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Probing the BCS-BEC crossover with persistent currents
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We study the persistent currents of an attractive Fermi gas confined in a tightly confining ring trap and
subjected to an artificial gauge field all through the BCS-BEC crossover. At weak attractions, on the Bardeen-
Cooper-Schrieffer (BCS) side, fermions display a parity effect in the persistent currents, i.e., their response to
the gauge field is paramagnetic or diamagnetic depending on the number of pairs on the ring. At resonance
and on the Bose-Einstein condensate (BEC) side of the crossover we find a doubling of the periodicity of the
ground-state energy as a function of the artificial gauge field and disappearance of the parity effect, indicating
that persistent currents can be used to infer the formation of tightly bound bosonic pairs. Our predictions can be
accessed in ultracold atom experiments through noise interferograms.
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Introduction. A gas of weakly attractive spin- 1
2 fermions

can form bound pairs with opposite spin and condense into the
Bardeen-Cooper-Schrieffer (BCS paired regime. On the other
hand, particles with integer spin can display Bose-Einstein
condensation (BEC). Despite BCS pairing and BEC are two
distinct physical phenomena, they have been intensively stud-
ied as two different regimes that may occur in the same
system. In the BCS regime, the correlation length of the bound
pairs is large compared with the typical interparticle distance;
in the BEC regime, instead, the pairs are tightly bound in
the real space and the pair correlation length is much smaller
than the distance between the particles. The evolution between
the two regimes is called BCS-BEC crossover [1]. It plays
an important role in different contexts, ranging from nuclear
[2,3] to condensed matter physics [4,5]. With the advent of
ultracold atoms quantum technology, the BCS-BEC crossover
has been studied in the laboratory with unprecedented control
of the physical conditions, making it possible to test important
aspects of the theories developed so far [6–8].

Recently, important progress has been achieved in the
field, allowing coherent manipulation of atoms in trapping
potentials with wide ranges of intensities and shapes, in an
unprecedented precise manner [9–13]. Atomtronics exploits
such remarkable progress to realize matter-wave circuits of
ultracold atoms manipulated in magnetic or laser-generated
guides [14–16]. In particular, harnessing current states in
an explicit way, atomtronics effectively widens the scope of
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quantum simulators and emulators to probe quantum phases
of matter. Specifically, in the spirit of solid-state physics I-
V (current-voltage) characteristics, the different many-body
quantum regimes are characterized in terms of the current
flowing through the cold atomic system. Here, we take the
latter view to study the BCS-BEC crossover: we show how
the persistent current in attracting fermionic systems confined
in ring-shape lattice potential and pierced by an artificial
gauge field provides a way to tell apart the BCS and BEC
regimes. Modeling the BCS-BEC crossover in 1D needs to
be done differently than in the 3D case [17,18]. We fol-
low the same strategy as in [19]: we describe the system
on the BCS side using a model of fermions with attrac-
tive contact interactions. At resonance, it corresponds to a
Tonks-Girardeau gas of hard-core bosonic pairs [20]. The
BEC side of the crossover is described by a bosonic model
for the pairs with contact interactions, to which the attrac-
tive fermionic model is continuously connected. By applying
exact Bethe ansatz methods corroborated by density matrix
renormalization group (DMRG) simulations, we gain access
to all regimes of interactions ranging from weak to strong
attractions.

Our main results are summarized in Figs. 1 and 2. We rely
on a theorem due to Leggett [21] to demonstrate that the BCS
to BEC crossover is marked by clear features of the periodicity
of the persistent currents. Accordingly, assuming that the total
number of particles is N = 2n, the persistent current of a
gas of interacting spin- 1

2 fermions is predicted to be parity
dependent: for even number n of pairs of fermions, the sys-
tem behaves as a paramagnet with a nonvanishing persistent
current at zero effective magnetic field; for odd n instead, the
system behaves as a diamagnet (vanishing persistent current
at zero field). For our specific problem, we find that while the
persistent current displays clear parity dependence in the BCS
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FIG. 1. Column (a): energies vs � for N = 4, Ns = 8 from Bethe ansatz (blue line) and DMRG (yellow triangles). In each column, the
first three panels from the top correspond to U/J = 0, −2, −6, respectively. The last line describes the BEC regime for UB/JB = 1—here
only DMRG data are available since the model is not integrable. Column (b): persistent current as a function of the flux for the same set
of parameters, obtained as the derivative of the ground-state energy in column (a). Columns (c) and (d): noise correlator for N = 4 and
Ns = 10 for �/�0 = 0.1 and �/�0 = 0.4, respectively, indicated by red circles in column (a). The correlators are all evaluated in r′ = (R, 0)
and t = 0.3 ω−1

0 , where ω0 is the frequency of each lattice well. The noise correlator is expressed in units of 1/R2. A circulating state is
characterized by a spiral-like correlator, not symmetric by inversion with respect to the y = 0 axis.

regime, the latter is washed out for strongly attracting pairs,
indicating that at resonance and in the BEC regime, fermionic
pairs behave as pointlike bosons, which are predicted not to
show parity effects [22,23]. Finally, inspired by a procedure
developed for bosonic condensates [24–27], we propose a
protocol to evidence the parity effect in the persistent current
by noise correlations, based on the self-heterodyne detection
of the phase of the many-body wave function.

The model. We consider a gas of degenerate fermions
confined in a lattice ring of radius R and pierced by an
effective gauge field. Such system is a paradigmatic exam-
ple of an atomtronic circuit [15,16]. The artificial magnetic
field can be applied in several ways; for example, by stirring
the condensate, by phase imprinting, or two-photon Raman
transitions [29]. To address the whole BCS-BEC crossover,
we exploit the possibility to tune the interaction strength in
ultracold atoms, e.g., across a confinement-induced resonance
[30,31]. To describe the BCS side of the crossover, we use

the one-dimensional attractive Fermi-Hubbard Hamiltonian,
which, for an even number N of particles on a lattice of Ns

sites, reads

ĤFH = −J
Ns∑

j=1

∑

σ=↑,↓
(ei(2π/Ns)(�/�0 )c†

j,σ c j+1,σ + H.c.)

+U
Ns∑

j=1

n j,↑n j,↓ (1)

where U < 0, J is the tunnel amplitude, � is the rotation fre-
quency induced by the artificial gauge field, and �0 = h̄/mR2.
The Hamiltonian (1) is solvable by Bethe ansatz [32,33] with
many-body eigenvalues in the form E = −2J

∑
j cos k j . The

quantities k j are the so-called charge rapidities: we set them
as k j,± = p j ± iv j . In thermodynamic limit they correspond
to two-dimensional k strings in which all the charge rapidi-
ties are in the form sin(k j,±) = � j ± iU/4J . A nonvanishing
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FIG. 2. Energies, persistent current, and noise correlators as in Fig. 1 here studied for N = 6, and for U/J = 0,−5, −10 (from top to
bottom) [28]. The last line refers to the bosonic case for UB/JB = 1. All the other parameters are the same as in Fig. 1.

imaginary part of the rapidities indicates the formation of
bound states. Excitations on top of the ground states are
obtained either by pair breaking (gapped spin excitations),
by pair rearrangements (gapless charge excitations), or by
combinations thereof [34]. We note that solutions deviating
from the k-string form occur if UNs/J is not sufficiently large.
This may happen on a lattice ring at very weak interactions.
We provide a solution to this model at any interaction strength
and in the total spin zero sector.

In the small-|U | limit, the connection between the one-
dimensional (1D) Hubbard model and BCS theory is well
established [35,36].

The BCS regime emerges as the limit where the binding
energy is smaller than the kinetic energy of the particles, and
the bound states are localized on spatial scales much larger
than the average interparticle distances [37]. The known BCS
exponential dependence of the energy gap on interaction was
also obtained [38].

For strongly attractive interactions, the Bethe ansatz so-
lution indicates the formation of a Tonks-Girardeau gas of
hard-core bosons. Hence, in the spirit of [19], we describe the
BEC side of the crossover by a bosonic Hubbard model, where

bosons correspond to the fermionic pairs,

ĤBH = −JB

Ns∑

j=1

(ei(2π/Ns)(�/�0 )b†
jb j+1 + H.c.)

+ UB

2

Ns∑

j=1

n j (n j − 1). (2)

Here JB is the tunnel amplitude for pairs and UB is the pair-
pair interaction strength [39]. We remark that different from
the Fermi-Hubbard model, the bosonic one is not integrable
[40,41]: there is no exact solution for this model. To address
the whole BCS-BEC crossover, in our work we combine
Bethe ansatz calculations and DMRG simulations to calculate
ground- and excited-state energy branches as a function of �.
DMRG is also used to calculate noise correlators.

Parity effects of the persistent current. We obtain the per-
sistent current from the ground-state energy branch according
to I = −�0∂EGS/∂�. For zero and weak interactions, the
persistent current is a periodic function of the flux with period
�0. Its behavior markedly depends on the parity of the number
of pairs N/2 (see Figs. 1 and 2): for even N/2, the ground-state
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energy displays a global maximum for � = 0 (paramagnetic
behavior); for odd N/2, instead, the ground-state energy has a
global minimum for � = 0 (diamagnetic behavior). Such ef-
fect emerges by comparing the first two columns of Figs. 1 and
2. Remarkably, the parity dependence of the persistent current
disappears for strong enough interactions: upon increasing
interactions the ground-state energy displays a superlattice
structure as the energy of the excited states decreases, leading
to the doubling of its periodicity and the suppression of the
parity effects in the persistent current at resonance. On the
BEC side the periodicity of the ground-state energy is �0/2,
corresponding to the quantum of flux of a pair, for any UB.
We find that the doubling of periodicity of the current is a
clear signature of the formation of pairs. This was originally
suggested by Byers and Yang [42] for BCS superconducting
rings. Our results elucidate their predictions by an exact cal-
culation and extend it to the whole BCS-BEC crossover.

The decrease of the energy of the excited states is also
at the origin of the change of sign in the curvature of the
ground-state energy at zero flux observed in the disordered
Fermi-Hubbard model for even N/2 [43]: disorder smooths
the cusps at weak interactions yielding a negative curvature,
while a positive curvature is found at strong attractions as in
the clean case.

Readout: Interferograms and noise correlations. We next
suggest a protocol to probe the BCS-BEC crossover in cold
atoms setup. In analogy to the approach carried out for
bosonic systems, we propose an interferometric detection of
the current by studying the interference pattern arising from
the coexpansion of the gas on the ring and a degenerate
gas placed at the center C of the ring [39]. In our protocol
we assume the free expansion of the gas. Interaction effects
arising from inelastic collisions are expected to be negligible
in our low density regime [44]. For higher densities, spe-
cific fast ramping protocol leading the system to the BEC
side could be adopted to improve the visibility of the in-
terferograms [8,45,46]. We model the gas in the center as
a single site, and assume that no hopping between the ring
and the central site can occur. We then study density-density
correlations at equal time, which on the BCS side reads∑

ρ,σ=↑,↓〈nρ (r, t )nσ (r′, t )〉, where nσ (r, t ) = 	†
σ (r, t )	σ (r, t )

is the density operator for the spin component σ , 	σ (r, t )
being the fermionic field operator. On the BEC side the first
nontrivial correlator is the one associated to density of pairs
nB [47], i.e., 〈nB(r, t )nB(r′, t )〉.

In order to enhance the visibility of the correlator, aris-
ing from the low density of the system, we generalize the
method devised in [47]: we find that the only terms producing
a nontrivial interference pattern are the ones describing the
correlations between the expanding ring and center:

G̃(r, r′, t ) = −G̃0(r, r′, t ) +
∑

ρ,σ=↑,↓
[〈nρ (r, t )nσ (r′, t )〉

− 〈nρ (r, t )〉ring〈nσ (r′, t )〉C

−〈nρ (r, t )〉C〈nσ (r′, t )〉ring

−〈nρ (r, t )nσ (r′, t )〉ring − 〈nρ (r, t )nσ (r′, t )〉C],

(3)

where G̃0(r, r′, t ) = w∗
C(r, t )wC(r′, t )

∑Ns
j=1 w j (r, t )w∗

j (r′, t )
has also been subtracted, with w j (r, t ) the expanding Wan-
nier function on the site j at time t [39], and we have set
	σ (r) = wC(r)cC,σ + ∑Ns

j=1 w j (r)c j,σ . The G̃0 term corre-
sponds to the one-body density matrix of a noninteracting
Fermi gas for a completely filled lattice, i.e., when it forms
a band insulator. On the BEC side, a definition analogous
to Eq. (3) involving the bosonic density is used. We re-
mark that the above approximation leads to non-Hermitian
G̃(r, r′, t ) [39], hence in the following, we focus only on the
square root of the real part of G̃(r, r′, t ), i.e., G(r, r′, t ) =
sgn(Re[G̃(r, r′, t )])

√
Re[G̃(r, r′, t )].

We study the interference pattern for systems with even
and odd number of pairs in columns (c) and (d) of Figs. 1
and 2. In the small � case, at weak interactions we see a
spiral image with a dislocation indicating nonzero current for
even N/2, while there is no current for odd N/2 as the figure
is symmetric by reflection along the y = 0 axis. The shape
of the interferograms is due to the different contributions of
the single-particle orbitals constituting the Fermi sphere [48].
In contrast, at strong interactions, the images for N/2 even
or odd are both symmetric with respect to the y = 0 axis,
indicating that the current vanishes regardless of the parity of
the number of pairs. We also study the correlation in the inter-
ference pattern for �/�0 slightly below the degeneracy point
�/�0 = 1/2. Comparing columns (c) and (d) of both Figs. 1
and 2, we see that at zero interactions the current is the same
in the two cases, consistently with the fact that the two values
of flux are on the same period of the ground-state energy. At
strong interactions, close to resonance, the images are more
blurred by the reduced phase coherence. Nevertheless, we see
that the correlation functions of column (d) display nonmirror
symmetric, spiral-like features, indicating the presence of a
current state and the doubling of the periodicity. Finally, on
the BEC side, the coherence producing well defined spirals
arises from the quasicondensation of pairs.

Conclusions and outlook. We studied the persistent cur-
rent of a Fermi gas confined in a mesoscopic ring-shaped
lattice subjected to an artificial magnetic field all through
the BCS-BEC crossover. We described the system through
attractive Fermi and repulsive Bose-Hubbard models, using
both the exact solution by Bethe ansatz and DMRG. We
demonstrated that the persistent current displays distinctive
features in the various interaction regimes. At weak inter-
actions (BCS regime), the persistent current is a periodic
function of the single-particle flux quantum, displaying some
modulations due to the superlattice structure of the ground-
state energy. Such phenomenon indicates the onset of pairing
correlations building up between up and down spins. The
BCS regime is characterized by parity-dependent persistent
currents: while for odd number of pairs the system has a
diamagnetic response, for even number of pairs the system
has a paramagnetic response. Remarkably, the parity effect
is washed out at resonance and in the BEC regime. In these
regimes, the persistent current is periodic with a two-particle
flux quantum, providing a clear signature of the formation of
bound pairs. To experimentally monitor the features of the
persistent current described above, we let the gas coexpand
with a reference gas placed in the center and we study the
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noise correlations in the interference pattern. Quite remark-
ably, such interferometric analysis works also in the BCS
regime, where the phase coherence ensured by the fermionic
pairs is lower than in the BEC one.

Our work provides clear evidence that the response of a
mesoscopic size system to an artificial gauge field is a relevant
tool to study the BCS-BEC crossover. Our approach is fully

general and readily applicable to other models, e.g., the boson-
fermion one [49], as well as to other systems, such as high Tc

superconductors [50,51].
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