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We study a relationship between optimal transport theory and stochastic thermodynamics for the Fokker-
Planck equation. We show that the lower bound on the entropy production is the action measured by the
path length of the L2-Wasserstein distance. Because the L2-Wasserstein distance is a geometric measure of
optimal transport theory, our result implies a geometric interpretation of the entropy production. Based on this
interpretation, we obtain a thermodynamic trade-off relation between transition time and the entropy production.
This thermodynamic trade-off relation is regarded as a thermodynamic speed limit which gives a tighter bound
of the entropy production. We also discuss stochastic thermodynamics for the subsystem and derive a lower
bound on the partial entropy production as a generalization of the second law of information thermodynamics.
Our formalism also provides a geometric picture of the optimal protocol to minimize the entropy production. We
illustrate these results by the optimal stochastic heat engine and show a geometrical bound of the efficiency.
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I. INTRODUCTION

Geometry is a helpful tool to consider the difference
between two quantities, and the geometric concept for prob-
ability distributions is widely used in statistical physics.
For example, the Kullback-Leibler divergence [1] is an
information-geometric measure that quantifies the difference
between two probability distributions and provides the en-
tropy production [2,3]. The differential geometry based on
the entropy production is regarded as information geome-
try [4] because the second-order Taylor expansion of the
Kullback-Leibler divergence leads to the metric in infor-
mation geometry called the Fisher metric [5]. Based on
information geometry, geometric aspects of thermodynamics
have been discussed [6–14]. For example, thermodynamic
trade-off relations such as thermodynamic uncertainty rela-
tions [15–19] and speed limits [10,20–23] have been derived
based on the Fisher metric [10,24–28]. These trade-off rela-
tions are mathematically connected [24,29–31]. The Fisher
metric also explains the optimal control of thermodynamic
systems and their stability [32–35].

In optimal transport theory [36,37], another geometry
explains the optimal control and is related to thermody-
namics. In optimal transport theory, a geometric measure
called the L2-Wasserstein distance quantifies a difference be-
tween two probability distributions. A relationship between
L2-Wasserstein distance and thermodynamic relaxation has
been discussed, especially for the Fokker-Planck equation.
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For example, Jordan et al. showed that the time evolution
of the Fokker-Planck equation minimizes the sum of the free
energy and the L2-Wasserstein distance [38]. A trend to ther-
modynamic equilibrium for the Fokker-Planck equation has
also been discussed using the L2-Wasserstein distance [39].
Remarkably, the terminology of the entropy production is also
used in optimal transport theory [36], and a connection be-
tween the entropy production and the L2-Wasserstein distance
has been discussed [40–42]. Moreover, a relationship between
optimal transport theory and information geometry has been
mathematically discussed [43,44].

In parallel with information geometry, optimal transport
theory can explain the optimal control of thermodynamic
systems and thermodynamic trade-off relations. Optimal
transport theory has been used in stochastic thermodynam-
ics to find a heat minimization protocol [45–48]. In the
context of a heat minimization protocol, Aurell et al. have
derived the lower bound on the entropy production [46] us-
ing the Banamou-Brenier formula [49] in optimal transport
theory. Recently, Dechant and Sakurai have pointed out that
this lower bound on the entropy production is regarded as
a thermodynamic speed limit [50]. Several thermodynamic
trade-off relations about the efficiency of the stochastic heat
engine has been derived based on the optimal transport the-
ory [51,52]. Nevertheless, the usefulness of the above result
regarding optimal transport theory has not been well focused
in the field of stochastic thermodynamics [53,54].

This paper shows a relationship between optimal transport
theory and stochastic thermodynamics for the Fokker-Planck
equation. Based on a connection between the entropy pro-
duction rate and the L2-Wasserstein distance [41], we clarify
geometrical aspects of the entropy production and derive
several thermodynamic trade-off relations. To consider an
infinitesimal time evolution step, we newly show that the
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entropy production is bounded by the time integral of the
square of the velocity, namely the action in differential geom-
etry, measured by the space of the L2-Wasserstein distance.
Furthermore, the entropy production can be proportional to
the action with some assumptions where the force is given by
the potential. This result provides a geometric interpretation
of the entropy production for the Fokker-Planck equation.
Using this geometrical expression of the entropy production,
we obtained a lower bound on the entropy production as
a generalization of the thermodynamic speed limit, which
is tighter than the previous result [46,50]. Remarkably, the
derivation of the new thermodynamic speed limit is the same
as the original derivation of the thermodynamic speed limit
based on information geometry [10]. Moreover, we discuss
stochastic thermodynamics for the subsystem [55–60] and
the stochastic heat engine [61] by using the L2-Wasserstein
distance. We obtain a tighter bound on the partial entropy
production as a generalization of the second law of infor-
mation thermodynamics [12,55–60]. We illustrate our results
by using the examples of the harmonic potential where the
entropy production is proportional to the action. Based on
the geometrical interpretation of the entropy production, we
obtain a geometrical constraint of the heat engine’s efficiency
and analytical derivation of the optimization protocol [62] to
minimize the entropy production. We also numerically illus-
trate a tightness of a generalized thermodynamic speed limit
and the optimal heat engine based on the Wasserstein distance.

This paper is organized as follows. In Sec. II, we review
previous results on stochastic thermodynamics and optimal
transport theory. We formulate the setup of the Fokker-Planck
equation in Sec. II A. We introduce the concept of the Wasser-
stein distance in Sec. II B. In Sec. III, we discuss our main
results, which are a geometrical interpretation of the entropy
production and new geometric lower bounds on the entropy
production. We present a geometrical interpretation of the
entropy production in Sec. III A and discuss new geometric
lower bounds on the entropy production in Sec. III B. In
Sec. IV, we discuss a generalization of the result in Sec. III
for a subsystem. We introduce the setup of a subsystem
and generalize the main result in Sec. IV A. We discuss an
information-thermodynamic interpretation and derive a new
lower bound on the partial entropy production in Sec. IV B.
In Sec. V, we illustrate the main result by several examples.
In Sec. V A, we discuss the stochastic heat engine and show a
geometric lower bound on the efficiency. In Sec. V B, we show
the optimal protocol to minimize the entropy production based
on our geometric interpretation analytically. In Sec. V C, we
numerically illustrate geometric lower bounds on the entropy
production and the estimation of the entropy production based
on the lower bound. In Sec. V D, we numerically discuss the
optimal protocol to minimize the entropy production for the
stochastic heat engine. In Sec. VI, we conclude this paper with
some remarks.

II. REVIEW ON STOCHASTIC THERMODYNAMICS
AND OPTIMAL TRANSPORT THEORY

A. Stochastic thermodynamics for Fokker-Planck equation

In this paper, we consider the probability distribution pt (x)
of a particle in a Euclid d-dimensional position x ∈ X (=Rd )

at time t . The time evolution of pt (x) is described by the
following Fokker-Planck equation for a particle driven by a
potential Vt (x) with mobility μ attached to a heat bath at
temperature T ,

∂ pt (x)

∂t
= −∇ · (νt (x)pt (x)), (1)

νt (x) : = −μ∇[Vt (x) + T ln pt (x)], (2)

where ∇ is the del oparator and νt (x) is a quantity called
the mean local velocity. We here set the Boltzmann constant
to unity kB = 1. As a continuity equation, the mean local
velocity νt (x) is regarded as the velocity field. In stochastic
thermodynamics [53], the internal energy U , the extracted
work dW , the heat received from the heat bath dQ, and the
entropy of the system Ssys at time t are defined as follows:

U : =
∫

dx Vt (x)pt (x), (3)

Ssys : = −
∫

dx pt (x) ln pt (x), (4)

dW

dt
: =

∫
dx

∂Vt (x)

∂t
pt (x), (5)

dQ

dt
: =

∫
dx Vt (x)

∂ pt (x)

∂t
. (6)

By definition, the heat dQ satisfies the first law of thermo-
dynamics dU/dt = dW/dt + dQ/dt . From these definitions
(3)–(6), the entropy production rate at time t

σt := dSsys

dt
− 1

T

dQ

dt
(7)

is calculated as

σt = 1

μT

∫
dx[−μVt (x) − μT ln pt (x)]

∂ pt (x)

∂t
(8)

= 1

μT

∫
dx ‖νt (x)‖2 pt (x), (9)

where we used Eq. (1) and the normalization of the probability
(d/dt )[

∫
dxpt (x)] = 0, and we assumed that pt (x) vanishes

at infinity. The symbol ||νt ||2 := νt · νt indicates the square of
L2 norm. Thus, the entropy production rate σt is given by the
expected value of the square of the mean local velocity divided
by the factor μT . The entropy production from time t = 0
to time t = τ is defined as the time integral of the entropy
production rate,

� :=
∫ τ

0
dtσt . (10)

We can easily check the non-negativity of the entropy produc-
tion � � 0, which implies the second law of thermodynamics.

B. Optimal transport theory and L2-Wasserstein distance

Next, we discuss the geometric measure of optimal trans-
port called the L2-Wasserstein distance [37]. We consider
the cost function c(x, y) of transporting a single particle at
the point x ∈ X to the point y ∈ X . We first introduce the
Monge-Kantrovich minimization problem [63], which quan-
tifies a difference between two probability distributions p(x)
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and q(y). The optimal transport cost for c(x, y) between p(x)
and q(y) is defined as

C(p, q) := min
�∈P (p,q)

∫
dxdy c(x, y)�(x, y), (11)

where the lower bound is taken over the entire set P (p, q) of
joint probability distributions �(x, y) on X × X ,

P (p, q) := {�|p(x) =
∫

dy�(x, y),

q(y) =
∫

dx�(x, y),�(x, y) � 0}, (12)

where marginal distributions of �(x, y) in the set P (p, q)
are given by p(x) and q(y). Therefore, the optimal transport
cost gives a minimum value of the expected value of the cost
c(x, y) for the joint distribution �(x, y). We call the value of
� that minimizes the expected value of the distance as the
optimal transport plan �∗, which is defined as

�∗(x, y) := argmin�∈P (p,q)

∫
dxdy c(x, y)�(x, y). (13)

In general, the Monge-Kantrovich minimization problem is
hard to be solved analytically. However, if we consider the L2

norm as the optimal transport cost on the Euclidean space, the
Monge-Kantrovich minimization problem can be solved with
few restrictions [37]. This optimal transport cost leads to the
L2-Wasserstein distance which plays an important role in this
paper.

The L2-Wasserstein distance W (p, q) is introduced by
the square root of the optimal transport cost for the cost
function which is the square of the L2 norm. Explicitly, the
L2-Wasserstein distance W (p, q) between p and q is defined
as

W (p, q)2 := min
�∈P (p,q)

∫
dxdy ‖x − y‖2�(x, y)

= C(p, q), (14)

where C(p, q) is the optimal transport cost for the cost func-
tion c(x, y) = ‖x − y‖2. The L2-Wasserstein distance is well
defined [37] if two probability distributions p and q satisfy∫

dxp(x)‖x‖2 < ∞,

∫
dyq(y)‖y‖2 < ∞, (15)

which is only an assumption for two distributions p and q
to define L2-Wasserstein distance. We assume this condition
Eq. (15) throughout the paper. Furthermore, it is known that
there exists a map Tp→q(x) such that �∗(x, y) = p(x)δ(y −
Tp→q(x)) for the L2-Wasserstein distance c(x, y) = ‖x − y‖2

on the space Rd , where δ(x) is the delta function [37]. This
map Tp→q is called the optimal transport map from p to q.
Using the fact that the marginal distributions of �∗(x, y) are
p(x) and q(y), we can obtain∫

dy f (y)q(y) =
∫

dx
∫

dy f (y)�∗(x, y)

=
∫

dx f (Tp→q(x))p(x) (16)

for any differential and measurable function f (x). If we
consider the change of variables y = Tp→q(x) and dy =

Probability

Space X

: L²-Wasserstein distance

FIG. 1. Schematic of the L2-Wasserstein distance. We consider
optimal transport from the probability distribution p(x) to the prob-
ability distribution q(y). The length of the green arrow shows the
optimal transportation distance ||x − Tp→q(x)||, and the square of the
L2-Wasserstein distance is given by the expected value of the square
of its optimal transportation distance.

dx| det(∇Tp→q(x))|, we obtain the Jacobian equation [37]

p(x) = q(Tp→q(x))| det(∇Tp→q(x))|, (17)

where | det(∇Tp→q(x))| denotes the determinant of the Jaco-
bian matrix ∇Tp→q at x. By using the optimal transport map,
the L2-Wasserstein distance is calculated as

W (p, q)2 =
∫

dx ‖x − Tp→q(x)‖2 p(x). (18)

Thus, the L2-Wasserstein distance can be regarded as the
expected value of ||x − Tp→q(x)||2 (see Fig. 1).

We briefly introduce the Benamou-Brenier formula [49],
which is related to a relation between the entropy production
and the L2-Wasserstein distance in this paper. If dynamics of
the probability qt (x) at time t are driven by the continuity
equation with the velocity field vt (x),

∂qt (x)

∂t
= −∇ · (vt (x)qt (x)), (19)

the L2-Wasserstein distance gives the lower bound on the
expected value of the square of the velocity field,

W (q0, qτ )2 � τ

∫ τ

0
dt

∫
dx||vt (x)||2qt (x). (20)

where we consider the time integral from time t = 0 to time
t = τ . Because the velocity field of the Fokker-Planck equa-
tion is the mean local velocity, we obtain a relation between
the entropy production rate and the L2-Wasserstein distance
as discussed in the next section.

III. ENTROPY PRODUCTION AND L2-WASSERSTEIN
DISTANCE

A. Relation between Wasserstein distance
and entropy production rate

In this section, we discuss a relation between the L2-
Wasserstein distance and the entropy production rate, which is
a main result in this paper. We set that dynamics of the proba-
bility distribution pt (x) are described by the Fokker-Planck
equation (1). We define the path length on the probability
simplex measured by the L2-Wasserstein distance from time
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t = 0 to time t = τ as

Lτ := lim
�t→+0

n∑
k=0

W (pk�t , p(k+1)�t ), (21)

where n is a positive integer satisfying n�t � τ � (n + 1)�t .
The entropy production rate is bounded by

σt � 1

μT

(
dLt

dt

)2

, (22)

which is a main result in this paper. This main result is con-
sistent with the optimal transport theory for an infinitesimal
time transition in Ref. [41]. This equation gives a relation
between the L2-Wasserstein distance and the entropy pro-
duction rate for the Fokker-Planck equation. In terms of the
L2-Wasserstein distance, the quantity (dLt/dt )2 is given by(

dLt

dt

)2

= lim
�t→+0

W (pt+�t , pt )2

�t2
. (23)

Thus, this inequality can be regarded as the Benamou-Brenier
formula [49] for the short time τ = �t ,

W (pt+�t , pt )
2 � �t

∫ �t

0
dt

∫
dx ‖νt (x)‖2 pt (x) + O(�t3).

(24)

We next discuss the situation that the equality in Eq. (22)
holds. We introduce a non-negative term σ rot

t defined as

σ rot
t = σt − 1

μT

(
dLt

dt

)2

� 0, (25)

and discuss the situation σ rot
t = 0. We consider the Taylor

expansion of the optimal transport map Tpt →pt+�t (x) up to the
order �t ,

Tpt →pt+�t (x) = x + a1(x)�t + O(�t2), (26)

where a1(x) is the first order of the Taylor coefficient. From
Eq. (18), we obtain an expression of (dLt/dt )2,(

dLt

dt

)2

=
∫

dx ‖a1(x)‖2 pt (x). (27)

Thus, if the mean local velocity gives an optimal transport
map, that is νt (x) = a1(x), the equality holds and σ rot

t = 0.
Next, we consider the difference between a1(x) and νt (x).

By substituting (pt , pt+�t ) into (p, q), the Jacobian equation
in Eq. (17) is given by

pt (x) = pt+�t (Tpt →pt+�t (x))| det(∇Tpt →pt+�t (x))|. (28)

We calculate the Taylor expansions of the determinant up to
the order �t as follows:∣∣ det

(∇Tpt →pt+�t (x)
)∣∣ = 1 + ∇ · a1(x)�t + O(�t2). (29)

From the Fokker-Planck equation (1), we also obtain

pt+�t (x) = pt (x) − ∇ · (νt (x)pt (x))�t + O(�t2), (30)

which is the discretized version of the Fokker-Planck equation
for the short time �t . By inserting Eqs. (26), (29), and (30)
into Eq. (28), we obtain

0 = ∇ · [(a1(x) − νt (x))pt (x)]�t + O(�t2).

By considering the first-order terms of �t , we obtain

∇ · [(a1(x) − νt (x))pt (x)] = 0. (31)

In case of d = 3, this equation implies the existence of a
vector potential At (x) because of Helmholtz’s decomposition
such as

a1(x)pt (x) = νt (x)pt (x) + ∇ × At (x). (32)

Thus, this vector potential At quantifies a difference between
optimal transport plan and the time evolution of the Fokker-
Planck equation from time t to time t + �t . In the general case
of d �= 3 or the case of non-Euclidean space, we may consider
the Helmholtz-Hodge decomposition to obtain an expression
of a1(x)pt (x) − νt (x)pt (x).

To find the expression of σ rot
t , we use the formula for

the time derivative of the L2-Wasserstein distance [37]. The
following formula

d

ds

(W (p, pt+s)2

2

)∣∣∣∣
s=0

=−
∫

dx(x−Tt (x))·νt (Tt (x))p(x)

(33)

holds for any probability distribution p(x), where we used the
notation Tt = Tp→pt . The proof of this formula (33) is shown
in Appendix. By applying the Taylor expansion Eq. (26) to the
formula Eq. (33) for (p, pt+s) = (pt , pt+�t+s), we obtain the
following equation,

d

ds

(W (pt , pt+�t+s)2

2

)∣∣∣∣
s=0

= �t
∫

dx[a1(x) · νt (Tpt →pt+�t (x))]pt (x)

= �t
∫

dx[a1(Tpt →pt+�t (x))

· νt (Tpt →pt+�t (x))]pt (x)+O(�t2)

= �t
∫

dy[a1(y) · νt (y)]pt+�t (y) + O(�t2)

= �t
∫

dx[a1(x) · νt (x)]pt (x) + O(�t2), (34)

where we used Eq. (16). From the definition of the path length
Eq. (21), we obtain

W (pt+s, pt ) = dLt

dt
s + O(s2) (35)

for small s. Therefore, we also obtain

d

ds

(W (pt , pt+�t+s)2

2

)∣∣∣∣
s=0

= lim
s→+0

W (pt+�t+s, pt ) − W (pt+�t , pt )

s
W (pt+�t , pt )

= dLt+�t

dt

dLt

dt
�t + O(�t2)

=
(

dLt

dt

)2

�t + O(�t2). (36)
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By comparing Eq. (36) with Eq. (34), we obtain another
expression of (dLt/dt )2,(

dLt

dt

)2

=
∫

dx[a1(x) · νt (x)]pt (x). (37)

We also obtain expressions of σ rot
t ,

σ rot
t = 1

μT

∫
dx[(νt (x) − a1(x)) · νt (x)]pt (x), (38)

= 1

μT

∫
dx||νt (x) − a1(x)||2 pt (x), (39)

where we compared Eq. (27) with Eq. (37). Thus, σ rot
t is

non-negative, and zero if ||a1(x) − νt (x)|| = 0. This value σ rot
t

quantifies the amount of a difference between the velocity
field of optimal transport and the mean local velocity. In case
of d = 3, σ rot

t is calculated as

σ rot
t = − 1

μT

∫
dx[∇ × At (x)] · νt (x) (40)

= 1

μT

∫
dx

||∇ × At (x)||2
pt (x)

� 0, (41)

which quantifies the amount of the rotation because σ rot
t is

proportional to the mean value of the square of the rotation
||∇ × At (x)||/pt (x). Thus, σ rot

t is non-negative, and zero if
the rotation vanishes ||∇ × At (x)|| = 0.

We discuss when σ rot
t vanishes. If the mean local veloc-

ity νt (x) is given by νt (x) = −∇	t with the potential 	t =
μ(Vt (x) + T ln pt (x)) as we assumed in Eq. (2), the quantity
σ rot

t is given by

σ rot
t = − 1

μT

∫
dx[(νt (x) − a1(x))pt (x)] · ∇	t

= − 1

μT

∫
dx∇ · [(νt (x) − a1(x))pt (x)	t ]

= − 1

μT

∫
dS · [(νt (x) − a1(x))pt (x)	t ], (42)

where we used Eq. (31) and
∫

dS denotes the surface integral.
If the quantity ‖[(νt (x) − a1(x))pt	t‖ vanishes at infinity, the
quantity σ rot

t becomes zero. The assumption that the probabil-
ity pt vanishes at infinity is physically natural. Therefore, σ rot

t
vanishes in a physically natural situation and we obtain

σt = 1

μT

(
dLt

dt

)2

. (43)

The above condition νt (x) = −∇	t is based on the assump-
tion that the force −∇Vt (x) is given by the gradient of the
potential Vt (x). In Sec. V B, we analytically show σ rot

t = 0 for
the 1D-Brownian particle trapped in the harmonic potential.
If the force is given by the nonpotential force and the mean
local velocity νt (x) is not given by the potential, the term
σ rot

t might not be zero. The nonpotential force is needed to
achieve nonequilibrium steady state, and the steady flow and
the steady force should be cyclic because of the Schnaken-
berg network theory [64]. The quantity σ rot

t might play an
important role in the steady-state thermodynamics with the
nonpotential force [65].

We also remark the uniqueness of σ rot
t . In general, the

vector a1(x) is not unique because the optimal transport map

Tpt →pt+�t (x) is not unique. But, by definition, the values of the
Wasserstein distance W (pt+�t , pt ) and the entropy produc-
tion σt are unique. Thus, the value of σ rot

t has to be unique,
while a1(x) is not unique in general.

B. Geometric lower bounds on entropy production
and thermodynamic speed limits

We here discuss a lower bound on the entropy production
� := ∫

dtσt based on Eq. (22). By using Eq. (22), the entropy
production from time t = 0 to time t = τ is bounded by

� =
∫ τ

0
dtσt

� 1

μT

∫ τ

0
dt

(
dLt

dt

)2

. (44)

In differential geometry, the quantity C =
(1/2)

∫ τ

0 dt (dLt/dt )2 is called the action, and Eq. (22)
implies that the entropy production for the Fokker-Planck
equation is bounded by the action measured by the path
length of the Wasserstein L2 distance,

� � 2C
μT

. (45)

If σ rot = 0, the entropy production is proportional to the
action measured by the path length of the Wasserstein L2

distance � = 2C/(μT ). Here, we consider the following
Cauchy-Schwarz inequality

2τC =
(∫ τ

0
dt

)(∫ τ

0
dt

(
dLt

dt

)2)

�
(∫ τ

0
dt

dL
dt

)2

= L2
τ , (46)

which gives a lower bound on the action. In information ge-
ometry, this inequality has been considered [9] as a trade-off
relation between time τ and the action C. By considering
(dLt/dt )2 as the Fisher information of time, several variants
of thermodynamic speed limits can be derived from this in-
equality for the Markov jump process [10], the Fokker-Planck
equation [26], and the rate equation [23] in stochastic ther-
modynamics of information geometry. In the same way, we
obtain a lower bound on the entropy production by consider-
ing the action measured by the L2-Wasserstein distance (see
also Fig. 2),

� � L2
τ

μT τ
, (47)

which is also a main result in this paper. Because this in-
equality implies a trade-off relation between time and the
entropy production, this result can also be regarded as a
generalization of thermodynamic speed limits. Since we use
the Cauchy-Schwarz inequality, the equality can be achieved
when the probability distribution moves with a constant ve-
locity on the L2-Wasserstein distance space, that is, when it
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Entropy production rate Speed limit

FIG. 2. Schematic of the entropy production and the L2-
Wasserstein distance. The lower bound on the entropy production is
obtained from geometry of the L2-Wasserstein distance. The entropy
production � = ∫ τ

0 dtσt is tightly bounded by the length measured
by the L2-Wasserstein distance Lτ . The L2-Wasserstein distance it-
self W (p0, pτ ) provides a looser bound on the entropy production.
These inequalities are generalizations of thermodynamic speed limits

satisfies the following equation

dLt

dt
= Lτ

τ
, (48)

for any 0 � t � τ .
Using the fact that the L2-Wasserstein distance satisfies the

triangle inequality for probabilities p, q, and r [37]

W (p, r) � W (p, q) + W (q, r), (49)

we obtain the following inequality,

Lτ � W (p0, pτ ). (50)

from the definition of Lτ . Using Eq. (47) and the above
inequality, we can obtain the previously known inequality in
Refs. [46,50],

� � W (p0, pτ )2

μT τ
, (51)

which is equivalent to the Benamou-Brenier formula [49]
because the entropy production rate is given by the expected
value of the square of the velocity field νt (x). Considering
the above derivation, the condition for the equality to hold is
when the probability distribution changes at a constant speed
on a straight line as measured by the L2-Wasserstein distance,

Lτ = W (pτ , p0), (52)

dLt

dt
= W (pτ , p0)

τ
. (53)

In this case, the entropy production is minimized with con-
straints p0 and pτ . Moreover, when the initial distribution p0,
the final distribution pτ , and the time interval τ are specified,
the protocol to achieve this equality can be numerically ob-
tained by the algorithm of the fluid mechanics [49]. In other
words, by using this algorithm, we can construct an efficient
heat engine for small systems with the minimum entropy
production.

Similarly, we obtain another lower bound by applying the
Cauchy-Schwartz inequality Eq. (46) and the triangle inequal-
ity Eq. (49). Let us consider the time interval ti = τ (i/N ).

Because the entropy production is given by

� �
N−1∑
i=0

1

μT

∫ ti+1

ti

dt

(
dLt

dt

)2

, (54)

another lower bound on the entropy production can be ob-
tained in a similar way as follows,

� �
N−1∑
i=0

�̂(ti; ti+1), (55)

where �̂(t ; s) is the lower bound on the entropy production by
the Benamou-Brenier formula from time t to time s,

�̂(t ; s) = W (pt , ps)2

μT (s − t )
. (56)

Moreover, in case of σ rot
t = 0, we obtain

� = lim
N→∞

N−1∑
i=0

�̂(ti; ti+1), (57)

because the change from pti to pti+1 is at a constant rate on
a straight line as measured by the L2-Wasserstein distance
in the limit ti+1 − ti = τ/N → 0. Remarkably, a calculation
of �̂(ti; ti+1) does not require information of the joint prob-
ability distribution at time ti and ti+1, while the experimental
estimation of the entropy production based on the fluctuation
theorem needs information of the joint probability distribution
[66]. It is relatively difficult to estimate the joint probability
in an experiment with a small number of samples, compared
to two probabilities. This fact might be useful to estimate
the entropy production in an experiment by using Eq. (57).
This estimation of the entropy production by using Eq. (57)
is similar to the estimation of the entropy production based
on thermodynamic trade-off relations such as thermodynamic
uncertainty relations [67–70].

IV. SUBSYSTEM AND INFORMATION
THERMODYNAMICS

A. Stochastic thermodynamics for subsystem

Stochastic thermodynamics for a subsystem has been
discussed in terms of information thermodynamics, which
explains a paradox of the Maxwell’s demon [55]. In in-
formation thermodynamics, we consider a relation between
the partial entropy production and information flow for the
two-dimensional (2D) Fokker-Planck equation (58) or the 2D
Langevin equations [59,60,71]. In this section, we discuss a
relationship between the partial entropy production and the
L2-Wasserstein distance for a subsystem.

We start with two-dimensional systems X and Y . Stochas-
tic dynamics of two positions x ∈ X (=R) and y ∈ Y (=R) are
driven by the following Fokker-Planck equation

∂ pt (x, y)

∂t
= − ∂

∂x

[
νX

t (x, y)pt (x, y)
]− ∂

∂y

[
νY

t (x, y)pt (x, y)
]
,

νX
t (x, y) := − μ

∂

∂x
[Vt (x, y) + T ln pt (x, y)],

νY
t (x, y) := − μ

∂

∂y
[Vt (x, y) + T ln pt (x, y)]. (58)
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We first consider the situation that the position y is the hid-
den degree of freedom and we can only observe the position
x. Thus, we can only measure the marginal distribution of X
defined as

pX
t (x) =

∫
dy pt (x, y). (59)

The time evolution of the marginal distribution is given by

∂ pX
t (x)

∂t
= − ∂

∂x

(
ν̄X

t (x)pX
t (x)

)
, (60)

ν̄X
t (x) =

∫
dyνX

t (x, y)pt (x, y)

pX
t (x)

=
∫

dyνX
t (x, y)pY |X

t (y|x), (61)

where ν̄X
t (x) is the marginal mean local velocity of X and

pY |X
t (y|x) := pt (x, y)/pX

t (x) is the conditional probability of
Y under the condition of X . If we want to measure the entropy
production rate for this system, we only obtain the apparent
entropy production rate of X ,

σ̄ X
t = 1

μT

∫
dx

[
ν̄X

t (x)
]2

pX
t (x), (62)

which is different from the partial entropy production rate
of X ,

σ X
t = 1

μT

∫
dx

∫
dy

[
νX

t (x, y)
]2

pt (x, y). (63)

From the Cauchy-Schwarz inequality, we obtain the
inequality

σ X
t − σ̄ X

t

= 1

μT

∫
dx

( ∫
dy

[
νX

t (x, y)
]2

pt (x, y)
)
(
∫

dypt (x, y))

pX
t (x)

− 1

μT

∫
dx

( ∫
dyνX

t (x, y)pt (x, y)
)2

pX
t (x)

� 0. (64)

Thus, the apparent entropy production rate σ̄ X
t is always

smaller than the partial entropy production rate σ X
t . The ap-

parent entropy production rate is equivalent to the partial
entropy production when νX

t (x, y) = ν̄X
t (x). This condition

implies that the potential force −∂Vt (x, y)/∂x does not depend
on y, and the systems X and Y are statistically independent
pt (x, y) = pX

t (x)pY
t (y) with pY

t (y) := ∫
dx pt (x, y).

If we define the path length of X from time t = 0 to time
t = τ as

LX
τ := lim

�t→+0

n∑
k=0

W
(
pX

k�t , pX
(k+1)�t

)
, (65)

our result for the path length of X gives the apparent entropy
production rate of X ,

σ̄ X
t � 1

μT

(
dLX

t

dt

)2

= lim
�t→0

W (pX
t+�t , pX

t )2

μT �t2
, (66)

where n is a positive integer satisfying n�t � τ � (n + 1)�t .
We also obtain a lower bound on the apparent entropy produc-
tion rate of X as follows,

�̄X :=
∫ τ

0
dt σ̄ X

t (67)

� (LX
τ )2

τμT
(68)

� W (pX
0 , pX

τ )2

τμT
. (69)

Compound inequalities of Eqs. (64), (68) and (69) can be
regarded as an information-thermodynamic speed limit for the
subsystem. We remark that ν̄X

t (x) is given by the potential
ν̄X

t (x) = −∂x	t when ν̄X
t (x) = νX

t (x, y). In this case, we may
obtain σ X

t = σ̄ X
t = (dLX

t /dt )2/(μT ) because of the same rea-
son in case of σ tot

t = 0 for the total system. We also remark
that ν̄X

t (x) is also given by ν̄X
t (x) = −∂x	̄

X
t with the potential

	̄X
t = ∫

dypY (y)	t if the systems X and Y are the statistically
independent pt (x, y) = pX

t (x)pY
t (y).

Now, we discuss a relationship between the subsystem X
and the subsystem Y . We introduce the marginal mean local
velocity of Y , the apparent entropy production rate of Y , and
the partial entropy production rate of Y as follows,

∂ pY
t (y)

∂t
= − ∂

∂y

(
ν̄Y

t (y)pY
t (y)

)
, (70)

ν̄Y
t (y) =

∫
dx νY

t (x, y)pt (x, y)

pY
t (y)

, (71)

σ̄Y
t = 1

μT

∫
dy

[
ν̄Y

t (y)
]2

pY
t (y), (72)

σY
t = 1

μT

∫
dx

∫
dy

[
νY

t (x, y)
]2

pt (x, y). (73)

We also obtain a lower bound on the apparent entropy produc-
tion rate of Y as follows,

�̄Y :=
∫ τ

0
dt σ̄Y

t (74)

� (LY
τ )2

τμT
(75)

� W
(
pY

0 , pY
τ

)2

τμT
, (76)

LY
τ := lim

�t→+0

n∑
k=0

W
(
pY

k�t , pY
(k+1)�t

)
, (77)

where n is a positive integer satisfying n�t � τ � (n + 1)�t .
By definition, the entropy production rate is given by the sum
of the partial entropy production rates,

σt = σ X
t + σY

t . (78)

Because σ X
t � σ̄ X

t and σY
t � σ̄Y

t , the inequality

σt − σ̄ X
t − σ̄Y

t � 0 (79)

is satisfied. Thus, we obtain lower bounds on the entropy
production from Eqs. (68), (69), (75), (76), and (79),

� � (LX
τ )2 + (LY

τ )2

τμT
(80)
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� W (pX
0 , pX

τ )2 + W (pY
0 , pY

τ )2

τμT
. (81)

From the non-negativity of (LY
τ )2 and W (pY

0 , pY
τ ), we also

obtain

� �
(
LX

τ

)2

τμT
(82)

� W
(
pX

0 , pX
τ

)2

τμT
(83)

as looser bounds. This result implies that the entropy produc-
tion of the total system is generally bounded by geometry of
the L2-Wasserstein distance for two subsystems X and Y .

B. Information thermodynamics

We next discuss an interpretation of the above result based
on information thermodynamics. In information thermody-
namics, we consider the following decomposition of the
partial entropy production σ X

t into informational term −İX

and thermodynamic terms σ X
bath;t + σ X

sys;t . The partial entropy
production rates of X and Y for Eq. (58) are calculated as

σ X
t = σ X

bath;t + σ X
sys;t − İX , (84)

σY
t = σY

bath;t + σY
sys;t − İY , (85)

σ X
bath;t =

1

T

∫
dx

∫
dy

[
−∂Vt (x, y)

∂x

]
νX

t (x, y)pt (x, y), (86)

σY
bath;t =

1

T

∫
dx

∫
dy

[
−∂Vt (x, y)

∂y

]
νY

t (x, y)pt (x, y), (87)

σ X
sys;t =

∫
dx

∫
dy

[
−∂ ln pX

t (x)

∂x

]
νX

t (x, y)pt (x, y), (88)

σY
sys;t =

∫
dx

∫
dy

[
−∂ ln pY

t (y)

∂y

]
νY

t (x, y)pt (x, y), (89)

İX =
∫

dx
∫

dy

[
∂

∂x

(
ln

pt (x, y)

pX
t (x)pY

t (y)

)]
νX

t (x, y)pt (x, y), (90)

İY =
∫

dx
∫

dy

[
∂

∂y

(
ln

pt (x, y)

pX
t (x)pY

t (y)

)]
νY

t (x, y)pt (x, y), (91)

where σ X
bath;t (σY

bath;t ) is the entropy change of the system X (Y ),
σ X

bath;t (σY
bath;t ) is the entropy change of the heat bath attached to

the system X (Y ), and İX (İY ) is information flow from X to
Y (Y to X ). We remark that this information flow is related to
other measure of information flow called the transfer entropy
[56,72].

We explain the decomposition of the partial entropy pro-
duction rates Eqs. (84) and (85). The entropy changes of the
system X and Y are given by the differential entropy change,

σ X
sys;t =

∫
dx

∂ pX
t (x)

∂t

[ − ln pX
t (x)

]
= d

dt
SX

sys, (92)

SX
sys =

∫
dx

[ − pX
t (x) ln pX

t (x)
]
, (93)

σY
sys;t = d

dt
SX

sys, (94)

SY
sys =

∫
dy

[ − pY
t (y) ln pY

t (y)
]
, (95)

where we used the partial integral and the normalization of
the probability (d/dt )

∫
dxpX

t (x) = 0. The sum of the entropy
changes of the heat bath gives the total entropy changes of the
heat bathes

σ X
bath;t + σY

bath;t = 1

T

∫
dx

∫
dy

∂ pt (x, y)

∂t
[−Vt (x, y)]

= − 1

T

dQ

dt
, (96)

where we used the partial integral. The sum of information
flows gives the change of the mutual information I between X
and Y ,

İX + İY =
∫

dx
∫

dy
∂ pt (x, y)

∂t

(
ln

pt (x, y)

pX
t (x)pY

t (y)

)

= dI

dt
, (97)

I =
∫

dx
∫

dypt (x, y) ln
pt (x, y)

pX
t (x)pY

t (y)
, (98)

where we used the partial integral, the marginaliza-
tion

∫
dypt (x, y) = pX

t (x) and
∫

dxpt (x, y) = pY
t (y), and

the normalization of the probability (d/dt )
∫

dxpX
t (x) = 0,

(d/dt )
∫

dxpY
t (x) = 0, and (d/dt )

∫
dxdypt (x, y) = 0. Addi-

tionally, we obtain

σ X
sys;t + σY

sys;t − İX − İY = dSsys

dt
, (99)

and thus the sum of the partial entropy production rates gives
the total entropy production rate.

The non-negativity of the partial entropy production rates
gives the second laws of information thermodynamics for the
subsystem [56–60,71],

σ X
bath;t + σ X

sys;t � İX , (100)

σY
bath;t + σY

sys;t � İY , (101)

which implies that the entropy changes of the system and heat
bath are bounded by information flow in the presence of the
subsystem. The sum of two inequalities

σ X
bath;t + σ X

sys;t − İX + σY
bath;t + σY

sys;t − İY � 0 (102)

gives the second law of thermodynamics for the total system

σt � 0. (103)

These inequalities (100) and (101) explain a conversion
between information and thermodynamic quantities in the
context of the Maxwell’s demon. In the study of the au-
tonomous demon, the system Y can be considered as the
Maxwell’s demon and the system X is regraded as the system
where the entropy changes σ X

bath;t + σ X
sys;t can be negative.

The second laws of information thermodynamics explains the
reason why the entropy changes can be negative. Because of
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the information flow from the demon to the system İX , the
entropy changes can be negative.

Based on the results, Eqs. (64) and (66), we obtain tighter
inequalities compared to the second law of information ther-
modynamics as follows:

σ X
bath;t + σ X

sys;t � İX + lim
�t→0

W
(
pX

t+�t , pX
t

)2

μT �t2
� İX , (104)

σY
bath;t + σY

sys;t � İY + lim
�t→0

W
(
pY

t+�t , pY
t

)2

μT �t2
� İY . (105)

Thus, the entropy changes of the system and heat bath
are tightly bounded by both information flow and the L2-
Wasserstein distance.

We now consider the situation σ rot
t = 0. Because the sum

of the partial entropy production rates gives the total entropy
production rate, the sum of two tighter inequalities gives non-
negativity of a measure IW ,

lim
�t→0

IW

�t2
� 0, (106)

IW = W (pt+�t , pt )
2 − W

(
pX

t+�t , pX
t

)2 − W
(
pY

t+�t , pY
t

)2
.

(107)

The equality holds when

νX
t (x, y) = ν̄X

t (x), νY
t (x, y) = ν̄Y

t (y), (108)

because

σ X
t + σY

t = σt = lim
�t→0

W (pt+�t , pt )2

μT �t2
(109)

holds in case of σ rot
t = 0, and we can obtain

σ X
t = σ̄ X

t = lim
�t→0

W
(
pX

t+�t , pX
t

)2

μT �t2
, (110)

σY
t = σ̄Y

t = lim
�t→0

W
(
pY

t+�t , pY
t

)2

μT �t2
, (111)

under the condition Eq. (108). The measure IW quantifies
both the statistical independence and the independence of
the potential, while the mutual information I only quantifies
the statistical independence. Thus, IW could be an interest-
ing measure of the independence between two systems when
stochastic dynamics of two systems are driven by the Fokker-
Planck equation. Its non-negativity is decomposed by tighter
inequalities of information thermodynamics, Eqs. (104)
and (105).

V. EXAMPLE

A. Stochastic heat engine and geometrical bounds on efficiency

Let us consider a stochastic heat engine [61] driven by the
potential Vt . The cycle of a stochastic engine consists of the
following four steps (see also Fig. 3).

(1) Let us consider an isothermal process of varying the
potential Vt (x) during time 0 � t < th at temperature Th. Dur-
ing this step, the probability distribution changes from pa

to pb, and the entropy change of the system is given by
�S := ∫

dxpa (x) ln pa(x) − ∫
dxpb(x) ln pb(x). In this step,

1. Isothermal process 2. Adiabatic process

4. Adiabatic process3. Isothermal process

FIG. 3. An example of a stochastic heat engine. Because the ini-
tial state at time t = 0 is the same as the final state at time t = th + tc,
the four steps gives the cycle of a stochastic heat engine. The work
−Wh is extracted during time 0 � t < th, and the work Wc is done
during time th � t < th + tc. The total amount of the work through
one cycle −W = −Wh + Wc > 0 is extracted.

the work is extracted −Wh := ∫ th
0 dt (dW/dt ) > 0 for the ex-

ternal system.
(2) The temperature is changed from Th to Tc(< Th ) in-

stantaneously at time t = th. During this time, the distribution
pb does not change. Therefore, the entropy of the system also
did not change, and this step can be interpreted as an adiabatic
process.

(3) Let us consider an isothermal process that returns the
potential Vth (x) to V0(x) = Vth+tc (x) during time th � t < th +
tc at temperature Tc. During this step, the probability distri-
bution changes from pb to pa, and the entropy change of the
system is −�S. In this step, the system is assumed to be given
work Wc := ∫ th+tc

th
dt (dW/dt ) > 0 by the external system.

(4) The temperature is changed from Tc to Th instanta-
neously at time t = th + tc. During this time, the distribution
does not change. Therefore, the entropy of the system also did
not change, and this step can be interpreted as an adiabatic
process.

If we consider the harmonic potential and the initial distri-
bution pa is Gaussian, thermodynamic quantities such as the
entropy change and the work are calculated, and we can find
an optimal protocol to minimize the entropy production can be
obtained analytically [61]. As we shown in Sec. V B, σ rot

t = 0
and the entropy production rate is proportional to the action.

Here we consider a general case that the potential is not
necessarily harmonic and the probability distribution at time t
is not necessarily Gaussian. When the times th and tc are long
enough and the potential Vt (x) is a harmonic potential, the
efficiency of the heat engine becomes the Carnot efficiency
asymptotically, and the heat engine can be considered as a
stochastic extension of the Carnot cycle. The extracted work
of the heat engine through the one cycle is

−W := Wh − Wc = (Th − Tc)�S − Th�h − Tc�c, (112)

where �h := ∫ th
0 dtσt is entropy production in the isothermal

step 1 at temperature Th and �c := ∫ th+tc
th

dtσt is the entropy
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production in the isothermal step 3 at temperature Tc. If we
assumed that the extracted work is positive −W > 0, the
condition �S � 0 should be needed because of the second
law of thermodynamics �h � 0 and �c � 0.

By using Eq. (51), we can obtain the following inequality
for the extracted work −W ,

−W � (Th − Tc)�S − W (pa, pb)2

μtr
, (113)

1

tr
:= 1

th
+ 1

tc
, (114)

where tr is called the reduced time. When we impose the
positive extracted work in the whole cycle, i.e., −W > 0, we
obtain the following inequality for the reduced time tr from
Eq. (112),

1

tr
� μ(Th − Tc)

�S

W (pa, pb)2
. (115)

This inequality implies that the reduced time in the engine
is generally bounded by the ratio of the square of the L2-
Wasserstein distance W (pa, pb)2 to the entropy change �S,
which are given by the initial distribution pa and the final
distribution pb.

The efficiency of the heat engine η is defined as

η = −W

Th�S − Th�h
. (116)

Because the second law of thermodynamics �h + �c � 0
holds, we obtain the fact that the efficiency is generally
bounded by the Carnot efficiency ηC [73],

η � Th − Tc

Th
:= ηC. (117)

When we considered the situation that the entropy production
is minimized as follows,

Tc�c = W (pa, pb)2

μtc
, (118)

Th�h = W (pa, pb)2

μth
, (119)

the efficiency η is given by

η =
Th − Tc − W (pa,pb )2

μ�Str

Th − W (pa,pb )2

μ�Sth

, (120)

and reaches to the Carnot efficiency ηC in the limit th → ∞
and tc → ∞. This fact is also discussed in Ref. [51]. In the
limit th → ∞ and tc → ∞, the square of the L2-Wasserstein
distance plays the same role as the irreversible “action” Airr in
Ref. [61].

When σ rot
t = 0, we obtain a geometric interpretation of the

efficiency from Eq. (25),

η =
Th − Tc − 1

μ�S

∫ th+tc
0 dt

( dLt
dt

)2

Th − 1
μ�S

∫ th
0 dt

( dLt
dt

)2 . (121)

In this case, we obtain a lower bound on the efficiency

ηC − 2C
μ�STh

� η � ηC, (122)

where C = (1/2)
∫ th+tc

0 dt (dLt/dt )2 is the action measured by
the L2-Wasserstein distance. The efficiency η can reach to
the Carnot efficiency ηC when the ratio between the action
and the Shannon entropy change C/�S converges to zero. In
general σ rot

t �= 0 and this lower bound Eq. (122) is generally
violated, especially when the nonpotential force exists. Thus,
the quantity σ rot

t might play an important role in a stochastic
heat engine with the nonpotential force.

B. Analytical calculation of geometric optimal protocol

We here discuss dynamics of a Brownian particle in a har-
monic potential as an example of stochastic thermodynamics
based on L2-Wasserstein distance. In this case, we can show
σ rot

t = 0 and obtain the protocol of minimizing the entropy
production analytically. In terms of the Langevin equation, the
time evolution of the position x(t ) at time t is given by

dx(t )

dt
= −μ

∂Vt (x)

∂x
+

√
2μT ξ (t ), (123)

with the harmonic potential

Vt (x) = 1
2 kt (x − at )

2, (124)

where ξ (t ) is the Gaussian noise with the mean 〈ξ (t )〉 = 0 and
the variance 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). This Langevin equation
corresponds to the following Fokker-Planck equation [74],

∂ pt (x)

∂t
= − ∂

∂x
(νt (x)pt (x)), (125)

νt (x) : = −μ
∂

∂x
[Vt (x) + T ln pt (x)]. (126)

We now assume that the probability distribution at the initial
time is Gaussian. For the harmonic potential, the probability
distribution at time t is Gaussian if the probability distribution
at the initial time is Gaussian. The probability distribution
pt (x) is written as the Gaussian distribution with the mean
E[x]t and the variance Var[x]t at time t ,

pt (x) = 1√
2πVar[x]t

exp

(
− (x − E[x]t )2

2Var[x]t

)
, (127)

E[x]t =
∫

dxxpt (x), (128)

Var[x]t =
∫

dxx2 pt (x) − (E[x]t )
2. (129)

For this Fokker-Planck equation, the time evolution of E[x]t

and Var[x]t is given by

d

dt
E[x]t = μkt (at − E[x]t ), (130)

d

dt
Var[x]t = −2μ(kt Var[x]t − T ). (131)

Therefore, the mean local velocity νt (x) is analytically calcu-
lated as

νt (x) = −μkt (E[x]t − at ) +
(

μT

Var[x]t
− μkt

)
(x − E[x]t ),

(132)
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and the entropy production rate is also calculated as

σt = 1

μT

∫
dx|νt (x)|2 pt (x) (133)

= μ

T

{(
kt − T

Var[x]t

)2

Var[x]t + k2
t (E[x]t − at )

2

}
. (134)

The Wasserstein distance can be concretely calculated for
the Gaussian distribution [75,76]. For two probability distri-
butions

pa(x) = 1√
2πVar[x]a

exp

(
− (x − E[x]a )2

2Var[x]a

)
(135)

and

pb(x) = 1√
2πVar[x]b

exp

(
− (x − E[x]b)2

2Var[x]b

)
, (136)

the L2-Wasserstein distance can be written as follows:

W (pa, pb)2 = (E[x]a − E[x]b)2 + (
√

Var[x]a −
√

Var[x]b)2.

(137)

This L2-Wasserstein distance is also known as the Fréchet
distance [77]. Using this analytical expression of the L2-
Wasserstein distance for two Gaussian distributions, we can
confirm σ rot = 0 in this case as follows,(

dLt

dt

)2

= lim
�t→+0

W (pt , pt+�t )2

�t2

=
(

dE[x]t

dt

)2

+
(

d
√

Var[x]t

dt

)2

= μ2

{
(kt Var[x]t − T )2

Var[x]t
+ k2

t (E[x]t − at )
2

}

= μT σt , (138)

where we used Eqs. (130) and (131).
We also can confirm that the entropy production � is min-

imized if Eq. (53) holds. The minimum value of the entropy
production � for fixed p0 and pτ is calculated as

� =
∫ τ

0 dt
[( dE[x]t

dt

)2 + ( d
√

Var[x]t

dt

)2]
μT

(139)

�
(∫ t=τ

t=0 dE[x]t
)2 + (∫ t=τ

t=0 d
√

Var[x]t
)2

μT τ
(140)

= (E[x]τ − E[x]0)2 + (
√

Var[x]τ − √
Var[x]0)2

μT τ
, (141)

where we used the Cauchy-Schwarz inequality
τ

∫ τ

0 dt (dθt/dt )2 � (
∫ τ

0 dt (dθt/dt ))2 with θt = E[x]t and
θt = √

Var[x]t . The minimum value can be achieved if dθt/dt
is constant. This condition of the minimum value can be
rewritten as

E[x]t =
(

1 − t

τ

)
E[x]0 + t

τ
E[x]τ (142)

√
Var[x]t =

(
1 − t

τ

)√
Var[x]0 + t

τ

√
Var[x]τ , (143)

or equivalently,

dE[x]t

dt
= E[x]τ − E[x]0

τ
, (144)

d
√

Var[x]t

dt
=

√
Var[x]τ − √

Var[x]0

τ
. (145)

Under this condition, W (p0, pτ )/τ is calculated as

W (p0, pτ )

τ

= 1

τ

√
(E[x]τ − E[x]0)2 + (

√
Var[x]τ −

√
Var[x]0)2

=
√(

dE[x]t

dt

)2

+
(

d
√

Var[x]t

dt

)2

= dLt

dt
, (146)

which is the condition that the probability distribution changes
at a constant rate on a straight line measured by the L2-
Wasserstein distance Eq. (53). By comparing Eqs. (144) and
(145) with Eqs. (130) and (131), the optimal protocol that
minimizes the entropy production is given by

μkt (at − E[x]t ) = E[x]τ − E[x]0

τ
, (147)

−μ(kt Var[x]t − T ) =
√

Var[x]t

√
Var[x]τ − √

Var[x]0

τ
.

(148)

In terms of the parameters of the harmonic potential Vt (x),
the optimal protocol that minimizes the entropy production is
given by

kt = T

Var[x]t
−

√
Var[x]τ − √

Var[x]0

μτ
√

Var[x]t
, (149)

at = E[x]t + E[x]τ − E[x]0

ktμτ
. (150)

Thus, we obtain the parameters kt and at which realize such
an optimal protocol in practice

kt = T τ 2

(τ
√

Var[x]0 + t (
√

Var[x]τ − √
Var[x]0))2

−
√

Var[x]τ − √
Var[x]0

μ[τ
√

Var[x]0 + t (
√

Var[x]τ − √
Var[x]0)]

, (151)

at = τE[x]0 + t (E[x]τ − E[x]0)

τ
+ E[x]τ − E[x]0

ktμτ
. (152)

If we assume that kt is always non-negative, the following
inequality

τ � 1 − tμT

μT

√
Var[x]τ − √

Var[x]0√
Var[x]0

(153)

� 1

μT

√
Var[x]τ − √

Var[x]0√
Var[x]0

(154)

must hold for this optimal protocol. The results implies that
when the variance gets smaller, i.e., Var[x]τ < Var[x]0, we
can use this optimal protocol for all τ > 0, but when the
variance gets larger, i.e., Var[x]τ � Var[x]0, there is a limit
to the time τ for the process to achieve this optimal protocol.
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FIG. 4. Comparison between two lower bounds on the entropy
production �. The lower bound by the Wasserstein path length
L2

τ /(μT τ ) is much tighter than the lower bound by the Wasserstein
distance W (p0, pτ )2/(μT τ ).

C. Numerical illustration of thermodynamic
speed limits

We numerically test lower bounds on the entropy produc-
tion. We consider the Brownian motion with the harmonic
potential Eqs.(123) and (124). The parameters of the Brow-
nian motion are given by μ = 0.01 and T = 1. We consider
the case that the parameters of the harmonic potential are
periodically changed as follows:

kt = 2 + sin(t ), (155)

at = 10 sin(t ). (156)

The initial distribution is Gaussian with E[x]0 = Var[x]0 = 1,
and we calculate the time evolution from τ = 0 to τ = 10.
In Fig. 4, we illustrate the tightness of the lower bound
L2

τ /(μT τ ) in Eq. (47) compared with the lower bound
W (p0, pτ )2/(μT τ ) in Eq. (51). The value of the Wassserstein
distance W (p0, pτ ) oscillates for the periodic change of the
potential whereas the value of the Wassserstein path length
Lτ monotonically increases in time. This fact is a reason why
our new bound L2

τ /(μT τ ) becomes much tighter than the
previous bound W (p0, pτ )2/(μT τ ) for the periodic change
of the potential.

We also numerically check the lower bound in Eq. (55)
and the estimation of the entropy production based on
Eq. (57). In Fig. 5, we numerically calculate the lower bound∑N−1

i=0 �̂(ti; ti+1) as a function of the integer N = τ (i/ti ) at
time τ = 10. The inequality Eq. (55) holds for any N , and the
lower bound converges to the entropy production in the limit
N → ∞. This result implies that σ rot = 0 and the entropy
production is numerically estimated from the Wasserstein path
length. Our lower bound might be useful to estimate the
entropy production from the measurement of the probability
distribution at the short time interval.

FIG. 5. The estimation of the entropy production. The lower
bound on the entropy production

∑N−1
i=0 �̂(ti; ti+1) converges to the

entropy production �.

D. Numerical calculation of optimal stochastic heat engine in
finite time

We numerically discuss the optimal protocol for stochastic
heat engine in finite time. We here consider the Brownian
motion with the harmonic potential Eqs. (123) and (124). We
set the parameters as μ = 0.01, th = tc = 100, Th = 10, and
Tc = 1. Thus, the Carnot efficiency is given by ηC = 0.9. We
assume that the probability distribution is Gaussian with zero
mean E[x]t = 0 and variance Var[x]t satisfying Var[x]0 =
Var[x]th+tc = 1 and Var[x]th = 4. We easily check that the
condition Eq. (154) holds in this case. From Eqs. (151) and
(152), the optimal parameters of the harmonic potential are
given by

kt = 100 000

(100 + t )2
− 100

100 + t
, (157)

at = 0 (158)

for 0 � t < th and

kt = 10 000

(300 − t )2
+ 100

300 − t
, (159)

at = 0 (160)

for th � t � th + tc. By considering a similar discussion to
derive Eq. (55), we can obtain the lower bound on the entropy
production as follows,

� � �̂, (161)

�̂ =
{ W (p0,pτ )2

τμTh
(0 � τ < th)

W (p0,pth )2

thμTh
+ W (pth ,pτ )2

(τ−th )μTc
(th � τ � th + tc).

(162)

In Fig. 6, we show that the lower bound Eq. (162) is equal to
the entropy production in this optimal protocol. We can check
that the time derivative of the Wasserstein path length dLτ /dt
is constant.

We next discuss the bound on the efficiency in this case.
The change of the Shannon entropy is calculated as �S = ln 2
and the Wasserstein distance is calculated as W (pa, pb) = 1.
Thus, the efficiency is numerically obtained as η � 0.7145,
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FIG. 6. The entropy production � for the optimal heat engine in
finite time. The lower bound on the entropy production �̂ is equal
to the entropy production � in this case. We also show the time
evolution of the variance Var[x]τ and the Wasserstein path length
Lτ . The red area implies the interval where the temperature of the
heat bath is Th, and the blue area implies the interval where the
temperature of the heat bath is Tc, respectively.

which is lower than the Carnot efficiency ηC = 0.9. On the
other hand, the action is calculated as C = 0.01 and the lower
bound on the efficiency Eq. (122) gives a reasonable value

ηC − 2C
μ�STh

� 0.6115, (163)

which is smaller than the efficiency η � 0.7145.

VI. DISCUSSION

We discuss a geometrical feature of stochastic thermo-
dynamics for the Fokker-Planck equation based on the
L2-Wasserstein distance. As shown in this paper, the L2-
Wasserstein distance is strongly related to the entropy
production for the Fokker-Planck equation. Thus, based on
L2-Wasserstein distance, we can introduce a differential ge-
ometry of stochastic thermodynamics for the Fokker-Planck
equation, closely related to the entropy production.

It might be interesting to consider a relation between the
L2-Wasserstein distance and the Fisher information matrix
because the Fisher information matrix gives another metric
in information geometry, which is also a possible choice
of differential geometry of stochastic thermodynamics. For
example, the entropy production is given by the projection
in information geometry [12]. Thus, there might be a deep
connection between information geometry and optimal trans-
port by the L2-Wasserstein distance. For example, the HWI
inequality, the logarithmic Sobolev inequalities, and the Tala-
grand inequalities are considered as a trade-off relation among
the L2-Wasserstein distance, the relative Fisher information,
and the Shannon entropy [37,41]. As shown in Ref. [26], we
have an analogy between the entropy production rate and the
Fisher information of time for the Fokker-Planck equation.
This analogy is also pointed out in Ref. [78]. Thus, we might

unify two directions of research of information geometry and
the L2-Wasserstein distance for the Fokker-Planck equation
based on the entropy production. The unification of informa-
tion geometry and geometry of the L2-Wasserstein distance
has been recently discussed [43,44], and our results might
provide another direction in this topic.

If we consider thermodynamics based on information ge-
ometry, we can consider not only stochastic thermodynamics
for the Fokker-Planck equation [26] but also stochastic ther-
modynamics for the Markov jump process [10] and chemical
thermodynamics for the rate equation [23]. Thus, it might be
interesting to seek a correspondence of the L2-Wasserstein
distance for the Markov jump process and the rate equation.
Indeed, Van Vu and Hasegawa derived a generalization of
thermodynamic speed limits for the Markov jump process
[52] and then a thermodynamic correspondence of the L2-
Wasserstein distance for the Markov jump process might be
the distance discussed in Ref. [52]. Moreover, our result is
based on the setting of the overdamped Langevin equation,
where the entropy production rate is given by the mean local
velocity. Thus, it is interesting to generalize our result for the
underdamped Langevin equation or the generalized Langevin
equation for a non-Markovian process.

In a nonequilibrium steady state, the quantity σ rot
t might

play an important role. Under the existence of the non-
potential force, the entropy production rate is generally
decomposed into two non-negative parts, the Wasserstein part
(dLt/dt )2/(μT ) and the nonpotential part σ rot

t . This fact is
very similar to the case of the steady state thermodynamics
[65], where the entropy production is decomposed into the
excess entropy production and the housekeeping heat.
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APPENDIX: PROOF OF THE FORMULA EQ. (33)

To obtain the formula Eq. (33), we introduce the map
Mt→s for the trajectory of the particle according to the
Fokker-Planck equation from time t to time s. The map
Mt→t+s is given by the following differential equations for
s � 0,

d

ds
Mt→t+s(x) = νt+s(Mt→t+s(x)), (A1)

with the initial condition Mt→t (x) := x. The map Mt→t−s for
s � 0 is also given by

d

dt
Mt→t−s(x) = −νt−s(Mt→t−s(x)) (A2)

with the initial condition Mt→t (x) := x. These differential
equations correspond to the Lagrangian descriptions of the
Fokker-Planck equation as a continuity equation. Because
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the composite map Mt→t+s ◦ Tt (x) = Mt→t+s(Tt (x)) is a nonoptimal transport plan from p to pt+s, we obtain the inequality

W (p, pt+s)2 =
∫

dx ‖x − Tt+s(x)‖2 p(x)

�
∫

dx‖x − Mt→t+s(Tt (x))‖2 p(x). (A3)

By using Eqs. (A1) and (A3), we obtain

d

ds

(W (p, pt+s)2

2

)∣∣∣∣
s=0

= lim
s→+0

1

s

(W (p, pt+s)2

2
− W (p, pt )2

2

)

�
∫

dxp(x)

[
lim

s→+0

‖x − Mt→t+s(Tt (x))‖2 − ‖x − Tt (x)‖2

2s

]

= −
∫

dx(x − Tt (x)) · νt (Tt (x))p(x). (A4)

Similarly, we obtain

d

ds

(W (p, pt+s)2

2

)∣∣∣∣
s=0

= lim
s→+0

1

s

(W (p, pt+s)2

2
− W (p, pt )2

2

)

�
∫

dxp(x)

[
lim

s→+0

‖x−Tt+s(x)‖2−‖x−Mt+s→t (Tt+s(x))‖2

2s

]

= −
∫

dx(x − Tt (x)) · νt (Tt (x))p(x), (A5)

because the composite map Mt+s→t ◦ Tt+s is a nonoptimal transport plan from p to pt . From Eqs. (A4) and (A5), we finally
obtain the formula Eq. (33).
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