustering of the vectors of PGS values across the increasing h strengths. Note that this plot overall is very
similar to Fig. 3, but is showing data for a different ground-state encoding (this ground state it turns out is hamming distance 1 away from the
ground state in Fig. 3) and the ordering of the clusters is different.
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FIG. 5. N6 Ising susceptibility across all 26 initial states when applying the h-gain schedule to force the system into each of the four ground
states. The x-axis encodes these initial states as vectors of vertical blocks, where � denotes a variable state of +1 and � denotes a variable
state of −1. The initial state vectors are read from bottom to top, where the bottom is the first index which corresponds to variable 0 in the
problem Ising. All initial states which are also other ground states are marked with dashed red vertical lines. For each subfigure, the reflexive
ground-state mapping (i.e., where the initial state and the intended state are the same ground state) case can be found visually as the state
marked with a red vertical dashed line, which has the maximum susceptibility measure among all of the initial states.

Figures 6 and 5 use the same coloring schemes from the
spectral clustering done on the h-gain response curves, how-
ever the actual colors (i.e., index of the cluster) used are
arbitrary and randomly assigned by the clustering algorithm.
However, all of the figures follow consistent coloring schemes
for each of the four different ground states. Note that because
two of the h-gain response curves were omitted, the coloring
of the other two datasets is not shown in Figs. 3 and 4. For
a clear example, the clustering coloring used in Fig. 3 is
the same coloring used in Fig. 5, top left, which is also the
same coloring used in the left-hand column of Fig. 6; all of
these plots are in some way representing and analyzing the
same dataset where the h-gain state encoding was applied to
a single one of the four ground states.

Examining the results from the h-gain response curve clus-
tering (Figs. 3 and 4) in conjunction with Figs. 5 and 6, we
can observe several interesting trends. First, we can clearly
see the motivation for developing the δ metric in Sec. II C.
Specifically, in Fig. 5 we see that when the initial state we
encode using reverse annealing is also the ground state that is
specified using h-gain state encoding, the susceptibility metric
is at a minimum (i.e., it is nearly 0). This is to be expected,
however we also see that there are several other states that
have a relatively large susceptibility. However, these states
are not ground states (ground states are marked in Fig. 5
using dashed red vertical lines). If we examine where these
states occur in the block of subplots in Fig. 6, which can be
done using the fixed clustered coloring scheme and the ground

state labels on the titles, we see that there is apparently no
correlation with respect to the energy of these states. There
is some correlation with respect to the hamming distance
proportion, namely that all of the hamming distances are � 2

3 .
The interesting property of these high susceptibility states
is that they are very close to the ground state in terms of
hamming distance (i.e., bit flips), but only for variables that
are high degree in the graph of the Ising problem; this is the
observation that led to the creation of the δ metric.

As a specific example, we can examine Fig. 5, upper
left-hand subplot. The ground state in this plot has variable
assignments [−1,−1,−1,+1,−1,+1], where the index de-
notes the variable in the original Ising problem. There are a
total of six initial states that are colored red in this plot, mean-
ing that their h-gain response curves all behaved similarly,
and indeed we see these six states have the highest suscep-
tibility metrics among all 26 states. The two states that have
the largest susceptibility metric besides the ground state are
[−1,+1,−1,+1,−1,+1] and [+1,−1,−1,+1,−1,+1].
Now if we examine Fig. 1 for N6 (left-hand graph), we see that
variables 0 and 1 both have a degree of 5, which is the largest
degree in the graph. Examining these two other states which
had maximum susceptibility shows that they are both exactly
one bit-flip away from the ground state—specifically if we flip
[−1,+1,−1,+1,−1,+1] at index 1 from a +1 to a −1, we
get the ground state. And if we flip [+1,−1,−1,+1,−1,+1]
at index 0 from a +1 to a −1, we also arrive at the ground
state. If we evaluate these two states using Eq. (6), we get a
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FIG. 6. Summary metric plots for the N6 Ising. The 4 columns correspond to each of the 4 ground states; the titles of each subplot are the
exact optimal solution vectors. The three rows correspond to three different initial state metrics on the x-axis; the y-axis of each subplot is the
susceptibility metric χ . The first row has the x-axis, which is the hamming distance between the ground state and the specific initial state i.
The second row has the x-axis showing the energy of the initial state i evaluated on the N6 Ising. The third row has the x-axis showing the δ

metric for each initial state.

value of 5 because these states are exactly one degree 5 vari-
able away from the ground state. The points corresponding
to these two states appear in Fig. 6 in the bottom left-hand
corner plot where both χ and δ are overlapping, causing
them to appear as a single point. High degree variables in the
problem Ising being easier to induce a bit flip in comparison
to most other states is consistent with how the physical device
implements these problems, namely that these high degree
variables have more constraints acting on them compared to
the rest of the variables, which then requires smaller h-gain
amplification of the linear terms encoding the ground state
to change the state of the variable compared to other initial
states.

B. N7 Ising h-gain response curves

Figure 7 shows the h-gain response curves for all initial
states along with the four groups of clustered response curves
for one of the two ground states for the N7 Ising results.
As with the N6 h-gain response curves, Fig. 7 shows non-
monotonic increases of PGS as a function of increasing h for
most initial states, again suggesting that the process is get-
ting trapped in other intermediate states besides the intended
ground state. For brevity, the response curves for the other
ground state is omitted. Figure 8 shows the susceptibility
metric across all 27 initial states of the N7 Ising when applying
the h-gain state encoding for each of the two ground states.
Figure 9 shows scatterplots of the three metrics (hamming

distance, energy, and δ) outlined in Sec. II C versus χ for
all of the initial states. Compared to the N6 Ising results in
Sec. III A, these results look similar and have similar patterns
overall. For example, the δ metric still reasonably applies to
high susceptibility initial states. The h-gain response curve
plot (Fig. 7) is noticeably different from the h-gain response
curves of the N6 Ising in Figs. 3 and 4. In Fig. 8, because this
Ising has exactly two ground states which are complementary,
we can observe a clear symmetry in the data—these two plots
are mirrors of each other if reflected about the midline of
the initial state vectors on the x-axis. This is especially clear
because of the two ground states, but a similar symmetry
between the pairs of ground states in the N6 Ising can also
be seen in Fig. 5.

Overall, the results for the N7 Ising are consistent with the
same trends and observations made on the N6 Ising, despite
the additional variable and decreased number of ground states.

C. N8 Ising h-gain response curves

Figure 10 shows the h-gain response curves for all initial
states along with the four groups of clustered response
curves for one of the two ground states for the N8 Ising
results. Figure 11 shows the susceptibility metric across all 28

initial states of the N8 Ising when applying the h-gain state
encoding for each of the two ground states. Figure 12 shows
scatterplots of the three metrics (hamming distance, energy,
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FIG. 7. The left-hand gray-colored plot shows the distribution of PGS as h increases for transitioning all 27 input states into a single ground
state for the N7 Ising (the exact ground state is shown in the title of each of the subfigures). The four rightmost plots split up these data into
four distinct clusters using unsupervised spectral clustering of the vectors of PGS values across the increases h strengths.

and δ) outlined in Sec. II C versus χ for all of the initial
states.

The top row of Fig. 12 has noticeably different charac-
teristics compared to the other hamming distance proportion
plots from the N6 and N7 Ising (Fig. 6, top row and Fig. 9,
top row). The plots for the N6 and N7 Ising have a roughly
linear relationships between the hamming distance proportion
and susceptibility. However, in the corresponding plot for the
N8 Ising (Fig. 12, top row) we see a slightly different trend
occurring; the points appear to have a concave shape facing
towards the bottom left-hand corner of the plot (and a convex
shape facing towards the bottom right-hand corner of the plot).
This appears to be a result of most of the h-gain response
curves having a lower success rate of managing to get the
anneal into the intended ground state compared to the smaller
N6 and N7 Ising models. This could also be a result of the
increased number of ground states for this Ising, which could
be causing anneals to be trapped in nonintended ground states
(this is investigated further in Sec. III E).

As with the other two test Ising models, there were not
any nonsymmetric results across the different ground states—
either all of the ground states behaved roughly the same for a
given metric, or sets of ground states displayed clear symme-
tries.

D. State transition networks

Figure 13 shows graphical representations of the state tran-
sition networks for each of the three test Ising models. These
state transition networks contain several notable characteris-
tics. First, the nodes that represent the ground states are the

highest degree nodes in the graphs, which is expected since
they are the intended end point of the state transitions. Second,
it is not the case that all non-ground-state nodes have an edge
directly connecting them to the ground-state nodes. Such a
direct edge connection would mean that the susceptibility of
moving the anneal into the intended ground state did not pass
through other intermediate states. Instead, we see that for
some states the path to the ground states could contain several
other nodes. Third, there are some states that are consistent
intermediate states for clusters of nodes; in the leftmost graph
these nodes are the eight orange nodes which are persistent
intermediate states for small groups of classical states. Fourth,
there are clear symmetries in these graphs with respect to the
local communities of nodes that are connected similarly, or
identically, in other parts of the graph.

The N8 state transition graph in Fig. 13 has fewer dis-
cernible trends compared to the state transition graphs for the
N6 and N7 Ising models. This is largely due to the increase in
the number of nodes and edges present in the graph, which is
due both to the increase in the number of classical states (256
in total) as well as the increase in the number of ground states
(8). What is clear from the state transition graph in Fig. 13 is
that there are many intermediate states during the transition
from one state to a ground state.

E. Ground-state to ground-state transitions

Here we specifically highlight some of the state transi-
tions that are of particular interest—those being ground-state
to ground-state transitions and what intermediate states are
found during the transition from one ground state to another.

FIG. 8. N7 Ising susceptibility across all 27 initial states when applying the h-gain schedule to transition the system into each of the two
ground states. The x-axis encodes these initial states as vectors of vertical blocks where � denotes a variable state of 1 and � denotes a variable
state of −1. The initial state vectors are read from bottom to top, where the bottom is the first index which corresponds to variable 0 in the
problem Ising. The initial states which are also other ground states are marked with dashed red vertical lines. For each subfigure, the reflexive
ground-state mapping (i.e., where the initial state and the intended state are the same ground state) case can be found visually as the state
marked with a red dashed vertical line, which has the maximum susceptibility measure among all of the initial states.
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FIG. 9. Summary metric plots for the N7 Ising. The two rows correspond to each of the two ground states; the titles of each subplot are
the optimal variable assignment vectors. The three columns correspond to three different initial state metrics on the x-axis; the y-axis of each
subplot is the susceptibility metric χ . The first column has the x-axis that is hamming distance between the ground state and the specific initial
state i. The second column has the x-axis showing the energy of the initial state i evaluated on the N7 Ising. The third column has the x-axis
showing the δ metric for each initial state. The node colorings for the top row of subfigures share the same node coloring as Fig. 8, left, and
the node colorings for the bottom row of subfigures share the same node coloring as Fig. 8, right.

These response curves provide some intuition as to how quan-
tum annealing works, at least in the reverse annealing mode.
Specifically, moving from one ground state to another ground
state does not require zero h-gain strength. Indeed, as seen in
Sec. III A, the complementary ground states in the N6 Ising
had maximal susceptibility when switching from the initial
ground state to its complement.

Figure 14 shows a detailed analysis of a subset of ground-
state to ground-state transition curves for the N6 Ising in terms
of the proportion of samples that were each of the four ground
states as well as higher-energy states. The h-gain response
curves (Figs. 3, 4, 7, and 10) and the state transition networks
in Fig. 13 have all shown that during this state transition
induced by the increasing h strength, the samples are not
immediately flipped from the initial state into the intended
ground state. Instead, the variable states are each flipped at
different rates in response to the increase in applied h; the
δ metric is a clear example where a single variable can be
more susceptible to flipping its state compared to other vari-
ables due to properties of the problem Ising. Figure 14 shows
for each increase of h what other states the samples end up
in, which clearly shows that transitioning from one state to

another flips the variable states at different rates causing the
anneal to end up in other intermediate states.

Because of the h-gain initial state encoding scheme [43],
the optimal solution of the Ising (the problem Ising is a union
of the problem Ising quadratic terms and the complement of
the intended ground state) is simply the intended ground state.
As we increase h, the objective function evaluation of that op-
timal solution decreases. Therefore, it is a notable observation
that in Figs. 14 and 15 we do not see a monotonic increase in
the proportion of the intended ground state—indeed it seems
to fluctuate, and at roughly h = 1.5 there a local minimum
across all of the plots (at least for the nonreflexive ground-
state mappings). This shows, as observed in the other data
analysis, especially in Sec. III D, that there are paths being
traversed in the search space of this reverse annealing proce-
dure which are not always in an optimal solution.

F. Fair sampling analysis

Given that quantum annealing in the transverse field Ising
model is known not to sample ground states fairly, it is natural
to ask whether these state mapping enumeration results show

FIG. 10. The left-hand gray-colored plot shows the distribution of PGS as h increases for transitioning all 28 input states into a single ground
state for the N8 Ising (the exact ground state is shown in the title of each of the subfigures). The four right-hand plots split up these data into
four distinct clusters using unsupervised spectral clustering of the vectors of PGS values across the increases h strengths.
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FIG. 11. N8 Ising susceptibility across all 28 initial states when applying the h-gain schedule to push the system into two out of the
eight ground states where the two subfigures represents one ground-state transition. The other six ground-state plots are shown in Fig. 22 in
Appendix. The x-axis encodes the initial states as vectors of vertical blocks where � denotes a variable state of +1 and � denotes a variable
state of −1. The initial state vectors are read from bottom to top, where the bottom is the first index which corresponds to variable 0 in
the problem Ising. The initial states which are also other ground states are marked with dashed red vertical lines. For each subfigure, the
reflexive ground-state mapping (i.e., where the initial state and the intended state are the same ground state) case can be found visually as the
state marked with a red vertical line, which has the maximum χ measure among all of the initial states.

a bias for a particular ground state or set of ground states.
In particular, for a set of state transition mappings from all
initial states to a ground state, the question is if the average
susceptibility across all of those initial states is very dif-
ferent when comparing the different ground-state mappings.

Figure 16 shows this comparison across the three test Ising
models. Interestingly, the average susceptibility distributions
for the N6 and N8 Ising are not uniform across the ground
states, although in the N7 Ising case the two ground states
appear to have very close average susceptibility.

FIG. 12. Summary metric plots for the N8 Ising. These three plots show χ on the y-axis, plotted against hamming distance between the
ground state and the specific initial state i (left), the energy of the initial state i evaluated on the N8 Ising (middle), and the δ metric for each
initial state (right). These data are only for the h-gain mapping to the first ground state—the mappings to the other seven ground states of the
N8 Ising are displayed in Fig. 23 in Appendix.
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FIG. 13. State transition networks for the N6 Ising (left), N7 (middle), and N8 (right) when aggregating the h-gain response curves across
all mappings for each ground state. Each node represents one classical state; the N6 graph has 64 nodes, the N7 graph has 128 nodes, and the N8

graph has 256 nodes. The nodes are colored corresponding to the energy (i.e., objective value) of that state evaluated on the Ising, the heatmaps
for which are shown below each graph. The red node represents the ground-state solutions of the problem Ising, and the purple nodes represent
the highest energy states of the problem Ising.

Another interesting question could be if the nonuniform
distribution in Fig. 16 is also present when applying forward
annealing to the test Ising models. To this end, a small set
of experiments with forward annealing was performed on the
three test Ising models. The device parameters were 10 000
anneals and 100 µs of annealing time for consistency with the
state mapping experiments, readout_thermalization of 0 µs,
programming_thermalization of 0 µs. The same device, D-
Wave Advantage_system4.1, was used for these experiments.
The same parallel disjoint embeddings outlined in Sec. II A
were utilized. Figure 17 shows the ground-state proportion
(GSP) from these forward annealing experiments across the
three test Ising models. The forward annealing GSP results
clearly show a consistent bias for some ground states, which
is in agreement with previous D-Wave quantum annealing fair
sampling experiments [66,67,69], particularly for the N8 Ising,
although the differences are less significant especially for the
N7 Ising. Note that the sum of the ground-state proportions in
each plot is always equal to 1, as opposed to Fig. 16 where

the y-axis is simply average χ . Nevertheless, these plots can
be compared to see if there are consistencies, for example,
if the states that are broadly more difficult to transition into
during the state mapping procedure are also sampled with
a lower success proportion during forward annealing. Such
a trend does not appear in the data. Even though both the
distributions of forward annealing ground-state proportions
and the average susceptibility are nonuniform, there does not
appear to be consistency on the distributions. Susceptibility
measurements using h-gain state encoding for forward an-
nealing might provide more insight into the behavior of unfair
sampling in quantum annealers.

G. Reverse annealing only

A natural question here is how reverse annealing (RA) by
itself samples these optimization problems. And along with
how RA does this for each of the initial states, another rele-
vant question is how the success probability of sampling the
optimal solution in RA correlates with χ . It would make sense

FIG. 14. A more detailed analysis of ground-state to ground-state h-gain response curves in the N6 Ising. Here the initial state is the same
for each of the three plots, and the proportion of the samples at each h increment which were in this initial state is colored blue. The titles of
each subfigure show the direction of the state transition. The red lines in the three plots denote the proportion of samples that were the intended
ground state. The cyan and green lines denote the proportion of samples which were in the remaining two ground states. The orange lines
denote all remaining samples which were not in either of the four ground states. Note that, as mentioned in Sec. II A, these problems have
complementary ground-state solutions; the middle-right-hand subplot shows the state transition from a ground state to its complement. The
reflexive self-mapping of the ground state to itself is shown in the right-hand plot, which shows little state change as a function of h.
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FIG. 15. Two examples of the symmetry of the ground-state to ground-state h-gain response curves in the N6 Ising. The two rows are
showing two different symmetric state mappings (e.g., A → B and then B → A). The noticeable property of these plots is that the response
curves have a clear symmetry, where when the two ground states are swapped a nearly identical response curve for all four ground states
emerges (the difference is simply which place each ground state takes in the plots). Notice as well that the states in the bottom row are
complementary ground states, whereas the ground states in the top row are not complementary ground states.

for these two metrics to correlate such that a higher success
probability for an initial state reaching some ground state in
RA corresponds to higher susceptibility of mapping that initial
state to that ground state with RA and h-gain.

Because of the dynamics observed in the previous sec-
tion (in particular, Sec. III D), we know that in this RA
setup states will transition into intermediate states as h in-
creases while the anneal is minimizing the state towards the

FIG. 16. Distribution of the average susceptibility (y-axis) across all initial states when transitioning the annealer into different ground
states (x-axis) for the N6 (left), N7 (middle), and N8 (right) Ising models.
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FIG. 17. Ground-state (x-axis) vs ground-state proportion distribution (y-axis) for the N6 (left), N7 (middle), and N8 (right) Ising models
having been executed on using forward annealing with no schedule modification and an annealing time of 100 µs.

programed optimal solution. Therefore, these intermediate
states may cause the χ metric to not correspond directly to
the plain RA success probability. On the other hand, it would
be expected that there is a correlation between the RA ground-
state probability and χ , which would confirm that in RA (with
some initial state) some states are much easier to transition
into than others.

Figures 18–20 show the RA ground-state proportions
across all initial classical states. Notice that for these data, no
unsupervised clustering of the data was applied, and therefore
all of the nodes are colored the same. The dynamics of these
figures are different from the RA and h-gain state transition
mapping procedure plots, namely Figs. 5, 8, and 11. However,
there are some similarities. First, the different ground-state
plots are still symmetric for complementary ground states.
Second, the reflexive ground-state mappings have the highest
success rate, whereas the complementary ground states have
the lowest ground-state success probability.

Figure 21 shows the correlation between χ and RA PGS

for the three test Ising models. Here the data are not being
separated based on the ground state to which the mapping was
applied, and instead all of the results are aggregated together
into a single dataset. The Pearson correlation coefficient, com-
puted with scipy [119], shows a linear relationship between
RA PGS and χ , as expected.

IV. DISCUSSION AND CONCLUSION

In this article, we present a method for quantifying the
hardness, analogous to the susceptibility, of transitioning a
quantum annealing system from one classical start at the be-
ginning of the anneal to a classical ground state of a problem
Ising at the end of the anneal. A full enumeration across all
initial states was executed on three small test Ising models
embedded in parallel on the D-Wave Advantage_system4.1
quantum annealing processor. Importantly, this state transition

susceptibility does not necessarily generally apply to forward
annealing because the methodology specifically uses reverse
annealing to encode a classical initial state. However, this state
susceptibility enumeration does allow for an examination of
interesting dynamics in the quantum annealer. In particular,
it allows us to develop a notion of distance, or hardness, for
moving between two classical states in a quantum annealer.
This proposed state mapping procedure may be able to help
in examining quantum annealing dynamics, when sampling
ground states, by viewing the internal (not directly measur-
able) QA dynamics as a linear combination of the full 2n

initial state mapping. Section III F showed that the 2n state
mappings do not provide a mechanism to explain fair sam-
pling QA dynamics assuming a uniform linear combination
of the state mappings, but perhaps more advanced models
would be able to better analyze QA behavior using these state
mappings.

The set of data across the N6, N7, and N8 Ising models
are notable because there is a clear finding that, at least for
reverse annealing with an anneal fraction of s = 0.65, low-
energy states are not necessarily easily accessible from all
input states. For the purposes of improving reverse annealing,
selecting states that are near to the ground state with respect to
certain metrics, such as hamming distance or the δ measure,
could be beneficial, as opposed to selecting states that are
simply low in energy, which could actually be a large distance
away from the ground state in terms of the quantum anneal-
ing process. The observation that the success probability of
reverse annealing is largely determined by the hamming dis-
tance of the initial state compared to the ground state has been
quantified since the inception of reverse annealing [107]. This
study is therefore consistent with previous reverse annealing
findings, but it also presents a more detailed mapping of the
state transition process.

Utilizing this mapping technique across input states and
having some states substantially more accessible as defined

013224-14



MAPPING STATE TRANSITION SUSCEPTIBILITY … PHYSICAL REVIEW RESEARCH 5, 013224 (2023)

FIG. 18. Ground-state success probability for reverse annealing only, applied on the N6 Ising. The x-axis encodes the RA initial states as
vectors of vertical blocks, where � denotes a variable state of +1 and � denotes a variable state of −1. The initial state vectors are read from
bottom to top, where the bottom is the first index which corresponds to variable 0 in the problem Ising. The initial states which are also other
ground states are marked with dashed red vertical lines. There are clearly some initial states that cause the reverse annealing PGS to be much
higher compared to other initial states.

by the δ metric could allow for improved design of test
instances with planted solutions for reverse annealing, par-
ticularly because one could construct problems with initial
states that are far away from the optimal solution by ob-
jective function evaluation but are easy for the annealer to
transition to the optimal solution. Typically problems with
known planted solutions [120–131] are intended to serve
as a benchmark for how accurate quantum annealing and
other heuristic computation tools are for problem sizes for
which the optimal solution is difficult to compute exactly in
reasonable time. However, specifically constructing planted
solutions and specific initial states to begin the optimization
is not a tool that has been developed for reverse annealing.
Applying the full classical state enumeration that is utilized

in this article is costly because it scales exponentially as 2n

states for n variables. Therefore, for practical reasons this type
of state mapping will need to be restricted to small problem
instances.

Examining how initial state choices impact the optimiza-
tion process is not only relevant for quantum annealing, but
it is also a relevant question in warm-start QAOA [132,133].
Because the Quantum Alternating Operator Ansatz (QAOA)
algorithm [134] is effectively a Trotterization of quantum an-
nealing, understanding the dynamics of variable state changes
in quantum annealing could inform QAOA algorithm develop-
ment. For example, it has been observed that in specific cases
warm start QAOA for nonoptimal low-energy initial solutions
gets stuck in local minima [132].

FIG. 19. Ground-state success probability for reverse annealing only, applied on the N7 Ising. The x-axis encodes the RA initial states as
vectors of vertical blocks, where � denotes a variable state of +1 and � denotes a variable state of −1. The initial state vectors are read from
bottom to top, where the bottom is the first index which corresponds to variable 0 in the problem Ising. The initial states which are also other
ground states are marked with dashed red vertical lines. Because there are exactly two ground states, we can visually see a clear reflected
symmetry between these two subfigures.
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FIG. 20. Ground-state success probability for reverse annealing only, applied on the N8 Ising. These two plots correspond to two out of the
eight ground states of the N8 Ising; the plots for the other six ground states are given in Fig. 24 in Appendix. The x-axis encodes the RA initial
states as vectors of vertical blocks, where � denotes a variable state of +1 and � denotes a variable state of −1. The initial state vectors are
read from bottom to top, where the bottom is the first index which corresponds to variable 0 in the problem Ising. The initial states which are
also other ground states are marked with dashed red vertical lines.

There are several open research questions that can be in-
vestigated:

(i) The observation that it requires less h-gain strength to
flip high degree variables into a neighboring ground state,
which lead to the creation of the δ metric, could be fur-
ther evaluated for Ising models of a comparable number of
variables but which have uniform variable degrees in their
graph. In particular, following the observations made in this
article, it would be expected that Ising models with uni-

form degrees would have more uniform χ across all input
states.

(ii) What are the quantum annealing dynamics when
forcing the system into a ground state during normal for-
ward annealing? This can be accomplished by specifying the
ground state using linear terms and an h-gain schedule that
gradually increases from 0 up to some specified strength. This
could allow for a determination as to whether some ground
states have a higher susceptibility than others under the

FIG. 21. Scatterplots of χ (x-axis) vs reverse annealing PGS (y-axis) for each of the three Ising models. N6 Ising (left) with a Pearson
correlation coefficient of 0.553, N7 Ising (middle) with a Pearson correlation coefficient of 0.575, and N8 Ising (right) with a Pearson correlation
coefficient of 0.648.
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D-Wave implementation of the transverse field Ising model
of quantum annealing, and if this correlates with the unfair
sampling of ground states.

(iii) To what extent can the reverse annealing and h-gain
state-to-state mapping presented in this article be applied for
mapping to states that are not ground states? In principle, if
the h-gain field is applied continuously over the duration of
the anneal and the state freezes out before the effect of the h-
gain field subsides or is intentionally reduced, then the anneal
could remain in a non-ground-state at readout. If this could be
implemented, a full Markov transition matrix for every clas-
sical state to every other classical state, having been passed
through a quantum annealer, could be developed (including
which intermediate states are found during the transition from
one state to another).

(iv) The results presented in this article can be expanded
to include other anneal fractions to pause the anneal at, more
complex reverse annealing schedules, or more complex h-gain
schedules.

(v) D-Wave Advantage_system4.1 has a maximum h-gain
schedule strength of 3, but other D-Wave quantum annealers
have other allowed maximum h-gain schedule values (for ex-
ample, Advantage_system6.1 allows up to an h-gain schedule
strength of 4). Utilizing stronger h-gain schedule amplifica-
tions could facilitate finding higher success proportions for
getting the anneal into an intended ground state, in particular
for the N8 Ising.

(vi) The h-gain field can also be programed to have a
negative bias, as opposed to a positive bias. Applying both
the negative and positive h-gain fields to state mapping or
phase transition experiments could be useful for the purpose
of determining if there is an asymmetry in the responses to the
applied h-gain field.

(vii) Unlike reverse annealing, which requires all active
qubits to have an initial state specified, the h-gain state en-
coding method allows selective encoding of an initial state
for some subset of the qubits being used for a problem
Ising. Therefore, in a slightly different context than what is

described in this paper, the h-gain state encoding method
could be used for methods where selective variable encoding
is important. For example, this could allow one to encode the
states of weak or strong variable persistences of an optimiza-
tion problem [135–137], which can be efficiently computed
classically and describe the state of variables which always
take this state in optimum solutions (strong persistences) or
variables which take a specific state in at least one opti-
mum solution if there are multiple optimal solutions (weak
persistences).

(viii) These systems are small enough that quantum an-
nealing simulators could be applied to compare with the
experimental results. The limitation is that such a simulator
would need to include both a reverse annealing schedule and
an h-gain schedule capability.
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APPENDIX: ADDITIONAL FIGURES

Figures 22–24 present additional plots that extend Figs. 11,
12, and 20.
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FIG. 22. These plots extend Fig. 11 with the other six ground states. The x-axis encodes the initial states as vectors of vertical blocks,
where � denotes a variable state of +1 and � denotes a variable state of −1. The initial state vectors are read from bottom to top, where the
bottom is the first index which corresponds to variable 0 in the problem Ising. The initial states which are also other ground states are marked
with dashed red vertical lines. For each subfigure, the reflexive ground-state mapping (i.e., where the initial state and the intended state are
the same ground state) case can be found visually as the state marked with a red vertical dashed line, which has the maximum susceptibility
among all of the initial states. Although this plot is considerably more dense compared to Figs. 5 and 8 because of the increase in initial states
(256) and the increase in ground states (8), there are symmetries that can be clearly identified. In particular, complementary ground states show
some symmetries which can be identified by the h-gain response curve clustering coloring scheme. For example, the top left subfigure and the
middle right subfigure represent complementary ground states, and these plots have a symmetry across the vertical midline of each figure; the
lowest susceptibility states in these two plots are complements of each other (blue colored nodes in the top left subfigure and green colored
nodes in the bottom right subfigure).

FIG. 23. The rest of the data that complete Fig. 12 with the other seven ground-state mappings. Summary metric plots for the N8 Ising.
The seven columns correspond to each of the eight ground states; the titles of each subplot are the exact optimal solution vectors. The three
rows correspond to three different initial state metrics on the x-axis; the y-axis of each subplot is χ . The first row has the x-axis that is the
hamming distance between the ground state and the specific initial state i. The second row has the x-axis showing the energy of the initial state
i evaluated on the N8 Ising. The third row has the x-axis showing the δ metric for each initial state.
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FIG. 24. Continuation of Fig. 20 show-
ing the reverse-annealing-only ground-
state success proportions for the other six
ground states of the N8 Ising. In each plot,
all states on the x-axis that are ground states
are marked with vertical dashed red lines.
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[133] D. J. Egger, J. Mareček, and S. Woerner, Warm-starting quan-
tum optimization, Quantum 5, 479 (2021).

[134] S. Hadfield, Z. Wang, B. O’Gorman, E. Rieffel, D. Venturelli,
and R. Biswas, From the quantum approximate optimiza-
tion algorithm to a quantum alternating operator ansatz,
Algorithms 12, 34 (2019).

[135] P. L. Hammer, P. Hansen, and B. Simeone, Roof duality, com-
plementation and persistency in quadratic 0–1 optimization,
Math. Program. 28, 121 (1984).

[136] A. Billionnet and A. Sutter, Persistency in quadratic 0–1 opti-
mization, Math. Program. 54, 115 (1992).

[137] T. Windheuser, H. Ishikawa, and D. Cremers, in European
Conference on Computer Vision (Springer, Berlin, Heidelberg,
2012), pp. 400–413.

013224-23

https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1109/34.868688
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1088/2058-9565/ac4d1b
https://doi.org/10.1103/PhysRevA.92.042325
https://doi.org/10.1103/PhysRevE.101.023316
http://arxiv.org/abs/arXiv:2202.03044
http://arxiv.org/abs/arXiv:2005.14344
https://doi.org/10.1103/PhysRevX.8.031016
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.7566/JPSJ.88.061007
http://arxiv.org/abs/arXiv:1502.02098
http://arxiv.org/abs/arXiv:1508.05087
https://doi.org/10.1080/00018732.2016.1211393
http://arxiv.org/abs/arXiv:2207.05089
https://doi.org/10.22331/q-2021-06-17-479
https://doi.org/10.3390/a12020034
https://doi.org/10.1007/BF02612354
https://doi.org/10.1007/BF01586044

