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Direct measurement of nonlocal interactions in the many-body localized phase
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The interplay of interactions and strong disorder can lead to an exotic quantum many-body localized (MBL)
phase of matter. Beyond the absence of transport, the MBL phase has distinctive signatures, such as slow
dephasing and logarithmic entanglement growth; they commonly result in slow and subtle modifications of
the dynamics, rendering their measurement challenging. Here, we experimentally characterize these properties
of the MBL phase in a system of coupled superconducting qubits. By implementing phase sensitive techniques,
we map out the structure of local integrals of motion in the MBL phase. Tomographic reconstruction of single
and two-qubit density matrices allows us to determine the spatial and temporal entanglement growth between
the localized sites. In addition, we study the preservation of entanglement in the MBL phase. The interferometric
protocols implemented here detect affirmative quantum correlations and exclude artifacts due to the imperfect
isolation of the system. By measuring elusive MBL quantities, our work highlights the advantages of phase
sensitive measurements in studying novel phases of matter.

DOLI: 10.1103/PhysRevResearch.4.013148

I. INTRODUCTION

Disorder-induced localization in quantum systems is a
fascinating phenomenon. In 1958 Anderson showed that in
noninteracting quantum systems disorder can change the
spatial structure of electronic wave functions from being
extended to exponentially localized [1]. These Anderson lo-
calized quantum states have been observed for systems of
noninteracting phonons, photons, and matter waves [2—6]. The
conventional wisdom had long been that systems of inter-
acting particles do not localize and ultimately reach thermal
equilibrium regardless of the disorder magnitude. However,
recent work shows that localization may persist even in the
presence of interactions between particles, establishing the
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many-body localized (MBL) phase as a robust, nonergodic
phase of quantum matter at finite temperature [7—12].

The foremost characteristic of the MBL phase is the van-
ishing transport and the absence of local relaxation to a
thermal state [7,10,11,13-20]; from this perspective, the MBL
phase resembles a noninteracting Anderson insulator. But the
dynamics of quantum information in the MBL phase are richer
than in an Anderson insulator [9,21-36]. The two phases
share the property of having extensively many spatially lo-
calized orbitals which are known as local integrals of motion
(Fig. 1). However, in the MBL phase, the integrals of motion
interact in ways that lead to slow dephasing and the loga-
rithmic growth of entanglement, among other consequences,
some of which have been experimentally observed [17,37—
39]. Directly probing the structure of these local integrals
of motion, which define the MBL phase, has proven exper-
imentally challenging, as it is best accomplished with phase
sensitive measurements.

Here, we use an array of coupled superconducting qubits in
one and two dimensions to study the dynamics of interacting
photon excitations in a disordered potential. Superconducting
qubits have already been successfully used to characterize
many-body localization in chain geometries [16,19,20] and in
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FIG. 1. Many-body localization with superconducting qubits.
The constituents of the many-body localized phase are localized
orbitals (local integrals of motion, LIOMs). Larger disorder yields
stronger localized LIOMs with a decreased typical length scale &.
The spatial disorder yields a distribution of these length scales &.
The shaded region indicates effective nonlocal interactions JN, ; be-
tween two LIOMs, giving rise to nontrivial dephasing dynamics and
logarithmic entanglement growth.

all-to-all coupled systems [17,18]. Here, we aim at directly
detecting interaction effects between the local integrals of mo-
tion using interferometric techniques and characterizing the
distribution of the effective interactions between the localized
integrals of motion. We further demonstrate the consequences
of the effective interactions on the preservation of entangle-
ment in the MBL phase.

Our system of coupled superconducting qubits is described
by the Bose-Hubbard model
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where a' (&) denotes the bosonic creation (annihilation) op-
erator, h; € [—w, w] is the random on-site detuning drawn
from a uniform distribution of width 2w, J is the hopping
rate between nearest neighbor lattice sites, U is the on-site
Hubbard interaction, and ng is the number of superconducting
qubits; see the Supplementary Material for details on the
characterization [40]. A superconducting qubit corresponds
to an anharmonic oscillator, where the nonlinearity is engi-
neered to separately address the transitions between different
levels. We work at a fixed nonlinearity, setting the interaction
strength to U = 160 MHz. The qubit frequencies are used to
tune the on-site potentials 4;. Each pair of neighboring qubits
is inductively coupled to a coupler loop through a mutual
inductance. The coupler loop has a Josephson junction, such
that the inductance can be tuned by applying a magnetic flux
through the coupler loop, yielding a variable coupling strength
J between the two qubits.

The localized regime of Eq. (1) is obtained when the fre-
quency detunings A; are large compared to J. In this regime,
the eigenstates of the Hamiltonian are product states of local-
ized orbitals, referred to as local integrals of motion (LIOMs),
which are nearly qubit states but have a spatial extent that

decays exponentially across the neighboring qubits; see Fig. 1.
Before measuring the properties of the LIOMs, we show that
our system of superconducting qubits is manifestly localized
by studying the conventional relaxation dynamics.

II. BREAKDOWN OF ERGODICITY

Evidence for the breakdown of ergodic dynamics can be
obtained by measuring the mobility of excitationsina 1 x 9
qubit array. In Fig. 2 we initialize the system with a number of
photon excitations 7, by preparing one, two, or three qubits in
the single excitation Fock state. We measure the population on
one of the initially excited qubits as the system evolves under
Hamiltonian (1). The disorder averaged population at Qy (the
observation site), Ng,(t), for np, = 2, is shown in panel (a).
We choose a reference time fer, in which Ny, (t) approaches
an asymptotic value after initial transients have been damped,
but before the dynamics of our system are dominated by
relaxation or dephasing at large timescales (dashed black line)
[40-45].

The distribution of Ny, () for selected disorder magnitudes
at t = 1 ns and ¢ = t.r are shown in Fig. 2(b). At ¢t = 1 ns
the excitations have not propagated, and there is a tight dis-
tribution close to the initial values, regardless of the value of
disorder. At = t,s the distribution is narrow for low disorder
and becomes wider with tails at larger disorders. This can
be understood as follows: at high disorder, level resonances
are increasingly rare which inhibits mobility. The tail of the
distribution results from these rare cases. At low disorder, ex-
citations can propagate freely between superconducting qubits
and the behavior of each disorder instance is typical, giving
rise to narrow distributions.

Figure 2(c) shows the disorder averaged population at
tref = 100 ns as a function of the disorder strength. At weak
disorder our observations are consistent with the ergodic hy-
pothesis that each of the accessible photon states is equally
likely to be observed. A uniform averaging over the available
phase space implies that the occupancy of a given super-
conducting qubit should be np,/ng. However, as we increase
the disorder strength, significant deviations from the thermal
value are observed, which indicates that system becomes
many-body localized. We note that with more photons in the
system, the population converges to its thermal expectation
value at higher disorders. This is expected because our exper-
iment operates in the few photon regime. While we cannot
pinpoint the precise location of the MBL transition in the
few (but more than one) photon regime, our states show the
distinct properties of many-body localization at comparatively
high disorder, as we characterize below. In the case of a single
excitation only, our one-dimensional system is noninteracting
and hence localized for all disorder magnitudes. The apparent
approach of the population to the thermal value at extremely
weak disorder indicates the regime where the single-particle
localization length exceeds our system size. In two spatial
dimensions, we observe similar signatures for localization for
few-photon excitations; see the Supplemental Material [40].

III. INTERFEROMETRIC METHODS

Nonlocal interactions between the LIOMs are a defining
characteristic of the MBL state. As the system is localized, the
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FIG. 2. Ergodicity breakdown at strong disorder. (a) Disorder averaged on-site population vs time for ny, = 2. In a chain of nine
superconducting qubits; two qubits were excited (Qs, Qg). The on-site population of Qy was measured for various magnitudes of disorder
w/J, with J = 40 MHz (averaged over 50 realizations). For a given disorder realization, we perform several thousand experimental runs. The
parameter Ty, = (27rJ)~" has been introduced to connect the laboratory time 7 with the hopping energy. Ny is defined to be the average
on-site population across instances of disorder at the reference time 7. = 100 ns, after initial transients have been damped. The dashed black
line indicates average photon loss for a single qubit measured in isolation. (b) Histograms of Ny, (¢) at the times and disorders indicated in
(a) by numerals i—vi. (c) N vs disorder for ny, = 1, 2, 3. Inset shows which superconducting qubits were initially excited. The error bars

denote the standard error of the mean over disorder realizations.

nontrivial dynamics of the system are expressed in terms of
phase relationships between the LIOMs, which are most nat-
urally observed through phase sensitive protocols rather than
measurements of population. In the localized regime, Eq. (1)
can be effectively described in terms of on-site detunings and
nonlocal interactions [24,25],
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The Pauli operators £; commute with ’?[T and are hence
conserved; the system is localized. Note that in our parameter
regime, two or more excitations per qubit occur with very
low probability, see the Supplemental Material [40]. Hence,
the dominating interaction effects result from virtually oc-
cupying doubly excited qubits, which allows us to consider
Pauli operators with only two internal levels in the effective
description of Eq. (2). The nonlocal interactions J;;, Jij, - . -,
generate entanglement throughout the localized system and
can be unambiguously established by adopting interferometric
methods inspired by NMR protocols [26], which are closely
related to measuring out-of-time-order correlators.

Figure 3(a) illustrates a conventional spin-echo (SE) se-
quence and its extension double electron-electron resonance
(DEER) echo which we use to provide a differential mea-
surement of phase accumulation with and without a remote
perturbation. The construction and effects of these pulse se-
quences can be understood from Eq. (2). Deep in the MBL
phase, the LIOMs are nearly localized on individual super-
conducting qubits. The SE m pulse between free precession
intervals essentially negates the local frequency detuning, re-
versing the evolution and hence reversing phase accumulation.
The role of the additional 7z /2 pulse in the DEER sequence is
to make the SE refocusing incomplete by an amount depend-
ing on the nonlocal interaction. Thus the technique directly
probes the strength of this nonlocal interaction. A comparison

with closed system numerics is presented in the Supplemental
Material [40].

If one could directly address the LIOMsS, spin echo would
have a fidelity of unity (see the Supplemental Material [40]).
In the experiment, however, we address physical degrees of
freedom. The spin-echo signal therefore saturates to a finite
value in the MBL phase, which is set by the local overlap
between a LIOM and the physical operator. The saturation
value of the spin echo therefore provides a measure for the
localization transition.

The measurement of on-site population, depicted in
Fig. 3(b), shows that the remote 7 /2 pulse in the DEER
sequence does not alter the population on the observation site,
assuring that the system is in the localized regime.

Comparing the difference of SE and DEER [Fig. 3(¢c)],
we see that the additional differential relaxation in the DEER
case is a pure interference effect that directly measures the
nonlocal interaction between distant localized sites. In addi-
tion, the difference between SE and DEER decreases as the
distance between the SE site and remote disturbance site is
increased. This can be understood from the decaying nature
of the interactions between the LIOMs with distance. The
interferometric protocol thus demonstrates the foundational
interaction effects of MBL states. As a next step, we char-
acterize the distribution of the couplings J;;.

IV. EXTRACTING NONLOCAL INTERACTIONS

To characterize the emergent nonlocal interactions, we
determine the distribution of the couplings P(J;;), Fig. 4,
with a conditional phase measurement made possible by the
ability to drive local rotations. As shown in panel (a), our
protocol consists of preparing qubit Q; in a superposition state
(10) + 1))/ V2 and then measure evolution of (oiX ) under
two conditions: when Q; is in the [0) state and when it is
in the |1) state, while the remaining superconducting qubits
are initialized in the |0) state in both cases. The rate of phase
accumulation of Q; is conditioned on the state of Q; and
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FIG. 3. Interferometric signatures of remote entanglement.
(a) SE and DEER pulse sequences. DEER differs from SE by the
addition of a remote 7 /2 pulse simultaneously applied with the SE
7 pulse between the free precession intervals. (b) (o¢) = (1 — 2afa),
and (c) purity of the single qubit for SE (red) and DEER (solid)
experiments. The remote DEER pulse induces dephasing, decreasing
the purity. The contrast between SE and DEER probes the nonlocal
interaction JN, ; between the SE lattice site and the DEER site. Error
bars correspond to the standard error of the mean over the different
disorder realizations.

thereby permits the extraction of the JNI ;. In our experiment,
we manipulate the physical degrees of freedom, as opposed to
the LIOMs; see also the discussion in Sec. III. The difference
between LIOMs and physical degrees of freedom leads to
an overall suppression of the signal, but does not change the
characteristic frequencies in our protocol.

Experimentally, we measure the dominant low frequency
peak and associate its shift as the J;;. Repeating this process
several times for different disorder realizations, we obtain the
distribution of the couplings J;;. We find the J;; to be broadly
distributed, Fig. 4(b), with a mean that is rapidly decaying
with increasing distance between the superconducting qubits
[Fig. 4(c)]. This is consistent with the theoretical prediction
[46,47] and our numerical results presented in the Supplemen-
tal Material [40].

A profound consequence of the broad distribution of cou-
plings, that arises from the strong spatial fluctuations of the
on-site potentials, is that upon disorder averaging the entan-
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FIG. 4. Distribution of the couplings between the localized or-
bitals (a) The pulse sequence for measuring Z j showing the evolution
of (¢) on Q; for Q; initialized in |0) (red) and in |1) (blue). The
rest of the superconducting qubits are initialized in |0). (b) The
histogram of Z j values measured for 700 instances of disorder vs
distance between Q; and Q; (seven distinct chains and 100 disorder
on each chain). (c) The mean value of J~, ; over all disorder instances
in linear (main) and semilogarithmic scale (inset) for two ratios of
disorder w/J =5 (green) and w/J = 10 (gray) as a function of
distance |i — j|. Error bars show the 95% confidence interval based
on statistical errors estimated by resampling data via the jack-knife
method.

glement between the two qubits grows smoothly, cf. Sec. V.
By contrast a sharp distribution of the couplings would lead to
a strong oscillatory behavior of the entanglement between two
entities [23]. Similar considerations hold for the DEER echo
presented in Fig. 3.

V. FORMATION AND PRESERVATION
OF ENTANGLEMENT

We investigate the formation and preservation of entangle-
ment between two superconducting qubits A and B that are
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FIG. 5. Growth and preservation of entanglement. (a)—(c) Entanglement of formation between superconducting qubits in various two-qubit
subsystems (A, B;). To observe the development of entanglement between sites A and B the subsystem is initialized in a product of single-qubit
superposition states and the entanglement of formation of the two-qubit density matrix is extracted, for subsystems of (a) 1 x 10, (b) 2 x 5,
and (c) 3 x 5 array of qubits with / = 30 MHz and w/J = 10. (d), (e) In a two-qubit subsystem (A, B) of a 3 x 7 array of qubits, a Bell pair
is created, and the logarithmic negativity (d) and coherent information (e) are extracted from measurements of the subsystem density matrix
and averaged over 80 realizations of disorder for / = 30 MHz with w/J = 12. Exemplary error bars show the standard error of the mean. We
initialize an excitation at a position C; which via the effective nonlocal interactions contributes to the dephasing of the Bell pair.

embedded in an MBL environment as illustrated in Fig. 5. which leads to classical mixing of the state. As such, our

Details of the two-dimensional device used for these measure- observed entropy Syn provides an upper bound for the entan-

ments can be found in [48]. glement generated under the closed system Hamiltonian time
To measure the reduced density matrix on a two-qubit  evolution.

subsystem, we perform state tomography (also tracing out In order to estimate the entanglement contained in a

all superconducting qubit levels higher than 1 of the two- subsystem of two superconducting qubits, we make use of

qubit subsystem). From the reduced density matrix different  operational entanglement measures. One such operational en-
entanglement measures can be extracted, including the von  tanglement measure is the entanglement of formation (EOF),
Neumann entanglement entropy Syx = —trpz4Inp,,. The time which is a proxy for the entanglement cost, i.e., the amount
evolution of the observed von Neumann entropy after ini- of entanglement directly between qubits A and B that would
tializing the system in a product state is consistent with  be required to asymptotically produce the observed two-qubit
a logarithmic growth at times where the local occupation = mixed state density matrix [49]. With this entanglement mea-
number does not change anymore, see [40], as predicted sure, we are affirmatively detecting entanglement between the
theoretically. However, the von Neumann entropy quantifies two sites of the subsystem. Open system effects would rather
entanglement with all external degrees of freedom and is not suppress the EOF. The EOF is therefore a more conservative
able to disambiguate entanglement with the environmental entanglement measure than for example the von Neumann
qubits due to unitary dynamics from open system effects entanglement entropy, and a valuable tool for characterizing
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the experimental system, which is always coupled to environ-
mental degrees of freedom to some extent. The entanglement
of formation for a two-qubit density matrix p,, is defined as
follows: consider all possible pure state decompositions of

P2q>

P2 = Y pili) (¥il. 3)

For each pure state |1;), the entanglement E (v;) is defined
as the von Neumann entropy of either of the subsystems A
or B. This is not to be mixed up with the von Neumann
entropy of the two-qubit subsystem considered above, which
takes entanglement with all external degrees of freedom into
account. By contrast, the von Neumann entropy of subsystem
A of a pure two-qubit state exactly quantifies the entanglement
within the two-qubit system.

The entanglement of formation of the mixed state p,, is
defined as the average entanglement of the pure states E(v;)
of the decomposition Eq. (3), minimized over all possible
decompositions [49]:

Erp(pag) = min Y piE (). )

While the evaluation of all possible decompositions is
unfeasible in general, it can be shown that for a reduced
two-qubit density matrix py,, the entanglement of formation
Er(p24) can be calculated as

Er(p2g) = €[C(p2y)], (5)

where the concurrence C(p,) of a mixed state of two qubits
is defined as

C(p2g) =max (0, A1 — Ay — A3 — Aq), (6)

with A; the eigenvalues of

R = |/ \/02g029+/ P25

The functions €(x) and A4 (x) are defined in the Supplemental
Material [40].

In Figs. 5(a)-5(c) we initialize the subsystem in a product
state of single-qubit superpositions and observe the de-
velopment of entanglement between the subsystem qubits.
Regardless of geometry of the qubit array, entanglement
grows gradually between the localized, spatially separated
sites over several hopping times. The entanglement grows
faster when the subsystem qubits are closer to each other.
This can be understood by considering two isolated qubits,
which are becoming correlated with a rate given by the ef-
fective interactions J;; that increases with decreasing distance
[Fig. 4(c)].

As the system geometry is transformed from one to two
dimensions [Figs. 5(a)-5(c)] there is an overall trend of
suppressed EOF. This is because of the monogamy of en-
tanglement principle [50]. Compared with one dimension, in
two dimensions each qubit has additional neighbors, which
changes the structure of the LIOMs and provides more trans-
port channels, thus enhancing the spread of entanglement. The
monogamic principle states that there is a maximum degree
to which two qubits may be correlated, and that entangling
(correlating) either member of this pair with other qubits

P2 = (0, ® 0y)p3,(0y ® 0y). (7)

necessarily decorrelates the first two. Thus in the higher di-
mensional systems shown here, the subsystem qubits entangle
with the environmental qubits to a greater extent, thereby
reducing the degree to which the subsystem qubits can be
correlated.

The EOF for a single disorder realization possesses a Si-
nusoidal shape. However, due to the disorder average over
the broad distribution of the couplings J;;, the EOF satu-
rates at intermediate times and only decays at late times.
At long times, the interaction between subsystem qubits is
outcompeted by the interaction of the subsystem with the
surrounding qubits and the open system and therefore the
EOF decreases. The EOF results have to be contrasted with
the von Neumann entanglement entropy of the two-qubit
subsystem, which would continuously increase because it in-
cludes entanglement with all degrees of freedom external to
the subsystem. We reiterate that in our system the EOF, an
affirmative correlation measure, detects correlations between
sites with a large separation, e.g., (A, B3) even though they are
embedded in a large system of qubits, which are never truly
isolated.

The results thus far illustrate how interaction effects prop-
agate entanglement throughout the system. As excitations in
MBL systems do not relax, features of their initial state remain
imprinted on them. Stable nonthermal local occupations, as
shown in Fig. 2, exemplify this behavior. However, the con-
sequences of this memory for entanglement properties have
not been demonstrated experimentally so far. To probe this
aspect, we prepare a maximally entangled Bell state between
two subsystem qubits in a 3 x 7 qubit array and monitor the
subsystem density matrix as the pair interacts with a remote
photon.

In order to quantify the entanglement in the subsystem, we
again have to make use of operational entanglement measures.
Specifically, we consider the distillable entanglement, i.e., the
entanglement that can in principle be extracted from the two-
qubit subsystem. While it is in general not possible to exactly
determine the distillable entanglement, Ep(02,), it is bounded
from below by the coherent information (right hand side of
equation),

Ep(p2q) 2 Sun(p14) — Sun(p024), ®)

where p1,,2, are the reduced density matrices of one of the two
qubits and the two-qubit subsystem, respectively. An upper
bound to the distillable entanglement is given by the logarith-
mic negativity [51] which is defined as

En(p2g) = log, | |92’T; ;- ©)

Here, ,osz; is the partial transpose of the reduced density matrix
with respect to one of the qubits and || - ||; denotes the trace
norm.

The upper and lower bounds of the distillable entangle-
ment are shown in Figs. 5(d) and 5(e), respectively. The
initial drop of distillable entanglement, on the single hop-
ping timescale, is attributed to population transfer from
the Bell pair into the neighboring qubits, to adjust for the
LIOM eigenstates. Thereafter, interaction with the remote
photon induces local dephasing in the subsystem, decorre-
lating the subsystem qubits according to the monogamy of
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entanglement principle. With the remote photon at larger dis-
tances, the distillable entanglement remains finite over several
hopping times, in contrast to the behavior at low disorder, cf.
the Supplemental Material [40]. The entanglement is increas-
ingly disturbed as the remote photon is brought closer to the
Bell pair and the coherent information that lower bounds the
distillable entanglement approaches zero at earlier times.

Our data illustrate that in the MBL phase, initial entan-
glement decays very slowly and significantly depends on the
excitation density and its spatial distribution. This is in stark
contrast to an ergodic many-body system, where such encoded
entanglement would generically decay on timescales set by
the inverse hopping strength.

VI. SUMMARY AND OUTLOOK

The emergent nonlocal effective interactions between lo-
calized orbitals is a defining characteristic of the MBL phase.
However, detecting them experimentally is a formidable chal-
lenge, as they only give rise to subtle modifications of the
dynamics and are not directly accessible in conventional trans-
port measurements.

In this work, we overcome this challenge by introducing
phase sensitive algorithms and measurements. A comparison
of two distinct NMR-type protocols (spin echo vs DEER
echo), allows us to directly demonstrate the presence and
the strength of nonlocal interactions. From conditional phase
measurements we characterized the full distribution of the
nonlocal interactions which we find to span a broad frequency
range. This observation has profound consequences for disor-
der averaged observables: Our DEER echo and entanglement
measurements exhibit a slow and nonoscillatory dynamics,
which cannot be explained by a narrow distribution of effec-
tive interactions.

From the tomographically reconstructed reduced density
matrix of a two-qubit subsystem, we have extracted different
operational entanglement measures. We show that deter-
ministically prepared entanglement can be stabilized in a

many-body localized state over long times, which is in stark
contrast to ergodic many-body states.

Entanglement constitutes a key resource in quantum
computing applications, and defines at the same time char-
acterizing properties of exotic phases of matter. Efficient and
reliable techniques to experimentally probe the entanglement
properties of a quantum many-body system, which are not
susceptible to the classical mixing of the system arising from
effective environmental degrees of freedom, are thus needed.
The operational entanglement measures for small subsystems
we introduced to detect the formation and preservation of
entanglement fulfill this requirement. The techniques intro-
duced here extend directly to the characterization of digital
algorithms and also more broadly to other synthetic quantum
systems, thus offering a toolkit to experimentally probe entan-
glement dynamics in a variety of settings.

Data that support the findings of this study are available
from the corresponding author upon reasonable request.
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