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Quantum convolutional neural networks for high energy physics data analysis
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This paper presents a quantum convolutional neural network (QCNN) for the classification of high energy
physics events. The proposed model is tested using a simulated dataset from the Deep Underground Neutrino
Experiment. The proposed quantum architecture demonstrates an advantage of learning faster than the classical
convolutional neural networks (CNNs) under a similar number of parameters. In addition to the faster conver-
gence, the QCNN achieves a greater test accuracy compared to CNNs. Based on our results from numerical
simulations, it is a promising direction to apply QCNN and other quantum machine learning models to high
energy physics and other scientific fields.
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I. INTRODUCTION

High energy physics (HEP) communities have a long
history of working with large data and applying advanced
statistics techniques to analyze experimental data in the en-
ergy, intensity, and cosmic frontiers. With ever-increasing data
volumes, the HEP community needs a significant compu-
tational breakthrough to continue this trajectory, and tools
developed in quantum information science (QIS) could pro-
vide a viable solution. Quantum supremacy is the potential
to solve problems faster than any classical methods [1,2].
In computational-complexity-theoretic terms, this generally
means providing a superpolynomial speedup over the best-
known or possible classical algorithm [3]. In this paper, we
shall use quantum advantage to denote that quantum devices
have certain edges over classical ones, not necessarily with
superpolynomial speedup.

Machine learning methods promise great benefits for scal-
able data analytics. The big wave of deep learning algorithm
development stems from recent advances in convolutional
neural networks (CNNs) [4–9], which can effectively capture
spatial dependencies within an image, as well as automati-
cally learn important features from them [6–8,10,11]. Along
with big data and graphics processing unit (GPU) process-
ing capabilities, deep learning has significantly improved the
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ability to analyze large volumes of images. There are sev-
eral examples where CNNs have been successfully applied
to HEP challenges using classical computers [12–17]. How-
ever, in quantum computing, no significant progress has been
made toward implementing such robust representation learn-
ing methods to date. Despite this, it is important to explore
the power of quantum machine learning, which has recently
attracted substantial interests [18–22].

In this paper, we present a new hybrid quantum convo-
lutional neural network (QCNN) framework to demonstrate
the quantum advantage versus corresponding classical algo-
rithms. We simulate its performance for classification of HEP
events from the simulated data in neutrino experiments. We
show that with a similar number of parameters in the QCNN
and classical CNNs, the QCNN can learn faster or reach better
testing accuracy with fewer training epochs. Thus, our simula-
tions demonstrate potentially an empirical quantum advantage
of QCNNs over CNNs in terms of testing accuracy. This paper
is organized as follows: Section II introduces the HEP experi-
mental data used in this paper. In Secs. III and IV, we describe
the new QCNN architecture in detail. Section V shows the
performance of the QCNN on the experimental data. Finally
we discuss the results and potential future works in Sec. VI
and offer concluding remarks in Sec. VII.

II. HIGH ENERGY PHYSICS DATA

In this paper, we use simulated data from the Deep Under-
ground Neutrino Experiment (DUNE) [23] to develop and test
our QCNN algorithms on high-energy experiments. Hosted in
the United States, DUNE is the next-generation, international,
world-class experiment to reveal new symmetries of nature.
DUNE’s primary goals include searching for CP violation
in the lepton sector, determining the neutrino mass ordering,
performing precision tests of the three-neutrino paradigm, de-
tecting supernova neutrino bursts, and searching for nucleon
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FIG. 1. Example images of simulated particle activities (μ+, e−,
π+, p) in a LArTPC detector. Colors in the images represent the
sizes of the ionization energy loss along the particle trajectories when
measured by LArTPC’s wire planes.

decays beyond the standard model. DUNE is an excellent test
case for the QCNN because its main detector technology, the
liquid argon time projection chamber (LArTPC), effectively
provides high-resolution images of particle interactions as the
ionized electrons drift toward the multiple sensing wire planes
[24–27]. An advanced LArTPC simulation package, the Wire-
Cell Toolkit [28] and LArSoft software [29], is used to
generate realistic single-particle images in a LArTPC detector.
The simulation implements a chain of algorithms, includ-
ing: (1) generating single-particle kinematics, (2) applying
LArTPC detector response, (3) adding realistic electronic
noise, and (4) performing digital signal processing. Details
about the LArTPC simulation can be found in Ref. [30]. Four
different types of particles (μ+, e−, π+, and p) are simulated.
Figure 1 shows sample images of simulated particle activities
on the collection wire plane. The images have a resolution of
480 × 600 pixels, where each pixel in the x axis represents a
single wire and each pixel in the y axis represents a sampling
time tick. In this paper, the goal of the QCNN is to predict the
types of different particles by analogy with those performed
via the classical CNN [16]. Each particle’s momentum is set
such that the mean range of the particle is about 2 meters, so
the classification is not sensitive to the image size.

As visualized in Fig. 1, the classification of the four dif-
ferent particles primarily is a pattern recognition problem. A
positively charged muon (μ+) is a track-like particle, while
an electron (e−) produces electromagnetic showers that are
spatially extended. A muon is a minimum ionizing particle in
terms of energy loss along its trajectory, which translates into
the intensity of the pixels. It experiences multiple Coulomb
scattering (MCS) when passing the detector, causing its tra-
jectory to deviate from a straight line. It also decays into a
low-energy positron after it loses most of the kinetic energy
and stops in the detector, leading to another short track seg-
ment near the end of the main track. A positively charged pion
(π+) looks similar to a muon in terms of energy loss, MCS,
and decay, but it experiences additional nuclear interactions
during its passage in the detector, often leading to a hard
scattering (manifested as a “kink”) along its main trajectory.
Finally, a proton (p) also is a track-like particle. However,
because a proton’s mass is much heavier than a muon or pion,
it has higher energy loss and encounters less MCS during
travel. Consequently, a proton’s track has higher intensity and
is straighter than those from muons or pions.

These diverse features in detector images make the
LArTPC data analysis well suited for CNN-type machine
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FIG. 2. General structure for the variational quantum circuit
(VQC). The F (x) is the quantum operation for encoding the classical
data into the quantum state and V (θ) is the variational quantum
circuit block with the adjustable parameters θ.

learning algorithms rather than hand-crafted feature extraction
methods. Previous work with LArTPC has shown excellent
performance from single-particle classification [16] to the
more complicated neutrino interaction classification [31]. In
this paper, we design and perform a quantum implementa-
tion of a classical CNN through variational quantum circuits
(VQC) in LArTPC data analysis. We refer to this quantum
CNN as QCNN. By comparing the performance to the clas-
sical CNN, we explore possible quantum acceleration and
advantage in machine learning for HEP data analysis.

III. VARIATIONAL QUANTUM CIRCUITS

VQCs are quantum circuits that have tunable or adjustable
parameters subject to classical iterative optimizations, which
are commonly based on the gradient descent and its vari-
ants [22,32]. The general structure of a VQC is presented
in Fig. 2. Here, the F (x) block is for the state preparation
that encodes the classical data x into the quantum state for
the circuit to operate on and is not subject to optimization.
This state preparation part is designed according to the given
research problem. The V (θ) block represents the variational
or learning part. The learnable parameters labeled with θ

will be optimized through gradient-based methods. For ex-
ample, commonly used gradient-based optimizers are Adam
[33] and RMSProp [34]. Conceptually, these parameters are
comparable to the weights in classical deep neural networks
(DNNs). In the final part of this VQC block, we perform
the quantum measurement on a subset (or all) of the qubits
to retrieve the information. If we run the circuit once and
perform a single quantum measurement, it will yield a bit
string, such as 0010, and it generally differs from what we
will get if we prepare the circuit again and perform another
quantum measurement due to the stochastic nature of quan-
tum systems. However, if we prepare the same circuit and
perform the quantum measurement multiple times, e.g., 1000
times, we will get the expectation values on each qubit, which
should be quite close to the results from theoretical calcula-
tion. For example, consider a two-qubit system |�〉, in every
single measurement, the result is one of the following: 00, 01,
10, and 11. If we prepare |�〉 and measure it 1000 times,
we will get numerous measurements of 00, . . . , 11. We can
count the frequencies of the appearances of 0 or 1 for each
qubit and use them to estimate the expectation values. For
example, if after 1000 repeated measurements, we get 600
measurements of 0 and 400 measurements of 1 in the first
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qubit, then the expectation value of the first qubit is 0.4. In
an N-qubit system, we place the expectation values of all
qubits into a N-dimensional vector, which can be processed
further in classical or quantum neural networks. We may
choose different bases for the measurement. For example, in
this paper, we exclusively use the Pauli-Z expectation values
at the end of the VQC. Although VQCs are simple in concept,
they are successful in machine learning tasks. Recent studies
have reported the application of such variational architectures
in the field of classification [18,19,21,22,35–40], function
approximation [18,41,42], generative machine learning
[43–47], metric learning [48,49], deep reinforcement learning
[50–53], sequential learning [41,54], and speech recognition
[55].

IV. QUANTUM CNN

CNNs have been tremendously successful in a wide spec-
trum of modern machine learning tasks, especially in the
area of computer vision [4,6–8,10,11]. Such methods also
allow new insights and progress in scientific research, for
example, in HEP event classification [13–17] and phase
transition studies [56]. With recent advances in quantum
computing hardware [1,57,58], it is interesting to study the
potential advantages and application scenarios for CNNs in
the quantum regime. The QCNN is our proposed frame-
work that uses VQCs to perform the convolutional operations.
In this paper, we replace the classical neural-network-based
convolutional filters, or kernels, with VQCs to harvest the
expressive power granted by quantum entanglements. The
quantum convolutional kernels will sweep through the input
image pixels and transform them into a representation vec-
tor of lower dimensions by performing measurements (see
Fig. 4).

A stack of VQCs will ensure features of varied length
scales are captured in different layers.

A. Quantum Convolutional Filters

This section describes the VQC building blocks for the
QCNN architecture.

1. Data Encoding Layer

In this layer, we first encode a classical input vector into a
quantum state, which is necessary for additional processing.
A general N-qubit quantum state can be represented as:

|ψ〉 =
∑

(q1,q2,...,qN )∈{0,1}N

cq1,...,qN |q1〉 ⊗ |q2〉

⊗ |q3〉 ⊗ ... ⊗ |qN 〉 , (1)

where cq1,...,qN ∈ C is the amplitude of each quantum state
and qi ∈ {0, 1}. The square of the amplitude cq1,...,qN is the
probability of measurement with the post-measurement state
in |q1〉 ⊗ |q2〉 ⊗ |q3〉 ⊗ ... ⊗ |qN 〉, and the total probability
should sum to 1, i.e.,

∑
(q1,q2,...,qN )∈{0,1}N

∣∣∣∣cq1,...,qN

∣∣∣∣2 = 1. (2)

In the proposed framework, the input to the VQC is a matrix
with a dimension n × n, where n is the filter or kernel size.
The input will first be flattened and transformed into rotation
angles for the quantum gates. In general, the input values of
pixels are not in the interval of [−1, 1]. We use the arc tangent
function to transform these input values into rotation angles.
For each of the xi in the n × n input, there will be two rota-
tion angles generated, arctan(xi ) and arctan(x2

i ). This double
encoding method is a standard method described in Ref. [18].
The (n × n)-dimensional vector will then be transformed into
2n2 angles for the single-qubit rotation.

2. Variational Layer

After encoding the classical values into a quantum state,
it will be subject to a series of unitary transformations. The
variational layer (grouped in a dashed-line box in Fig. 5)
consists of two parts. One is the entanglement part, which is
a group of CNOT gates. The other is the rotation part that
includes several single-qubit unitary rotations parameterized
by 3 parameters αi, βi, and γi, where i represents the index of
qubits. The parameters labeled by αi, βi, and γi are the ones
that will be updated by the optimization procedure.

3. Quantum Measurement Layer

To obtain the transformed data from VQC blocks, we
perform quantum measurements. We consider the ensemble
samplings (expectation values) of the VQCs. If working with
quantum simulation software (for example, PennyLane [59]
or IBM Qiskit), this value can be calculated deterministi-
cally. While implementing on a real quantum computer, it is
required to prepare the same system and carry out the mea-
surements repeatedly to gain enough statistics. In the proposed
QCNN architecture, the quantum convolutional filter will out-
put a single value for each sweep step. Here, we perform the
quantum measurements on the first qubit to get the expectation
value.

B. Quantum Convolutional Operations

Both of the classical and quantum convolutional operations
follow the following rule:

Wout = (Win − F + 2P)

S
+ 1, (3)

where
(i) Wout : the output dimension of the convolutional layer
(ii) Win : the input dimension of the convolutional layer
(iii) F : the filter size
(iv) P : the padding size.
To capture the spatial dependency of the input data (e.g.,

images), the convolutional filter will sweep across the pixels
and output the corresponding values at each location (see
Fig. 3). In the QCNN, the filter itself is a VQC, which will
transform an n × n dimensional vector into a single value (see
Fig. 4). The circuit component for the quantum convolutional
filter is in the Fig. 5. In general, each of the quantum convo-
lutional filters captures a single kind of feature. We may place
several filters in a convolutional layer to extract multiple fea-
tures. In addition, we can stack multiple convolutional layers
to extract different levels of features.
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Input Conv1 Pool1 Conv2

Convolution Subsample Convolution

|0 Ry(arctan(x1)) Rz(arctan(x2
1)) • R(α1, β1, γ1)

|0 Ry(arctan(x2)) Rz(arctan(x2
2)) • R(α2, β2, γ2)

|0 Ry(arctan(x3)) Rz(arctan(x2
3)) • R(α3, β3, γ3)

|0 Ry(arctan(x4)) Rz(arctan(x2
4)) • R(α4, β4, γ4)

|0 Ry(arctan(x1)) Rz(arctan(x2
1)) • R(α1, β1, γ1)

|0 Ry(arctan(x2)) Rz(arctan(x2
2)) • R(α2, β2, γ2)

|0 Ry(arctan(x3)) Rz(arctan(x2
3)) • R(α3, β3, γ3)

|0 Ry(arctan(x4)) Rz(arctan(x2
4)) • R(α4, β4, γ4)

FIG. 3. Quantum CNN architecture. In the proposed hybrid quantum-classical model, the filter or kernel is a variational quantum circuit
as shown in Fig. 5. Classical pooling and nonlinear activation functions can be optionally added between the convolutional layers analogous
to the classical CNN.

C. Classical Post-processing

The output from the last quantum convolutional layer will
then be flattened and processed by a single layer of a fully
connected classical neural network. To represent the output
values as the probabilities of each class label, we further
employ the softmax function on the post-processed output.

D. Loss Function and Optimization

In this classification task, we use the categorical cross-
entropy loss, which can be written in the following formu-
lation:

L(ŷ, y) = −
M∑

c=1

yo,c log (ŷo,c), (4)

FIG. 4. QCNN operation. In the QCNN operation, the input pixel values (x1, x2, x3, x4) will first be encoded into a quantum state via the
variational encoding method. Each value xi is mapped into two values arctan(xi ) and arctan(x2

i ) for the Ry and Rz rotation angles, respectively.
The quantum gates parameterized by αi, βi, γi then act on this encoded state. At the end of the circuit, Pauli-Z expectation values are retrieved.
The retrieved values can then be processed with another layer of quantum convolutional layer or other classical operations (e.g., pooling,
nonlinear activation functions, or dropout).
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|0 Ry(arctan(x1)) Rz(arctan(x2
1)) • R(α1, β1, γ1)

|0 Ry(arctan(x2)) Rz(arctan(x2
2)) • R(α2, β2, γ2)

|0 Ry(arctan(x3)) Rz(arctan(x2
3)) • R(α3, β3, γ3)

|0 Ry(arctan(x4)) Rz(arctan(x2
4)) • R(α4, β4, γ4)

FIG. 5. Variational quantum circuit component for QCNN ker-
nel (filter). The QCNN kernel (filter) includes three components:
encoding, variational, and quantum measurement. The encoding
component consists of several single-qubit gates Ry( arctan(xi )) and
Rz( arctan(x2

i )), which represent rotations along y axis and z axis
by the given angle arctan(xi ) and arctan(x2

i ), respectively. These
rotation angles are derived from the input pixel values xi and are not
subject to iterative optimization. The choice of arc tangent function
is motivated by the fact that in general the input values are not in
the interval of [−1, 1]. The variational component consists of CNOT
gates between each pair of neighboring qubits, which are used to
entangle quantum states from each qubit and general single qubit
unitary gates R(α, β, γ ) with three parameters α, β, γ . Parameters
labeled αi, βi, and γi are the ones for iterative optimization. The quan-
tum measurement component will output the Pauli-Z expectation
values of designated qubits. The number of qubits and the number
of measurements can be adjusted to fit the problem of interest. In this
paper, we use the VQC as a convolutional kernel (filter), therefore the
number of qubits equals to the square of the kernel (filter) size and
we only consider the measurement on the first qubit. The grouped
box in the VQC may repeat several times to increase the number
of parameters, subject to the capacity and capability of the available
quantum computers or simulation software used for the experiments.

where
(i) M : the number of classes
(ii) log : the natural log
(iii) yo,c : the binary indicator (0 or 1) if class label c is the

correct classification for observation o
(iv) ŷo,c : predicted probability observation o is of class c.
In this paper, we use the gradient-based method to update

the circuit parameters. The first problem is to calculate the
gradients of quantum functions. The quantum functions are
a series of operations with quantum gates, which are not the
same as the layer operations in classical DNNs. In addition,
the quantum functions typically are measured to retrieve the
expectation values, which are stochastic by nature. In our
paper, we adopt the parameter-shift rule [32,59] to perform
all of the quantum gradient calculations. For example, if we
know how to calculate the expectation value of an observable
P̂ on our quantum function,

f (x; θi ) = 〈0|U †
0 (x)U †

i (θi )P̂Ui(θi )U0(x)|0〉
= 〈x|U †

i (θi )P̂Ui(θi )|x〉, (5)

where x is the input value (e.g., pixel values); U0(x) is the state
preparation routine to transform or encode x into a quantum
state; i is the circuit parameter index for which the gradient is
to be evaluated; and Ui(θi ) represents the single-qubit rotation
generated by the Pauli operators X,Y , and Z . It can be shown
[18] that the gradient of this quantum function f with respect

to the parameter θi is

∇θi f (x; θi ) = 1

2

[
f

(
x; θi + π

2

)
− f

(
x; θi − π

2

)]
. (6)

Here, we have the recipe to calculate the quantum gradi-
ents. However, it still is not clear how to update the circuit
parameters. In the simplest form of the gradient-descent
method, the parameters are updated according to:

θ ← θ − η∇θL(x; θ ), (7)

where the θ is the model parameter, L is the loss function,
and η is the learning rate. However, this vanilla form does
not always work. For example, it may be easily stuck in local
optimum [60], or it can make the model difficult to train.
There are several gradient-descent variants that are successful
[33,34,60]. Based on previous papers [41,50], we use the
RMSProp optimizer to optimize our hybrid quantum-classical
model. RMSProp [34] is a special kind of gradient-descent
method with an adaptive learning rate that updates the param-
eters θ as:

E [g2]t = αE [g2]t−1 + (1 − α)g2
t , (8a)

θt+1 = θt − η√
E [g2]t + ε

gt , (8b)

where gt is the gradient at step t and E [g2]t is the weighted
moving average of the squared gradient with E [g2]t=0 = g2

0.
The hyperparameters are set for all experiments in this paper
as follows: learning rate η = 0.01, smoothing constant α =
0.99, and ε = 10−8.

E. Dropout

Overfitting is a phenomenon where a machine learning
model learned the statistical noise in the training data. This
will cause poor performance when the models are tested
against the unseen data or testing data. In other words, the
model is not well generalizable. Such difficulties often emerge
when training a classical DNN on a relatively small training
set, and a QCNN is no exception.

One potential method to reduce overfitting is to train all
possible neural network architectures on the given dataset and
average the predictions from each model. However, this is
impractical because it will require unlimited computational
resources. Dropout is a method that approximates the effect
of training a large number of neural networks with different
architectures simultaneously [61].

The dropout operation entails (as follows): During the
training phase, on each of the forward passes, some of the
output values from the specified layer will become zeros. Each
one of the values from the specified layer will be zeroed in-
dependently with probability p from a Bernoulli distribution.
This dropout procedure will not be performed in the testing
phase.

V. EXPERIMENTS AND RESULTS

This section presents the numerical simulation of QCNN
on the task of classifying different HEP events. The input
data have dimension 30 × 30. To demonstrate the possible
quantum advantage, the classical and quantum CNN have a
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FIG. 6. Examples of scaled images of simulated particle activities (μ, π+, p, e−) in a LArTPC detector. These are the images used in the
QCNN experiments. The dimension of these images is 30 × 30 pixels.

comparable number of parameters. Figure 6 shows the ex-
amples of the data used to train and test the QCNN models.
For fair comparison, we arrange the experiment of QCNN and
CNN to have similar numbers of parameters. In the classical
CNN, there are 4 channels in the first convolutional layer with
the filter size as 5 × 5 and 2 channels in the second convolu-
tional layer with the filter size as 5 × 5. Finally, there is a fully
connected layer, which features 7 × 7 × 2 × 2 + 2 = 198 pa-
rameters. Therefore, the total number of parameters in the
classical CNN is 4 × 5 × 5 + 4 × 2 × 5 × 5 + 198 = 498. In
the classical CNN, there is a dropout layer with dropout rate
= 0.5 between the final convolutional layer and the fully
connected layer. For the QCNN, there is 1 channel in the first
quantum convolutional layer with the filter size of 3 × 3 and
another single channel in the second quantum convolutional
layer with the filter size of 2 × 2. Finally, there is a clas-
sical fully connected layer with 14 × 14 × 1 × 2 + 2 = 394
parameters. As such, the total number of parameters in the
hybrid quantum-classical CNN is 54 + 24 + 394 = 472 (see
Table I). The software used for this paper are PyTorch [62],
PennyLane [59], and Qulacs [63].

A. Muon versus Electron

Figure 7 and Table II depict the results of the classification
between μ+ and e−. As mentioned in Sec. II, A μ+ is a track-
like particle, while an e− produces electromagnetic showers
that are spatially extended. This is a relatively straightforward
pattern recognition problem when the particle tracks are more
than a few meters (∼2 meters in this simulation). In fact, we
see that the test accuracy in QCNN (92.5%) and CNN (95%)
is comparable to each other with a comparable number of
parameters. On the other hand, the QCNN converges to its
optimal accuracy much faster with a fewer number of epochs.

B. Muon versus Proton

Figure 8 and Table III show the results of the classification
between μ+ and p. As described in Sec. II, a proton is a track-
like particle akin to a muon. However, because a proton’s mass
is much heavier than a muon or pion, it has higher energy loss
and encounters less MCS when it passes the detector. As a
result, a proton’s track has higher intensity and is straighter
than that of a muon. This classification is more difficult than

FIG. 7. QCNN on binary classification of muon vs electron. Training the QCNN for the classification of μ+ and e−. The filter size is 3 in the
first convolutional layer and 2 in the second convolutional layer. There is 1 channel in both convolutional layers. The numbers of parameters in
this setting are 9 × 3 × 2 = 54 in the first convolutional layer, 4 × 3 × 2 = 24 in the second convolutional layer, and 14 × 14 × 1 × 2 + 2 =
394 in the fully connected layer. The total number of parameters is 54 + 24 + 394 = 472.
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TABLE I. The comparison of model architectures between QCNN and CNN used in this paper.

First conv layer Second conv layer Classical part
(# of channels) Filter size (# of channels) Filter size (# of params) Total number of params

QCNN 1 3 × 3 1 2 × 2 394 472
CNN 4 5 × 5 2 5 × 5 198 498

the previous case of muon versus electron, which is evident
from the CNN’s test accuracy of 80%. In this case, we show
that with a comparable number of parameters, the QCNN out-
performs the classical CNN, both in test accuracy and learning
speed. The QCNN reaches 97.5% test accuracy at around 10
epochs, while the classical CNN plateaus at a test accuracy of
80% at roughly 75 epochs.

C. Muon versus Charged Pion

Figure 9 and Table IV illustrate the results of the clas-
sification between μ+ and π+. This is another difficult
classification problem because a charged pion behaves much
like a muon in terms of energy loss, MCS, and decay. As
described in Sec. II, the main difference is that the π+ ex-
periences additional nuclear interactions during its passage
through the detector, often leading to a hard scattering (man-
ifested as a “kink”) along its main trajectory. In this case,
we show that with a comparable number of parameters, the
QCNN outperforms the classical CNN, both in test accuracy
and learning speed. The QCNN reaches 97.5% test accuracy
at the first few epochs, while the classical CNN plateaus at
a test accuracy of 82.5% at around 100 epochs. In this case,
which is much more difficult than the previous two, we add
a dropout layer in the QCNN with a dropout rate of 0.3 to
improve its robustness against overfitting. We observe that the
dropout operation significantly reduce the overfitting problem
in this case. The testing accuracy is higher and the testing loss
does not increase if we include dropout.

VI. DISCUSSION

A. Related Works

The concept of QCNNs has been discussed recently. In
Ref. [64], the authors propose an architecture based on
the multiscale entanglement renormalization Ansatz (MERA)
tensor network to perform the classification of quantum states.
Our approach differs from this paper as we focus on the
classical input data. In Refs. [65,66], the authors propose
a QCNN framework to deal with the classical data, which
is like our method in the sense of targets. However, those
works require the operation of quantum random access mem-
ory (QRAM), which is difficult to implement on physical
devices in the near term. In [67,68], the authors consider

a more realistic architecture that also is hybrid quantum-
classical. While in a similar vein, our paper differs from
that research because it implements input data with much
larger dimensions. In Ref. [68], the data have dimension
3 × 3, while in Ref. [67], the data have dimension 10 × 10.
Our architecture is capable of dealing with dimensions up
to 30 × 30. In Refs. [55,69], quantum circuits are randomly
sampled and not subject to iterative optimization. In our paper,
the quantum and classical parts are trained in an end-to-end
fashion. The trainability of QCNNs is studied in the recent
paper [70], indicating that QCNN optimization is more viable
than other quantum neural network architectures. A recent
paper [71] points out that quantum neural networks can be
mapped into a quantum kernel learning problem when su-
pervised learning is discussed. The discussion is based on
single layer QNN without multiple QNN layers separated
by quantum measurements. Whether or not a QCNN archi-
tecture described in this paper can be transformed into a
kernel model is an interesting topic and is left for future
investigation.

B. Hyperparameter Optimization

Hyperparameter optimization is a technique to fine-tune
the deep neural networks. Common techniques include grid
search and random search. Although it is possible to use
hyperparameter optimization to further fine-tune the CNN, it
will not be included in this paper for the following reason:
If CNN can be fine-tuned, it looks like that QCNN should
also be fine-tuned to have a fair comparison. However, for the
existing simulation software, it is extremely difficult to deploy
QCNN experiments for hyperparameter optimization in any
reasonable time frame since in the process of hyperparam-
eter optimization, a significant volume of model validation
or training is needed. In our case, even with the GPU sim-
ulation backend, it took nearly 4 week to finish a single
training/testing case. It is impractical to perform hyperparam-
eter optimization at the current stage. This research direction
is to be pursued when the quantum simulation software is
much faster in the future. Another point, which needs to be
clarified here is that why certain constraints are imposed on
classical CNNs. The reason is that it is nearly impossible at
the moment to find a QML model (due to limited quantum
devices and resources), which can beat a classical ML model

TABLE II. Performance comparison between the QCNN and the CNN on the binary classification between μ+ and e−.

Training accuracy Testing accuracy Training loss Testing loss

QCNN 100% 92.5% 0.017 0.13
CNN 99.38% 95% 0.0002 0.0046
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FIG. 8. QCNN on binary classification of muon vs proton. Training the QCNN for the classification of μ+ and p. The filter size is 3 in the
first convolutional layer and 2 in the second convolutional layer. There is 1 channel in both convolutional layers. The numbers of parameters in
this setting are 9 × 3 × 2 = 54 in the first convolutional layer, 4 × 3 × 2 = 24 in the second convolutional layer, and 14 × 14 × 1 × 2 + 2 =
394 in the fully connected layer. The total number of parameters is 54 + 24 + 394 = 472.

TABLE III. Performance comparison between the QCNN and the CNN on the binary classification between μ+ and p.

Training accuracy Testing accuracy Training loss Testing loss

QCNN 100.00% 97.5% 0.041 0.087
CNN 91.25% 80% 0.002 0.01

FIG. 9. QCNN on binary classification of muon versus charged pion. Training the QCNN for the classification of μ+ and π+. The filter
size is 3 in the first convolutional layer and 2 in the second convolutional layer. There is 1 channel in both convolutional layers. The number of
parameters in this setting are 9 × 3 × 2 = 54 in the first convolutional layer, 4 × 3 × 2 = 24 in the second convolutional layer, and 14 × 14 ×
1 × 2 + 2 = 394 in the fully connected layer. The total number of parameters is 54 + 24 + 394 = 472. In this experiment, we add a dropout
layer with a dropout rate of 0.3 to the QCNN. We observe that the dropout operation significantly reduces the overfitting problem in this case.

TABLE IV. Performance comparison between the QCNN and the CNN on the binary classification between μ+ an π+.

Training accuracy Testing accuracy Training loss Testing loss

QCNN 100% 87.5% 0.05 0.47
QCNN (with dropout) 96.88% 97.5% 0.1066 0.1121
CNN 97.5% 82.5% 0.0006 0.0116
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if there are no certain constraints. It is nearly trivial to build
a classical CNN with millions of parameters on a personal
computer and beat all existing quantum models. However, as
the number of qubits increases and the gate fidelity improves,
quantum machine learning is expected to provide substantial
advantages and thus our paper shows the value of potential
implication of the quantum advantages.

VII. CONCLUSION AND OUTLOOK

In this paper, we propose a quantum machine learning
framework for learning HEP events. The particular dataset
used in this paper is to explore whether there is any empirical
quantum advantage provided by the QCNN. The dataset itself
is classical and in the real experiments they are collected by
sensors or cameras. The reason to study in this direction is
that the data resolution may grow larger and larger, and in
the future, it is possible that a large-scale quantum computer
may be available and can be used to demonstrate quantum ad-
vantages on HEP data analysis. Specifically, we demonstrate
that the QCNN architecture has a significant learning capacity
in terms of learning speed and testing accuracy compared to
the classical CNN when both use a comparable number of
parameters. We expect the proposed framework will have a
wide range of applications in the era of noisy intermediate-
scale quantum (NISQ) devices and beyond, as well as in more
HEP experiments.

Looking ahead, there are several research areas where we
could extend our QCNN framework. First, in this paper, we
perform experiments using the input dimension of 30 × 30
and a single input channel. In comparison, multiple input

channels (e.g., different color channels) with higher dimen-
sions are rather common in classical CNNs. Future studies
to increase the data complexity in QCNNs are expected
as the speed of quantum simulators improves. Second, this
paper presents a noise-free simulation to demonstrate proof-
of-concept QCNN experiments on HEP event classification.
Our framework is based on VQC, which has the potential to
be robust against device noise. However, applying parameter-
shift methods to calculate quantum gradients requires a large
amount of quantum circuit evaluations, which is infeasible
at this time. For example, given a filter with the size N × N
and the number of operations needed to scan over a single
input images S, the contribution to the total number of circuit
evaluation is, at least, O(N2S). Therefore, the number of total
circuit evaluations grows as the circuit goes deeper (with
more convolutional layers) or expands wider (with more filters
in each layer). We reserve pursuing this area of study until
the appropriate quantum computing resources are available.
Finally, as the convolutional operation is quite versatile, it has
been widely used beyond computer vision in classical ma-
chine learning, for example, in modeling data with temporal or
sequential dependencies [72–76]. As such, our proposed gen-
eral QCNN architecture is not limited to image classification
tasks and can be extended to other application domains.
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