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Optimizing the mitigation of epidemic spreading through targeted adoption of contact tracing apps
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The ongoing COVID-19 pandemic is the first epidemic in human history in which digital contact tracing has
been deployed at a global scale. Tracking and quarantining all the contacts of individuals who test positive for a
virus can help slow down an epidemic, but the impact of contact tracing is severely limited by the generally low
adoption of contact-tracing apps in the population. We derive here an analytical expression for the effectiveness
of contact-tracing app installation strategies in a susceptible-infected-recovered (SIR) model on a given contact
graph. We propose a decentralized heuristic to improve the effectiveness of contact tracing under fixed adoption
rates, which targets a set of individuals to install contact-tracing apps and can be easily implemented. Simulations
on a large number of real-world contact networks confirm that this heuristic represents a feasible alternative to
the current state of the art.
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I. INTRODUCTION

Since the first human infection toward the end of 2019,
the spread of the SARS-COV-2 virus has caused an unprece-
dented shock around the world with serious repercussions in
all aspects of our social and economic activities [1–3] and a
number of casualties that has already passed the two million
figure and is unfortunately due to rise further in the near future
[4]. The initial efforts to curb the spread of the disease focused
on nonpharmaceutical interventions including travel bans,
lockdowns, and curfews [5]. These measures are able to drasti-
cally reduce the opportunities of contact between infected and
susceptible people and thus the spread of a virus [6–10] but
also have non-negligible effects on economy and social life
[11–13]. After the first wave of infections in February–May
2020 and thanks to a better understanding of the specific trans-
mission dynamics of SARS-COV-2 [14–19], many countries
have implemented some sort of “test-trace-treat” system based
on digital contact tracing (CT) [20,21]. Some of these systems
consist of deploying CT apps on mobile phones which allow
to identify and isolate individuals who have been in contact
with infected ones, thus disrupting secondary infections paths
as early as possible. With CT in place, many countries have
been able to partially reopen several sectors of their economy
and to diminish the damage of prolonged disruptions [22–29].
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An effective digital CT strategy should aim at maximizing
the probability of detecting contacts between infected and
susceptible individuals, and it would completely eradicate
contagion in the ideal case where CT apps are installed by
the totality of a population [30–39]. However, throughout
the SARS-COV-2 pandemic, the percentage of the population
with CT apps installed has remained quite low, between 5
and 20% in most countries [40], resulting in a dramatically
decreased efficiency of contact tracing.

Here we focus on the problem of determining the set of
nodes which should install CT apps in order to optimize the
effect of contact tracing, i.e., to maximally slow down spread-
ing and reduce the incidence of a disease under the assumption
that the rate of CT app adoption is fixed. We provide an
analytic derivation to quantify the decrease of the basic repro-
duction number caused by a generic CT installation strategy,
and we show that uniform random installation—which is the
strategy implicitly adopted by governments when people are
simply asked to install a CT app—has the worst performance
of all. We find that relatively simple targeting strategies based
on the structure of the contact network are significantly more
efficient in reducing the number of secondary infections at low
adoption rates in both synthetic and real-world systems.

II. RESULTS

In Fig. 1 we report a sketch of a fictitious contact net-
work, where some individuals are infected (pink), some other
are susceptible (black), and some have a CT app installed
(indicated by the mobile icon). An almost perfect lockdown
as the one enforced in many countries during the spring of
2020, in which only essential mobility is allowed (i.e., with
the only exception of individuals sharing the same household
or related to basic services), would remove most of the links in
that graph. In this specific case, the infected individuals will
eventually be unable to find any susceptible person to pass
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FIG. 1. Effect of contact-tracing apps on secondary infections
on a contact network. CT apps can only detect potential contagious
contacts if both the infected and the susceptible individual have a
CT app installed. In this case, A can in principle infect any of his
direct neighbors, including B who has a CT app installed as well,
and the CT app cannot do anything to avoid this. However, if the CT
system detects a contact between A and B and then A tests positive,
then B can be contacted and put into quarantine, thus disrupting all
the potential infection paths to the direct contacts of B (solid green
lines). If C has a contact with A instead, C has no way of knowing
whether the contact resulted in an infection or not and will not be
notified when A tests positive, and C will not go into quarantine. In
this case, all of C’s neighbors are at risk of catching the disease (solid
red lines). Similarly, the fact that B has a CT app installed cannot
be a safeguard from being infected by D (who does not have a CT
app installed) and passing the infection to neighbors while having no
symptoms.

the disease on to. When only CT is in place, instead, some
infections are still unavoidable either due to a limited app
adoption rate or to a delay in the notification of test results
and in isolation of subjects exposed to those who are infected.
As made evident by Fig. 1, maximizing the impact of contact
tracing corresponds to maximizing the probability that the
potential transmission of the disease between two individuals
is detected, since only contacts among people with CT apps
installed can be detected and traced back. This intuitively
corresponds to maximizing the number of edges among the
individuals with CT app installed, i.e., the density of the sub-
graph induced by the nodes with CT apps under the constraint
that only a fraction r of the population will have the CT app
installed.

A. Reduction of R0 in a SIR + CT dynamics

We consider here a susceptible-infected-recovered (SIR) +
CT model, that is a classical SIR model on a static contact
graph [10], with the addition of ideal CT. This means that
any susceptible node with an installed CT app is quarantined
(recovered) as soon as one of their contacts with a CT app in-
stalled gets infected. As a consequence, our stylized model is
mainly designed to compare the effectiveness of different CT
strategies in a simple setting rather than capturing precisely
the complexity of real-world scenarios. Indeed, depending on

the type of disease we aim to study, several key factors may
and should be taken into account in the model, including trans-
missibility (which might depend on the days passed since the
infection), intrinsic characteristics of the carrier, or the timing
of infection. Moreover, certain diseases might be transmitted
by an infected individual before showing any kind of symp-
toms (like in asymptomatic or preasymptomatic cases), while
others are only transmitted once symptoms appear [41–44].

The parameters of the SIR + CT model are the probability
β that an infected individual passes the disease to each of
their susceptible neighbors and the probability μ that an in-
fected individual is removed (due to either recovery or death).
That is, at each time step, infected nodes can infect any
neighbors with probability β, while infected nodes recover
with probability μ. When a node i equipped with a CT app
gets infected, then all neighbors j having a CT app installed
get instantaneously recovered. This dynamic mimics an ideal
test-trace-isolate system where nodes equipped with CT apps
isolate immediately on receiving the notification of a contact
with a positive individual.

We call the contact graph G(V, E ), with N = |V | nodes and
K = |E | edges, and we denote by G′(V ′, E ′) the subgraph of
G induced by CT app installations, i.e., such that V ′ is the
set of nodes in G with CT apps and E ′ is the set of edges
among nodes in V ′. We quantify the effect of the installation
of CT apps in a certain subset V ′ of nodes by computing
the reduction of the basic reproduction number R0, that is,
the expected number of secondary infections caused by a
single contagion event. Let us assume that the generic node
� is infected and has passed the disease to neighbor i. The
expected number Ri of secondary infections caused by i while
it remains infected depends on whether i is in V ′ and on how
many of its ki neighbors are in V ′ as well. In particular, if
i /∈ V ′, Ri = β

μ
(ki − 1) as in the classical SIR (we have to

remove � from the count, hence the ki − 1) [10]. If i ∈ V ′,
instead there are two possible cases: (1) If � /∈ V ′, the contact
between � and i remains undetected, and i will infect on
average Ri = β

μ
(ki − 1) more nodes as in the classical SIR.

(2) If instead � ∈ V ′, then the contact with i gets detected
by the CT system and i goes into self-isolation immediately,
thus avoiding any secondary infection. If we denote by k′

i the
degree of node i in G′, the expected number of infections
caused by the infection of i is equal to

Ri = β

μ
(ki − 1)

ki − k′
i

ki
,

and the expected number of secondary infections caused by
each node infected by � is given by

R� = β

μ

1

k�

∑
i

a�i(ki − 1)
ki − k′

i

ki
,

where a�i are the entries of the adjacency matrix of the contact
graph G. By averaging R� over all the nodes of G we obtain
the value of the basic reproduction number in the presence of
CT (see Appendix C for details of the derivation),

R′
0 = R0 − 1

N

β

μ

∑
�

1

k�

∑
i

a�i
k′

i

ki
(ki − 1) (1)
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FIG. 2. Effect of different CT strategies on the induced subgraph as a function of app adoption rate r. (a) The ratio R′
0/R0 as a function of the

CT adoption rate r for the RND, DEG, DTI, and SA strategies calculated using Eq. (1). (b) Average degree of G′ as a function of the adoption
rate r for each of the strategies. The theoretical predictions for the RND and DEG strategies (solid lines) were obtained using Eqs. (B3) and
(B13), respectively. (c) Second moment of the degree distribution of G′ as a function of the adoption rate r for each of the strategies. The plots
correspond to an ensemble of configuration model graphs with degree distribution P(k) ∼ k−3 and N = 104 nodes. Results averaged over 100
realizations.

where R0 is the basic reproduction number of the classical
SIR dynamics on G [10]. As made clear by Eq. (1), we can
minimize the value of R′

0 by using a generic optimization
algorithm to compute

max
G′

F (G′) =
∑

�

1

k�

∑
i

a�i
k′

i

ki
(ki − 1), (2)

over the ensemble of possible choices of G′. Notice that if
the entire population installs CT apps (i.e., if k′

i = ki ∀i ∈ V )
we trivially get R′

0 = 0 (see Appendix C and Supplemental
Note 1 for details [45]). This formulation is valid for networks
with any number of nodes N with or without degree-degree
correlations and not necessarily being treelike.

B. CT targeting strategies

If we assume that we can install the CT app only to a
fraction r ∈ [0, 1] of “willing” individuals, Eq. (2) states that
a good CT installation strategy should include in G′ nodes
having a high degree in G (so that the ratio (ki−1)

ki
is as large as

possible) and, at the same time, a high number of connections
to other nodes in G′ (i.e., so that k′

i is as large as possible). The
most basic strategy to select a fraction r of the N individuals
to install CT apps consists in asking the population to install a
CT app on their mobile phones under the assumption that each
individual will comply with probability equal to r, irrespective
of any of their specific social or behavioral characteristics. In
this case, the total number of installations will be distributed
according to a binomial with mean equal to rN . In the fol-
lowing, we call this strategy “uniform random installation”
(RND).

A second strategy consists in explicitly targeting all the
potential super-spreaders [46,47]. In practice, we ask the rN
individuals with the largest number of contacts (links) in G
to install the app, assuming that they will all comply with
probability 1. This strategy is indeed utopistic since it requires
full knowledge of the contact network and full compliance
by the selected nodes. In the following we call this strategy
“degree-based installation” (DEG).

Here we propose and study a constructive strategy to max-
imize Eq. (2) that does not require detailed global information

on G and thus lends itself easily to a distributed implementa-
tion. We start from a CT set that contains only the node with
the largest degree in G. Then, at each subsequent step t , we
add to the CT set one of the neighbors i of any of the nodes in
V ′ with probability proportional to the total number of neigh-
bors of that node that are already in V ′ (see Appendix A for
details). This creates a “social pressure” on individuals with
no CT app installed which is proportional to the number of
their contacts already in V ′. We call this strategy “distributed
targeting installation” (DTI). Notice that the choice of the
initial node is not that important, and qualitatively similar
results are obtained when the first node is chosen uniformly
at random rather than according to its degree.

In Fig. 2(a) we plot the ratio R′
0

R0
as a function of the CT

adoption rate r for the RND, DEG, and DTI strategies on
an ensemble of configuration model graphs with power-law
degree distributions. As a reference, we also report the results
obtained by optimizing Eq. (2) by means of simulated anneal-
ing (SA). It is worth noting that RND is the worst-performing
strategy overall, characterized by a much slower decrease
of R′

0 with r. Conversely, DEG is close to the theoretical
limit established by SA and produces a noticeable decrease
of R0 already for quite small values of r. Remarkably, the
performance of DTI is quite close to that of DEG, although
DTI is not using any global information about the structure of
G. In Figs. 2(b) and 2(c) we show how the first and second
moments of the degree distribution P̃(k′) of the subgraph G′
vary with r for each of the four strategies. More details on
the derivation of the full degree distribution of G′ in RND and
DEG are reported in Appendix B, while Supplemental Fig. S1
[45] shows the perfect agreement between the empirical and
the analytical degree distributions for these two strategies.

It is worth noting that under the DEG strategy, 〈k′〉 in-
creases very sharply with r and is already quite similar
to the value of 〈k〉 in G for very small values of r. On
the other hand, in RND, 〈k′〉 increases only linearly with r
(see Appendix B for details) while the performance of DTI is
in between those two. However, these plots make it clear that
the sheer density of G′ is not the only important ingredient for
CT app installation. Indeed, SA can attain consistently lower
values of R′

0
R0

than DEG, although the values of 〈k′〉 produced
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FIG. 3. Impact of CT strategy and adoption rate on the epidemic peak of SIR + CT in real-world networks. The evolution of the disease
in a SIR + CT model (here for β = 0.1, μ = 0.05) depends heavily on the adoption rate r and on the strategy used to select which individuals
will have a CT app installed. We show here the results on two real-world social networks, namely, the high-resolution face-to-face contact
data recorded in a high school (a–d) and a workplace (e–h), respectively. We have applied a threshold to both contact networks: Keeping only
contacts larger than 240 links for the high school and 10% of the links with the largest weight for the workplace (See Appendix D for details).
The high school graph contains 117 nodes and 332 edges whereas the workplace has 208 nodes and 1656 edges. At adoption rate r � 0.4, the
RND strategy (a, e) displays a higher percentage of infected compared with DTI (b, f), DEG (c, g), and SA (d, h). These differences are likely
linked to the structure of the subgraph induced by each CT strategy. Typical examples of those graphs for each strategy and r = 0.3 are shown
in the insets, where the size of each node is proportional to its degree and nodes with CT app installed are indicated in blue.

by SA are almost identical to those provided by DEG [see
Fig. 2(b)].

C. SIR + CT in real-world graphs

In Fig. 3 we show the ratio of infected nodes I (t ) for the
four strategies with different values of r on two real-world
contact networks, the network of friendship in a high school
(top panels) and at a workplace (bottom panels), respectively
[48]. Here each simulation is performed by initially infecting
one seed node chosen uniformly at random. In the inset of
each panel we report a typical composition of V ′ for each
strategy. It is evident that, even at low adoption rates, the DEG
and DTI strategy can heavily mitigate the incidence of the
disease better than RND. This is most probably due to the fact
that DEG and DTI are targeting different sets of nodes than
RND and in general end up selecting nodes with high degree
which results in a higher edge density in G′.

The dynamics of SIR + CT in the two systems exhibit
some noticeable qualitative differences when distinct strate-
gies are adopted with respect to the height of the infection
peak (the maximum incidence of the disease), the actual posi-
tion of the peak (the time at which it occurs), and the overall
duration of the epidemic. Interestingly, the position of the
peak shifts to the right (delays) at small values of r for the
DEG, DTI, and SA strategies. Conversely, the peak starts to
recede (it is anticipated) with respect to the baseline when r
becomes larger than a certain threshold, which depends on the
particular structure of the contact network. While low values
of r lead to a delay in the dynamics—the peak shifts to the
right—large enough values of r effectively break the network
into a number of disconnected components, resulting in a

considerable disruption of the spreading—the peak shifts to
the left.

Notice that the results shown in Fig. 3 correspond to
R0 = 2. In general, R0 is disease dependent and its value
deeply affects the evolution of an epidemic. However, in the
proposed model, the actual value of R0 does not alter the
qualitative behavior of the dynamics since we assumed that
there is no delay in the notification of contacts with infected
individuals. Indeed, as can be seen in Eqs. (C3) and (C6) in
Appendix C, μ and β only change the slope of the dynam-
ics but not its overall qualitative behavior. In other words, a
higher value of R0 would make the dynamics faster but not
qualitatively different. Conversely, if we consider a model
with delay in the reporting of cases, as the one discussed in
the Supplemental Information [45], R0 could have a stronger
impact since the disease could spread faster than the notifi-
cation of contacts with infected individuals [33,41]. To better
understand these qualitative differences, we look at three key
properties of the epidemic curve, namely, the total number of
individuals recovered R∞, the maximum number of individu-
als infected across the duration of the epidemic I (tpeak ), and
the time to reach the infection peak tpeak. In particular, we
compute the relative performance of each strategy s (DEG,
DTI, or SA) with respect to RND using the quantities,

�Rs
∞ = 1 − Rs

∞
RRND∞

�Is(tpeak ) = 1 −
Is
tpeak

IRND(tpeak)

�t s
peak = 1 − t s

peak

tRND
peak

. (3)
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Comparison of epidemic indicators under different CT strategies. Relative decrease with respect to random installations of the
total number of recovered �Rs

∞, height of the infection peak �Is(tpeak ), and position of the peak �t s
peak [see Eq. (3)] for DTI-, DEG-, and

SA-targeted installation in the same contact networks shown in Fig. 3. The inset of each panel reports the plot of the raw variable R∞ (panels
a and d), I (tpeak ) (panels b and e), and tpeak (panels c and f), respectively.

The results are shown in Fig. 4. We found that in the high
school network an adoption rate of r = 0.2 can decrease the
number of infected individuals at the peak by as much as 40%
[Fig. 4(b)] for all three strategies. At the same adoption rate,
the total number of infected individuals decreases by 20%
[Fig. 4(a)] and the peak is delayed by approximately 40%
[Fig. 4(c)]. For r = 0.5, we observe a substantially stronger
mitigation where the peak is reduced by up to 70% and the
total number of infected is reduced by up to 80%. The effec-
tiveness of targeting strategies is somehow less pronounced
in the workplace graph at similar adoption rates (bottom pan-
els). Interestingly, in both networks the DTI strategy performs
similarly to DEG and SA, as can be observed in the insets in
Fig. 4, which show the raw values of R∞, I (tpeak ) and tpeak.

We simulated the SIR + CT dynamics in 84 unique real-
world contact network data sets filtered by applying two
different thresholds for a total of 168 undirected graphs
[48–55] (see Appendix D for details). In Figs. 5(a)–5(c) we
report the Spearman correlation between the analytical R′

0 and
the epidemiological indicators R∞, I (tpeak ) and tpeak for the
RND, DEG, and DTI strategies with several adoption rates r,
respectively. The correlation with both R∞ and I (tpeak ) is high
for the three strategies confirming the analytical predictions of
Eq. (1) despite the small size of the graphs and the presence
of degree-degree correlations. Still, as r increases we observe
a decrease in the correlations likely due to finite size effects.
The correlation between R′

0 and tpeak displays a much richer
behavior: We start with a significant but negative correlation
for small r, which changes sign until it reaches a maximum.
We conjecture that the change of sign is related to the move-
ment of the peak: Whereas in the small-r regime lower values
of R′

0 contribute to a delay of the peak, for larger values of
r we observe a stronger anticipation of the peak. The value
rpeak at which the correlation peaks depends on the strategy
in use; the more efficient it is, the lower the value of rpeak.

The concrete value of rpeak seems thus related to the actual
structural properties of the graphs.

In a realistic scenario, in which the adoption rate is not
fixed but needs to be promoted, we might be more interested
in the minimum adoption rate r∗ needed on each network to
obtain a given reduction of the infection peak with respect to
the absence of contact tracing. In Figs. 5(d)–5(f) we report the
histograms of the value of r∗ in DTI and RND for the 168
networks when we set a reduction in the peak I (tpeak ) of 10,
30, and 50%, respectively. We found that DTI can achieve a
reduction of 30% of the peak in 85% of the networks with
an adoption rate smaller than 0.3 [panel (e)], while the RND
strategy would need an adoption rate of 0.5 to achieve an
equivalent reduction.

While the strategies analyzed here require some level of
global information and full compliance by individuals to in-
stall the app, we have obtained qualitatively similar results
with other decentralized strategies based on local information
and with a tunable level of compliance (see Supplemental
Note 2 and Supplemental Figs. S2–S7 for details [45]). These
strategies are inspired by the friendship paradox in social
networks [56,57], which has been previously considered to
implement efficient vaccination protocols [58–60]. The para-
dox states that, on average, in any graph each individual is
more likely to have fewer friends than its own friends do,
which is often expressed by saying that “your friends are more
social than you are”. We consider this concept to construct
node rankings based on a simple and decentralized “voting”
system. Furthermore, qualitatively similar results are also ob-
tained when considering a SIR + CT with maximum delay,
i.e., where an individual with a CT app installed goes into
quarantine only when they become infected (see Supplemen-
tal Note 3 and Supplemental Figs. S7–S9 [45]). Although we
already know that the expansion of infectious diseases usually
depends on the age and socioeconomic status of individuals
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Correlations with network structural measures and performance of CT strategies to mitigate an epidemic. For the 168 real-world
contact networks analyzed, panels (a–c) report as a function of r the Spearman rank correlation between the analytical value of R′

0 [Eq. (1)] and
the epidemiological indicators Rs

∞ (purple), Is(tpeak ) (orange), and t s
peak (blue) for the RND (a), DEG (b), and DTI (c) strategies. Panels (d–f)

show the distribution of minimum adoption ratios r∗ needed to produce 10% (d), 30% (e), and 50% (f) for the DTI (red) and RND (green)
strategies. Overall, DTI largely outperforms RND, which is the strategy currently adopted by many governments.

[61,62], large contact networks containing such information
are not yet widely available.

The present work provides a simple theoretical framework
to optimize the installation of CT apps in order to contain
the spread of an infectious disease in its early stages when
vaccines are either not yet available or scarce. Our framework
could be easily extended to include other compartments such
as presymptomatic or asymptomatic subjects, which have
proven to play an important role in the SARS-CoV2 pandemic
as well as in other infectious diseases [14,19,63].

III. DISCUSSION

We have shown here that the random CT app installation,
which has been widely considered in recent studies on the
topic [36–38], is the least effective strategy to mitigate the
effects of a pandemic through CT. The theoretical argument
presented here, which links the reduction of R0 to the structure
of the subgraph G′ induced by CT, holds for any graph under
any CT strategy. In particular, Eq. (1) provides a tangible
recipe to maximize the effectiveness of a CT app deployment
as we have shown for many real-world contact networks.

The reduction of a disease incidence attainable by the DTI
strategy is comparable with degree-based targeting, which
performs similarly to the optimal targeting obtained through
SA (see Supplemental Note 1 for details [45]). A notable
advantage in using DTI over DEG is that it does not require
any global information about the graph G and it can be imple-
mented in a distributed manner. For instance, one could ask
every new individual who installs the CT app to broadcast a
message to all their contacts asking them to install it as well.

By doing so, each contact with no app installed will be subject
to a level of “social pressure” linearly proportional to the
number of contacts who already have the CT app installed
(in agreement with the heuristic algorithm of which DTI is
based), consequently increasing the likelihood that the other
person will also install it.

Although several effective vaccines for COVID-19 have
recently been made available [64], mass vaccination cam-
paigns are at their initial stages in many countries and
might last for several months before a sufficient percentage
of the population is vaccinated. Moreover, variants of the
SARS-COV-2 may develop vaccine resistance and prolong the
duration of the epidemic, creating an unsustainable loop of
vaccine updates and vaccination campaigns. Hence reducing
the spread of the virus by detecting potentially infected indi-
viduals and limiting their contacts–through digital CT—is still
essential [65].

The model we considered here includes only some styl-
ized features of a real-world epidemic, but the methodology
we presented and the results we obtained pave the way to
a deeper understanding of the effectiveness of CT systems.
A direct application of these results to a real-world scenario
would need to take into account several other ingredients.
For instance, perfect compliance with public policy mandates
(i.e., installation of CT apps) and the absence of any de-
lay in the notification of individuals who test positive are
just two simplistic assumptions that are easily false in a
realistic setup. Nevertheless, the derivation proposed here
points unmistakably to the central role played by appropriate
CT app installation strategies. By following the same sim-
ple principles, governments could significantly improve the
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effectiveness of CT programs even when more realistic factors
are considered.

The contact networks used to model the epidemic spread-
ing are public and have been published in Ref. [48].
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APPENDIX A: DTI STRATEGY

The proposed heuristic constructive algorithm to optimize
Eq. (1), denominated DTI, starts with a set V ′(t = 0) contain-
ing the node of largest degree in G. At each step t , we consider
the set S(t ) of nodes which have at least one neighbor in V ′(t );
then, a node i is selected at t + 1 from S(t ) and added to V ′(t )
with probability,

P(i; t ) =
∑

j ∈ V ′(t )ai j∑
i∈S(t )

∑
j∈V ′(t ) ai j

, (A1)

i.e., node i is selected linearly proportional to the number of
neighbors it has in V ′(t ).

APPENDIX B: PROPERTIES OF THE SUBGRAPH
INDUCED BY APP INSTALLATION

We provide here a sketch of the derivation of the first
two moments of the degree distribution of the subgraph G′
obtained from a graph G by considering only the nodes which
have the contact-tracing app installed and the edges among
them. The full derivations are provided in Supplemental Note
1 [45]. In the case of random installation strategy, the prob-
ability that a node installs the CT app is uniform across all
nodes. As a consequence, the probability that a node with
degree k in G has degree k′ in G′ is given by the binomial
distribution

P(k′|k) =
(

k

k′

)
rk′

(1 − r)k−k′
. (B1)

This means that the expected degree in G′ of a node that has
degree k in G is just

E [k′
i] = rki. (B2)

The degree distribution of the subgraph G′ can be obtained
by summing the probability in Eq. (B1) over all possible
values of k, from which we obtain

P̃RND(k′) =
N−1∑
k=0

P(k)

(
k

k′

)
rk′

(1 − r)k−k′
.

Finally, for the first two moments of P̃RND(k′) we get

〈k〉RND =
N−1∑
j=0

jP̃RND( j) = r〈k〉G (B3)

and

〈k2〉RND =
N−1∑
j=0

j2P̃RND( j) = r2〈k2〉G + r(1 − r)〈k〉G. (B4)

To compute the degree distribution of G′ for degree-based
installations, we start from the observation that a node is in G′
only if its degree is ki � k̃, where k̃ is obtained by solving the
inequality

N∑
k̃

P(k) � r, (B5)

where P(k) is the degree distribution of G. Now the probabil-
ity that one of the ki neighbors of i is in G′ is equal to

Qk̃ (i) =
N−1∑
k=k̃

Pk|ki , (B6)

where Pk|ki is the conditional probability of finding in G a node
with degree k by following one of the edges of a node with
degree ki, chosen uniformly at random. In the special case of
graphs with no degree-degree correlations, Pk|ki = kP(k)

〈k〉 = qk ,
so we have

Qk̃ (i) =
N−1∑
k=k̃

qk = r̃ ∀i. (B7)

In the absence of degree-degree correlations, the probability
of any two nodes to be connected does not depend on their
degree, by definition. Hence the probability that a node of G′
has a degree equal to k′ (provided that it has degree equal to k
in g) is given again by the binomial distribution

P(k′|k) =
(

k

k′

)̃
r k′

(1 − r̃ )k−k′
, k � k̃, (B8)

while P(k′|k) = 0 if k < k̃. In particular, this means that the
expected value E [k′

i] is equal to

E [k′
i] = r̃ki. (B9)

Notice that r̃ has the same role that r has in the equations for
uniform random installation. With an argument in all similar
to that used for random installation, we obtain

P̃(k′) =
N−1∑
k=k̃

P(k)

(
k

k′

)̃
r k′

(1 − r̃ )k−k′
. (B10)

Here P̃(k′) represents the probability to find a node of G which
has degree k′ in the subgraph induced by app installations.
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To obtain the actual degree distribution in the induced sub-
graph, i.e., the probability that one of the nodes of G′ has
degree k′, we must rescale P̃(k′) to the nodes in G′, i.e., we
consider the probability distribution

P̃DEG(k′) = 1

r
P̃(k′). (B11)

It is easy to show that P̃DEG(k′) is correctly normalized

rN−1∑
k′=0

P̃DEG(k′) = 1

r

rN−1∑
k′=0

N−1∑
k=k̃

P(k)

(
k

k′

)̃
r k′

(1 − r̃ )k−k′

= 1

r

N−1∑
k=k̃

P(k)
rN−1∑
k′=0

(
k

k′

)̃
r k′

(1 − r̃ )k−k′

= 1

r

N−1∑
k=k̃

P(k) = 1. (B12)

The average degree in the induced graph is obtained as
follows

〈k〉DEG =
rN−1∑
k′=0

k′P̃DEG(k′)

= 1

r

N−1∑
k=k̃

P(k)
rN−1∑
k′=0

k′
(

k

k′

)̃
r k′

(1 − r̃ )k−k′

= 1

r

N−1∑
k=k̃

P(k)k̃r = r̃

r

N−1∑
k=k̃

kP(k) = r̃2

r
〈k〉, (B13)

where we have used the fact that
∑N−1

k=k̃
kP(k) = r̃〈k〉 as per

the definition of r̃ in Eq. (B7). Similarly, for the second mo-
ment we obtain

〈k2〉DEG =
N−1∑
k′=0

k′2P̃DEG(k′)

= 1

r

N−1∑
k=k̃

P(k)
rN−1∑
k′=0

k′2
(

k

k′

)̃
r k′

(1 − r̃ )k−k′

= 1

r

N−1∑
k=k̃

P(k)[k̃r + k(k − 1)̃r2]

= r̃2

r

⎡⎣(1 − r̃ )〈k〉 +
N−1∑
k=k̃

k2P(k)

⎤⎦. (B14)

APPENDIX C: REDUCTION OF R0 UNDER IDEAL CT

We derive here a general expression for the effective value
of the expected number of secondary infections caused by
a single infection in a graph with perfect CT under the as-
sumption that a fraction r of the nodes has installed a CT
app. Assuming that a generic node � is infected, we want
to estimate the number of secondary infections caused by a
node i infected by �. The number of neighbors Ri that can be
infected by i depends on whether i has the CT app installed
and on how many of its neighbors have their app installed. In

particular, if i does not have the app, Ri = β

μ
(ki − 1), since we

have to remove the neighbor from which i got the disease. If i
has a CT app installed, instead, there are two possible cases.

(1) If the node � who infected i has the CT app, then the
infection has been “detected” by the app and i goes into self-
isolation immediately. If this happens, i will not produce any
secondary infection in the graph.

(2) If i got infected by a neighbor without the CT app, then
the infection remains undetected, and the expected number of
nodes i can infect is given by Ri = β

μ
(ki − 1) as in the classical

SIR (we have to remove l from the count; hence the ki − 1).
If we take both possibilities into account, the expected

number of infections needs to be multiplied by the probability
that the infection of i goes undetected,

Ri = β

μ
(ki − 1)

ki − k′
i

ki
, (C1)

where the term ki−k′
i

ki
is the probability that the infection of

node i does not get detected by the CT system. When k′
i = ki,

the node i and all its neighbors have the CT app installed
producing Ri = 0. If, instead, node i is not in the CT subgraph,
we recover Ri = β

μ
(ki − 1). Hence the expected number of

secondary infections caused by a contact of � with one of its
neighbors is given by

R� = β

μ

1

k�

∑
i

a�i(ki − 1)
ki − k′

i

ki
, (C2)

where a�i are the entries of the adjacency matrix of G. By
averaging R� over all the nodes of the graph we get the value
of the basic reproduction number with CT,

R′
0 = 1

N

∑
�

1

k�

∑
i

a�iRi

= β

μN

∑
�

1

k�

∑
i

a�i(ki − 1)
ki − k′

i

ki

= β

μN

[∑
�

1

k�

∑
i

a�i(ki − 1)

−
∑

�

1

k�

∑
i

a�i
k′

i

ki
(ki − 1)

]
. (C3)

This equation holds in general for any graph with any CT
strategy. Notice that the quantity

1

N

∑
�

1

k�

∑
i

a�i(ki − 1) (C4)

is the expected excess degree of the neighbors of a randomly
sampled node of G. In other words, it is equal to 〈knn(i)〉 − 1,
where knn(i) is the average degree of the neighbors of node
i. The basic reproduction number of the original graph G is
equal to

R0 = β

μ

1

N

∑
�

1

k�

∑
i

a�i(ki − 1), (C5)

that is, the average degree of the neighbors of a randomly
selected nodes of G, multiplied by β

μ
. Hence we can conve-
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niently rewrite Eq. (C3) as

R′
0 = R0 − 1

N

β

μ

∑
�

1

k�

∑
i

a�i
k′

i

ki
(ki − 1). (C6)

In the special case when G has no degree-degree correlations,
we have

〈knn(i)〉 =
∑

k′
k′P(k′|k) =

∑
k′

k′2

〈k〉P(k′) = 〈k2〉
〈k〉 ∀i,

(C7)
where we have considered that P(k′|k) = k′P(k′ )

〈k〉 = qk′ in un-
correlated graphs. Hence we can write

R0
nc= β

μ

[ 〈k2〉
〈k〉 − 1

]
, (C8)

and we can rewrite Eq. (C3) as

R′
0

nc= β

μ

[
〈k2〉
〈k〉 − 1 − 1

N

∑
�

1

k�

∑
i

a�i
k′

i

ki
(ki − 1)

]
. (C9)

As expected, the effect of CT is to reduce the basic reproduc-
tion number of the original graph. In general, Eq. (C6) [or Eq.
(C9) in uncorrelated graphs] provides a recipe to maximize the
impact of CT app installation. Indeed, given a certain adoption
rate r, we can use any optimization algorithm to maximize the
fitness function

max
G′

F (G′) =
∑

�

1

k�

∑
i

a�i
k′

i

ki
(ki − 1) (C10)

over the ensemble of of the possible choices of G′. Notice that
F (G′) can be decomposed in two terms. The first one is∑

�

1

k�

∑
i

a�ik
′
i, (C11)

that is, the sum of the expected degrees in the induced sub-
graph G′ of the neighbors of nodes in G, while the second

one is ∑
�

1

k�

∑
i

a�i
k′

i

ki
, (C12)

i.e., the sum of the average fraction of degree in G′ and degree
in G of all the neighbors of nodes in G.

APPENDIX D: DATA DESCRIPTION AND SET OF
NETWORKS STUDIED

In this work we considered 84 unique contact network
data sets constructed from two different types of data: (i)
Temporal network data, which provide information regarding
the different contacts between individuals and the duration
of each interaction. (ii) Static network data, where the con-
tacts have been already aggregated for the whole duration
and a corresponding weight is associated with each link. We
reconstructed each network considering two distinct filtering
thresholds by either time—in seconds for type (i)—or by frac-
tion of links retained—weight values for type (ii)—resulting
in 168 unique graphs.

For the networks of type (i), we considered hospital [50]
and high school [67] temporal data sets from which we filtered
the contacts by applying thresholds of 240 and 360 s, i.e.,
each temporal snapshot resulted in a distinct network. For
an art gallery [68] we used the thresholds of 0 and 20 s.
Notice that we selected these threshold values since they pro-
vide the largest connected component for each network. The
type (ii) networks obtained from the “Sociopatterns” project
include the contacts between individuals with a weight that
corresponds to either the number of contacts or their duration
[48,52,53]. Given that most type (ii) networks are densely
connected and a significant proportion of the weights have
small values, we filter the networks by keeping the top 25
and 10% links with the largest weights. A list of all net-
works considered here is reported in Supplemental Material
Table S1 [45].
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