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Kinetic derivation of the Hessian geometric structure in chemical reaction networks
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The theory of chemical kinetics forms the basis to describe the dynamics of chemical reaction networks.
Owing to physical and thermodynamic constraints, the networks possess various structures, which can be utilized
to characterize important properties of the networks. In this work, we reveal the Hessian geometry which
underlies chemical reaction networks and demonstrate how it originates from the interplay of stoichiometric
and thermodynamic constraints. Our derivation is based on kinetics, we assume the law of mass action and
characterize the equilibrium states by the detailed balance condition. The obtained geometric structure is
then related to thermodynamics via the Hessian geometry appearing in a pure thermodynamic derivation. We
demonstrate, based on the fact that both equilibrium and complex balanced states form toric varieties, how the
Hessian geometric framework can be extended to nonequilibrium complex balanced steady states. We conclude
that Hessian geometry provides a natural framework to capture the thermodynamic aspects of chemical reaction
networks.
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I. INTRODUCTION

Chemical kinetics constitutes the basis to describe various
and complex behaviors of chemically implemented systems
such as metabolic networks and intracellular signaling sys-
tems [1,2]. Since the formulation and establishment of the law
of mass action by C.M. Guldberg and P. Waage, the theories
of chemical kinetics and chemical dynamics have been studied
and developed using techniques from various different disci-
plines [1,3–6].

However, the theories of chemical dynamics are not al-
ways consistent with thermodynamics. Yet, the consideration
of thermodynamics is essential for constructing physically
and thermodynamically sound theories for chemical reaction
networks. For example, the combination of the law of mass
action and the detailed balance condition leads to a kinetic
characterization of the equilibrium state in a way that is con-
sistent with chemical thermodynamics, as shown already in
1901 by Wegscheider [7]. Since a chemical reaction network
does not necessarily obey the detailed balance condition, it
leads to the investigation not only of equilibrium systems
but also of a wide range of nonequilibrium reaction systems.
Sparked by the pioneering work of Hill and Schnakenberg
[8–10], a thermodynamic foundation has been in development
for chemical reaction networks out of equilibrium within the
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last decades [6,11–16], by employing the knowledge from
stochastic thermodynamics [17].

In addition, the consideration of constraints of physical or
thermodynamic origin also introduces additional intriguing
structures into chemical kinetics. Motivated by the work of
Horn and Jackson [18], who extended equilibrium states to
complex balanced states, an algebro-geometric structure of
chemical reaction networks was discovered and employed to
study mass action systems in applied mathematics [19–21].
Other structures in chemical kinetics are also unveiled by us-
ing tools from graph theory, homological algebra, and others
[3,22–28].

Thus, clarification of the interrelation of chemical kinet-
ics and thermodynamics can be a fruitful source of new
physics and mathematics for chemical reaction networks
[11,12,14,29–33].

Recently, we found that Hessian geometry provides a
natural framework for thermodynamics of chemical reaction
systems and used the geometric structure to show that several
important results, which were thus far derived only from ki-
netics, are of pure thermodynamic origin [34]. Nonetheless, it
is important to clarify how the Hessian geometric structure is
linked to chemical kinetics because the majority of results for
chemical reaction networks are based on mass action kinetics
rather than thermodynamics and also because kinetic infor-
mation is essential for working on nonequilibrium situations.
This is achieved in this paper.

To this end, we find a close connection between the results
of equilibrium systems obtained in algebraic geometry [19]
and the thermodynamics which is encoded in the Hessian
structure [34]. This combination enables us to grasp the ge-
ometric structure of the whole state space, which clarifies the
dualistic relation between stoichiometric and thermodynamic
constrains manifested as the flatness of the respective dual
spaces. Thereby, we generalize and extend the information
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geometric framework for chemical reaction networks limited
to a single stoichiometric compatibility class [35].

We derive the Hessian geometric structure [36], which
purifies and generalizes some aspects of the information ge-
ometric one [37], by starting from the kinetic characterization
of the chemical equilibrium state via the law of mass action
and the detailed balance condition. In the derivation, we show
that the equilibrium states of a chemical reaction network are
described by a toric variety [19]. The analytification of the
toric variety plays a fundamental role throughout the paper
as it constitutes a generalization of the exponential family
well-known in statistics [37–41]. Building on the theory of
exponential families, we extend the dually flat structure from
information geometry [41–43] to chemical reaction networks.

The toric parameter representation of the equilibrium va-
riety naturally leads to a dual space Y , which is conjugate to
the state space X of molecular concentrations. The Hessian
geometric structure and associated convex potential functions
ϕ(x) and ϕ∗(y) appear on the state space X and its dual Y: in
the former, stoichiometric constraints form a linear coordinate
system, whereas, in the latter, the equilibrium variety leads
to the definition of a dual linear coordinate system. Since
the equilibrium variety is defined by the parameters of the
reaction system, which are specified thermodynamically by
the environmental variables, the dual space mathematically
captures the role of thermal reservoirs attached to the system.
The spaces X and Y are thermodynamically related to chemi-
cal densities (concentrations) and chemical potentials verified
by comparison with their purely thermodynamic derivation
in the accompanying paper [34]. The convex functions and
associated Bregman divergences are mapped to the thermo-
dynamic free energy of the system and the difference of total
entropy.

In the class of equilibrium systems, our thermodynamic
results are special instances of the general theory derived from
a purely thermodynamic argument. In this aspect, this paper
is supplementary to our accompanying paper [34]. However,
owing to the mass action assumption, we find that the equilib-
rium manifold has the structure of an algebraic variety, which
is not necessarily true in nonmass action cases. Thereby, we
establish a link to the extensive work carried out in real alge-
braic geometry [19]. Owing to this, we show how our results
extend to nonequilibrium complex balanced steady-states, be-
cause they share the algebraic structure with the equilibrium
states. We expect this link between Hessian geometry and
algebraic geometry to be even more fruitful in the future for
thermodynamics and mathematics.

This paper is organized as follows: In Sec. II, we introduce
a linear coordinate system in the concentration space X based
on the stoichiometric constraints. In Sec. III, we derive that
the set of equilibrium states has the structure of a toric variety
and present its parametrization. The equilibrium variety is
used to define a linear coordinate system in the dual space Y ,
which is also a nonlinear coordinate system of X space and
yields a dual foliation with the stoichiometric constraints. In
Sec. IV, we clarify the Hessian geometric structure associated
with the dual spaces, and introduce its constituents originating
from the first derivatives of the potential functions. In Sec. V,
we introduce additional properties originating from the sec-
ond derivatives. In Sec. VI, we relate the derived geometric

structure to thermodynamics by employing the results in
Ref. [34]. In Sec. VII, we show how the framework can be
passed on to the nonequilibrium complex balanced state. In
the supplementary Sec. VIII, we demonstrate how our work
is relevant to the Markov jump processes on a graph, which is
often used in stochastic thermodynamics.

To make the theory and results more accessible to re-
searchers in chemical reaction network theory who are not
necessarily familiar with information or Hessian geometry, we
clarify several implicit and confusing identifications of differ-
ent objects in conventional textbooks of information geometry
[37].

II. CHEMICAL REACTION KINETICS
AND STOICHIOMETRIC SUBSPACE

In this work, we consider reversible chemical reaction
networks with the stoichiometric matrix given by S ∈ ZN×M ,
where N and M are the number of chemical species and that
of pairs of forward and reverse reactions, respectively. Let
x := (x1, · · · , xN )T ∈ RN

�0 be the concentrations of molecular
species involved in the network in a constant volume �, e.g.,
the case when the volume � is dominated by solvent.

Let j±(x; θ) ∈ RM
�0 be the rate functions of the forward and

reverse reactions. The vector θ represents parameters of j±

such as reaction rate constants, the detail of which is specified
later and represented abstractly at this point. The reaction rate
equation of the network is given by

dx
dt

= S j(x; θ), (1)

where j(x; θ) := j+(x; θ) − j−(x; θ) is the total flux [3,6]. In
this work, we focus only on the case that x(t ) > 0 holds for
t ∈ [0,∞]. In other words, we deal with persistent chemical
reaction networks.1 Thus, we define the state space X for x as
X := RN

>0.

A. Conserved quantities and stoichiometric subspace

From the rate equation, we can see that, for any col-
umn vector u∗ ∈ Ker[ST ], the quantity (u∗)T x(t ) is conserved
[3]. Let {u∗

i }i∈[1,··· ,�] be a complete basis of Ker[ST ] and
� be the dimension of Ker[ST ]. Note that {u∗

i } is gen-
erally a nonorthogonal (oblique) basis. We define U ∗ :=
(u∗

1, · · · , u∗
� ). From this definition, ST U ∗ = 0 and (U ∗)T S =

0 hold. Then, a vector η = (U ∗)T x0 specifies the values of all
stoichiometrically conserved quantities for the initial state x0.2

The trajectory x(t ) of Eq. (1) starting from x0 ∈ X at t = 0
satisfies (U ∗)T x(t ) = (U ∗)T x0. Thus, we define the stoichio-
metric affine subspace3 (stoichiometric compatibility class) as

1The verification of the persistence of a given chemical reaction
network is a hard problem in general. For networks with mass action
kinetics, the persistence property was proven recently for the com-
plex balanced systems, which also includes the equilibrium systems
[30].

2The system may have additional (nonlinear) conserved quantities
that are determined by the particular structure of j(x).

3Because x > 0 is required, PX (η) is an affine subspace with
boundary. In the theory of algebraic geometry of chemical reaction
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FIG. 1. (a) A linear coordinate system of X induced by the
stoichiometric matrix S. The blue plane represents the stoichiometric
subspace PX (η). (b) The stoichiometric manifold VY (η) (the blue
curved surface) obtained by mapping PX (η) into Y by the Legendre
transformation ∂ϕ.

[Fig. 1(a)]

PX (η) := {x|(U ∗)T x = (U ∗)T x0 = η}. (2)

To ensure that x > 0, we determine the domain of η appropri-
ately, cf. Eq. (7).

B. Extent of chemical reaction

The state of the system x(t ) is restricted to the stoi-
chiometric subspace: x(t ) ∈ PX (η). By using the extent of
chemical reaction J := ∫ t

0 j(x(t ′); θ)dt ′ ∈ RM , we can specify
x(t ) starting from x0 ∈ PX (η) at t = 0 as

x(t ) = x0 + SJ ∈ PX (η). (3)

More generally, because x − x0 ∈ Im[S], any point on PX (η)
can be specified as

x = x0 + Cξ ∈ PX (η), (4)

where ξ ∈ RN−� and C is defined by using N − � independent
vectors {c1, · · · , cN−�} that form an oblique basis of Im[S].
Note that N − � = dim Im[S]. Because (u∗

i )T c j = 0 for all i
and j, the equality (U ∗)T C = 0 holds because of (U ∗)T S = 0
[Fig. 1(a)].

We define the dual bases U and C∗ of U ∗ and C such
that the orthogonality relations U T U ∗ = I , CT C∗ = I , and
U T C∗ = 0 are satisfied. Then, these bases span the following
linear subspaces: 〈U ∗〉 = Ker[ST ], 〈C∗〉 = Ker[ST ]⊥, 〈C〉 =
Im[S], and 〈U 〉 = Im[S]⊥, where 〈A〉 denotes the linear sub-
space spanned by column vectors in A and ⊥ denotes the
complement [44].

Equation (4) is not a canonical representation of a given x.
In other words, for any x ∈ X , the coordinates ξ in Eq. (4)
are not uniquely given because they depend on the choice
of x0 ∈ PX (η). To make the representation unique, among

networks, PX (η) is often called a (convex) polyhedron or a polytope
if it is bounded. In this work, we use the term affine subspace or
simply a subspace to designate PX (η) or similar geometric objects
for notational simplicity.

all x0 ∈ PX (η), we choose one that satisfies x0(η) = Uη.
Because U T U ∗ = I holds, η = (U ∗)T x0(η) is satisfied. This
gives a unique linear parametrization of x as

x(η, ξ) = Uη + Cξ, (5)

where η specifies the position of the origin of stoichiometric
subspace and ξ are coordinates on the subspace [Fig. 1(a)].4

With this parametrization, the stoichiometric subspace is
represented as

PX (η) := {x|x = Uη + Cξ, (η, ξ) ∈ E}, (6)

where we define

E := {(η, ξ)|Uη + Cξ > 0}, (7)

to ensure x > 0. In the following, we consider only (η, ξ) ∈ E .

III. EQUILIBRIUM VARIETY AND DUAL COORDINATE

The conserved quantities η and the extent of chemical
reaction J, or its variant ξ, are commonly used as variables
to specify states of chemical systems. As verified in Eq. (5),
(η, ξ) is a linear coordinate system of X . Next, we show how
dual coordinates (η∗, ξ∗) can be naturally defined if the system
is an equilibrium system.

We point out that, to obtain the result, we will use the de-
tailed balance condition together with the kinetic law of mass
action to characterize the equilibrium state and the system.
In our accompanying paper, by contrast, we derive the same
result only from a thermodynamic argument without these
kinetic assumptions [34]. We use the kinetic assumptions here
because they prevail in chemical reaction network theory and
stochastic thermodynamics [12,16,17], and also because we
want to link these disciplines to the results in Ref. [34].

A. Equilibrium variety

The positive equilibrium states of the system [Eq. (1)] are
defined here as the states that satisfy the detailed balance
condition:

VX
eq (θ) := {x > 0| j(x; θ) = 0}. (8)

Note that VX
eq (θ) can be empty if a specified θ admits no

equilibrium state. We define the set of parameters �eq such
that VX

eq (θ) is not empty if θ ∈ �eq.
We additionally assume that j±(x; θ) satisfy the law of

mass action:

j+m (x; θ) = k+
m x(γ+

m )T
, j−m (x; θ) = k−

m x(γ−
m )T

, (9)

where k±
m ∈ R>0 are the rate constants of the mth for-

ward and reverse reactions, respectively. The integer vectors
γ+

m, γ−
m ∈ ZN specify reactants and products of the mth for-

ward reaction. Thus, γ−
m − γ+

m = sm where sm is the mth
column vector of the stoichiometric matrix S. For a pair of
vectors x ∈ X and α ∈ ZN , the exponential xαT

represents the

4Note that Eq. (5) is obtained without any kinetic information.
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monomial5

xαT
:=

N∏
i=1

xαi
i . (10)

We write Eq. (9) in a vector form as

j+(x; θ) = k+ ◦ x(�+ )T
, j−(x; θ) = k− ◦ x(�− )T

, (11)

where x(�± )T
:= (x(γ±

1 )T
, · · · , x(γ±

M )T
)T and ◦ is the

component-wise product of vectors. Then VX
eq (θ) is given by

VX
eq (θ) := {x > 0|k+ ◦ x(�+ )T = k− ◦ x(�− )T }. (12)

Now, VX
eq (θ) is an algebraic variety, i.e., the manifold defined

as the zeros of algebraic equations.6 Thus, VX
eq (θ) is called an

equilibrium variety or equilibrium manifold. In addition, we
note that k± are the parameters of j± and thus θ = (k±).

B. Parameter conditions for equilibrium

Next, we derive the necessary and sufficient condition that
the set of parameters �eq must satisfy to have nonempty
Veq(θ) for θ ∈ �eq. In other words, we characterize the pa-
rameter set that admits equilibrium states. By rearranging
k+ ◦ x(�+ )T = k− ◦ x(�− )T

, we obtain

ln K := ln
k+

k− = ST ln x, (13)

where �− − �+ = S was used. From the Fredholm alterna-
tive, Eq. (13) has a solution if and only if ln K ∈ Im[ST ]. The
condition ln K ∈ Im[ST ] is an abstract representation of the
Wegscheider condition [7,12]. Then, we can represent �eq as

�eq =
{
θ = (k±)

∣∣∣∣K = k+

k− , ln K ∈ Im[ST ]

}
. (14)

Hereby, K is the vector of equilibrium constants. Thus, this
representation means that, among all parameters, only the
equilibrium constants K are relevant for the existence of equi-
librium states. This is natural because the equilibrium state of
a system should be characterized statically without specifying
any kinetic information of the system.

C. Toric parametrization of the equilibrium variety

For a given K ∈ �eq, there exists a particular solution x̃eq

of Eq. (13). Then the equilibrium variety VX
eq (K ), i.e., the set

of x that satisfies Eq. (13), can be represented as

VX
eq (K ) = {x| ln x = ln x̃eq + U ∗η∗, η∗ ∈ R�}, (15)

5The transpose in xαT
may look confusing. But this transpose is

for the notational consistency with the application of logarithm to
xαT

as ln xαT = αT ln x. See also Appendix B for a more detailed
explanation.

6It should be noted that, hereafter, we use the analytifaction of
the variety to work on differential geometric aspects of VX

eq . But
we abuse the word variety to emphasize the fact that VX

eq is given
by algebraic equations (which are derived from the detailed balance
condition).

)b()a(

FIG. 2. (a) A curved manifold in X defined by the equilib-
rium variety VX

eq (ξ∗) (orange curve). VX
eq (ξ∗) is generally high-

dimensional, but in this figure, it is one-dimensional because of
the limitation of three-dimensional space for visualization. (b) The
equilibrium variety shown in Y space. In Y space, it is a flat affine
subspace. The linear coordinate system induced by the equilibrium
variety is also shown.

because U ∗ is a basis of Ker[ST ]. This representation is known
as the affine toric parametrization of the variety VX

eq (K ). In
algebraic statistics, U ∗ is also called the design matrix of
the toric variety. A toric variety is characterized as being
generated by a toric ideal, i.e., a prime binomial ideal in
the coordinate ring of the ambient space RN ⊃ X [45–47].
Because the detailed balance condition is nothing but a set of
binomial equations, a toric variety is a natural representation
of the equilibrium states.

From Eq. (15), we see that η∗ works as a coordinate of
the variety VX

eq (K ). However, similarly to the case of x0, the
actual value of η∗ depends on the choice of x̃eq, which is
not uniquely specified because it is just a particular solution.
Among all x̃eq satisfying ln K = ST ln x̃eq, we choose one such
that (ln x̃eq + ŷ) ∈ Ker[ST ]⊥ where ŷ determines a reference
point and works as a free parameter. We associate it with
the standard chemical potential in the later section. Because
〈C∗〉 = Ker[ST ]⊥, we can write ln x̃eq = C∗ξ∗ − ŷ. Since the
equation

ln K = ST (C∗ξ∗ − ŷ) (16)

uniquely determines ξ∗ if ŷ is fixed and ln K ∈ ImST , we can
use ξ∗ instead of K to specify the equilibrium variety, which
we denote by VX

eq (ξ∗) from now on [Fig. 2(a)]:

VX
eq (ξ∗) = {x| ln x = C∗ξ∗ + U ∗η∗ − ŷ, η∗ ∈ R�}. (17)

Now we introduce the space Y obtained by the nonlinear
transformation

y = ln x + ŷ, (18)

i.e., Y := ŷ + lnX = RN . Any point on y ∈ Y can be linearly
parametrized as

y(η∗, ξ∗) = U ∗η∗ + C∗ξ∗. (19)

Thus, (η∗, ξ∗) is a linear coordinate system of Y [Fig. 2(b)].
By the reverse transformation of Eq. (18), any x ∈ X can also
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FIG. 3. (a) Intersection of the stoichiometric subspace PX (η)
(blue hyperplane) and the equilibrium variety VX

eq (ξ∗) (orange curve)
at xeq. (b) Foliation (a nonlinear coordinate system) formed by the
the stoichiometric subspaces (blue hyperplanes) and the equilibrium
varieties (orange curves).

be parametrized nonlinearly as

x(η∗, ξ∗) = exp [U ∗η∗ + C∗ξ∗ − ŷ]. (20)

As the form of the transformation in Eq. (18) implies, Y is
the space of chemical potentials, which is thermodynamically
conjugate to the concentration (density) space X [48]. More-
over, x(η, ξ) and y(η∗, ξ∗) are Legendre dual as we will show
in Sec. IV.

D. Foliation and mixed coordinate

Finally, we show that (η, ξ∗), a mixture of the two coordi-
nate systems (η, ξ) and (η∗, ξ∗), can also work as a nonlinear
coordinate system for X .

For a specific value of kinetic parameters satisfying K ∈
�eq, the variety VX

eq (K ) = VX
eq (ξ∗) specifies the set of equilib-

rium states for the given parameter value. Also, for any initial
state x0 of the system, its time evolution x(t ) is constrained
to the stoichiometric subspace PX (x0) = PX (η). Thus, the
reachable equilibrium point must lie in their intersection [see
Fig. 3(a)]

xeq ∈ PX (η) ∩ VX
eq (ξ∗). (21)

Because PX (η) and VX
eq (ξ∗) are characterized by the same

structural matrix U ∗, cf. Eqs. (2) and (17), their intersection
is assured to be unique and transversal by Birch’s theorem for
the exponential family in statistics [49].

The uniqueness enables us to specify xeq by η and ξ∗ as
xeq(η, ξ∗). Because both PX (η) and VX

eq (ξ∗) can cover the
whole state space X by changing η and ξ∗, respectively, they
form a foliation of X [Fig. 3(b)]. In other words, (η, ξ∗) works
as a nonlinear coordinate system of X . Physically, this means
that any equilibrium state xeq can be characterized by the
stoichiometric subspace PX (η) and the variety VX

eq (ξ∗), each
of which has the corresponding value of η and ξ∗ explicitly
given by

η = (U ∗)T xeq, ξ∗ = CT (ln xeq + ŷ). (22)

This mixed coordinate system is intensively used in infor-
mation geometry [37] and the existence of the analogous
coordinate system for chemical reaction networks emphasizes

FIG. 4. Relations between X and Y , V and V ∗, ϕ(x) and ϕ(x)∗,
and ∂ϕ(x) and ∂ϕ(y)∗. The Bregman divergence D is induced by
using all the constituents.

their information geometric properties. Moreover, the real
algebraic geometry of toric varieties has been employed in
computational and algebraic statistics to handle exponential
families with linear constraints [49]. Thus, information ge-
ometry and algebraic geometry capture the same entity from
different aspects.

IV. HESSIAN GEOMETRIC STRUCTURE OF
EQUILIBRIUM CHEMICAL REACTION NETWORKS

In the previous section, we have introduced the dual
coordinates and their mixture for equilibrium chemical reac-
tion networks starting from a conventional chemical kinetics
formulation. Here, we deductively clarify their Hessian geo-
metric structure [34,36,37].

A. Dually flat state space

We regard the state space X as a subspace embedded in
the N-dimensional vector space V = RN . Let Y = V ∗ be the
dual vector space of V and 〈·, ·〉 be the bilinear form defined
on V × V ∗ (Fig. 4).7 On X and Y , we define the following
two strictly convex smooth potential functions, cf. Fig. 4:

ϕ(x) := [ln x − ŷ − 1]T x, (23)

ϕ∗(y) := 1T ey+ŷ. (24)

This yields the one-to-one Legendre duality between x ∈ X
and y ∈ Y as

y = ∂xϕ(x) :=
{

∂ϕ(x)

∂x

}
= ln x − ŷ, (25)

x = ∂yϕ
∗(y) :=

{
∂ϕ∗(y)

∂y

}
= ey+ŷ, (26)

such that ϕ(x) and ϕ∗(y) are also dual satisfying Legendre
identity:

ϕ(x) + ϕ∗(y) − 〈x, y〉 = 0. (27)

7Note that the result in this section is obtained without assuming
any inner product structure.

033066-5



TETSUYA J. KOBAYASHI et al. PHYSICAL REVIEW RESEARCH 4, 033066 (2022)

Thus, the pair (X ,Y ) is equipped with two dualities: one is
linear algebraic duality and the other is nonlinear Legendre
duality induced by the convex functions, ϕ(x) and ϕ∗(y). This
is a Hessian structure [36], which is a mathematical basis
underlying information geometry [37].

We use the following notation: a pair (x, y) is always
treated as the Legendre dual pair defined by Eqs. (25) and
(26) (Fig. 4). Pairs with different decorations, e.g., (x′, y′) and
(x′′, y′′), will be treated as distinct Legendre dual pairs. We
also abbreviate ∂xϕ(x) with ∂ϕ(x) for the sake of notational
simplicity.

B. Duality in subspaces

This duality is inherited by the linear coordinate systems,
which were derived by a chemical kinetic argument [Figs. 1(a)
and 2(b)]:

x(η, ξ) = Uη + Cξ, (28)

y(η∗, ξ∗) = U ∗η∗ + C∗ξ∗. (29)

In particular, we have the following partial Legendre duality
between ξ and ξ∗ and η and η∗:

∂ηϕ[x(η, ξ)] = U T y = η∗, (30)

∂ξϕ[x(η, ξ)] = CT y = ξ∗, (31)

∂η∗ϕ∗[y(η∗, ξ∗)] = (U ∗)T x = η, (32)

∂ξ∗ϕ∗[y(η∗, ξ∗)] = (C∗)T x = ξ, (33)

where ∂η is Legendre transform with respect to η. We also
have

ϕ(η, ξ) + ϕ∗(η∗, ξ∗) = 〈η, η∗〉 + 〈ξ, ξ∗〉. (34)

This means that the linear coordinate systems defined on X
and Y are preserved under the additional structure of Leg-
endre duality. Such X and Y are called dually flat spaces in
information geometry [37] and Hessian geometry [36].

C. Bregman divergence

Using the Legendre dual potential functions, the Bregman
divergence between two points x and x′ is defined as [37,50]

DX [x‖x′] := ϕ(x) − ϕ(x′) − 〈x − x′, ∂ϕ(x′)〉. (35)

Due to the convexity of ϕ(x), the function D[x‖x′] is nonneg-
ative and measures the extent of convexity as the deviation
of ϕ(x) from its linear extrapolation ϕ(x′) + 〈x − x′, ∂ϕ(x′)〉,
evaluated at x′. The minimum of DX [x‖x′] is 0, which is
achieved if and only if x = x′. Moreover, DX [x‖x′] is convex
with respect to x (not necessarily with respect to x′). A direct
computation, using Eqs. (23) and (24), gives

DX [x‖x′] =
(

ln
x
x′

)T
x − 1T (x − x′). (36)

This indicates that D[x‖x′] is reduced to the generalized
Kullback-Leibler divergence for positive measures on a
discrete space.

Similarly, for y and y′, the dual Bregman divergence is
given by

DY [y‖y′] := ϕ∗(y) − ϕ∗(y′) − 〈∂ϕ∗(y′), y − y′〉. (37)

If y and y′ are Legendre dual to x and x′, respectively, then
the Bregman divergences satisfy the symmetry property

DX [x‖x′] = ϕ(x) + ϕ∗(y′) − 〈x, y′〉 = DY [y′‖y], (38)

where the Legendre identity ϕ(x′) + ϕ∗(y′) = 〈x′, y′〉 =
〈x′, ∂ϕ(x′)〉 was used. Thus, we are led to define DX ,Y [x‖y′]
as (Fig. 4)

DX ,Y [x‖y′] := ϕ(x) + ϕ∗(y′) − 〈x, y′〉. (39)

Note that DX [x‖x′], DY [y′‖y], and DX ,Y [x‖y′] are just dif-
ferent representations of the same geometric quantity because
x and y as well as x′ and y′ are in one-to-one correspondence
by the Legendre transformation. In the following, we switch
among the three equivalent notations depending on the pur-
pose. We emphasize that

x′ = arg min
x

DX [x‖x′] = arg min
x

DX ,Y [x‖y′]. (40)

As we will show later, the relation between the potential
function ϕ and the Bregman divergence is the mathematical
reason why the Kullback-Leibler divergence appears as the
difference of the total entropy in equilibrium systems.

D. Dual orthogonality

We demonstrate that the Bregman divergence and the
mixed coordinate representation play a central role when de-
termining the equilibrium state of the system.

Consider a chemical reaction network [Eq. (1)] with an
equilibrium parameter K ∈ �eq and an initial state x0. Let x0

be in stoichiometric subspace PX (η) and let the equilibrium
variety corresponding to K be VX

eq (ξ∗). The correspondence
between K and ξ∗ is given explicitly in Eqs. (22) and (16).
Then, the equilibrium state that the system should con-
verge to is determined by xeq(η, ξ∗) ∈ PX (η) ∩ VX

eq (ξ∗). Any
point on PX (η), including the initial state x0, can be repre-
sented uniquely as xp(η, ξp) ∈ PX (η). Similarly, any point on
Veq(ξ∗) can be written as xXq (η∗

q, ξ
∗) ∈ VX

eq (ξ∗). Then, from
the definition of PX (η) and VX

eq (ξ∗), the relations

xp(η, ξp) − xeq(η, ξ) = C(ξp − ξ), (41)

yq(η∗
q, ξ

∗) − yeq(η∗, ξ∗) = U ∗(η∗
q − η∗), (42)

hold. Here, yq and yeq are the Legendre duals of xq and xeq,
respectively. This yields the orthogonality〈

xp(η, ξp) − xeq(η, ξ), yq(η∗, ξ∗) − yeq(η∗, ξ∗)
〉 = 0, (43)

which follows from CT U ∗ = 0. Without using the coordinate
representation, this relation means that〈

xp − xeq, yq − yeq

〉 = 0, (44)

if xp ∈ PX (η), xq ∈ VX
eq (ξ∗), and xeq ∈ PX (η) ∩ VX

eq (ξ∗). For
any x, x′ and x′′, the divergence DX [x‖x′] satisfies

DX [x‖x′] + DX [x′‖x′′]

= DX [x‖x′′] + 〈(x − x′), (y′ − y′′)〉. (45)
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FIG. 5. (a) Graphic representation of the generalized
Pythagorean theorem and orthogonality relation on X space
[Eq. (46)]. The equilibrium point xeq is characterized by either
projection of x onto VX

eq (ξ∗) along the flat subspace PX (η) or that
of x′ on the PX (η) along the curved manifold VX

eq (ξ∗) [Eq. (48)].
(b) The same Pythagorean theorem and orthogonality relation in Y
space [Eq. (52)]. The equilibrium point yeq is characterized by either
projection of y onto PY

eq (ξ∗) along the curved manifold VY (η) or
that of y′ on the VY (η) along the flat manifold PY

eq (ξ∗) [Eq. (54)].

Thus, for xp, xq, and xeq satisfying xp ∈ PX (η), xq ∈ VX
eq (ξ∗),

and xeq ∈ PX (η) ∩ VX
eq (ξ∗), the generalized Pythagorean the-

orem on X space holds [Fig. 5(a)]:

DX [xp‖xeq] + DX [xeq‖xq] = DX [xp‖xq]. (46)

This relation is geometric in the sense that it is independent of
the choice of η and ξ∗ or the choice of coordinate systems on
PX and Veq.

From the Pythagorean theorem, we obtain two variational
characterizations of the equilibrium state [Fig. 5(a)]:

xeq(η, ξ∗) = arg min
x∈PX (η)

DX [x‖x′]

× for any fixed x′ ∈ VX
eq (ξ∗) (47)

= arg min
x′∈VX

eq (ξ∗ )
DX [x‖x′]

× for any fixed x ∈ PX (η). (48)

The former means that the equilibrium point can be obtained
as the point in the stoichiometric subspace PX at which DX is
minimized. This is related to the relaxation process of x(t ) to-
ward the equilibrium point in the stoichiometric compatibility
class determined by the initial state x0.

In contrast, the latter means that the equilibrium point,
to which a given initial state x0 converges, can be obtained
as the point in the equilibrium variety VX

eq at which DX is
minimized. The role of this equation will be clarified when
we consider its thermodynamic meaning in Sec. VI.

Note that the convergence of x(t ) to xeq is not ensured
by this geometric argument alone. The geometry just ensures
the uniqueness of xeq. Thermodynamically, the convergence is
required from the second law of thermodynamics. Kinetically,
if the mass action kinetic is assumed, one can directly prove
the convergence by showing that the Bregman divergence

DX [x(t )‖xeq] is a Lyapunov function [12,51,52]8:

dDX [x(t )‖xeq]

dt
= − j(x(t ))T ln

j+(x(t ))

j−(x(t ))
� 0. (49)

Thus, the mass action kinetics is consistent with
thermodynamics.

E. Variety, subspace, and orthogonality in the dual space

Because X and Y are in bijection to each other, all the
results obtained previously on X space can be carried over
to Y space. On Y , the geometric nature of the stoichiomet-
ric subspace and the equilibrium variety is swapped due to
the logarithmic Legendre transformation. After transforming
PX (η) and VX

eq (ξ∗) by ∂ϕ(x), we obtain the stoichiomet-
ric manifold and the equilibrium subspace in Y space as
[Figs. 1(b) and 2(b)]9

VY (η) := ∂ϕ
(
PX (η)

)
(50)

= {y|y = ln [Uη + Cξ] − ŷ, (ξ, η) ∈ E}
PY

eq(ξ∗) := ∂ϕ
(
VX

eq (ξ∗)
)

= {
y|y = C∗ξ∗ + U ∗η∗, η∗ ∈ R�

}
. (51)

Now, the curved variety VX
eq (ξ∗) in X space is a flat sub-

space PY
eq(ξ∗) in Y space. Conversely, the flat subspace PX (η)

in X is a curved manifold VY (η) in Y .10 This is the essence
of the dually flat structure. In the conventional formulation of
information geometry by Amari [37], the theory is typically
formulated by using only X space without explicitly introduc-
ing X and Y as a pair, which obscures the relation between
X and Y . Moreover, as we will see in Sec. VI, the relation
becomes fundamental when we consider thermodynamics.

In Y space, for yp, yq, and yeq satisfying yp ∈ VY (η), yq ∈
PY

eq(ξ∗), and yeq ∈ VY (η) ∩ PY
eq(ξ∗), the Pythagorean relation

and the corresponding variational relations [Fig. 5(b)] are
given by

DY [yq‖yeq] + DY [yeq‖yp] = DY [yq‖yp]. (52)

Analogously to Eqs. (47) and (48), we have two varia-
tional characterizations of the equilibrium state in Y space
[Fig. 5(b)] as

yeq(ξ∗, η) = arg min
y∈VY (η)

DY [y′‖y]

× for any y′ ∈ PY
eq(ξ∗), (53)

= arg min
y′∈PY

eq (ξ∗ )
DY [y′‖y]

× for any y ∈ VY (η). (54)

8We omit the proof because this result is commonly known.
9It should be noted that the symbols used for VY (η) and PY

eq are
different from those in our accompanying paper [34]. In Ref. [34],
VY and PY

eq are denoted as PY and VY
EQ, respectively. In this work,

we use P for flat subspaces and V for curved manifolds.
10The space VY (η) is not necessarily an algebraic variety because

it is not defined by algebraic equations. Thus, we use the word
manifold here.
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The implication of these equation, especially that of the latter,
will be discussed in Sec. VI after clarifying their connection
to thermodynamics.

V. TANGENT AND COTANGENT SPACES
AND THEIR RIEMANNIAN METRIC

In the previous section, we have obtained the geomet-
ric structure by exploiting only the information of the first
derivative of ϕ(x). In this section, we explore the information
contained in the second derivative of ϕ(x), i.e., its Hessian.

A. Hessian and Fisher information

Because ϕ(x) is strictly convex and smooth, its Hessian
matrix (second derivative matrix)

GX (x) :=
(

∂2ϕ(x)

∂xi∂x j

)
i, j

= diag

(
1

x

)
, (55)

is positive definite, which endows the tangent space of X with
a natural inner product structure:

〈
x,
x′〉x := 〈
x, GX (x)
x′〉, (56)

where 
x and 
x′ are elements of the tangent space TxX at
x ∈ X . Moreover, 〈·, ·〉 is the bilinear form defined on TxX ×
T ∗

x X , where T ∗
x X is the corresponding cotangent space. The

induced norm is |
x|x := √〈
x,
x〉x. Also, GX (x) induces
a mapping from the tangent space TxX to the cotangent space
T ∗

x X via 
y = GX (x)
x ∈ T ∗
x X .

The Hessian of ϕ∗(y) is computed as

GY (y) :=
(

∂2ϕ∗(y)

∂yi∂y j

)
i, j

= diag ey+ŷ (57)

and satisfies GX (x)GY (y) = I because x = ey+ŷ. Thus,
G−1

X (x) = GY (y) and G−1
Y (y) = GX (x). The inner product in-

duced by GY (y) on the dual tangent space TyY is

〈
y,
y′〉y := 〈GY (y)
y,
y′〉. (58)

Because of the linear duality between X and Y , we have
relations: Tx

∼= T ∗
y and T ∗

x
∼= Ty.

In information geometry, GX (x) is known as Fisher infor-
mation matrix. It is related to the infinitesimal change of the
Bregman divergence as

ds2 = 2DX [x‖x + 
x] = 〈
x, GX (x)
x〉 (59)

= 2DY [y + 
y‖y] = 〈
y, GY (y)
y〉. (60)

B. Fisher information for the dual and mixed coordinates

By inserting 
x = U
η + C
ξ or 
y = U ∗
η∗ +
C∗
ξ∗, we obtain Fisher information matrices for (η, ξ) and
(η∗, ξ∗):

Gη,ξ (x) :=
(

U T GX (x)U U T GX (x)C
CT GX (x)U CT GX (x)C

)
, (61)

Gη∗,ξ∗ (y) :=
(

(U ∗)T GY (y)U ∗ (U ∗)T GY (y)C∗
(C∗)T GY (y)U ∗ (C∗)T GY (y)C∗

)
. (62)

We can verify that Gη∗,ξ∗ (y) is the inverse matrix of Gη,ξ (x)
by directly computing Gη∗,ξ∗ (y)Gη,ξ (x) = I where we use the
fact that

PU := U (U ∗)T , PC := C(C∗)T , (63)

P∗
U := U ∗U T , P∗

C := C∗CT (64)

are orthogonal projection matrices and satisfy PU + PC =
P∗

U + P∗
C = I . The effective metric matrix can be further

simplified by using the mixed coordinates. With the mixed
coordinates, 
x is represented by


x = U
η + GY (y)C∗
ξ∗ (65)

= GY (x)U ∗
η∗ + C
ξ. (66)

The cross terms in ds2 disappear due to the dual orthogonality:

ds2 ∼ 〈
η, Gη(x)
η〉 + 〈
ξ∗, Gξ∗ (y)
ξ∗〉, (67)

∼ 〈
η∗, Gη∗ (y)
η∗〉 + 〈
ξ, Gξ (x)
ξ〉, (68)

where Gη(x) := U T GX (x)U and Gξ (x) := CT GX (x)C are
the diagonal blocks of Gη,ξ (x) [Eq. (61)], whereas Gη∗ (y) :=
(U ∗)T GY (y)U ∗ and Gξ∗ (y) := (C∗)T GY (y)C∗ are those of
Gη∗,ξ∗ (y) [Eq. (62)]. This is a tangent and cotangent space
version of the generalized Pythagorean relation and the
orthogolonality between the stoichiometric subspaces and
equilibrium varieties.11

VI. LINK TO CHEMICAL THERMODYNAMICS

In this section, we clarify how the Hessian geometric struc-
ture and its constituents can be related to equilibrium chemical
thermodynamics. To this end, because the results were derived
kinetically from the law of mass action and detailed balancing,
we have to rederive the same results from thermodynamics, if
at all possible, without assuming any kinetics. This is achieved
in our accompanying paper [34]. Here, we make the corre-
spondence precise. Refer to Ref. [34] for the more general
results derived from purely thermodynamic arguments.

A. Gibbs free energy and chemical potential

For an ideal dilute solution, the functional form of the
Gibbs free energy density is known as

G(x) = RT [ln x + ν̂o/RT − 1]T x + G0. (69)

Here, G0 is constant, which represents solvent contribution
to the free energy [12]. By comparing this equation with
Eq. (23), the free energy relates to the convex potential func-
tion ϕ(x) as

G(x) = RT ϕ(x) + G0, (70)

where we identify ŷ = −ν̂o/RT .
The chemical potential is calculated from the free energy

as

μ(x) = ∂G(x)

∂x
= RT ∂xϕ(x) = RT y, (71)

11Note that neither Gη(x)Gη∗ (y) = I nor Gξ (x)Gξ∗ (y) = I generally
holds.
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where we use Eq. (25). Thus, Y is the space of chemical
potentials, which is thermodynamically conjugate to the con-
centration space of molecular species X .

B. Total entropy and Bregman divergence

To clarify the physical setting of our chemical reaction
network, we distinguish confined and open chemicals. Here,
the concentrations of the confined chemicals are denoted by
x. They evolve with the stoichiometric matrix S by the re-
action rate equation, Eq. (1). Similarly, the concentrations of
open chemicals change with a stoichiometric matrix O by the
chemical reactions. However, we assume that the exchange
of the open chemicals with the reservoir is much faster than
the time scale of the reactions. Therefore, the concentrations
of the open chemicals can be regarded as a constant specified
by the chemical potentials of the reservoir μ̃.

The entropy function of the total system with the reservoir
is related to ϕ(x) as

�tot(x; ỹres) = R�[〈ỹres, x〉 − ϕ(x)] + const, (72)

where ỹres is specified by the state of the reservoir through the
simultaneous equations

1

RT
OT μ̃ = −ST ỹres, (73)

see Eq. (41) in Ref. [34].
The existence of the solution ỹres of Eq. (73) is guaranteed

by the equilibrium parameter condition, Eq. (14) in this paper,
and Eq. (78) of Ref. [34] (see Appendix A for details).

To assure the uniqueness of ỹres, we assume Ker[ST ] = {0}
in this subsection. The case Ker[ST ] �= {0} is discussed the
next subsection.

By using the relation between the potential ϕ(x) and the
Bregman divergence DX ,Y [x‖y′], the difference of total en-
tropy between x and x′ can be associated with the difference
of Bregman divergences:

�tot(x; ỹres) − �tot(x′; ỹres)

= −R�[DX ,Y [x‖ỹres] − DX ,Y [x′‖ỹres]]. (74)

Since the second law of thermodynamics states that the to-
tal entropy function �tot(x; ỹres) with respect to x must be
maximized at the equilibrium state xeq, we obtain it, without
stoichiometric constraints, i.e., Ker[ST ] = {0}, as

xeq = arg max
x

�tot(x; ỹres). (75)

By inserting x′ = x̃res into Eq. (74), where x̃res is the Legendre
transform of ỹres, we obtain

�tot(x; ỹres) = �tot(x̃res; ỹres) − R�DX ,Y [x‖ỹres]. (76)

Thus,

xeq = arg min
x

DX ,Y [x‖ỹres] = x̃res, (77)

and the total entropy production is


�tot(x → xeq; ỹres) := �tot(x̃res; ỹres) − �tot(x; ỹres)

= R�DX ,Y [x‖ỹres]. (78)

Equation (77) indicates that specifying a certain reservoir
parameter ỹres ∈ Y by modulating the reservoir chemical po-
tential μ̃ is equivalent to specifying the equilibrium state
xeq ∈ X under the reservoir parameter ỹres because of the
one-to-one correspondence between x̃res = xeq and ỹres.

Furthermore, if x = x̃res = xeq, then we have

�tot(x̃res; ỹres) = R�ϕ∗(ỹres) + const, (79)

where we use Eqs. (27) and (72). It indicates that ϕ∗(ỹres) is
the total entropy at the equilibrium point xeq specified by the
parameter ỹres.

C. Entropy production under stoichiometric constraints

If stoichiometric constraints exist, i.e., Ker[ST ] �= {0}, then
ỹres cannot be determined uniquely from the reservoir param-
eter by Eq. (73). Nevertheless, the theoretical formulation in
the previous subsection can be applied and the equilibrium
state xeq is specified by the reservoir condition.

Let ỹ be a particular solution of Eq. (73). A system x(t )
with initial condition x0 is restricted to the stoichiometric
subspace PX (η0) which contains x0. Then, the equilibrium
state is characterized as

xeq = arg max
x∈PX (η0 )

�tot(x; ỹ) (80)

= arg min
x∈PX (η0 )

DX ,Y [x‖ỹ]. (81)

Let VX
eq (ξ̃

∗
) be the equilibrium variety to which ỹ belongs,

i.e., x̃, the Legendre transform of ỹ, satisfies x̃ ∈ VX
eq (ξ̃

∗
).

Moreover, let xint be the intersection point of the subspace
and the variety, i.e., xint ∈ PX (η0) ∩ VX

eq (ξ̃
∗
). As shown be-

fore, this intersection is unique and can be specified as xint =
xint(η0, ξ̃

∗
). For any x ∈ PX (η0), the generalized Pythagorean

relation holds:

DX ,Y [x‖ỹ] = DX ,Y [x‖yint] + DX ,Y [xint‖ỹ]. (82)

Thus,

xeq = arg min
x∈PX (η0 )

[DX ,Y [x‖yint] + DX ,Y [xint‖ỹ]]

= arg min
x∈PX (η0 )

DX ,Y [x‖yint] = xint. (83)

This verifies that the equilibrium state xeq, which maximizes
the total entropy, is characterized by the intersection point
of the subspace and variety. Also, the entropy production
becomes


�tot(x → xeq; ỹ) := �tot(xeq; ỹ) − �tot(x; ỹ)

= R�DX ,Y [x‖yeq], (84)

where the relevant part is independent of ỹ owning to the
Pythagorean relation. The convergence to xeq is then attributed
to the second law, which was also proven kinetically for the
mass action system [see Eq. (49)].

The independence of the choice of ỹ can be understood
more clearly in Y space from the dual variational equation:

yeq = arg min
ỹ∈PY

eq (ξ̃
∗
)

DX ,Y [x0‖ỹ]
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= arg min
ỹ∈PY

eq (ξ̃
∗
)

[DX ,Y [x0‖yint] + DX ,Y [xint‖ỹ]]

= arg min
ỹ∈PY

eq (ξ̃
∗
)

DX ,Y [xint‖ỹ] = yint, (85)

which corresponds to Eq. (54). Note that the equilibrium
subspace PY

eq(ξ̃
∗
) defined by Eq. (51) is composed of the so-

lutions of Eq. (73). The coordinate ξ̃
∗

is uniquely determined
by ξ̃

∗ = CT ỹ for an arbitrary particular solution ỹ. This fact
represents that, if there exist stoichiometric constraints, the
relevant quantity specified by the reservoir chemical potentials
μ̃ is no longer a point or value but geometric objects, i.e., the
equilibrium variety VX

eq (ξ̃
∗
) and subspace PY

eq(ξ̃
∗
). Further-

more, the coordinate ξ̃
∗

specifies the equilibrium state with
the initial condition x0.

D. Linear response of total entropy

Finally, we investigate responses of the total entropy to
infinitesimal changes of either x or yres. First, suppose that
state x is perturbed to x′ = x + 
x. For a general perturba-
tion, which is not restricted by stoichiometric constraints, we
obtain


�tot(x → x′; ỹres)

R�
= DX [x + 
x‖xeq] − DX [x‖xeq]

≈ 〈

x, y − yeq

〉
. (86)

Here, 
x and y − yeq are treated as elements of X and Y ,
respectively. Moreover, we use an implicit identification of the
base spaces with their tangent and cotangent spaces. Because
X and Y inherit the affine structure of the dual vector spaces
V and V ∗, and because the tangent and cotangent spaces
are isomorphic to these vector spaces, we can identify these
spaces (noncanonically) as

T ∗
y Y ∼= TxX ∼= V ⊃ X , T ∗

x X ∼= TyY ∼= V ∗ = Y .

Because of this isomorphism, we can also regard 
x and
y − yeq as elements of tangent and cotangent spaces. By
combining this fact with the Cauchy-Schwartz inequality, we
obtain ∣∣∣∣
�tot(x → x′; ỹres)

R�

∣∣∣∣ = ∣∣〈
x, y − yeq

〉∣∣ (87)

�
∣∣y − yeq

∣∣
y
|
x|x, (88)

where | · |x and | · |y are the metrics on the tangent and cotan-
gent spaces induced by the Fisher information [Eqs. (56) and
(58)]. From this, we see that |y − yeq|y is an upper bound of
the sensitivity of entropy production proposed in Ref. [35]
and that entropy production is maximized if 
x is parallel to
y − yeq in the sense of linear duality.

VII. COMPLEX-BALANCED SYSTEMS

The Hessian geometric structure can also be extended
beyond equilibrium chemical reaction networks to complex
balanced ones.

Complex balanced networks, introduced by Horn and Jack-
son [18], are a class of nonequilibrium reaction networks,
which retains several properties of equilibrium chemical

networks.12 A complex balanced network has a unique steady
state in each stoichiometric compatibility class called complex
balanced state, which is also globally stable [29,30]. More-
over, the generalized Kullback-Leibler divergence works as
the Lyapunov function of the network [18]. This similarity is
partially attributed to the shared geometric structure between
equilibrium and complex balanced networks.

To define the complex balanced state, we note that the
stoichiometric matrix S can be decomposed as S = −�B by
exploiting the underlying hypergraph-theoretic structure of
chemical reaction networks. To derive � and B, let

γ +
1,mX1 + · · · + γ +

N,mXN → γ −
1,mX1 + · · · + γ −

N,mXN (89)

be the chemical reaction equation of mth reaction. Because
reactants and products of a reaction generally include multiple
molecular species, a reaction is a directed hyperedge linking
multiple species (vertices). Thus, a chemical reaction network
is an oriented hypergraph. The sets of molecules composing
the reactants and products of a reaction are called complexes.
In the case of Eq. (89), γ +

1,mX1 + · · · + γ +
N,mXN and γ −

1,mX1 +
· · · + γ −

N,mXN are complexes. By regarding complexes as ver-
tices, a chemical reaction network is interpreted as an oriented
graph in which each reaction links two complexes. Suppose
that a chemical reaction network composed of H complexes
and γ1,hX1 + · · · + γN,hXN be the hth complex. Then, the
matrix � = (γi,h) ∈ ZN×H

�0 defines all the complexes. Next,
suppose that mth reaction has hr th complex as the reactant and
hpth complex as the product. This information is encoded by a
vector bm ∈ {±1}H×1, whose components bh,m are +1 if h =
hr , −1 if h = hp, and 0 otherwise. The matrix B = (bh,m) ∈
{±1}H×M is the incidence matrix of the oriented graph for the
chemical reaction network. It is straightforward to verify that
S = −�B and �± = �B± hold where B± = max[±B, 0].

With the assumption that the reaction flux j±(xcb; θ) satis-
fies the law of mass action, the set of complex balanced states
is defined by

VX
cb (θ) := {xcb > 0|B j(xcb; θ) = 0}. (90)

Because j±(xcb; θ) consists of monominals, VX
cb (θ) is an alge-

braic variety. As before, we define the parameter sets �cb in
which VX

cb (θ) is nonempty, i.e.,

�cb := {θ|VX
cb (θ) �= ∅}. (91)

Obviously, �eq ⊂ �cb and thus an equilibrium variety is a
special class of complex balanced varieties. Compared with
the definition of an equilibrium variety, B j(xcb; θ) = 0 is in
general not given by binomial equations. Nevertheless, VX

cb (θ)
is a toric variety, meaning that B j(xcb; θ) = 0 can be converted
to binomial equations by appropriate algebraic manipulation
similar to the Gaussian elimination for linear equations [19].
In other words, a complex balanced state is defined by hidden
detailed balance (binomial) equations (see also Appendix B
for the derivation). Thus, as a toric variety, VX

cb (θ) has an
explicit parametrization in the same way as the equilibrium

12Whether a given network is complex balanced one or not depends
on the value of kinetic parameters. Depending on the parameter
value, the same network can be noncomplex balanced one.
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variety [Eq. (15)]. Moreover, the complex balanced variety
has the same design matrix and thus is given by

VX
cb (θ) = {x| ln x = ln x̃cb + U ∗η∗}, (92)

where x̃cb is determined by the actual values of kinetic param-
eters [19]. It should be noted that multiple parameter values
θ, θ′ ∈ �cb can generate the same variety VX

cb (θ) = VX
cb (θ′).

As geometrical objects, the complex balanced variety and
equilibrium variety are indistinguishable and therefore the
embedding of each complex balanced variety into X is
parametrized analogously by ξ∗. From now on, we write
VX

cb (ξ∗) for the complex balanced variety embedded in X . As
a result, the Hessian geometric structure of the equilibrium
variety described in Sec. IV is preserved in the more general
case of complex balancing.

For example, for a given initial state x0 ∈ PX (η), the
complex balanced steady state xcb is the intersection of the
subspace PX (η), determined by the initial state, and the com-
plex balanced variety VX

cb (ξ∗):

xcb ∈ PX (η) ∩ VX
cb (ξ∗). (93)

For the same reason as the equilibrium state, xcb is unique
and the intersection is transversal [19]. By using the same
potential function ϕ(x) as in Eq. (23), define the dual space
Y , the Legendre transformed function ϕ∗(x), the Bregman di-
vergence DX , the tangent and cotangent spaces T X and T Y ,
and also the Fisher information given by GX (x) and GY (y). In
other words, we can naturally embed a VX

cb (θ) into the Hessian
geometric structure constructed for the equilibrium varieties.
As a result, the same Pythagorean relation as Eq. (46) holds
for the complex balanced case:

DX [xp‖xcb] + DX [xcb‖xq] = DX [xp‖xq], (94)

where xp ∈ PX (η), xX
q ∈ VX

cb (ξ∗), and xcb ∈ PX (η) ∩
VX

cb (ξ∗). Thus, the complex balanced state admits the
variational characterizations

xcb(η, ξ∗) = arg min
x∈PX (η)

DX [x‖x′]

× for any fixed x′ ∈ VX
cb (ξ∗) (95)

= arg min
x′∈VX

cb (ξ∗ )
DX [x‖x′]

× for any fixed x ∈ PX (η). (96)

The analogous variational characterization also holds in the
dual space.

While the geometric structure is inherited, the thermody-
namic aspects are not. The potential function ϕ(x) and the
space Y can admit the same interpretation as the Gibbs free
energy function and the chemical potential space. By contrast,
the potential function ϕ(x) is no longer associated with total
entropy as in Eq. (72) because Eq. (73) may not have a so-
lution in the complex balanced case, Eq. (91). Therefore, the
Bregman divergence DX does not correspond to the difference
of total entropy as in Eq. (74). All of this is rooted in the gen-
eral lack of a thermodynamically consistent characterization
of nonequilibrium states. While there have been continuous
attempts to achieve a thermodynamic characterization of com-
plex balanced states [12,16,35], it is still an open problem. We

believe that the Hessian geometric structure can contribute to
the resolution of the problem [53].

VIII. STOCHASTIC THERMODYNAMICS ON GRAPH

Finally, we demonstrate how our formalism, as a special
case, includes finite-state Markov jump processes.

A reversible Markov jump process on an oriented graph
with a finite number of vertices and edges is given by

d pi

dt
=

N∑
j=1

[Wi‖ j p j − Wj‖i pi]. (97)

This process is often employed as a model in stochastic ther-
modynamics [8,10,54,55]. Here, i is the index of vertices of
the graph, and N is the total number of vertices. Wi‖ j is the
transition rate from state j to i. The transition from a vertex to
itself is usually prohibited, i.e., Wi‖i = 0.

We label the edges by the running variable m, and deter-
mine the orientation of each edge arbitrarily. Let B be the
incidence matrix of the oriented graph. We define functions
h(m) and t (m) that return the index of head and tail vertices
of the mth oriented edge, respectively. Then, Eq. (97) can
be mapped to a chemical rate equation [Eq. (1)] by defining
xi = pi, � = I , S = −�B, and

j+m (x) = Wt (m)‖h(m)xh(m), (98)

j−m (x) = Wh(m)‖t (m)xt (m). (99)

All fluxes are linear in this case. In stochastic thermodynam-
ics, we often assume the ergodicity of the Markov process,13

to assure that Eq. (97) has a uniquely and globally stable
steady state π by the Perron-Frobenius theorem. Since this
assumption guarantees the connectivity of the incidence ma-
trix, B has the unique left null vector 1 as 1T B = 0. Thus, the
system has only one conserved quantity η = 1T p, which re-
flects the conservation of total probability, i.e., 1T p = 1. Thus,
U ∗ = 1, and PX (η) = {x|η = (U ∗)T x} = {x|η = 1T x}. The
stoichiometric subspace is nothing but the N − 1 dimensional
simplex of probability distributions if we fix η = 1.

The detailed balance condition of Eq. (97) is typically
defined as

Wi‖ jπ j = Wj‖iπi for all i and j. (100)

This is equivalent to the detailed balance condition
of the chemical rate equation: j+m (xeq) = j−m (xeq) for
all m, i.e., j(xeq) = 0, whereby xeq = π. The equilib-
rium constant characterizing an equilibrium state becomes
Km = Wt (m)‖h(m)/Wh(m)‖t (m), which also satisfies

ln K = −BT ln π (101)

as follows from the detailed balance condition. Thus, the equi-
librium variety can be defined for the Markov jump process.

13To be more precise, the ergodicity here is mathematically defined
as follows. Define a matrix Ŵ whose off-diagonal elements consists
of Ŵi j := Wi‖ j and diagonal ones are Ŵii := ∑N

j=1 Wj‖i. If the matrix
Ŵ is irreducible, then we say that the Markov process, Eq. (97), is
ergodic.
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Its explicit parametrization [Eq. (15)] is given by

VX
eq (K ) = {x|x = x̃eq ◦ exp[1η∗]}. (102)

Here, we used that U = 1T and that x̃eq satisfies ln K =
ST ln x̃eq = −BT ln x̃eq. From Eq. (101), choosing the identifi-
cation x̃eq = π yields

VX
eq (K ) = {x|x = π ◦ exp[1η∗]}. (103)

The variety VX
eq (K ) is one-dimensional because the codi-

mension of PX (η) is one. The intersection of VX
eq (K ) and

PX (η) is trivially π if η = 1. This means that, in the case
of stochastic dynamics on a graph, the Hessian structure
is not fully evident because the equilibrium variety is just
one-dimensional and the subspace is always fixed at η = 1,
i.e., 1T p = 1. Under this constraint, the potential function
is reduced to the conventional Kullback-Leibler divergence,
ϕ(p) = pT ln(p/p̂), where we define ln p̂ := ŷ. The Legendre
dual of p is y = ∂ϕ(p) = ln p − ln p̂. Thus, even though ln p
looks as if it is just the logarithm of p, the vectors p and ln p
should be discriminated as objects defined on different spaces.
The dual of ϕ is ϕ∗(y) = 1T ey+ŷ. The Bregman divergence
is now reduced to the conventional Kullback-Leibler diver-
gence D[p‖p′] = pT ln(p/p′). Even though ϕ(p) and D[p‖p′]
are different quantities, both have the same expression as
a Kullback-Leibler divergence, which can cause confusion.
Finally, the Pythagorean relation does not provide nontrivial
information because the subspace PX (η) is fixed as the prob-
ability simplex and the variety VX

eq (K ) is one-dimensional.
Thus, the Hessian geometric structure is not fully exhibited
under the restricted setting of the Markov jump processes.
Nonetheless, the above discussion is beneficial because it al-
lows to discriminate degenerate quantities that have different
meanings, such as p and ln p or ϕ(x) and DX and also to point
out their locations in dual spaces [56].

IX. DISCUSSION

In this work, we derived the Hessian geometric struc-
ture of chemical reaction networks which satisfy the law
of mass action. When establishing the geometry, a crucial
role is played by the fact that the equilibrium and complex
balanced states are given by toric varieties. A purely ther-
modynamic argument in Ref. [34] assures, however, that this
geometric structure holds for a broader class of chemical
reaction systems than those obeying mass action kinetics. In
the last century, there have been continuous attempts to extend
the properties of equilibrium and complex balanced systems
beyond the law of mass action in physics and applied math-
ematics [15,20,57]. We expect that our results can provide a
new theoretical basis for the development of chemical reaction
network theory to such generalized models and situations.

Our current approach relies on the fact that the state space
of the system is represented by finite-dimensional vectors: the
concentration vector in chemical reaction networks and the
probability vector in the Markov jump processes. However,
in reaction systems with a spatially inhomogeneous structure
or in general stochastic thermodynamic models, the system is
described by a positive measure or a probability measure on a
continuous space. It is an open question whether the structure

presented here can be extended to such cases. It is naturally
expected that information or Hessian geometry on an infinite-
dimensional space becomes necessary to address the problem
[58,59].

For the theory of information geometry and Hessian ge-
ometry [36,37], chemical reaction networks provide a new
and fertile field to apply and develop the theory. While major
applications of the theory have been restricted to statistics,
information science, and other applied mathematical top-
ics, more recently, applications to stochastic thermodynamics
have been attempted [55,56,60,61]. Now, we add chemical
reaction networks to the list [62]. In addition, from the view-
point of real algebraic geometry, our results on chemical
reaction networks may suggest a way to generalize Birch’s
theorem to more general kinetic models [20].

The mathematical structure of chemical kinetics and chem-
ical thermodynamics, since their establishment, has been
continuously developed within various fields such as physics,
applied mathematics, applied chemistry, and systems biology
over the past century [1,3,6,12,63]. However, the develop-
ments were mostly separated and shared only within the
individual fields. In applied mathematics, there is chemical
reaction network theory by Feinberg [3], which is based on
the work of Aris, Horn, and Jackson [18,63]. In real algebraic
geometry, chemical reaction networks and toric geometry are
becoming important research topics [29–32]. In systems bi-
ology, a new theory emerged, which connects properties of
reaction networks with the network topology [23–26,28]. In
physics, network thermodynamics by Hill and Schnakenberg
[8,10] and stochastic thermodynamics of chemical reaction
theory by Qian and Esposito have been studied [6,12,64].
Now, information and Hessian geometry can be added to
this variety of applications [62]. Even though the theories
have been developed to explain the same physical object, i.e.,
chemical reaction networks, the interrelationships between
them are not clear yet. It will be the next important step to
integrate these theories from a unified perspective, which is
expected to boost a further development of chemical reaction
theory.
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APPENDIX A

In thermodynamic mass action kinetics, the rate constants
k± satisfies

log
k+

k− = − 1

RT
{ST ν̂o + OT μ̃}, (A1)

which is known as the local detailed balance condition
[11,12]. This condition bridges kinetics and thermodynamics.
Since OT μ̃ ∈ Im[ST ] holds from Eq. (14), the simultaneous
equations, Eq. (73), with respect to ỹres, must be consistent.
Accordingly, the existence of the solution is guaranteed.
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APPENDIX B

The complex balanced variety defined in Eq. (90) is the
toric variety with the same design matrix as the equilibrium
variety [Eq. (15)]. This fact was derived in Ref. [19]. We
outline the derivation here (refer to Ref. [19] for the more
rigorous derivation). By using the decomposition S = −�B,
the chemical rate equation with mass action kinetics [Eq. (1)]
can be represented as

dx
dt

= −�B[diagk+(B+)T − diagk−(B−)T ]x�T
, (B1)

where B+ = max[B, 0] and B− = max[−B, 0] are the matri-
ces obtained by using only +1 or −1 components in B. Thus,
B = B+ − B− holds, and B+ and B− encode the complexes of
reactants and products, respectively. x�T

is a H dimensional
vector whose hth component is defined as

x�T
:=

(
N∏

i=1

xγi,1

i , · · · ,

N∏
i=1

xγi,H

i

)T

. (B2)

Thus, the hth component of x�T
represents the monomial

corresponding to the hth complex. The transpose on x�T
is

for the notational consistency with the following relation

ln x�T = �T ln x,

where ln x is the component-wise logarithm of x. The matri-
ces, � and B± are related to �± in Eq. (11) as �± = �B±. We
define an asymmetric weighted graph-Laplacian Lk± as

Lk± := −B[diagk+(B+)T − diagk−(B−)T ]. (B3)

Then, Eq. (B1) can be represented as

dx
dt

= �Lk±x�T
. (B4)

With this, the complex balanced variety can be rewritten as

VX
cb (θ) := {

xcb > 0|Lk±x�T

cb = 0
}
, (B5)

where θ = k±. Thus, x�T

cb ∈ KerLk± holds. Because
Lk±x�T

cb = 0 reduces to Lk±xcb = 0 if � = I , Lk± is equivalent
to the operator of the Markov jump process with the jump
rate parameter k±.

For simplicity, we consider only the case that Lk± is ir-
reducible, which means that the directed graph defined by
Lk± is strictly connected. Because we consider only reversible
reactions, this is also equivalent to the condition that the
unoriented graph defined by B is connected.14 The extension
to the case with multiple connected components in the graph
is straightforward but tiresome.

14We here ignore the information of edge orientation in �.

By the Perron-Frobenius theorem for an irreducible Lk± ,
we have the unique nonnegative eigenvector 	 > 0 associated
with the largest eigenvalue 0, i.e., Lk±	 = 0. Thus, the vector
	 parametrize the kernel space KerLk± .15 We can explicitly
obtain 	 as a function of the kinetic parameter k± via the
Markov chain tree theorem for weighted digraphs [65]. Using
	, the complex balanced variety becomes

VX
cb (θ) := {xcb > 0|x�T

cb ∈ 〈	〉}, (B6)

where 〈	〉 = {x|x = r	, r ∈ R} is a vector space gener-
ated by 	. If xcb > 0 exists for a fixed parameter value of
k±, then it satisfies x�T

cb = 1
α
	 for a certain scalar α > 0. By

deleting α from this relation, we get, for h, h′ ∈ [1, H],

�hx
γ T

h′
cb = �h′xγ T

h
cb , (B7)

holds where γh is the hth column vector of �. Because this
is a binomial equation for x, VX

cb (θ) is generated by binomial
ideal, which leads to the toric property of VX

cb (θ).
Next, we investigate the parametric condition such that

the complex balanced states exist: VX
cb (θ) �= 0. By taking the

logarithm of x�T

cb = 1
α
	, we have

�T ln xcb = ln 	 − ln α1. (B8)

By defining Cayley matrix �C and the extended vector χcb as

�C :=
(

�

1T

)
, χcb :=

(
xcb

α

)
, (B9)

Eq. (B8) can be represented as

�T
C ln χcb = ln 	. (B10)

Thus, χcb exists if and only if ln 	 ∈ Im[�T
C ], which is also

equivalent to Ker[�C] ⊥ ln 	.
Suppose that the kinetic parameter satisfies ln 	 ∈ Im[�T

C ].
Then, we have a particular solution x̃cb of Eq. (B8), and the
general solution can be described as

ln xcb − ln x̃cb ∈ C, (B11)

where C := {y|�T y ∈ 〈1〉}. Because the incidence matrix B
represents a connected graph from our assumption, it has the
unique vector v up to scale, such that BT v = 0 and v = 1.
Therefore, we have

C = {y|BT �T y = 0} = {y|ST y = 0} (B12)

= Ker[ST ] = 〈U ∗〉. (B13)

Thus, we obtain the parametrization of xcb as in Eq. (92).

15It should be noted that 	 is a function of k± as 	(k±). We
abbreviate this dependency for the sake of notational simplicity.
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